nf_conntrack_core.c revision 5b1158e909ecbe1a052203e0d8df15633f829930
1/* Connection state tracking for netfilter.  This is separated from,
2   but required by, the NAT layer; it can also be used by an iptables
3   extension. */
4
5/* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
14 *	- new API and handling of conntrack/nat helpers
15 *	- now capable of multiple expectations for one master
16 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
17 *	- add usage/reference counts to ip_conntrack_expect
18 *	- export ip_conntrack[_expect]_{find_get,put} functions
19 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
20 *	- generalize L3 protocol denendent part.
21 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
22 *	- add support various size of conntrack structures.
23 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
24 * 	- restructure nf_conn (introduce nf_conn_help)
25 * 	- redesign 'features' how they were originally intended
26 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
27 * 	- add support for L3 protocol module load on demand.
28 *
29 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
30 */
31
32#include <linux/types.h>
33#include <linux/netfilter.h>
34#include <linux/module.h>
35#include <linux/skbuff.h>
36#include <linux/proc_fs.h>
37#include <linux/vmalloc.h>
38#include <linux/stddef.h>
39#include <linux/slab.h>
40#include <linux/random.h>
41#include <linux/jhash.h>
42#include <linux/err.h>
43#include <linux/percpu.h>
44#include <linux/moduleparam.h>
45#include <linux/notifier.h>
46#include <linux/kernel.h>
47#include <linux/netdevice.h>
48#include <linux/socket.h>
49
50#include <net/netfilter/nf_conntrack.h>
51#include <net/netfilter/nf_conntrack_l3proto.h>
52#include <net/netfilter/nf_conntrack_l4proto.h>
53#include <net/netfilter/nf_conntrack_expect.h>
54#include <net/netfilter/nf_conntrack_helper.h>
55#include <net/netfilter/nf_conntrack_core.h>
56
57#define NF_CONNTRACK_VERSION	"0.5.0"
58
59#if 0
60#define DEBUGP printk
61#else
62#define DEBUGP(format, args...)
63#endif
64
65DEFINE_RWLOCK(nf_conntrack_lock);
66
67/* nf_conntrack_standalone needs this */
68atomic_t nf_conntrack_count = ATOMIC_INIT(0);
69EXPORT_SYMBOL_GPL(nf_conntrack_count);
70
71void (*nf_conntrack_destroyed)(struct nf_conn *conntrack) = NULL;
72unsigned int nf_conntrack_htable_size __read_mostly;
73int nf_conntrack_max __read_mostly;
74EXPORT_SYMBOL_GPL(nf_conntrack_max);
75struct list_head *nf_conntrack_hash __read_mostly;
76struct nf_conn nf_conntrack_untracked __read_mostly;
77unsigned int nf_ct_log_invalid __read_mostly;
78LIST_HEAD(unconfirmed);
79static int nf_conntrack_vmalloc __read_mostly;
80
81static unsigned int nf_conntrack_next_id;
82
83DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
84EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
85
86/*
87 * This scheme offers various size of "struct nf_conn" dependent on
88 * features(helper, nat, ...)
89 */
90
91#define NF_CT_FEATURES_NAMELEN	256
92static struct {
93	/* name of slab cache. printed in /proc/slabinfo */
94	char *name;
95
96	/* size of slab cache */
97	size_t size;
98
99	/* slab cache pointer */
100	kmem_cache_t *cachep;
101
102	/* allocated slab cache + modules which uses this slab cache */
103	int use;
104
105} nf_ct_cache[NF_CT_F_NUM];
106
107/* protect members of nf_ct_cache except of "use" */
108DEFINE_RWLOCK(nf_ct_cache_lock);
109
110/* This avoids calling kmem_cache_create() with same name simultaneously */
111static DEFINE_MUTEX(nf_ct_cache_mutex);
112
113static int nf_conntrack_hash_rnd_initted;
114static unsigned int nf_conntrack_hash_rnd;
115
116static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
117				  unsigned int size, unsigned int rnd)
118{
119	unsigned int a, b;
120	a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
121		  ((tuple->src.l3num) << 16) | tuple->dst.protonum);
122	b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
123			(tuple->src.u.all << 16) | tuple->dst.u.all);
124
125	return jhash_2words(a, b, rnd) % size;
126}
127
128static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
129{
130	return __hash_conntrack(tuple, nf_conntrack_htable_size,
131				nf_conntrack_hash_rnd);
132}
133
134int nf_conntrack_register_cache(u_int32_t features, const char *name,
135				size_t size)
136{
137	int ret = 0;
138	char *cache_name;
139	kmem_cache_t *cachep;
140
141	DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
142	       features, name, size);
143
144	if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
145		DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
146			features);
147		return -EINVAL;
148	}
149
150	mutex_lock(&nf_ct_cache_mutex);
151
152	write_lock_bh(&nf_ct_cache_lock);
153	/* e.g: multiple helpers are loaded */
154	if (nf_ct_cache[features].use > 0) {
155		DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
156		if ((!strncmp(nf_ct_cache[features].name, name,
157			      NF_CT_FEATURES_NAMELEN))
158		    && nf_ct_cache[features].size == size) {
159			DEBUGP("nf_conntrack_register_cache: reusing.\n");
160			nf_ct_cache[features].use++;
161			ret = 0;
162		} else
163			ret = -EBUSY;
164
165		write_unlock_bh(&nf_ct_cache_lock);
166		mutex_unlock(&nf_ct_cache_mutex);
167		return ret;
168	}
169	write_unlock_bh(&nf_ct_cache_lock);
170
171	/*
172	 * The memory space for name of slab cache must be alive until
173	 * cache is destroyed.
174	 */
175	cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
176	if (cache_name == NULL) {
177		DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
178		ret = -ENOMEM;
179		goto out_up_mutex;
180	}
181
182	if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
183						>= NF_CT_FEATURES_NAMELEN) {
184		printk("nf_conntrack_register_cache: name too long\n");
185		ret = -EINVAL;
186		goto out_free_name;
187	}
188
189	cachep = kmem_cache_create(cache_name, size, 0, 0,
190				   NULL, NULL);
191	if (!cachep) {
192		printk("nf_conntrack_register_cache: Can't create slab cache "
193		       "for the features = 0x%x\n", features);
194		ret = -ENOMEM;
195		goto out_free_name;
196	}
197
198	write_lock_bh(&nf_ct_cache_lock);
199	nf_ct_cache[features].use = 1;
200	nf_ct_cache[features].size = size;
201	nf_ct_cache[features].cachep = cachep;
202	nf_ct_cache[features].name = cache_name;
203	write_unlock_bh(&nf_ct_cache_lock);
204
205	goto out_up_mutex;
206
207out_free_name:
208	kfree(cache_name);
209out_up_mutex:
210	mutex_unlock(&nf_ct_cache_mutex);
211	return ret;
212}
213
214/* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
215void nf_conntrack_unregister_cache(u_int32_t features)
216{
217	kmem_cache_t *cachep;
218	char *name;
219
220	/*
221	 * This assures that kmem_cache_create() isn't called before destroying
222	 * slab cache.
223	 */
224	DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
225	mutex_lock(&nf_ct_cache_mutex);
226
227	write_lock_bh(&nf_ct_cache_lock);
228	if (--nf_ct_cache[features].use > 0) {
229		write_unlock_bh(&nf_ct_cache_lock);
230		mutex_unlock(&nf_ct_cache_mutex);
231		return;
232	}
233	cachep = nf_ct_cache[features].cachep;
234	name = nf_ct_cache[features].name;
235	nf_ct_cache[features].cachep = NULL;
236	nf_ct_cache[features].name = NULL;
237	nf_ct_cache[features].size = 0;
238	write_unlock_bh(&nf_ct_cache_lock);
239
240	synchronize_net();
241
242	kmem_cache_destroy(cachep);
243	kfree(name);
244
245	mutex_unlock(&nf_ct_cache_mutex);
246}
247
248int
249nf_ct_get_tuple(const struct sk_buff *skb,
250		unsigned int nhoff,
251		unsigned int dataoff,
252		u_int16_t l3num,
253		u_int8_t protonum,
254		struct nf_conntrack_tuple *tuple,
255		const struct nf_conntrack_l3proto *l3proto,
256		const struct nf_conntrack_l4proto *l4proto)
257{
258	NF_CT_TUPLE_U_BLANK(tuple);
259
260	tuple->src.l3num = l3num;
261	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
262		return 0;
263
264	tuple->dst.protonum = protonum;
265	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
266
267	return l4proto->pkt_to_tuple(skb, dataoff, tuple);
268}
269
270int
271nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
272		   const struct nf_conntrack_tuple *orig,
273		   const struct nf_conntrack_l3proto *l3proto,
274		   const struct nf_conntrack_l4proto *l4proto)
275{
276	NF_CT_TUPLE_U_BLANK(inverse);
277
278	inverse->src.l3num = orig->src.l3num;
279	if (l3proto->invert_tuple(inverse, orig) == 0)
280		return 0;
281
282	inverse->dst.dir = !orig->dst.dir;
283
284	inverse->dst.protonum = orig->dst.protonum;
285	return l4proto->invert_tuple(inverse, orig);
286}
287
288static void
289clean_from_lists(struct nf_conn *ct)
290{
291	DEBUGP("clean_from_lists(%p)\n", ct);
292	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
293	list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
294
295	/* Destroy all pending expectations */
296	nf_ct_remove_expectations(ct);
297}
298
299static void
300destroy_conntrack(struct nf_conntrack *nfct)
301{
302	struct nf_conn *ct = (struct nf_conn *)nfct;
303	struct nf_conntrack_l3proto *l3proto;
304	struct nf_conntrack_l4proto *l4proto;
305
306	DEBUGP("destroy_conntrack(%p)\n", ct);
307	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
308	NF_CT_ASSERT(!timer_pending(&ct->timeout));
309
310	nf_conntrack_event(IPCT_DESTROY, ct);
311	set_bit(IPS_DYING_BIT, &ct->status);
312
313	/* To make sure we don't get any weird locking issues here:
314	 * destroy_conntrack() MUST NOT be called with a write lock
315	 * to nf_conntrack_lock!!! -HW */
316	l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
317	if (l3proto && l3proto->destroy)
318		l3proto->destroy(ct);
319
320	l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num, ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
321	if (l4proto && l4proto->destroy)
322		l4proto->destroy(ct);
323
324	if (nf_conntrack_destroyed)
325		nf_conntrack_destroyed(ct);
326
327	write_lock_bh(&nf_conntrack_lock);
328	/* Expectations will have been removed in clean_from_lists,
329	 * except TFTP can create an expectation on the first packet,
330	 * before connection is in the list, so we need to clean here,
331	 * too. */
332	nf_ct_remove_expectations(ct);
333
334	/* We overload first tuple to link into unconfirmed list. */
335	if (!nf_ct_is_confirmed(ct)) {
336		BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
337		list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
338	}
339
340	NF_CT_STAT_INC(delete);
341	write_unlock_bh(&nf_conntrack_lock);
342
343	if (ct->master)
344		nf_ct_put(ct->master);
345
346	DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
347	nf_conntrack_free(ct);
348}
349
350static void death_by_timeout(unsigned long ul_conntrack)
351{
352	struct nf_conn *ct = (void *)ul_conntrack;
353
354	write_lock_bh(&nf_conntrack_lock);
355	/* Inside lock so preempt is disabled on module removal path.
356	 * Otherwise we can get spurious warnings. */
357	NF_CT_STAT_INC(delete_list);
358	clean_from_lists(ct);
359	write_unlock_bh(&nf_conntrack_lock);
360	nf_ct_put(ct);
361}
362
363struct nf_conntrack_tuple_hash *
364__nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
365		    const struct nf_conn *ignored_conntrack)
366{
367	struct nf_conntrack_tuple_hash *h;
368	unsigned int hash = hash_conntrack(tuple);
369
370	list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
371		if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
372		    nf_ct_tuple_equal(tuple, &h->tuple)) {
373			NF_CT_STAT_INC(found);
374			return h;
375		}
376		NF_CT_STAT_INC(searched);
377	}
378
379	return NULL;
380}
381
382/* Find a connection corresponding to a tuple. */
383struct nf_conntrack_tuple_hash *
384nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
385		      const struct nf_conn *ignored_conntrack)
386{
387	struct nf_conntrack_tuple_hash *h;
388
389	read_lock_bh(&nf_conntrack_lock);
390	h = __nf_conntrack_find(tuple, ignored_conntrack);
391	if (h)
392		atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
393	read_unlock_bh(&nf_conntrack_lock);
394
395	return h;
396}
397
398static void __nf_conntrack_hash_insert(struct nf_conn *ct,
399				       unsigned int hash,
400				       unsigned int repl_hash)
401{
402	ct->id = ++nf_conntrack_next_id;
403	list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
404		 &nf_conntrack_hash[hash]);
405	list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
406		 &nf_conntrack_hash[repl_hash]);
407}
408
409void nf_conntrack_hash_insert(struct nf_conn *ct)
410{
411	unsigned int hash, repl_hash;
412
413	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
414	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
415
416	write_lock_bh(&nf_conntrack_lock);
417	__nf_conntrack_hash_insert(ct, hash, repl_hash);
418	write_unlock_bh(&nf_conntrack_lock);
419}
420
421/* Confirm a connection given skb; places it in hash table */
422int
423__nf_conntrack_confirm(struct sk_buff **pskb)
424{
425	unsigned int hash, repl_hash;
426	struct nf_conntrack_tuple_hash *h;
427	struct nf_conn *ct;
428	struct nf_conn_help *help;
429	enum ip_conntrack_info ctinfo;
430
431	ct = nf_ct_get(*pskb, &ctinfo);
432
433	/* ipt_REJECT uses nf_conntrack_attach to attach related
434	   ICMP/TCP RST packets in other direction.  Actual packet
435	   which created connection will be IP_CT_NEW or for an
436	   expected connection, IP_CT_RELATED. */
437	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
438		return NF_ACCEPT;
439
440	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
441	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
442
443	/* We're not in hash table, and we refuse to set up related
444	   connections for unconfirmed conns.  But packet copies and
445	   REJECT will give spurious warnings here. */
446	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
447
448	/* No external references means noone else could have
449	   confirmed us. */
450	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
451	DEBUGP("Confirming conntrack %p\n", ct);
452
453	write_lock_bh(&nf_conntrack_lock);
454
455	/* See if there's one in the list already, including reverse:
456	   NAT could have grabbed it without realizing, since we're
457	   not in the hash.  If there is, we lost race. */
458	list_for_each_entry(h, &nf_conntrack_hash[hash], list)
459		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
460				      &h->tuple))
461			goto out;
462	list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
463		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
464				      &h->tuple))
465			goto out;
466
467	/* Remove from unconfirmed list */
468	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
469
470	__nf_conntrack_hash_insert(ct, hash, repl_hash);
471	/* Timer relative to confirmation time, not original
472	   setting time, otherwise we'd get timer wrap in
473	   weird delay cases. */
474	ct->timeout.expires += jiffies;
475	add_timer(&ct->timeout);
476	atomic_inc(&ct->ct_general.use);
477	set_bit(IPS_CONFIRMED_BIT, &ct->status);
478	NF_CT_STAT_INC(insert);
479	write_unlock_bh(&nf_conntrack_lock);
480	help = nfct_help(ct);
481	if (help && help->helper)
482		nf_conntrack_event_cache(IPCT_HELPER, *pskb);
483#ifdef CONFIG_NF_NAT_NEEDED
484	if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
485	    test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
486		nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
487#endif
488	nf_conntrack_event_cache(master_ct(ct) ?
489				 IPCT_RELATED : IPCT_NEW, *pskb);
490	return NF_ACCEPT;
491
492out:
493	NF_CT_STAT_INC(insert_failed);
494	write_unlock_bh(&nf_conntrack_lock);
495	return NF_DROP;
496}
497
498/* Returns true if a connection correspondings to the tuple (required
499   for NAT). */
500int
501nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
502			 const struct nf_conn *ignored_conntrack)
503{
504	struct nf_conntrack_tuple_hash *h;
505
506	read_lock_bh(&nf_conntrack_lock);
507	h = __nf_conntrack_find(tuple, ignored_conntrack);
508	read_unlock_bh(&nf_conntrack_lock);
509
510	return h != NULL;
511}
512
513/* There's a small race here where we may free a just-assured
514   connection.  Too bad: we're in trouble anyway. */
515static int early_drop(struct list_head *chain)
516{
517	/* Traverse backwards: gives us oldest, which is roughly LRU */
518	struct nf_conntrack_tuple_hash *h;
519	struct nf_conn *ct = NULL, *tmp;
520	int dropped = 0;
521
522	read_lock_bh(&nf_conntrack_lock);
523	list_for_each_entry_reverse(h, chain, list) {
524		tmp = nf_ct_tuplehash_to_ctrack(h);
525		if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
526			ct = tmp;
527			atomic_inc(&ct->ct_general.use);
528			break;
529		}
530	}
531	read_unlock_bh(&nf_conntrack_lock);
532
533	if (!ct)
534		return dropped;
535
536	if (del_timer(&ct->timeout)) {
537		death_by_timeout((unsigned long)ct);
538		dropped = 1;
539		NF_CT_STAT_INC(early_drop);
540	}
541	nf_ct_put(ct);
542	return dropped;
543}
544
545static struct nf_conn *
546__nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
547		     const struct nf_conntrack_tuple *repl,
548		     const struct nf_conntrack_l3proto *l3proto,
549		     u_int32_t features)
550{
551	struct nf_conn *conntrack = NULL;
552	struct nf_conntrack_helper *helper;
553
554	if (unlikely(!nf_conntrack_hash_rnd_initted)) {
555		get_random_bytes(&nf_conntrack_hash_rnd, 4);
556		nf_conntrack_hash_rnd_initted = 1;
557	}
558
559	/* We don't want any race condition at early drop stage */
560	atomic_inc(&nf_conntrack_count);
561
562	if (nf_conntrack_max
563	    && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
564		unsigned int hash = hash_conntrack(orig);
565		/* Try dropping from this hash chain. */
566		if (!early_drop(&nf_conntrack_hash[hash])) {
567			atomic_dec(&nf_conntrack_count);
568			if (net_ratelimit())
569				printk(KERN_WARNING
570				       "nf_conntrack: table full, dropping"
571				       " packet.\n");
572			return ERR_PTR(-ENOMEM);
573		}
574	}
575
576	/*  find features needed by this conntrack. */
577	features |= l3proto->get_features(orig);
578
579	/* FIXME: protect helper list per RCU */
580	read_lock_bh(&nf_conntrack_lock);
581	helper = __nf_ct_helper_find(repl);
582	/* NAT might want to assign a helper later */
583	if (helper || features & NF_CT_F_NAT)
584		features |= NF_CT_F_HELP;
585	read_unlock_bh(&nf_conntrack_lock);
586
587	DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);
588
589	read_lock_bh(&nf_ct_cache_lock);
590
591	if (unlikely(!nf_ct_cache[features].use)) {
592		DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
593			features);
594		goto out;
595	}
596
597	conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
598	if (conntrack == NULL) {
599		DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
600		goto out;
601	}
602
603	memset(conntrack, 0, nf_ct_cache[features].size);
604	conntrack->features = features;
605	atomic_set(&conntrack->ct_general.use, 1);
606	conntrack->ct_general.destroy = destroy_conntrack;
607	conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
608	conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
609	/* Don't set timer yet: wait for confirmation */
610	init_timer(&conntrack->timeout);
611	conntrack->timeout.data = (unsigned long)conntrack;
612	conntrack->timeout.function = death_by_timeout;
613	read_unlock_bh(&nf_ct_cache_lock);
614
615	return conntrack;
616out:
617	read_unlock_bh(&nf_ct_cache_lock);
618	atomic_dec(&nf_conntrack_count);
619	return conntrack;
620}
621
622struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
623				   const struct nf_conntrack_tuple *repl)
624{
625	struct nf_conntrack_l3proto *l3proto;
626
627	l3proto = __nf_ct_l3proto_find(orig->src.l3num);
628	return __nf_conntrack_alloc(orig, repl, l3proto, 0);
629}
630
631void nf_conntrack_free(struct nf_conn *conntrack)
632{
633	u_int32_t features = conntrack->features;
634	NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
635	DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
636	       conntrack);
637	kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
638	atomic_dec(&nf_conntrack_count);
639}
640
641/* Allocate a new conntrack: we return -ENOMEM if classification
642   failed due to stress.  Otherwise it really is unclassifiable. */
643static struct nf_conntrack_tuple_hash *
644init_conntrack(const struct nf_conntrack_tuple *tuple,
645	       struct nf_conntrack_l3proto *l3proto,
646	       struct nf_conntrack_l4proto *l4proto,
647	       struct sk_buff *skb,
648	       unsigned int dataoff)
649{
650	struct nf_conn *conntrack;
651	struct nf_conntrack_tuple repl_tuple;
652	struct nf_conntrack_expect *exp;
653	u_int32_t features = 0;
654
655	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
656		DEBUGP("Can't invert tuple.\n");
657		return NULL;
658	}
659
660	read_lock_bh(&nf_conntrack_lock);
661	exp = __nf_conntrack_expect_find(tuple);
662	if (exp && exp->helper)
663		features = NF_CT_F_HELP;
664	read_unlock_bh(&nf_conntrack_lock);
665
666	conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto, features);
667	if (conntrack == NULL || IS_ERR(conntrack)) {
668		DEBUGP("Can't allocate conntrack.\n");
669		return (struct nf_conntrack_tuple_hash *)conntrack;
670	}
671
672	if (!l4proto->new(conntrack, skb, dataoff)) {
673		nf_conntrack_free(conntrack);
674		DEBUGP("init conntrack: can't track with proto module\n");
675		return NULL;
676	}
677
678	write_lock_bh(&nf_conntrack_lock);
679	exp = find_expectation(tuple);
680
681	if (exp) {
682		DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
683			conntrack, exp);
684		/* Welcome, Mr. Bond.  We've been expecting you... */
685		__set_bit(IPS_EXPECTED_BIT, &conntrack->status);
686		conntrack->master = exp->master;
687		if (exp->helper)
688			nfct_help(conntrack)->helper = exp->helper;
689#ifdef CONFIG_NF_CONNTRACK_MARK
690		conntrack->mark = exp->master->mark;
691#endif
692#ifdef CONFIG_NF_CONNTRACK_SECMARK
693		conntrack->secmark = exp->master->secmark;
694#endif
695		nf_conntrack_get(&conntrack->master->ct_general);
696		NF_CT_STAT_INC(expect_new);
697	} else {
698		struct nf_conn_help *help = nfct_help(conntrack);
699
700		if (help)
701			help->helper = __nf_ct_helper_find(&repl_tuple);
702		NF_CT_STAT_INC(new);
703	}
704
705	/* Overload tuple linked list to put us in unconfirmed list. */
706	list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);
707
708	write_unlock_bh(&nf_conntrack_lock);
709
710	if (exp) {
711		if (exp->expectfn)
712			exp->expectfn(conntrack, exp);
713		nf_conntrack_expect_put(exp);
714	}
715
716	return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
717}
718
719/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
720static inline struct nf_conn *
721resolve_normal_ct(struct sk_buff *skb,
722		  unsigned int dataoff,
723		  u_int16_t l3num,
724		  u_int8_t protonum,
725		  struct nf_conntrack_l3proto *l3proto,
726		  struct nf_conntrack_l4proto *l4proto,
727		  int *set_reply,
728		  enum ip_conntrack_info *ctinfo)
729{
730	struct nf_conntrack_tuple tuple;
731	struct nf_conntrack_tuple_hash *h;
732	struct nf_conn *ct;
733
734	if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
735			     dataoff, l3num, protonum, &tuple, l3proto,
736			     l4proto)) {
737		DEBUGP("resolve_normal_ct: Can't get tuple\n");
738		return NULL;
739	}
740
741	/* look for tuple match */
742	h = nf_conntrack_find_get(&tuple, NULL);
743	if (!h) {
744		h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
745		if (!h)
746			return NULL;
747		if (IS_ERR(h))
748			return (void *)h;
749	}
750	ct = nf_ct_tuplehash_to_ctrack(h);
751
752	/* It exists; we have (non-exclusive) reference. */
753	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
754		*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
755		/* Please set reply bit if this packet OK */
756		*set_reply = 1;
757	} else {
758		/* Once we've had two way comms, always ESTABLISHED. */
759		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
760			DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
761			*ctinfo = IP_CT_ESTABLISHED;
762		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
763			DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
764			*ctinfo = IP_CT_RELATED;
765		} else {
766			DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
767			*ctinfo = IP_CT_NEW;
768		}
769		*set_reply = 0;
770	}
771	skb->nfct = &ct->ct_general;
772	skb->nfctinfo = *ctinfo;
773	return ct;
774}
775
776unsigned int
777nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
778{
779	struct nf_conn *ct;
780	enum ip_conntrack_info ctinfo;
781	struct nf_conntrack_l3proto *l3proto;
782	struct nf_conntrack_l4proto *l4proto;
783	unsigned int dataoff;
784	u_int8_t protonum;
785	int set_reply = 0;
786	int ret;
787
788	/* Previously seen (loopback or untracked)?  Ignore. */
789	if ((*pskb)->nfct) {
790		NF_CT_STAT_INC(ignore);
791		return NF_ACCEPT;
792	}
793
794	l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
795	if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
796		DEBUGP("not prepared to track yet or error occured\n");
797		return -ret;
798	}
799
800	l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
801
802	/* It may be an special packet, error, unclean...
803	 * inverse of the return code tells to the netfilter
804	 * core what to do with the packet. */
805	if (l4proto->error != NULL &&
806	    (ret = l4proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
807		NF_CT_STAT_INC(error);
808		NF_CT_STAT_INC(invalid);
809		return -ret;
810	}
811
812	ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, l4proto,
813			       &set_reply, &ctinfo);
814	if (!ct) {
815		/* Not valid part of a connection */
816		NF_CT_STAT_INC(invalid);
817		return NF_ACCEPT;
818	}
819
820	if (IS_ERR(ct)) {
821		/* Too stressed to deal. */
822		NF_CT_STAT_INC(drop);
823		return NF_DROP;
824	}
825
826	NF_CT_ASSERT((*pskb)->nfct);
827
828	ret = l4proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
829	if (ret < 0) {
830		/* Invalid: inverse of the return code tells
831		 * the netfilter core what to do */
832		DEBUGP("nf_conntrack_in: Can't track with proto module\n");
833		nf_conntrack_put((*pskb)->nfct);
834		(*pskb)->nfct = NULL;
835		NF_CT_STAT_INC(invalid);
836		return -ret;
837	}
838
839	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
840		nf_conntrack_event_cache(IPCT_STATUS, *pskb);
841
842	return ret;
843}
844
845int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
846			 const struct nf_conntrack_tuple *orig)
847{
848	return nf_ct_invert_tuple(inverse, orig,
849				  __nf_ct_l3proto_find(orig->src.l3num),
850				  __nf_ct_l4proto_find(orig->src.l3num,
851						     orig->dst.protonum));
852}
853
854/* Alter reply tuple (maybe alter helper).  This is for NAT, and is
855   implicitly racy: see __nf_conntrack_confirm */
856void nf_conntrack_alter_reply(struct nf_conn *ct,
857			      const struct nf_conntrack_tuple *newreply)
858{
859	struct nf_conn_help *help = nfct_help(ct);
860
861	write_lock_bh(&nf_conntrack_lock);
862	/* Should be unconfirmed, so not in hash table yet */
863	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
864
865	DEBUGP("Altering reply tuple of %p to ", ct);
866	NF_CT_DUMP_TUPLE(newreply);
867
868	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
869	if (!ct->master && help && help->expecting == 0)
870		help->helper = __nf_ct_helper_find(newreply);
871	write_unlock_bh(&nf_conntrack_lock);
872}
873
874/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
875void __nf_ct_refresh_acct(struct nf_conn *ct,
876			  enum ip_conntrack_info ctinfo,
877			  const struct sk_buff *skb,
878			  unsigned long extra_jiffies,
879			  int do_acct)
880{
881	int event = 0;
882
883	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
884	NF_CT_ASSERT(skb);
885
886	write_lock_bh(&nf_conntrack_lock);
887
888	/* Only update if this is not a fixed timeout */
889	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
890		write_unlock_bh(&nf_conntrack_lock);
891		return;
892	}
893
894	/* If not in hash table, timer will not be active yet */
895	if (!nf_ct_is_confirmed(ct)) {
896		ct->timeout.expires = extra_jiffies;
897		event = IPCT_REFRESH;
898	} else {
899		unsigned long newtime = jiffies + extra_jiffies;
900
901		/* Only update the timeout if the new timeout is at least
902		   HZ jiffies from the old timeout. Need del_timer for race
903		   avoidance (may already be dying). */
904		if (newtime - ct->timeout.expires >= HZ
905		    && del_timer(&ct->timeout)) {
906			ct->timeout.expires = newtime;
907			add_timer(&ct->timeout);
908			event = IPCT_REFRESH;
909		}
910	}
911
912#ifdef CONFIG_NF_CT_ACCT
913	if (do_acct) {
914		ct->counters[CTINFO2DIR(ctinfo)].packets++;
915		ct->counters[CTINFO2DIR(ctinfo)].bytes +=
916			skb->len - (unsigned int)(skb->nh.raw - skb->data);
917
918		if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
919		    || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
920			event |= IPCT_COUNTER_FILLING;
921	}
922#endif
923
924	write_unlock_bh(&nf_conntrack_lock);
925
926	/* must be unlocked when calling event cache */
927	if (event)
928		nf_conntrack_event_cache(event, skb);
929}
930
931#if defined(CONFIG_NF_CT_NETLINK) || \
932    defined(CONFIG_NF_CT_NETLINK_MODULE)
933
934#include <linux/netfilter/nfnetlink.h>
935#include <linux/netfilter/nfnetlink_conntrack.h>
936#include <linux/mutex.h>
937
938
939/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
940 * in ip_conntrack_core, since we don't want the protocols to autoload
941 * or depend on ctnetlink */
942int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
943			       const struct nf_conntrack_tuple *tuple)
944{
945	NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
946		&tuple->src.u.tcp.port);
947	NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
948		&tuple->dst.u.tcp.port);
949	return 0;
950
951nfattr_failure:
952	return -1;
953}
954
955static const size_t cta_min_proto[CTA_PROTO_MAX] = {
956	[CTA_PROTO_SRC_PORT-1]  = sizeof(u_int16_t),
957	[CTA_PROTO_DST_PORT-1]  = sizeof(u_int16_t)
958};
959
960int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
961			       struct nf_conntrack_tuple *t)
962{
963	if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
964		return -EINVAL;
965
966	if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
967		return -EINVAL;
968
969	t->src.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
970	t->dst.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);
971
972	return 0;
973}
974#endif
975
976/* Used by ipt_REJECT and ip6t_REJECT. */
977void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
978{
979	struct nf_conn *ct;
980	enum ip_conntrack_info ctinfo;
981
982	/* This ICMP is in reverse direction to the packet which caused it */
983	ct = nf_ct_get(skb, &ctinfo);
984	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
985		ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
986	else
987		ctinfo = IP_CT_RELATED;
988
989	/* Attach to new skbuff, and increment count */
990	nskb->nfct = &ct->ct_general;
991	nskb->nfctinfo = ctinfo;
992	nf_conntrack_get(nskb->nfct);
993}
994
995static inline int
996do_iter(const struct nf_conntrack_tuple_hash *i,
997	int (*iter)(struct nf_conn *i, void *data),
998	void *data)
999{
1000	return iter(nf_ct_tuplehash_to_ctrack(i), data);
1001}
1002
1003/* Bring out ya dead! */
1004static struct nf_conn *
1005get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1006		void *data, unsigned int *bucket)
1007{
1008	struct nf_conntrack_tuple_hash *h;
1009	struct nf_conn *ct;
1010
1011	write_lock_bh(&nf_conntrack_lock);
1012	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1013		list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
1014			ct = nf_ct_tuplehash_to_ctrack(h);
1015			if (iter(ct, data))
1016				goto found;
1017		}
1018 	}
1019	list_for_each_entry(h, &unconfirmed, list) {
1020		ct = nf_ct_tuplehash_to_ctrack(h);
1021		if (iter(ct, data))
1022			goto found;
1023	}
1024	write_unlock_bh(&nf_conntrack_lock);
1025	return NULL;
1026found:
1027	atomic_inc(&ct->ct_general.use);
1028	write_unlock_bh(&nf_conntrack_lock);
1029	return ct;
1030}
1031
1032void
1033nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
1034{
1035	struct nf_conn *ct;
1036	unsigned int bucket = 0;
1037
1038	while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1039		/* Time to push up daises... */
1040		if (del_timer(&ct->timeout))
1041			death_by_timeout((unsigned long)ct);
1042		/* ... else the timer will get him soon. */
1043
1044		nf_ct_put(ct);
1045	}
1046}
1047
1048static int kill_all(struct nf_conn *i, void *data)
1049{
1050	return 1;
1051}
1052
1053static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
1054{
1055	if (vmalloced)
1056		vfree(hash);
1057	else
1058		free_pages((unsigned long)hash,
1059			   get_order(sizeof(struct list_head) * size));
1060}
1061
1062void nf_conntrack_flush()
1063{
1064	nf_ct_iterate_cleanup(kill_all, NULL);
1065}
1066
1067/* Mishearing the voices in his head, our hero wonders how he's
1068   supposed to kill the mall. */
1069void nf_conntrack_cleanup(void)
1070{
1071	int i;
1072
1073	ip_ct_attach = NULL;
1074
1075	/* This makes sure all current packets have passed through
1076	   netfilter framework.  Roll on, two-stage module
1077	   delete... */
1078	synchronize_net();
1079
1080	nf_ct_event_cache_flush();
1081 i_see_dead_people:
1082	nf_conntrack_flush();
1083	if (atomic_read(&nf_conntrack_count) != 0) {
1084		schedule();
1085		goto i_see_dead_people;
1086	}
1087	/* wait until all references to nf_conntrack_untracked are dropped */
1088	while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1089		schedule();
1090
1091	for (i = 0; i < NF_CT_F_NUM; i++) {
1092		if (nf_ct_cache[i].use == 0)
1093			continue;
1094
1095		NF_CT_ASSERT(nf_ct_cache[i].use == 1);
1096		nf_ct_cache[i].use = 1;
1097		nf_conntrack_unregister_cache(i);
1098	}
1099	kmem_cache_destroy(nf_conntrack_expect_cachep);
1100	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1101			    nf_conntrack_htable_size);
1102
1103	nf_conntrack_l4proto_unregister(&nf_conntrack_l4proto_generic);
1104
1105	/* free l3proto protocol tables */
1106	for (i = 0; i < PF_MAX; i++)
1107		if (nf_ct_protos[i]) {
1108			kfree(nf_ct_protos[i]);
1109			nf_ct_protos[i] = NULL;
1110		}
1111}
1112
1113static struct list_head *alloc_hashtable(int size, int *vmalloced)
1114{
1115	struct list_head *hash;
1116	unsigned int i;
1117
1118	*vmalloced = 0;
1119	hash = (void*)__get_free_pages(GFP_KERNEL,
1120				       get_order(sizeof(struct list_head)
1121						 * size));
1122	if (!hash) {
1123		*vmalloced = 1;
1124		printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1125		hash = vmalloc(sizeof(struct list_head) * size);
1126	}
1127
1128	if (hash)
1129		for (i = 0; i < size; i++)
1130			INIT_LIST_HEAD(&hash[i]);
1131
1132	return hash;
1133}
1134
1135int set_hashsize(const char *val, struct kernel_param *kp)
1136{
1137	int i, bucket, hashsize, vmalloced;
1138	int old_vmalloced, old_size;
1139	int rnd;
1140	struct list_head *hash, *old_hash;
1141	struct nf_conntrack_tuple_hash *h;
1142
1143	/* On boot, we can set this without any fancy locking. */
1144	if (!nf_conntrack_htable_size)
1145		return param_set_uint(val, kp);
1146
1147	hashsize = simple_strtol(val, NULL, 0);
1148	if (!hashsize)
1149		return -EINVAL;
1150
1151	hash = alloc_hashtable(hashsize, &vmalloced);
1152	if (!hash)
1153		return -ENOMEM;
1154
1155	/* We have to rehahs for the new table anyway, so we also can
1156	 * use a newrandom seed */
1157	get_random_bytes(&rnd, 4);
1158
1159	write_lock_bh(&nf_conntrack_lock);
1160	for (i = 0; i < nf_conntrack_htable_size; i++) {
1161		while (!list_empty(&nf_conntrack_hash[i])) {
1162			h = list_entry(nf_conntrack_hash[i].next,
1163				       struct nf_conntrack_tuple_hash, list);
1164			list_del(&h->list);
1165			bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1166			list_add_tail(&h->list, &hash[bucket]);
1167		}
1168	}
1169	old_size = nf_conntrack_htable_size;
1170	old_vmalloced = nf_conntrack_vmalloc;
1171	old_hash = nf_conntrack_hash;
1172
1173	nf_conntrack_htable_size = hashsize;
1174	nf_conntrack_vmalloc = vmalloced;
1175	nf_conntrack_hash = hash;
1176	nf_conntrack_hash_rnd = rnd;
1177	write_unlock_bh(&nf_conntrack_lock);
1178
1179	free_conntrack_hash(old_hash, old_vmalloced, old_size);
1180	return 0;
1181}
1182
1183module_param_call(hashsize, set_hashsize, param_get_uint,
1184		  &nf_conntrack_htable_size, 0600);
1185
1186int __init nf_conntrack_init(void)
1187{
1188	unsigned int i;
1189	int ret;
1190
1191	/* Idea from tcp.c: use 1/16384 of memory.  On i386: 32MB
1192	 * machine has 256 buckets.  >= 1GB machines have 8192 buckets. */
1193	if (!nf_conntrack_htable_size) {
1194		nf_conntrack_htable_size
1195			= (((num_physpages << PAGE_SHIFT) / 16384)
1196			   / sizeof(struct list_head));
1197		if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1198			nf_conntrack_htable_size = 8192;
1199		if (nf_conntrack_htable_size < 16)
1200			nf_conntrack_htable_size = 16;
1201	}
1202	nf_conntrack_max = 8 * nf_conntrack_htable_size;
1203
1204	printk("nf_conntrack version %s (%u buckets, %d max)\n",
1205	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1206	       nf_conntrack_max);
1207
1208	nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
1209					    &nf_conntrack_vmalloc);
1210	if (!nf_conntrack_hash) {
1211		printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1212		goto err_out;
1213	}
1214
1215	ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1216					  sizeof(struct nf_conn));
1217	if (ret < 0) {
1218		printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1219		goto err_free_hash;
1220	}
1221
1222	nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
1223					sizeof(struct nf_conntrack_expect),
1224					0, 0, NULL, NULL);
1225	if (!nf_conntrack_expect_cachep) {
1226		printk(KERN_ERR "Unable to create nf_expect slab cache\n");
1227		goto err_free_conntrack_slab;
1228	}
1229
1230	ret = nf_conntrack_l4proto_register(&nf_conntrack_l4proto_generic);
1231	if (ret < 0)
1232		goto out_free_expect_slab;
1233
1234	/* Don't NEED lock here, but good form anyway. */
1235	write_lock_bh(&nf_conntrack_lock);
1236        for (i = 0; i < AF_MAX; i++)
1237		nf_ct_l3protos[i] = &nf_conntrack_l3proto_generic;
1238        write_unlock_bh(&nf_conntrack_lock);
1239
1240	/* For use by REJECT target */
1241	ip_ct_attach = __nf_conntrack_attach;
1242
1243	/* Set up fake conntrack:
1244	    - to never be deleted, not in any hashes */
1245	atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1246	/*  - and look it like as a confirmed connection */
1247	set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1248
1249	return ret;
1250
1251out_free_expect_slab:
1252	kmem_cache_destroy(nf_conntrack_expect_cachep);
1253err_free_conntrack_slab:
1254	nf_conntrack_unregister_cache(NF_CT_F_BASIC);
1255err_free_hash:
1256	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1257			    nf_conntrack_htable_size);
1258err_out:
1259	return -ENOMEM;
1260}
1261