nf_conntrack_core.c revision 982d9a9ce389c396bc83ce29d799937f379ddcb7
1/* Connection state tracking for netfilter.  This is separated from,
2   but required by, the NAT layer; it can also be used by an iptables
3   extension. */
4
5/* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
14 *	- new API and handling of conntrack/nat helpers
15 *	- now capable of multiple expectations for one master
16 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
17 *	- add usage/reference counts to ip_conntrack_expect
18 *	- export ip_conntrack[_expect]_{find_get,put} functions
19 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
20 *	- generalize L3 protocol denendent part.
21 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
22 *	- add support various size of conntrack structures.
23 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
24 * 	- restructure nf_conn (introduce nf_conn_help)
25 * 	- redesign 'features' how they were originally intended
26 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
27 * 	- add support for L3 protocol module load on demand.
28 *
29 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
30 */
31
32#include <linux/types.h>
33#include <linux/netfilter.h>
34#include <linux/module.h>
35#include <linux/skbuff.h>
36#include <linux/proc_fs.h>
37#include <linux/vmalloc.h>
38#include <linux/stddef.h>
39#include <linux/slab.h>
40#include <linux/random.h>
41#include <linux/jhash.h>
42#include <linux/err.h>
43#include <linux/percpu.h>
44#include <linux/moduleparam.h>
45#include <linux/notifier.h>
46#include <linux/kernel.h>
47#include <linux/netdevice.h>
48#include <linux/socket.h>
49#include <linux/mm.h>
50
51#include <net/netfilter/nf_conntrack.h>
52#include <net/netfilter/nf_conntrack_l3proto.h>
53#include <net/netfilter/nf_conntrack_l4proto.h>
54#include <net/netfilter/nf_conntrack_expect.h>
55#include <net/netfilter/nf_conntrack_helper.h>
56#include <net/netfilter/nf_conntrack_core.h>
57
58#define NF_CONNTRACK_VERSION	"0.5.0"
59
60#if 0
61#define DEBUGP printk
62#else
63#define DEBUGP(format, args...)
64#endif
65
66DEFINE_RWLOCK(nf_conntrack_lock);
67EXPORT_SYMBOL_GPL(nf_conntrack_lock);
68
69/* nf_conntrack_standalone needs this */
70atomic_t nf_conntrack_count = ATOMIC_INIT(0);
71EXPORT_SYMBOL_GPL(nf_conntrack_count);
72
73void (*nf_conntrack_destroyed)(struct nf_conn *conntrack);
74EXPORT_SYMBOL_GPL(nf_conntrack_destroyed);
75
76unsigned int nf_conntrack_htable_size __read_mostly;
77EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
78
79int nf_conntrack_max __read_mostly;
80EXPORT_SYMBOL_GPL(nf_conntrack_max);
81
82struct list_head *nf_conntrack_hash __read_mostly;
83EXPORT_SYMBOL_GPL(nf_conntrack_hash);
84
85struct nf_conn nf_conntrack_untracked __read_mostly;
86EXPORT_SYMBOL_GPL(nf_conntrack_untracked);
87
88unsigned int nf_ct_log_invalid __read_mostly;
89LIST_HEAD(unconfirmed);
90static int nf_conntrack_vmalloc __read_mostly;
91
92static unsigned int nf_conntrack_next_id;
93
94DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
95EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
96
97/*
98 * This scheme offers various size of "struct nf_conn" dependent on
99 * features(helper, nat, ...)
100 */
101
102#define NF_CT_FEATURES_NAMELEN	256
103static struct {
104	/* name of slab cache. printed in /proc/slabinfo */
105	char *name;
106
107	/* size of slab cache */
108	size_t size;
109
110	/* slab cache pointer */
111	struct kmem_cache *cachep;
112
113	/* allocated slab cache + modules which uses this slab cache */
114	int use;
115
116} nf_ct_cache[NF_CT_F_NUM];
117
118/* protect members of nf_ct_cache except of "use" */
119DEFINE_RWLOCK(nf_ct_cache_lock);
120
121/* This avoids calling kmem_cache_create() with same name simultaneously */
122static DEFINE_MUTEX(nf_ct_cache_mutex);
123
124static int nf_conntrack_hash_rnd_initted;
125static unsigned int nf_conntrack_hash_rnd;
126
127static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
128				  unsigned int size, unsigned int rnd)
129{
130	unsigned int a, b;
131	a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
132		  ((tuple->src.l3num) << 16) | tuple->dst.protonum);
133	b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
134			(tuple->src.u.all << 16) | tuple->dst.u.all);
135
136	return jhash_2words(a, b, rnd) % size;
137}
138
139static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
140{
141	return __hash_conntrack(tuple, nf_conntrack_htable_size,
142				nf_conntrack_hash_rnd);
143}
144
145int nf_conntrack_register_cache(u_int32_t features, const char *name,
146				size_t size)
147{
148	int ret = 0;
149	char *cache_name;
150	struct kmem_cache *cachep;
151
152	DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
153	       features, name, size);
154
155	if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
156		DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
157			features);
158		return -EINVAL;
159	}
160
161	mutex_lock(&nf_ct_cache_mutex);
162
163	write_lock_bh(&nf_ct_cache_lock);
164	/* e.g: multiple helpers are loaded */
165	if (nf_ct_cache[features].use > 0) {
166		DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
167		if ((!strncmp(nf_ct_cache[features].name, name,
168			      NF_CT_FEATURES_NAMELEN))
169		    && nf_ct_cache[features].size == size) {
170			DEBUGP("nf_conntrack_register_cache: reusing.\n");
171			nf_ct_cache[features].use++;
172			ret = 0;
173		} else
174			ret = -EBUSY;
175
176		write_unlock_bh(&nf_ct_cache_lock);
177		mutex_unlock(&nf_ct_cache_mutex);
178		return ret;
179	}
180	write_unlock_bh(&nf_ct_cache_lock);
181
182	/*
183	 * The memory space for name of slab cache must be alive until
184	 * cache is destroyed.
185	 */
186	cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
187	if (cache_name == NULL) {
188		DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
189		ret = -ENOMEM;
190		goto out_up_mutex;
191	}
192
193	if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
194						>= NF_CT_FEATURES_NAMELEN) {
195		printk("nf_conntrack_register_cache: name too long\n");
196		ret = -EINVAL;
197		goto out_free_name;
198	}
199
200	cachep = kmem_cache_create(cache_name, size, 0, 0,
201				   NULL, NULL);
202	if (!cachep) {
203		printk("nf_conntrack_register_cache: Can't create slab cache "
204		       "for the features = 0x%x\n", features);
205		ret = -ENOMEM;
206		goto out_free_name;
207	}
208
209	write_lock_bh(&nf_ct_cache_lock);
210	nf_ct_cache[features].use = 1;
211	nf_ct_cache[features].size = size;
212	nf_ct_cache[features].cachep = cachep;
213	nf_ct_cache[features].name = cache_name;
214	write_unlock_bh(&nf_ct_cache_lock);
215
216	goto out_up_mutex;
217
218out_free_name:
219	kfree(cache_name);
220out_up_mutex:
221	mutex_unlock(&nf_ct_cache_mutex);
222	return ret;
223}
224EXPORT_SYMBOL_GPL(nf_conntrack_register_cache);
225
226/* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
227void nf_conntrack_unregister_cache(u_int32_t features)
228{
229	struct kmem_cache *cachep;
230	char *name;
231
232	/*
233	 * This assures that kmem_cache_create() isn't called before destroying
234	 * slab cache.
235	 */
236	DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
237	mutex_lock(&nf_ct_cache_mutex);
238
239	write_lock_bh(&nf_ct_cache_lock);
240	if (--nf_ct_cache[features].use > 0) {
241		write_unlock_bh(&nf_ct_cache_lock);
242		mutex_unlock(&nf_ct_cache_mutex);
243		return;
244	}
245	cachep = nf_ct_cache[features].cachep;
246	name = nf_ct_cache[features].name;
247	nf_ct_cache[features].cachep = NULL;
248	nf_ct_cache[features].name = NULL;
249	nf_ct_cache[features].size = 0;
250	write_unlock_bh(&nf_ct_cache_lock);
251
252	synchronize_net();
253
254	kmem_cache_destroy(cachep);
255	kfree(name);
256
257	mutex_unlock(&nf_ct_cache_mutex);
258}
259EXPORT_SYMBOL_GPL(nf_conntrack_unregister_cache);
260
261int
262nf_ct_get_tuple(const struct sk_buff *skb,
263		unsigned int nhoff,
264		unsigned int dataoff,
265		u_int16_t l3num,
266		u_int8_t protonum,
267		struct nf_conntrack_tuple *tuple,
268		const struct nf_conntrack_l3proto *l3proto,
269		const struct nf_conntrack_l4proto *l4proto)
270{
271	NF_CT_TUPLE_U_BLANK(tuple);
272
273	tuple->src.l3num = l3num;
274	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
275		return 0;
276
277	tuple->dst.protonum = protonum;
278	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
279
280	return l4proto->pkt_to_tuple(skb, dataoff, tuple);
281}
282EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
283
284int
285nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
286		   const struct nf_conntrack_tuple *orig,
287		   const struct nf_conntrack_l3proto *l3proto,
288		   const struct nf_conntrack_l4proto *l4proto)
289{
290	NF_CT_TUPLE_U_BLANK(inverse);
291
292	inverse->src.l3num = orig->src.l3num;
293	if (l3proto->invert_tuple(inverse, orig) == 0)
294		return 0;
295
296	inverse->dst.dir = !orig->dst.dir;
297
298	inverse->dst.protonum = orig->dst.protonum;
299	return l4proto->invert_tuple(inverse, orig);
300}
301EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
302
303static void
304clean_from_lists(struct nf_conn *ct)
305{
306	DEBUGP("clean_from_lists(%p)\n", ct);
307	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
308	list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
309
310	/* Destroy all pending expectations */
311	nf_ct_remove_expectations(ct);
312}
313
314static void
315destroy_conntrack(struct nf_conntrack *nfct)
316{
317	struct nf_conn *ct = (struct nf_conn *)nfct;
318	struct nf_conn_help *help = nfct_help(ct);
319	struct nf_conntrack_l3proto *l3proto;
320	struct nf_conntrack_l4proto *l4proto;
321	typeof(nf_conntrack_destroyed) destroyed;
322
323	DEBUGP("destroy_conntrack(%p)\n", ct);
324	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
325	NF_CT_ASSERT(!timer_pending(&ct->timeout));
326
327	nf_conntrack_event(IPCT_DESTROY, ct);
328	set_bit(IPS_DYING_BIT, &ct->status);
329
330	if (help && help->helper && help->helper->destroy)
331		help->helper->destroy(ct);
332
333	/* To make sure we don't get any weird locking issues here:
334	 * destroy_conntrack() MUST NOT be called with a write lock
335	 * to nf_conntrack_lock!!! -HW */
336	rcu_read_lock();
337	l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
338	if (l3proto && l3proto->destroy)
339		l3proto->destroy(ct);
340
341	l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num,
342				       ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
343	if (l4proto && l4proto->destroy)
344		l4proto->destroy(ct);
345
346	destroyed = rcu_dereference(nf_conntrack_destroyed);
347	if (destroyed)
348		destroyed(ct);
349
350	rcu_read_unlock();
351
352	write_lock_bh(&nf_conntrack_lock);
353	/* Expectations will have been removed in clean_from_lists,
354	 * except TFTP can create an expectation on the first packet,
355	 * before connection is in the list, so we need to clean here,
356	 * too. */
357	nf_ct_remove_expectations(ct);
358
359	/* We overload first tuple to link into unconfirmed list. */
360	if (!nf_ct_is_confirmed(ct)) {
361		BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
362		list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
363	}
364
365	NF_CT_STAT_INC(delete);
366	write_unlock_bh(&nf_conntrack_lock);
367
368	if (ct->master)
369		nf_ct_put(ct->master);
370
371	DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
372	nf_conntrack_free(ct);
373}
374
375static void death_by_timeout(unsigned long ul_conntrack)
376{
377	struct nf_conn *ct = (void *)ul_conntrack;
378
379	write_lock_bh(&nf_conntrack_lock);
380	/* Inside lock so preempt is disabled on module removal path.
381	 * Otherwise we can get spurious warnings. */
382	NF_CT_STAT_INC(delete_list);
383	clean_from_lists(ct);
384	write_unlock_bh(&nf_conntrack_lock);
385	nf_ct_put(ct);
386}
387
388struct nf_conntrack_tuple_hash *
389__nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
390		    const struct nf_conn *ignored_conntrack)
391{
392	struct nf_conntrack_tuple_hash *h;
393	unsigned int hash = hash_conntrack(tuple);
394
395	list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
396		if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
397		    nf_ct_tuple_equal(tuple, &h->tuple)) {
398			NF_CT_STAT_INC(found);
399			return h;
400		}
401		NF_CT_STAT_INC(searched);
402	}
403
404	return NULL;
405}
406EXPORT_SYMBOL_GPL(__nf_conntrack_find);
407
408/* Find a connection corresponding to a tuple. */
409struct nf_conntrack_tuple_hash *
410nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
411		      const struct nf_conn *ignored_conntrack)
412{
413	struct nf_conntrack_tuple_hash *h;
414
415	read_lock_bh(&nf_conntrack_lock);
416	h = __nf_conntrack_find(tuple, ignored_conntrack);
417	if (h)
418		atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
419	read_unlock_bh(&nf_conntrack_lock);
420
421	return h;
422}
423EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
424
425static void __nf_conntrack_hash_insert(struct nf_conn *ct,
426				       unsigned int hash,
427				       unsigned int repl_hash)
428{
429	ct->id = ++nf_conntrack_next_id;
430	list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
431		 &nf_conntrack_hash[hash]);
432	list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
433		 &nf_conntrack_hash[repl_hash]);
434}
435
436void nf_conntrack_hash_insert(struct nf_conn *ct)
437{
438	unsigned int hash, repl_hash;
439
440	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
441	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
442
443	write_lock_bh(&nf_conntrack_lock);
444	__nf_conntrack_hash_insert(ct, hash, repl_hash);
445	write_unlock_bh(&nf_conntrack_lock);
446}
447EXPORT_SYMBOL_GPL(nf_conntrack_hash_insert);
448
449/* Confirm a connection given skb; places it in hash table */
450int
451__nf_conntrack_confirm(struct sk_buff **pskb)
452{
453	unsigned int hash, repl_hash;
454	struct nf_conntrack_tuple_hash *h;
455	struct nf_conn *ct;
456	struct nf_conn_help *help;
457	enum ip_conntrack_info ctinfo;
458
459	ct = nf_ct_get(*pskb, &ctinfo);
460
461	/* ipt_REJECT uses nf_conntrack_attach to attach related
462	   ICMP/TCP RST packets in other direction.  Actual packet
463	   which created connection will be IP_CT_NEW or for an
464	   expected connection, IP_CT_RELATED. */
465	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
466		return NF_ACCEPT;
467
468	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
469	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
470
471	/* We're not in hash table, and we refuse to set up related
472	   connections for unconfirmed conns.  But packet copies and
473	   REJECT will give spurious warnings here. */
474	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
475
476	/* No external references means noone else could have
477	   confirmed us. */
478	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
479	DEBUGP("Confirming conntrack %p\n", ct);
480
481	write_lock_bh(&nf_conntrack_lock);
482
483	/* See if there's one in the list already, including reverse:
484	   NAT could have grabbed it without realizing, since we're
485	   not in the hash.  If there is, we lost race. */
486	list_for_each_entry(h, &nf_conntrack_hash[hash], list)
487		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
488				      &h->tuple))
489			goto out;
490	list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
491		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
492				      &h->tuple))
493			goto out;
494
495	/* Remove from unconfirmed list */
496	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
497
498	__nf_conntrack_hash_insert(ct, hash, repl_hash);
499	/* Timer relative to confirmation time, not original
500	   setting time, otherwise we'd get timer wrap in
501	   weird delay cases. */
502	ct->timeout.expires += jiffies;
503	add_timer(&ct->timeout);
504	atomic_inc(&ct->ct_general.use);
505	set_bit(IPS_CONFIRMED_BIT, &ct->status);
506	NF_CT_STAT_INC(insert);
507	write_unlock_bh(&nf_conntrack_lock);
508	help = nfct_help(ct);
509	if (help && help->helper)
510		nf_conntrack_event_cache(IPCT_HELPER, *pskb);
511#ifdef CONFIG_NF_NAT_NEEDED
512	if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
513	    test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
514		nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
515#endif
516	nf_conntrack_event_cache(master_ct(ct) ?
517				 IPCT_RELATED : IPCT_NEW, *pskb);
518	return NF_ACCEPT;
519
520out:
521	NF_CT_STAT_INC(insert_failed);
522	write_unlock_bh(&nf_conntrack_lock);
523	return NF_DROP;
524}
525EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
526
527/* Returns true if a connection correspondings to the tuple (required
528   for NAT). */
529int
530nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
531			 const struct nf_conn *ignored_conntrack)
532{
533	struct nf_conntrack_tuple_hash *h;
534
535	read_lock_bh(&nf_conntrack_lock);
536	h = __nf_conntrack_find(tuple, ignored_conntrack);
537	read_unlock_bh(&nf_conntrack_lock);
538
539	return h != NULL;
540}
541EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
542
543/* There's a small race here where we may free a just-assured
544   connection.  Too bad: we're in trouble anyway. */
545static int early_drop(struct list_head *chain)
546{
547	/* Traverse backwards: gives us oldest, which is roughly LRU */
548	struct nf_conntrack_tuple_hash *h;
549	struct nf_conn *ct = NULL, *tmp;
550	int dropped = 0;
551
552	read_lock_bh(&nf_conntrack_lock);
553	list_for_each_entry_reverse(h, chain, list) {
554		tmp = nf_ct_tuplehash_to_ctrack(h);
555		if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
556			ct = tmp;
557			atomic_inc(&ct->ct_general.use);
558			break;
559		}
560	}
561	read_unlock_bh(&nf_conntrack_lock);
562
563	if (!ct)
564		return dropped;
565
566	if (del_timer(&ct->timeout)) {
567		death_by_timeout((unsigned long)ct);
568		dropped = 1;
569		NF_CT_STAT_INC_ATOMIC(early_drop);
570	}
571	nf_ct_put(ct);
572	return dropped;
573}
574
575static struct nf_conn *
576__nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
577		     const struct nf_conntrack_tuple *repl,
578		     const struct nf_conntrack_l3proto *l3proto,
579		     u_int32_t features)
580{
581	struct nf_conn *conntrack = NULL;
582	struct nf_conntrack_helper *helper;
583
584	if (unlikely(!nf_conntrack_hash_rnd_initted)) {
585		get_random_bytes(&nf_conntrack_hash_rnd, 4);
586		nf_conntrack_hash_rnd_initted = 1;
587	}
588
589	/* We don't want any race condition at early drop stage */
590	atomic_inc(&nf_conntrack_count);
591
592	if (nf_conntrack_max
593	    && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
594		unsigned int hash = hash_conntrack(orig);
595		/* Try dropping from this hash chain. */
596		if (!early_drop(&nf_conntrack_hash[hash])) {
597			atomic_dec(&nf_conntrack_count);
598			if (net_ratelimit())
599				printk(KERN_WARNING
600				       "nf_conntrack: table full, dropping"
601				       " packet.\n");
602			return ERR_PTR(-ENOMEM);
603		}
604	}
605
606	/*  find features needed by this conntrack. */
607	features |= l3proto->get_features(orig);
608
609	/* FIXME: protect helper list per RCU */
610	read_lock_bh(&nf_conntrack_lock);
611	helper = __nf_ct_helper_find(repl);
612	/* NAT might want to assign a helper later */
613	if (helper || features & NF_CT_F_NAT)
614		features |= NF_CT_F_HELP;
615	read_unlock_bh(&nf_conntrack_lock);
616
617	DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);
618
619	read_lock_bh(&nf_ct_cache_lock);
620
621	if (unlikely(!nf_ct_cache[features].use)) {
622		DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
623			features);
624		goto out;
625	}
626
627	conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
628	if (conntrack == NULL) {
629		DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
630		goto out;
631	}
632
633	memset(conntrack, 0, nf_ct_cache[features].size);
634	conntrack->features = features;
635	atomic_set(&conntrack->ct_general.use, 1);
636	conntrack->ct_general.destroy = destroy_conntrack;
637	conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
638	conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
639	/* Don't set timer yet: wait for confirmation */
640	init_timer(&conntrack->timeout);
641	conntrack->timeout.data = (unsigned long)conntrack;
642	conntrack->timeout.function = death_by_timeout;
643	read_unlock_bh(&nf_ct_cache_lock);
644
645	return conntrack;
646out:
647	read_unlock_bh(&nf_ct_cache_lock);
648	atomic_dec(&nf_conntrack_count);
649	return conntrack;
650}
651
652struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
653				   const struct nf_conntrack_tuple *repl)
654{
655	struct nf_conntrack_l3proto *l3proto;
656	struct nf_conn *ct;
657
658	rcu_read_lock();
659	l3proto = __nf_ct_l3proto_find(orig->src.l3num);
660	ct = __nf_conntrack_alloc(orig, repl, l3proto, 0);
661	rcu_read_unlock();
662
663	return ct;
664}
665EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
666
667void nf_conntrack_free(struct nf_conn *conntrack)
668{
669	u_int32_t features = conntrack->features;
670	NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
671	DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
672	       conntrack);
673	kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
674	atomic_dec(&nf_conntrack_count);
675}
676EXPORT_SYMBOL_GPL(nf_conntrack_free);
677
678/* Allocate a new conntrack: we return -ENOMEM if classification
679   failed due to stress.  Otherwise it really is unclassifiable. */
680static struct nf_conntrack_tuple_hash *
681init_conntrack(const struct nf_conntrack_tuple *tuple,
682	       struct nf_conntrack_l3proto *l3proto,
683	       struct nf_conntrack_l4proto *l4proto,
684	       struct sk_buff *skb,
685	       unsigned int dataoff)
686{
687	struct nf_conn *conntrack;
688	struct nf_conntrack_tuple repl_tuple;
689	struct nf_conntrack_expect *exp;
690	u_int32_t features = 0;
691
692	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
693		DEBUGP("Can't invert tuple.\n");
694		return NULL;
695	}
696
697	read_lock_bh(&nf_conntrack_lock);
698	exp = __nf_conntrack_expect_find(tuple);
699	if (exp && exp->helper)
700		features = NF_CT_F_HELP;
701	read_unlock_bh(&nf_conntrack_lock);
702
703	conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto, features);
704	if (conntrack == NULL || IS_ERR(conntrack)) {
705		DEBUGP("Can't allocate conntrack.\n");
706		return (struct nf_conntrack_tuple_hash *)conntrack;
707	}
708
709	if (!l4proto->new(conntrack, skb, dataoff)) {
710		nf_conntrack_free(conntrack);
711		DEBUGP("init conntrack: can't track with proto module\n");
712		return NULL;
713	}
714
715	write_lock_bh(&nf_conntrack_lock);
716	exp = find_expectation(tuple);
717
718	if (exp) {
719		DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
720			conntrack, exp);
721		/* Welcome, Mr. Bond.  We've been expecting you... */
722		__set_bit(IPS_EXPECTED_BIT, &conntrack->status);
723		conntrack->master = exp->master;
724		if (exp->helper)
725			nfct_help(conntrack)->helper = exp->helper;
726#ifdef CONFIG_NF_CONNTRACK_MARK
727		conntrack->mark = exp->master->mark;
728#endif
729#ifdef CONFIG_NF_CONNTRACK_SECMARK
730		conntrack->secmark = exp->master->secmark;
731#endif
732		nf_conntrack_get(&conntrack->master->ct_general);
733		NF_CT_STAT_INC(expect_new);
734	} else {
735		struct nf_conn_help *help = nfct_help(conntrack);
736
737		if (help)
738			help->helper = __nf_ct_helper_find(&repl_tuple);
739		NF_CT_STAT_INC(new);
740	}
741
742	/* Overload tuple linked list to put us in unconfirmed list. */
743	list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);
744
745	write_unlock_bh(&nf_conntrack_lock);
746
747	if (exp) {
748		if (exp->expectfn)
749			exp->expectfn(conntrack, exp);
750		nf_conntrack_expect_put(exp);
751	}
752
753	return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
754}
755
756/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
757static inline struct nf_conn *
758resolve_normal_ct(struct sk_buff *skb,
759		  unsigned int dataoff,
760		  u_int16_t l3num,
761		  u_int8_t protonum,
762		  struct nf_conntrack_l3proto *l3proto,
763		  struct nf_conntrack_l4proto *l4proto,
764		  int *set_reply,
765		  enum ip_conntrack_info *ctinfo)
766{
767	struct nf_conntrack_tuple tuple;
768	struct nf_conntrack_tuple_hash *h;
769	struct nf_conn *ct;
770
771	if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
772			     dataoff, l3num, protonum, &tuple, l3proto,
773			     l4proto)) {
774		DEBUGP("resolve_normal_ct: Can't get tuple\n");
775		return NULL;
776	}
777
778	/* look for tuple match */
779	h = nf_conntrack_find_get(&tuple, NULL);
780	if (!h) {
781		h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
782		if (!h)
783			return NULL;
784		if (IS_ERR(h))
785			return (void *)h;
786	}
787	ct = nf_ct_tuplehash_to_ctrack(h);
788
789	/* It exists; we have (non-exclusive) reference. */
790	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
791		*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
792		/* Please set reply bit if this packet OK */
793		*set_reply = 1;
794	} else {
795		/* Once we've had two way comms, always ESTABLISHED. */
796		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
797			DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
798			*ctinfo = IP_CT_ESTABLISHED;
799		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
800			DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
801			*ctinfo = IP_CT_RELATED;
802		} else {
803			DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
804			*ctinfo = IP_CT_NEW;
805		}
806		*set_reply = 0;
807	}
808	skb->nfct = &ct->ct_general;
809	skb->nfctinfo = *ctinfo;
810	return ct;
811}
812
813unsigned int
814nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
815{
816	struct nf_conn *ct;
817	enum ip_conntrack_info ctinfo;
818	struct nf_conntrack_l3proto *l3proto;
819	struct nf_conntrack_l4proto *l4proto;
820	unsigned int dataoff;
821	u_int8_t protonum;
822	int set_reply = 0;
823	int ret;
824
825	/* Previously seen (loopback or untracked)?  Ignore. */
826	if ((*pskb)->nfct) {
827		NF_CT_STAT_INC_ATOMIC(ignore);
828		return NF_ACCEPT;
829	}
830
831	/* rcu_read_lock()ed by nf_hook_slow */
832	l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
833
834	if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
835		DEBUGP("not prepared to track yet or error occured\n");
836		return -ret;
837	}
838
839	l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
840
841	/* It may be an special packet, error, unclean...
842	 * inverse of the return code tells to the netfilter
843	 * core what to do with the packet. */
844	if (l4proto->error != NULL &&
845	    (ret = l4proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
846		NF_CT_STAT_INC_ATOMIC(error);
847		NF_CT_STAT_INC_ATOMIC(invalid);
848		return -ret;
849	}
850
851	ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, l4proto,
852			       &set_reply, &ctinfo);
853	if (!ct) {
854		/* Not valid part of a connection */
855		NF_CT_STAT_INC_ATOMIC(invalid);
856		return NF_ACCEPT;
857	}
858
859	if (IS_ERR(ct)) {
860		/* Too stressed to deal. */
861		NF_CT_STAT_INC_ATOMIC(drop);
862		return NF_DROP;
863	}
864
865	NF_CT_ASSERT((*pskb)->nfct);
866
867	ret = l4proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
868	if (ret < 0) {
869		/* Invalid: inverse of the return code tells
870		 * the netfilter core what to do */
871		DEBUGP("nf_conntrack_in: Can't track with proto module\n");
872		nf_conntrack_put((*pskb)->nfct);
873		(*pskb)->nfct = NULL;
874		NF_CT_STAT_INC_ATOMIC(invalid);
875		return -ret;
876	}
877
878	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
879		nf_conntrack_event_cache(IPCT_STATUS, *pskb);
880
881	return ret;
882}
883EXPORT_SYMBOL_GPL(nf_conntrack_in);
884
885int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
886			 const struct nf_conntrack_tuple *orig)
887{
888	int ret;
889
890	rcu_read_lock();
891	ret = nf_ct_invert_tuple(inverse, orig,
892				 __nf_ct_l3proto_find(orig->src.l3num),
893				 __nf_ct_l4proto_find(orig->src.l3num,
894						      orig->dst.protonum));
895	rcu_read_unlock();
896	return ret;
897}
898EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
899
900/* Alter reply tuple (maybe alter helper).  This is for NAT, and is
901   implicitly racy: see __nf_conntrack_confirm */
902void nf_conntrack_alter_reply(struct nf_conn *ct,
903			      const struct nf_conntrack_tuple *newreply)
904{
905	struct nf_conn_help *help = nfct_help(ct);
906
907	write_lock_bh(&nf_conntrack_lock);
908	/* Should be unconfirmed, so not in hash table yet */
909	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
910
911	DEBUGP("Altering reply tuple of %p to ", ct);
912	NF_CT_DUMP_TUPLE(newreply);
913
914	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
915	if (!ct->master && help && help->expecting == 0)
916		help->helper = __nf_ct_helper_find(newreply);
917	write_unlock_bh(&nf_conntrack_lock);
918}
919EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
920
921/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
922void __nf_ct_refresh_acct(struct nf_conn *ct,
923			  enum ip_conntrack_info ctinfo,
924			  const struct sk_buff *skb,
925			  unsigned long extra_jiffies,
926			  int do_acct)
927{
928	int event = 0;
929
930	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
931	NF_CT_ASSERT(skb);
932
933	write_lock_bh(&nf_conntrack_lock);
934
935	/* Only update if this is not a fixed timeout */
936	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
937		write_unlock_bh(&nf_conntrack_lock);
938		return;
939	}
940
941	/* If not in hash table, timer will not be active yet */
942	if (!nf_ct_is_confirmed(ct)) {
943		ct->timeout.expires = extra_jiffies;
944		event = IPCT_REFRESH;
945	} else {
946		unsigned long newtime = jiffies + extra_jiffies;
947
948		/* Only update the timeout if the new timeout is at least
949		   HZ jiffies from the old timeout. Need del_timer for race
950		   avoidance (may already be dying). */
951		if (newtime - ct->timeout.expires >= HZ
952		    && del_timer(&ct->timeout)) {
953			ct->timeout.expires = newtime;
954			add_timer(&ct->timeout);
955			event = IPCT_REFRESH;
956		}
957	}
958
959#ifdef CONFIG_NF_CT_ACCT
960	if (do_acct) {
961		ct->counters[CTINFO2DIR(ctinfo)].packets++;
962		ct->counters[CTINFO2DIR(ctinfo)].bytes +=
963			skb->len - (unsigned int)(skb->nh.raw - skb->data);
964
965		if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
966		    || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
967			event |= IPCT_COUNTER_FILLING;
968	}
969#endif
970
971	write_unlock_bh(&nf_conntrack_lock);
972
973	/* must be unlocked when calling event cache */
974	if (event)
975		nf_conntrack_event_cache(event, skb);
976}
977EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
978
979#if defined(CONFIG_NF_CT_NETLINK) || \
980    defined(CONFIG_NF_CT_NETLINK_MODULE)
981
982#include <linux/netfilter/nfnetlink.h>
983#include <linux/netfilter/nfnetlink_conntrack.h>
984#include <linux/mutex.h>
985
986
987/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
988 * in ip_conntrack_core, since we don't want the protocols to autoload
989 * or depend on ctnetlink */
990int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
991			       const struct nf_conntrack_tuple *tuple)
992{
993	NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
994		&tuple->src.u.tcp.port);
995	NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
996		&tuple->dst.u.tcp.port);
997	return 0;
998
999nfattr_failure:
1000	return -1;
1001}
1002EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nfattr);
1003
1004static const size_t cta_min_proto[CTA_PROTO_MAX] = {
1005	[CTA_PROTO_SRC_PORT-1]  = sizeof(u_int16_t),
1006	[CTA_PROTO_DST_PORT-1]  = sizeof(u_int16_t)
1007};
1008
1009int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
1010			       struct nf_conntrack_tuple *t)
1011{
1012	if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
1013		return -EINVAL;
1014
1015	if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
1016		return -EINVAL;
1017
1018	t->src.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
1019	t->dst.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);
1020
1021	return 0;
1022}
1023EXPORT_SYMBOL_GPL(nf_ct_port_nfattr_to_tuple);
1024#endif
1025
1026/* Used by ipt_REJECT and ip6t_REJECT. */
1027void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1028{
1029	struct nf_conn *ct;
1030	enum ip_conntrack_info ctinfo;
1031
1032	/* This ICMP is in reverse direction to the packet which caused it */
1033	ct = nf_ct_get(skb, &ctinfo);
1034	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1035		ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
1036	else
1037		ctinfo = IP_CT_RELATED;
1038
1039	/* Attach to new skbuff, and increment count */
1040	nskb->nfct = &ct->ct_general;
1041	nskb->nfctinfo = ctinfo;
1042	nf_conntrack_get(nskb->nfct);
1043}
1044EXPORT_SYMBOL_GPL(__nf_conntrack_attach);
1045
1046static inline int
1047do_iter(const struct nf_conntrack_tuple_hash *i,
1048	int (*iter)(struct nf_conn *i, void *data),
1049	void *data)
1050{
1051	return iter(nf_ct_tuplehash_to_ctrack(i), data);
1052}
1053
1054/* Bring out ya dead! */
1055static struct nf_conn *
1056get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1057		void *data, unsigned int *bucket)
1058{
1059	struct nf_conntrack_tuple_hash *h;
1060	struct nf_conn *ct;
1061
1062	write_lock_bh(&nf_conntrack_lock);
1063	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1064		list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
1065			ct = nf_ct_tuplehash_to_ctrack(h);
1066			if (iter(ct, data))
1067				goto found;
1068		}
1069 	}
1070	list_for_each_entry(h, &unconfirmed, list) {
1071		ct = nf_ct_tuplehash_to_ctrack(h);
1072		if (iter(ct, data))
1073			goto found;
1074	}
1075	write_unlock_bh(&nf_conntrack_lock);
1076	return NULL;
1077found:
1078	atomic_inc(&ct->ct_general.use);
1079	write_unlock_bh(&nf_conntrack_lock);
1080	return ct;
1081}
1082
1083void
1084nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
1085{
1086	struct nf_conn *ct;
1087	unsigned int bucket = 0;
1088
1089	while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1090		/* Time to push up daises... */
1091		if (del_timer(&ct->timeout))
1092			death_by_timeout((unsigned long)ct);
1093		/* ... else the timer will get him soon. */
1094
1095		nf_ct_put(ct);
1096	}
1097}
1098EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1099
1100static int kill_all(struct nf_conn *i, void *data)
1101{
1102	return 1;
1103}
1104
1105static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
1106{
1107	if (vmalloced)
1108		vfree(hash);
1109	else
1110		free_pages((unsigned long)hash,
1111			   get_order(sizeof(struct list_head) * size));
1112}
1113
1114void nf_conntrack_flush(void)
1115{
1116	nf_ct_iterate_cleanup(kill_all, NULL);
1117}
1118EXPORT_SYMBOL_GPL(nf_conntrack_flush);
1119
1120/* Mishearing the voices in his head, our hero wonders how he's
1121   supposed to kill the mall. */
1122void nf_conntrack_cleanup(void)
1123{
1124	int i;
1125
1126	rcu_assign_pointer(ip_ct_attach, NULL);
1127
1128	/* This makes sure all current packets have passed through
1129	   netfilter framework.  Roll on, two-stage module
1130	   delete... */
1131	synchronize_net();
1132
1133	nf_ct_event_cache_flush();
1134 i_see_dead_people:
1135	nf_conntrack_flush();
1136	if (atomic_read(&nf_conntrack_count) != 0) {
1137		schedule();
1138		goto i_see_dead_people;
1139	}
1140	/* wait until all references to nf_conntrack_untracked are dropped */
1141	while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1142		schedule();
1143
1144	for (i = 0; i < NF_CT_F_NUM; i++) {
1145		if (nf_ct_cache[i].use == 0)
1146			continue;
1147
1148		NF_CT_ASSERT(nf_ct_cache[i].use == 1);
1149		nf_ct_cache[i].use = 1;
1150		nf_conntrack_unregister_cache(i);
1151	}
1152	kmem_cache_destroy(nf_conntrack_expect_cachep);
1153	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1154			    nf_conntrack_htable_size);
1155
1156	nf_conntrack_l4proto_unregister(&nf_conntrack_l4proto_generic);
1157
1158	/* free l3proto protocol tables */
1159	for (i = 0; i < PF_MAX; i++)
1160		if (nf_ct_protos[i]) {
1161			kfree(nf_ct_protos[i]);
1162			nf_ct_protos[i] = NULL;
1163		}
1164}
1165
1166static struct list_head *alloc_hashtable(int size, int *vmalloced)
1167{
1168	struct list_head *hash;
1169	unsigned int i;
1170
1171	*vmalloced = 0;
1172	hash = (void*)__get_free_pages(GFP_KERNEL,
1173				       get_order(sizeof(struct list_head)
1174						 * size));
1175	if (!hash) {
1176		*vmalloced = 1;
1177		printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1178		hash = vmalloc(sizeof(struct list_head) * size);
1179	}
1180
1181	if (hash)
1182		for (i = 0; i < size; i++)
1183			INIT_LIST_HEAD(&hash[i]);
1184
1185	return hash;
1186}
1187
1188int set_hashsize(const char *val, struct kernel_param *kp)
1189{
1190	int i, bucket, hashsize, vmalloced;
1191	int old_vmalloced, old_size;
1192	int rnd;
1193	struct list_head *hash, *old_hash;
1194	struct nf_conntrack_tuple_hash *h;
1195
1196	/* On boot, we can set this without any fancy locking. */
1197	if (!nf_conntrack_htable_size)
1198		return param_set_uint(val, kp);
1199
1200	hashsize = simple_strtol(val, NULL, 0);
1201	if (!hashsize)
1202		return -EINVAL;
1203
1204	hash = alloc_hashtable(hashsize, &vmalloced);
1205	if (!hash)
1206		return -ENOMEM;
1207
1208	/* We have to rehahs for the new table anyway, so we also can
1209	 * use a newrandom seed */
1210	get_random_bytes(&rnd, 4);
1211
1212	write_lock_bh(&nf_conntrack_lock);
1213	for (i = 0; i < nf_conntrack_htable_size; i++) {
1214		while (!list_empty(&nf_conntrack_hash[i])) {
1215			h = list_entry(nf_conntrack_hash[i].next,
1216				       struct nf_conntrack_tuple_hash, list);
1217			list_del(&h->list);
1218			bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1219			list_add_tail(&h->list, &hash[bucket]);
1220		}
1221	}
1222	old_size = nf_conntrack_htable_size;
1223	old_vmalloced = nf_conntrack_vmalloc;
1224	old_hash = nf_conntrack_hash;
1225
1226	nf_conntrack_htable_size = hashsize;
1227	nf_conntrack_vmalloc = vmalloced;
1228	nf_conntrack_hash = hash;
1229	nf_conntrack_hash_rnd = rnd;
1230	write_unlock_bh(&nf_conntrack_lock);
1231
1232	free_conntrack_hash(old_hash, old_vmalloced, old_size);
1233	return 0;
1234}
1235
1236module_param_call(hashsize, set_hashsize, param_get_uint,
1237		  &nf_conntrack_htable_size, 0600);
1238
1239int __init nf_conntrack_init(void)
1240{
1241	unsigned int i;
1242	int ret;
1243
1244	/* Idea from tcp.c: use 1/16384 of memory.  On i386: 32MB
1245	 * machine has 256 buckets.  >= 1GB machines have 8192 buckets. */
1246	if (!nf_conntrack_htable_size) {
1247		nf_conntrack_htable_size
1248			= (((num_physpages << PAGE_SHIFT) / 16384)
1249			   / sizeof(struct list_head));
1250		if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1251			nf_conntrack_htable_size = 8192;
1252		if (nf_conntrack_htable_size < 16)
1253			nf_conntrack_htable_size = 16;
1254	}
1255	nf_conntrack_max = 8 * nf_conntrack_htable_size;
1256
1257	printk("nf_conntrack version %s (%u buckets, %d max)\n",
1258	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1259	       nf_conntrack_max);
1260
1261	nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
1262					    &nf_conntrack_vmalloc);
1263	if (!nf_conntrack_hash) {
1264		printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1265		goto err_out;
1266	}
1267
1268	ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1269					  sizeof(struct nf_conn));
1270	if (ret < 0) {
1271		printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1272		goto err_free_hash;
1273	}
1274
1275	nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
1276					sizeof(struct nf_conntrack_expect),
1277					0, 0, NULL, NULL);
1278	if (!nf_conntrack_expect_cachep) {
1279		printk(KERN_ERR "Unable to create nf_expect slab cache\n");
1280		goto err_free_conntrack_slab;
1281	}
1282
1283	ret = nf_conntrack_l4proto_register(&nf_conntrack_l4proto_generic);
1284	if (ret < 0)
1285		goto out_free_expect_slab;
1286
1287	/* Don't NEED lock here, but good form anyway. */
1288	write_lock_bh(&nf_conntrack_lock);
1289        for (i = 0; i < AF_MAX; i++)
1290		nf_ct_l3protos[i] = &nf_conntrack_l3proto_generic;
1291        write_unlock_bh(&nf_conntrack_lock);
1292
1293	/* For use by REJECT target */
1294	rcu_assign_pointer(ip_ct_attach, __nf_conntrack_attach);
1295
1296	/* Set up fake conntrack:
1297	    - to never be deleted, not in any hashes */
1298	atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1299	/*  - and look it like as a confirmed connection */
1300	set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1301
1302	return ret;
1303
1304out_free_expect_slab:
1305	kmem_cache_destroy(nf_conntrack_expect_cachep);
1306err_free_conntrack_slab:
1307	nf_conntrack_unregister_cache(NF_CT_F_BASIC);
1308err_free_hash:
1309	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1310			    nf_conntrack_htable_size);
1311err_out:
1312	return -ENOMEM;
1313}
1314