nf_conntrack_core.c revision e2b7606cdb602a4f69c02cfc8bebe9c63b595e24
1/* Connection state tracking for netfilter.  This is separated from,
2   but required by, the NAT layer; it can also be used by an iptables
3   extension. */
4
5/* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
14 *	- new API and handling of conntrack/nat helpers
15 *	- now capable of multiple expectations for one master
16 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
17 *	- add usage/reference counts to ip_conntrack_expect
18 *	- export ip_conntrack[_expect]_{find_get,put} functions
19 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
20 *	- generalize L3 protocol denendent part.
21 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
22 *	- add support various size of conntrack structures.
23 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
24 * 	- restructure nf_conn (introduce nf_conn_help)
25 * 	- redesign 'features' how they were originally intended
26 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
27 * 	- add support for L3 protocol module load on demand.
28 *
29 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
30 */
31
32#include <linux/types.h>
33#include <linux/netfilter.h>
34#include <linux/module.h>
35#include <linux/skbuff.h>
36#include <linux/proc_fs.h>
37#include <linux/vmalloc.h>
38#include <linux/stddef.h>
39#include <linux/slab.h>
40#include <linux/random.h>
41#include <linux/jhash.h>
42#include <linux/err.h>
43#include <linux/percpu.h>
44#include <linux/moduleparam.h>
45#include <linux/notifier.h>
46#include <linux/kernel.h>
47#include <linux/netdevice.h>
48#include <linux/socket.h>
49
50/* This rwlock protects the main hash table, protocol/helper/expected
51   registrations, conntrack timers*/
52#define ASSERT_READ_LOCK(x)
53#define ASSERT_WRITE_LOCK(x)
54
55#include <net/netfilter/nf_conntrack.h>
56#include <net/netfilter/nf_conntrack_l3proto.h>
57#include <net/netfilter/nf_conntrack_protocol.h>
58#include <net/netfilter/nf_conntrack_expect.h>
59#include <net/netfilter/nf_conntrack_helper.h>
60#include <net/netfilter/nf_conntrack_core.h>
61
62#define NF_CONNTRACK_VERSION	"0.5.0"
63
64#if 0
65#define DEBUGP printk
66#else
67#define DEBUGP(format, args...)
68#endif
69
70DEFINE_RWLOCK(nf_conntrack_lock);
71
72/* nf_conntrack_standalone needs this */
73atomic_t nf_conntrack_count = ATOMIC_INIT(0);
74
75void (*nf_conntrack_destroyed)(struct nf_conn *conntrack) = NULL;
76unsigned int nf_conntrack_htable_size __read_mostly;
77int nf_conntrack_max __read_mostly;
78struct list_head *nf_conntrack_hash __read_mostly;
79struct nf_conn nf_conntrack_untracked __read_mostly;
80unsigned int nf_ct_log_invalid __read_mostly;
81LIST_HEAD(unconfirmed);
82static int nf_conntrack_vmalloc __read_mostly;
83
84static unsigned int nf_conntrack_next_id;
85
86DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
87EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
88
89/*
90 * This scheme offers various size of "struct nf_conn" dependent on
91 * features(helper, nat, ...)
92 */
93
94#define NF_CT_FEATURES_NAMELEN	256
95static struct {
96	/* name of slab cache. printed in /proc/slabinfo */
97	char *name;
98
99	/* size of slab cache */
100	size_t size;
101
102	/* slab cache pointer */
103	kmem_cache_t *cachep;
104
105	/* allocated slab cache + modules which uses this slab cache */
106	int use;
107
108} nf_ct_cache[NF_CT_F_NUM];
109
110/* protect members of nf_ct_cache except of "use" */
111DEFINE_RWLOCK(nf_ct_cache_lock);
112
113/* This avoids calling kmem_cache_create() with same name simultaneously */
114static DEFINE_MUTEX(nf_ct_cache_mutex);
115
116static int nf_conntrack_hash_rnd_initted;
117static unsigned int nf_conntrack_hash_rnd;
118
119static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
120				  unsigned int size, unsigned int rnd)
121{
122	unsigned int a, b;
123	a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
124		  ((tuple->src.l3num) << 16) | tuple->dst.protonum);
125	b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
126			(tuple->src.u.all << 16) | tuple->dst.u.all);
127
128	return jhash_2words(a, b, rnd) % size;
129}
130
131static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
132{
133	return __hash_conntrack(tuple, nf_conntrack_htable_size,
134				nf_conntrack_hash_rnd);
135}
136
137int nf_conntrack_register_cache(u_int32_t features, const char *name,
138				size_t size)
139{
140	int ret = 0;
141	char *cache_name;
142	kmem_cache_t *cachep;
143
144	DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
145	       features, name, size);
146
147	if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
148		DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
149			features);
150		return -EINVAL;
151	}
152
153	mutex_lock(&nf_ct_cache_mutex);
154
155	write_lock_bh(&nf_ct_cache_lock);
156	/* e.g: multiple helpers are loaded */
157	if (nf_ct_cache[features].use > 0) {
158		DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
159		if ((!strncmp(nf_ct_cache[features].name, name,
160			      NF_CT_FEATURES_NAMELEN))
161		    && nf_ct_cache[features].size == size) {
162			DEBUGP("nf_conntrack_register_cache: reusing.\n");
163			nf_ct_cache[features].use++;
164			ret = 0;
165		} else
166			ret = -EBUSY;
167
168		write_unlock_bh(&nf_ct_cache_lock);
169		mutex_unlock(&nf_ct_cache_mutex);
170		return ret;
171	}
172	write_unlock_bh(&nf_ct_cache_lock);
173
174	/*
175	 * The memory space for name of slab cache must be alive until
176	 * cache is destroyed.
177	 */
178	cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
179	if (cache_name == NULL) {
180		DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
181		ret = -ENOMEM;
182		goto out_up_mutex;
183	}
184
185	if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
186						>= NF_CT_FEATURES_NAMELEN) {
187		printk("nf_conntrack_register_cache: name too long\n");
188		ret = -EINVAL;
189		goto out_free_name;
190	}
191
192	cachep = kmem_cache_create(cache_name, size, 0, 0,
193				   NULL, NULL);
194	if (!cachep) {
195		printk("nf_conntrack_register_cache: Can't create slab cache "
196		       "for the features = 0x%x\n", features);
197		ret = -ENOMEM;
198		goto out_free_name;
199	}
200
201	write_lock_bh(&nf_ct_cache_lock);
202	nf_ct_cache[features].use = 1;
203	nf_ct_cache[features].size = size;
204	nf_ct_cache[features].cachep = cachep;
205	nf_ct_cache[features].name = cache_name;
206	write_unlock_bh(&nf_ct_cache_lock);
207
208	goto out_up_mutex;
209
210out_free_name:
211	kfree(cache_name);
212out_up_mutex:
213	mutex_unlock(&nf_ct_cache_mutex);
214	return ret;
215}
216
217/* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
218void nf_conntrack_unregister_cache(u_int32_t features)
219{
220	kmem_cache_t *cachep;
221	char *name;
222
223	/*
224	 * This assures that kmem_cache_create() isn't called before destroying
225	 * slab cache.
226	 */
227	DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
228	mutex_lock(&nf_ct_cache_mutex);
229
230	write_lock_bh(&nf_ct_cache_lock);
231	if (--nf_ct_cache[features].use > 0) {
232		write_unlock_bh(&nf_ct_cache_lock);
233		mutex_unlock(&nf_ct_cache_mutex);
234		return;
235	}
236	cachep = nf_ct_cache[features].cachep;
237	name = nf_ct_cache[features].name;
238	nf_ct_cache[features].cachep = NULL;
239	nf_ct_cache[features].name = NULL;
240	nf_ct_cache[features].size = 0;
241	write_unlock_bh(&nf_ct_cache_lock);
242
243	synchronize_net();
244
245	kmem_cache_destroy(cachep);
246	kfree(name);
247
248	mutex_unlock(&nf_ct_cache_mutex);
249}
250
251int
252nf_ct_get_tuple(const struct sk_buff *skb,
253		unsigned int nhoff,
254		unsigned int dataoff,
255		u_int16_t l3num,
256		u_int8_t protonum,
257		struct nf_conntrack_tuple *tuple,
258		const struct nf_conntrack_l3proto *l3proto,
259		const struct nf_conntrack_protocol *protocol)
260{
261	NF_CT_TUPLE_U_BLANK(tuple);
262
263	tuple->src.l3num = l3num;
264	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
265		return 0;
266
267	tuple->dst.protonum = protonum;
268	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
269
270	return protocol->pkt_to_tuple(skb, dataoff, tuple);
271}
272
273int
274nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
275		   const struct nf_conntrack_tuple *orig,
276		   const struct nf_conntrack_l3proto *l3proto,
277		   const struct nf_conntrack_protocol *protocol)
278{
279	NF_CT_TUPLE_U_BLANK(inverse);
280
281	inverse->src.l3num = orig->src.l3num;
282	if (l3proto->invert_tuple(inverse, orig) == 0)
283		return 0;
284
285	inverse->dst.dir = !orig->dst.dir;
286
287	inverse->dst.protonum = orig->dst.protonum;
288	return protocol->invert_tuple(inverse, orig);
289}
290
291static void
292clean_from_lists(struct nf_conn *ct)
293{
294	DEBUGP("clean_from_lists(%p)\n", ct);
295	ASSERT_WRITE_LOCK(&nf_conntrack_lock);
296	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
297	list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
298
299	/* Destroy all pending expectations */
300	nf_ct_remove_expectations(ct);
301}
302
303static void
304destroy_conntrack(struct nf_conntrack *nfct)
305{
306	struct nf_conn *ct = (struct nf_conn *)nfct;
307	struct nf_conntrack_l3proto *l3proto;
308	struct nf_conntrack_protocol *proto;
309
310	DEBUGP("destroy_conntrack(%p)\n", ct);
311	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
312	NF_CT_ASSERT(!timer_pending(&ct->timeout));
313
314	nf_conntrack_event(IPCT_DESTROY, ct);
315	set_bit(IPS_DYING_BIT, &ct->status);
316
317	/* To make sure we don't get any weird locking issues here:
318	 * destroy_conntrack() MUST NOT be called with a write lock
319	 * to nf_conntrack_lock!!! -HW */
320	l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
321	if (l3proto && l3proto->destroy)
322		l3proto->destroy(ct);
323
324	proto = __nf_ct_proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num, ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
325	if (proto && proto->destroy)
326		proto->destroy(ct);
327
328	if (nf_conntrack_destroyed)
329		nf_conntrack_destroyed(ct);
330
331	write_lock_bh(&nf_conntrack_lock);
332	/* Expectations will have been removed in clean_from_lists,
333	 * except TFTP can create an expectation on the first packet,
334	 * before connection is in the list, so we need to clean here,
335	 * too. */
336	nf_ct_remove_expectations(ct);
337
338	/* We overload first tuple to link into unconfirmed list. */
339	if (!nf_ct_is_confirmed(ct)) {
340		BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
341		list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
342	}
343
344	NF_CT_STAT_INC(delete);
345	write_unlock_bh(&nf_conntrack_lock);
346
347	if (ct->master)
348		nf_ct_put(ct->master);
349
350	DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
351	nf_conntrack_free(ct);
352}
353
354static void death_by_timeout(unsigned long ul_conntrack)
355{
356	struct nf_conn *ct = (void *)ul_conntrack;
357
358	write_lock_bh(&nf_conntrack_lock);
359	/* Inside lock so preempt is disabled on module removal path.
360	 * Otherwise we can get spurious warnings. */
361	NF_CT_STAT_INC(delete_list);
362	clean_from_lists(ct);
363	write_unlock_bh(&nf_conntrack_lock);
364	nf_ct_put(ct);
365}
366
367struct nf_conntrack_tuple_hash *
368__nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
369		    const struct nf_conn *ignored_conntrack)
370{
371	struct nf_conntrack_tuple_hash *h;
372	unsigned int hash = hash_conntrack(tuple);
373
374	ASSERT_READ_LOCK(&nf_conntrack_lock);
375	list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
376		if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
377		    nf_ct_tuple_equal(tuple, &h->tuple)) {
378			NF_CT_STAT_INC(found);
379			return h;
380		}
381		NF_CT_STAT_INC(searched);
382	}
383
384	return NULL;
385}
386
387/* Find a connection corresponding to a tuple. */
388struct nf_conntrack_tuple_hash *
389nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
390		      const struct nf_conn *ignored_conntrack)
391{
392	struct nf_conntrack_tuple_hash *h;
393
394	read_lock_bh(&nf_conntrack_lock);
395	h = __nf_conntrack_find(tuple, ignored_conntrack);
396	if (h)
397		atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
398	read_unlock_bh(&nf_conntrack_lock);
399
400	return h;
401}
402
403static void __nf_conntrack_hash_insert(struct nf_conn *ct,
404				       unsigned int hash,
405				       unsigned int repl_hash)
406{
407	ct->id = ++nf_conntrack_next_id;
408	list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
409		 &nf_conntrack_hash[hash]);
410	list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
411		 &nf_conntrack_hash[repl_hash]);
412}
413
414void nf_conntrack_hash_insert(struct nf_conn *ct)
415{
416	unsigned int hash, repl_hash;
417
418	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
419	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
420
421	write_lock_bh(&nf_conntrack_lock);
422	__nf_conntrack_hash_insert(ct, hash, repl_hash);
423	write_unlock_bh(&nf_conntrack_lock);
424}
425
426/* Confirm a connection given skb; places it in hash table */
427int
428__nf_conntrack_confirm(struct sk_buff **pskb)
429{
430	unsigned int hash, repl_hash;
431	struct nf_conntrack_tuple_hash *h;
432	struct nf_conn *ct;
433	struct nf_conn_help *help;
434	enum ip_conntrack_info ctinfo;
435
436	ct = nf_ct_get(*pskb, &ctinfo);
437
438	/* ipt_REJECT uses nf_conntrack_attach to attach related
439	   ICMP/TCP RST packets in other direction.  Actual packet
440	   which created connection will be IP_CT_NEW or for an
441	   expected connection, IP_CT_RELATED. */
442	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
443		return NF_ACCEPT;
444
445	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
446	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
447
448	/* We're not in hash table, and we refuse to set up related
449	   connections for unconfirmed conns.  But packet copies and
450	   REJECT will give spurious warnings here. */
451	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
452
453	/* No external references means noone else could have
454	   confirmed us. */
455	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
456	DEBUGP("Confirming conntrack %p\n", ct);
457
458	write_lock_bh(&nf_conntrack_lock);
459
460	/* See if there's one in the list already, including reverse:
461	   NAT could have grabbed it without realizing, since we're
462	   not in the hash.  If there is, we lost race. */
463	list_for_each_entry(h, &nf_conntrack_hash[hash], list)
464		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
465				      &h->tuple))
466			goto out;
467	list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
468		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
469				      &h->tuple))
470			goto out;
471
472	/* Remove from unconfirmed list */
473	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
474
475	__nf_conntrack_hash_insert(ct, hash, repl_hash);
476	/* Timer relative to confirmation time, not original
477	   setting time, otherwise we'd get timer wrap in
478	   weird delay cases. */
479	ct->timeout.expires += jiffies;
480	add_timer(&ct->timeout);
481	atomic_inc(&ct->ct_general.use);
482	set_bit(IPS_CONFIRMED_BIT, &ct->status);
483	NF_CT_STAT_INC(insert);
484	write_unlock_bh(&nf_conntrack_lock);
485	help = nfct_help(ct);
486	if (help && help->helper)
487		nf_conntrack_event_cache(IPCT_HELPER, *pskb);
488#ifdef CONFIG_NF_NAT_NEEDED
489	if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
490	    test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
491		nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
492#endif
493	nf_conntrack_event_cache(master_ct(ct) ?
494				 IPCT_RELATED : IPCT_NEW, *pskb);
495	return NF_ACCEPT;
496
497out:
498	NF_CT_STAT_INC(insert_failed);
499	write_unlock_bh(&nf_conntrack_lock);
500	return NF_DROP;
501}
502
503/* Returns true if a connection correspondings to the tuple (required
504   for NAT). */
505int
506nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
507			 const struct nf_conn *ignored_conntrack)
508{
509	struct nf_conntrack_tuple_hash *h;
510
511	read_lock_bh(&nf_conntrack_lock);
512	h = __nf_conntrack_find(tuple, ignored_conntrack);
513	read_unlock_bh(&nf_conntrack_lock);
514
515	return h != NULL;
516}
517
518/* There's a small race here where we may free a just-assured
519   connection.  Too bad: we're in trouble anyway. */
520static int early_drop(struct list_head *chain)
521{
522	/* Traverse backwards: gives us oldest, which is roughly LRU */
523	struct nf_conntrack_tuple_hash *h;
524	struct nf_conn *ct = NULL, *tmp;
525	int dropped = 0;
526
527	read_lock_bh(&nf_conntrack_lock);
528	list_for_each_entry_reverse(h, chain, list) {
529		tmp = nf_ct_tuplehash_to_ctrack(h);
530		if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
531			ct = tmp;
532			atomic_inc(&ct->ct_general.use);
533			break;
534		}
535	}
536	read_unlock_bh(&nf_conntrack_lock);
537
538	if (!ct)
539		return dropped;
540
541	if (del_timer(&ct->timeout)) {
542		death_by_timeout((unsigned long)ct);
543		dropped = 1;
544		NF_CT_STAT_INC(early_drop);
545	}
546	nf_ct_put(ct);
547	return dropped;
548}
549
550static struct nf_conn *
551__nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
552		     const struct nf_conntrack_tuple *repl,
553		     const struct nf_conntrack_l3proto *l3proto)
554{
555	struct nf_conn *conntrack = NULL;
556	u_int32_t features = 0;
557	struct nf_conntrack_helper *helper;
558
559	if (unlikely(!nf_conntrack_hash_rnd_initted)) {
560		get_random_bytes(&nf_conntrack_hash_rnd, 4);
561		nf_conntrack_hash_rnd_initted = 1;
562	}
563
564	/* We don't want any race condition at early drop stage */
565	atomic_inc(&nf_conntrack_count);
566
567	if (nf_conntrack_max
568	    && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
569		unsigned int hash = hash_conntrack(orig);
570		/* Try dropping from this hash chain. */
571		if (!early_drop(&nf_conntrack_hash[hash])) {
572			atomic_dec(&nf_conntrack_count);
573			if (net_ratelimit())
574				printk(KERN_WARNING
575				       "nf_conntrack: table full, dropping"
576				       " packet.\n");
577			return ERR_PTR(-ENOMEM);
578		}
579	}
580
581	/*  find features needed by this conntrack. */
582	features = l3proto->get_features(orig);
583
584	/* FIXME: protect helper list per RCU */
585	read_lock_bh(&nf_conntrack_lock);
586	helper = __nf_ct_helper_find(repl);
587	if (helper)
588		features |= NF_CT_F_HELP;
589	read_unlock_bh(&nf_conntrack_lock);
590
591	DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);
592
593	read_lock_bh(&nf_ct_cache_lock);
594
595	if (unlikely(!nf_ct_cache[features].use)) {
596		DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
597			features);
598		goto out;
599	}
600
601	conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
602	if (conntrack == NULL) {
603		DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
604		goto out;
605	}
606
607	memset(conntrack, 0, nf_ct_cache[features].size);
608	conntrack->features = features;
609	atomic_set(&conntrack->ct_general.use, 1);
610	conntrack->ct_general.destroy = destroy_conntrack;
611	conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
612	conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
613	/* Don't set timer yet: wait for confirmation */
614	init_timer(&conntrack->timeout);
615	conntrack->timeout.data = (unsigned long)conntrack;
616	conntrack->timeout.function = death_by_timeout;
617	read_unlock_bh(&nf_ct_cache_lock);
618
619	return conntrack;
620out:
621	read_unlock_bh(&nf_ct_cache_lock);
622	atomic_dec(&nf_conntrack_count);
623	return conntrack;
624}
625
626struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
627				   const struct nf_conntrack_tuple *repl)
628{
629	struct nf_conntrack_l3proto *l3proto;
630
631	l3proto = __nf_ct_l3proto_find(orig->src.l3num);
632	return __nf_conntrack_alloc(orig, repl, l3proto);
633}
634
635void nf_conntrack_free(struct nf_conn *conntrack)
636{
637	u_int32_t features = conntrack->features;
638	NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
639	DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
640	       conntrack);
641	kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
642	atomic_dec(&nf_conntrack_count);
643}
644
645/* Allocate a new conntrack: we return -ENOMEM if classification
646   failed due to stress.  Otherwise it really is unclassifiable. */
647static struct nf_conntrack_tuple_hash *
648init_conntrack(const struct nf_conntrack_tuple *tuple,
649	       struct nf_conntrack_l3proto *l3proto,
650	       struct nf_conntrack_protocol *protocol,
651	       struct sk_buff *skb,
652	       unsigned int dataoff)
653{
654	struct nf_conn *conntrack;
655	struct nf_conntrack_tuple repl_tuple;
656	struct nf_conntrack_expect *exp;
657
658	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, protocol)) {
659		DEBUGP("Can't invert tuple.\n");
660		return NULL;
661	}
662
663	conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto);
664	if (conntrack == NULL || IS_ERR(conntrack)) {
665		DEBUGP("Can't allocate conntrack.\n");
666		return (struct nf_conntrack_tuple_hash *)conntrack;
667	}
668
669	if (!protocol->new(conntrack, skb, dataoff)) {
670		nf_conntrack_free(conntrack);
671		DEBUGP("init conntrack: can't track with proto module\n");
672		return NULL;
673	}
674
675	write_lock_bh(&nf_conntrack_lock);
676	exp = find_expectation(tuple);
677
678	if (exp) {
679		DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
680			conntrack, exp);
681		/* Welcome, Mr. Bond.  We've been expecting you... */
682		__set_bit(IPS_EXPECTED_BIT, &conntrack->status);
683		conntrack->master = exp->master;
684#ifdef CONFIG_NF_CONNTRACK_MARK
685		conntrack->mark = exp->master->mark;
686#endif
687#ifdef CONFIG_NF_CONNTRACK_SECMARK
688		conntrack->secmark = exp->master->secmark;
689#endif
690		nf_conntrack_get(&conntrack->master->ct_general);
691		NF_CT_STAT_INC(expect_new);
692	} else {
693		struct nf_conn_help *help = nfct_help(conntrack);
694
695		if (help)
696			help->helper = __nf_ct_helper_find(&repl_tuple);
697		NF_CT_STAT_INC(new);
698	}
699
700	/* Overload tuple linked list to put us in unconfirmed list. */
701	list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);
702
703	write_unlock_bh(&nf_conntrack_lock);
704
705	if (exp) {
706		if (exp->expectfn)
707			exp->expectfn(conntrack, exp);
708		nf_conntrack_expect_put(exp);
709	}
710
711	return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
712}
713
714/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
715static inline struct nf_conn *
716resolve_normal_ct(struct sk_buff *skb,
717		  unsigned int dataoff,
718		  u_int16_t l3num,
719		  u_int8_t protonum,
720		  struct nf_conntrack_l3proto *l3proto,
721		  struct nf_conntrack_protocol *proto,
722		  int *set_reply,
723		  enum ip_conntrack_info *ctinfo)
724{
725	struct nf_conntrack_tuple tuple;
726	struct nf_conntrack_tuple_hash *h;
727	struct nf_conn *ct;
728
729	if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
730			     dataoff, l3num, protonum, &tuple, l3proto,
731			     proto)) {
732		DEBUGP("resolve_normal_ct: Can't get tuple\n");
733		return NULL;
734	}
735
736	/* look for tuple match */
737	h = nf_conntrack_find_get(&tuple, NULL);
738	if (!h) {
739		h = init_conntrack(&tuple, l3proto, proto, skb, dataoff);
740		if (!h)
741			return NULL;
742		if (IS_ERR(h))
743			return (void *)h;
744	}
745	ct = nf_ct_tuplehash_to_ctrack(h);
746
747	/* It exists; we have (non-exclusive) reference. */
748	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
749		*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
750		/* Please set reply bit if this packet OK */
751		*set_reply = 1;
752	} else {
753		/* Once we've had two way comms, always ESTABLISHED. */
754		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
755			DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
756			*ctinfo = IP_CT_ESTABLISHED;
757		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
758			DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
759			*ctinfo = IP_CT_RELATED;
760		} else {
761			DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
762			*ctinfo = IP_CT_NEW;
763		}
764		*set_reply = 0;
765	}
766	skb->nfct = &ct->ct_general;
767	skb->nfctinfo = *ctinfo;
768	return ct;
769}
770
771unsigned int
772nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
773{
774	struct nf_conn *ct;
775	enum ip_conntrack_info ctinfo;
776	struct nf_conntrack_l3proto *l3proto;
777	struct nf_conntrack_protocol *proto;
778	unsigned int dataoff;
779	u_int8_t protonum;
780	int set_reply = 0;
781	int ret;
782
783	/* Previously seen (loopback or untracked)?  Ignore. */
784	if ((*pskb)->nfct) {
785		NF_CT_STAT_INC(ignore);
786		return NF_ACCEPT;
787	}
788
789	l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
790	if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
791		DEBUGP("not prepared to track yet or error occured\n");
792		return -ret;
793	}
794
795	proto = __nf_ct_proto_find((u_int16_t)pf, protonum);
796
797	/* It may be an special packet, error, unclean...
798	 * inverse of the return code tells to the netfilter
799	 * core what to do with the packet. */
800	if (proto->error != NULL &&
801	    (ret = proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
802		NF_CT_STAT_INC(error);
803		NF_CT_STAT_INC(invalid);
804		return -ret;
805	}
806
807	ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, proto,
808			       &set_reply, &ctinfo);
809	if (!ct) {
810		/* Not valid part of a connection */
811		NF_CT_STAT_INC(invalid);
812		return NF_ACCEPT;
813	}
814
815	if (IS_ERR(ct)) {
816		/* Too stressed to deal. */
817		NF_CT_STAT_INC(drop);
818		return NF_DROP;
819	}
820
821	NF_CT_ASSERT((*pskb)->nfct);
822
823	ret = proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
824	if (ret < 0) {
825		/* Invalid: inverse of the return code tells
826		 * the netfilter core what to do */
827		DEBUGP("nf_conntrack_in: Can't track with proto module\n");
828		nf_conntrack_put((*pskb)->nfct);
829		(*pskb)->nfct = NULL;
830		NF_CT_STAT_INC(invalid);
831		return -ret;
832	}
833
834	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
835		nf_conntrack_event_cache(IPCT_STATUS, *pskb);
836
837	return ret;
838}
839
840int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
841			 const struct nf_conntrack_tuple *orig)
842{
843	return nf_ct_invert_tuple(inverse, orig,
844				  __nf_ct_l3proto_find(orig->src.l3num),
845				  __nf_ct_proto_find(orig->src.l3num,
846						     orig->dst.protonum));
847}
848
849/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
850void __nf_ct_refresh_acct(struct nf_conn *ct,
851			  enum ip_conntrack_info ctinfo,
852			  const struct sk_buff *skb,
853			  unsigned long extra_jiffies,
854			  int do_acct)
855{
856	int event = 0;
857
858	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
859	NF_CT_ASSERT(skb);
860
861	write_lock_bh(&nf_conntrack_lock);
862
863	/* Only update if this is not a fixed timeout */
864	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
865		write_unlock_bh(&nf_conntrack_lock);
866		return;
867	}
868
869	/* If not in hash table, timer will not be active yet */
870	if (!nf_ct_is_confirmed(ct)) {
871		ct->timeout.expires = extra_jiffies;
872		event = IPCT_REFRESH;
873	} else {
874		/* Need del_timer for race avoidance (may already be dying). */
875		if (del_timer(&ct->timeout)) {
876			ct->timeout.expires = jiffies + extra_jiffies;
877			add_timer(&ct->timeout);
878			event = IPCT_REFRESH;
879		}
880	}
881
882#ifdef CONFIG_NF_CT_ACCT
883	if (do_acct) {
884		ct->counters[CTINFO2DIR(ctinfo)].packets++;
885		ct->counters[CTINFO2DIR(ctinfo)].bytes +=
886			skb->len - (unsigned int)(skb->nh.raw - skb->data);
887	if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
888	    || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
889		event |= IPCT_COUNTER_FILLING;
890	}
891#endif
892
893	write_unlock_bh(&nf_conntrack_lock);
894
895	/* must be unlocked when calling event cache */
896	if (event)
897		nf_conntrack_event_cache(event, skb);
898}
899
900#if defined(CONFIG_NF_CT_NETLINK) || \
901    defined(CONFIG_NF_CT_NETLINK_MODULE)
902
903#include <linux/netfilter/nfnetlink.h>
904#include <linux/netfilter/nfnetlink_conntrack.h>
905#include <linux/mutex.h>
906
907
908/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
909 * in ip_conntrack_core, since we don't want the protocols to autoload
910 * or depend on ctnetlink */
911int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
912			       const struct nf_conntrack_tuple *tuple)
913{
914	NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
915		&tuple->src.u.tcp.port);
916	NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
917		&tuple->dst.u.tcp.port);
918	return 0;
919
920nfattr_failure:
921	return -1;
922}
923
924static const size_t cta_min_proto[CTA_PROTO_MAX] = {
925	[CTA_PROTO_SRC_PORT-1]  = sizeof(u_int16_t),
926	[CTA_PROTO_DST_PORT-1]  = sizeof(u_int16_t)
927};
928
929int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
930			       struct nf_conntrack_tuple *t)
931{
932	if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
933		return -EINVAL;
934
935	if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
936		return -EINVAL;
937
938	t->src.u.tcp.port =
939		*(u_int16_t *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
940	t->dst.u.tcp.port =
941		*(u_int16_t *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);
942
943	return 0;
944}
945#endif
946
947/* Used by ipt_REJECT and ip6t_REJECT. */
948void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
949{
950	struct nf_conn *ct;
951	enum ip_conntrack_info ctinfo;
952
953	/* This ICMP is in reverse direction to the packet which caused it */
954	ct = nf_ct_get(skb, &ctinfo);
955	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
956		ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
957	else
958		ctinfo = IP_CT_RELATED;
959
960	/* Attach to new skbuff, and increment count */
961	nskb->nfct = &ct->ct_general;
962	nskb->nfctinfo = ctinfo;
963	nf_conntrack_get(nskb->nfct);
964}
965
966static inline int
967do_iter(const struct nf_conntrack_tuple_hash *i,
968	int (*iter)(struct nf_conn *i, void *data),
969	void *data)
970{
971	return iter(nf_ct_tuplehash_to_ctrack(i), data);
972}
973
974/* Bring out ya dead! */
975static struct nf_conn *
976get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
977		void *data, unsigned int *bucket)
978{
979	struct nf_conntrack_tuple_hash *h;
980	struct nf_conn *ct;
981
982	write_lock_bh(&nf_conntrack_lock);
983	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
984		list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
985			ct = nf_ct_tuplehash_to_ctrack(h);
986			if (iter(ct, data))
987				goto found;
988		}
989 	}
990	list_for_each_entry(h, &unconfirmed, list) {
991		ct = nf_ct_tuplehash_to_ctrack(h);
992		if (iter(ct, data))
993			goto found;
994	}
995	write_unlock_bh(&nf_conntrack_lock);
996	return NULL;
997found:
998	atomic_inc(&ct->ct_general.use);
999	write_unlock_bh(&nf_conntrack_lock);
1000	return ct;
1001}
1002
1003void
1004nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
1005{
1006	struct nf_conn *ct;
1007	unsigned int bucket = 0;
1008
1009	while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1010		/* Time to push up daises... */
1011		if (del_timer(&ct->timeout))
1012			death_by_timeout((unsigned long)ct);
1013		/* ... else the timer will get him soon. */
1014
1015		nf_ct_put(ct);
1016	}
1017}
1018
1019static int kill_all(struct nf_conn *i, void *data)
1020{
1021	return 1;
1022}
1023
1024static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
1025{
1026	if (vmalloced)
1027		vfree(hash);
1028	else
1029		free_pages((unsigned long)hash,
1030			   get_order(sizeof(struct list_head) * size));
1031}
1032
1033void nf_conntrack_flush()
1034{
1035	nf_ct_iterate_cleanup(kill_all, NULL);
1036}
1037
1038/* Mishearing the voices in his head, our hero wonders how he's
1039   supposed to kill the mall. */
1040void nf_conntrack_cleanup(void)
1041{
1042	int i;
1043
1044	ip_ct_attach = NULL;
1045
1046	/* This makes sure all current packets have passed through
1047	   netfilter framework.  Roll on, two-stage module
1048	   delete... */
1049	synchronize_net();
1050
1051	nf_ct_event_cache_flush();
1052 i_see_dead_people:
1053	nf_conntrack_flush();
1054	if (atomic_read(&nf_conntrack_count) != 0) {
1055		schedule();
1056		goto i_see_dead_people;
1057	}
1058	/* wait until all references to nf_conntrack_untracked are dropped */
1059	while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1060		schedule();
1061
1062	for (i = 0; i < NF_CT_F_NUM; i++) {
1063		if (nf_ct_cache[i].use == 0)
1064			continue;
1065
1066		NF_CT_ASSERT(nf_ct_cache[i].use == 1);
1067		nf_ct_cache[i].use = 1;
1068		nf_conntrack_unregister_cache(i);
1069	}
1070	kmem_cache_destroy(nf_conntrack_expect_cachep);
1071	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1072			    nf_conntrack_htable_size);
1073
1074	/* free l3proto protocol tables */
1075	for (i = 0; i < PF_MAX; i++)
1076		if (nf_ct_protos[i]) {
1077			kfree(nf_ct_protos[i]);
1078			nf_ct_protos[i] = NULL;
1079		}
1080}
1081
1082static struct list_head *alloc_hashtable(int size, int *vmalloced)
1083{
1084	struct list_head *hash;
1085	unsigned int i;
1086
1087	*vmalloced = 0;
1088	hash = (void*)__get_free_pages(GFP_KERNEL,
1089				       get_order(sizeof(struct list_head)
1090						 * size));
1091	if (!hash) {
1092		*vmalloced = 1;
1093		printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1094		hash = vmalloc(sizeof(struct list_head) * size);
1095	}
1096
1097	if (hash)
1098		for (i = 0; i < size; i++)
1099			INIT_LIST_HEAD(&hash[i]);
1100
1101	return hash;
1102}
1103
1104int set_hashsize(const char *val, struct kernel_param *kp)
1105{
1106	int i, bucket, hashsize, vmalloced;
1107	int old_vmalloced, old_size;
1108	int rnd;
1109	struct list_head *hash, *old_hash;
1110	struct nf_conntrack_tuple_hash *h;
1111
1112	/* On boot, we can set this without any fancy locking. */
1113	if (!nf_conntrack_htable_size)
1114		return param_set_uint(val, kp);
1115
1116	hashsize = simple_strtol(val, NULL, 0);
1117	if (!hashsize)
1118		return -EINVAL;
1119
1120	hash = alloc_hashtable(hashsize, &vmalloced);
1121	if (!hash)
1122		return -ENOMEM;
1123
1124	/* We have to rehahs for the new table anyway, so we also can
1125	 * use a newrandom seed */
1126	get_random_bytes(&rnd, 4);
1127
1128	write_lock_bh(&nf_conntrack_lock);
1129	for (i = 0; i < nf_conntrack_htable_size; i++) {
1130		while (!list_empty(&nf_conntrack_hash[i])) {
1131			h = list_entry(nf_conntrack_hash[i].next,
1132				       struct nf_conntrack_tuple_hash, list);
1133			list_del(&h->list);
1134			bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1135			list_add_tail(&h->list, &hash[bucket]);
1136		}
1137	}
1138	old_size = nf_conntrack_htable_size;
1139	old_vmalloced = nf_conntrack_vmalloc;
1140	old_hash = nf_conntrack_hash;
1141
1142	nf_conntrack_htable_size = hashsize;
1143	nf_conntrack_vmalloc = vmalloced;
1144	nf_conntrack_hash = hash;
1145	nf_conntrack_hash_rnd = rnd;
1146	write_unlock_bh(&nf_conntrack_lock);
1147
1148	free_conntrack_hash(old_hash, old_vmalloced, old_size);
1149	return 0;
1150}
1151
1152module_param_call(hashsize, set_hashsize, param_get_uint,
1153		  &nf_conntrack_htable_size, 0600);
1154
1155int __init nf_conntrack_init(void)
1156{
1157	unsigned int i;
1158	int ret;
1159
1160	/* Idea from tcp.c: use 1/16384 of memory.  On i386: 32MB
1161	 * machine has 256 buckets.  >= 1GB machines have 8192 buckets. */
1162	if (!nf_conntrack_htable_size) {
1163		nf_conntrack_htable_size
1164			= (((num_physpages << PAGE_SHIFT) / 16384)
1165			   / sizeof(struct list_head));
1166		if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1167			nf_conntrack_htable_size = 8192;
1168		if (nf_conntrack_htable_size < 16)
1169			nf_conntrack_htable_size = 16;
1170	}
1171	nf_conntrack_max = 8 * nf_conntrack_htable_size;
1172
1173	printk("nf_conntrack version %s (%u buckets, %d max)\n",
1174	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1175	       nf_conntrack_max);
1176
1177	nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
1178					    &nf_conntrack_vmalloc);
1179	if (!nf_conntrack_hash) {
1180		printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1181		goto err_out;
1182	}
1183
1184	ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1185					  sizeof(struct nf_conn));
1186	if (ret < 0) {
1187		printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1188		goto err_free_hash;
1189	}
1190
1191	nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
1192					sizeof(struct nf_conntrack_expect),
1193					0, 0, NULL, NULL);
1194	if (!nf_conntrack_expect_cachep) {
1195		printk(KERN_ERR "Unable to create nf_expect slab cache\n");
1196		goto err_free_conntrack_slab;
1197	}
1198
1199	/* Don't NEED lock here, but good form anyway. */
1200	write_lock_bh(&nf_conntrack_lock);
1201        for (i = 0; i < PF_MAX; i++)
1202		nf_ct_l3protos[i] = &nf_conntrack_generic_l3proto;
1203        write_unlock_bh(&nf_conntrack_lock);
1204
1205	/* For use by REJECT target */
1206	ip_ct_attach = __nf_conntrack_attach;
1207
1208	/* Set up fake conntrack:
1209	    - to never be deleted, not in any hashes */
1210	atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1211	/*  - and look it like as a confirmed connection */
1212	set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1213
1214	return ret;
1215
1216err_free_conntrack_slab:
1217	nf_conntrack_unregister_cache(NF_CT_F_BASIC);
1218err_free_hash:
1219	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1220			    nf_conntrack_htable_size);
1221err_out:
1222	return -ENOMEM;
1223}
1224