nf_conntrack_core.c revision f09943fefe6b702e40893d35b4f10fd1064037fe
1/* Connection state tracking for netfilter.  This is separated from,
2   but required by, the NAT layer; it can also be used by an iptables
3   extension. */
4
5/* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
14 *	- new API and handling of conntrack/nat helpers
15 *	- now capable of multiple expectations for one master
16 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
17 *	- add usage/reference counts to ip_conntrack_expect
18 *	- export ip_conntrack[_expect]_{find_get,put} functions
19 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
20 *	- generalize L3 protocol denendent part.
21 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
22 *	- add support various size of conntrack structures.
23 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
24 * 	- restructure nf_conn (introduce nf_conn_help)
25 * 	- redesign 'features' how they were originally intended
26 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
27 * 	- add support for L3 protocol module load on demand.
28 *
29 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
30 */
31
32#include <linux/types.h>
33#include <linux/netfilter.h>
34#include <linux/module.h>
35#include <linux/skbuff.h>
36#include <linux/proc_fs.h>
37#include <linux/vmalloc.h>
38#include <linux/stddef.h>
39#include <linux/slab.h>
40#include <linux/random.h>
41#include <linux/jhash.h>
42#include <linux/err.h>
43#include <linux/percpu.h>
44#include <linux/moduleparam.h>
45#include <linux/notifier.h>
46#include <linux/kernel.h>
47#include <linux/netdevice.h>
48#include <linux/socket.h>
49
50#include <net/netfilter/nf_conntrack.h>
51#include <net/netfilter/nf_conntrack_l3proto.h>
52#include <net/netfilter/nf_conntrack_l4proto.h>
53#include <net/netfilter/nf_conntrack_expect.h>
54#include <net/netfilter/nf_conntrack_helper.h>
55#include <net/netfilter/nf_conntrack_core.h>
56
57#define NF_CONNTRACK_VERSION	"0.5.0"
58
59#if 0
60#define DEBUGP printk
61#else
62#define DEBUGP(format, args...)
63#endif
64
65DEFINE_RWLOCK(nf_conntrack_lock);
66
67/* nf_conntrack_standalone needs this */
68atomic_t nf_conntrack_count = ATOMIC_INIT(0);
69EXPORT_SYMBOL_GPL(nf_conntrack_count);
70
71void (*nf_conntrack_destroyed)(struct nf_conn *conntrack) = NULL;
72unsigned int nf_conntrack_htable_size __read_mostly;
73int nf_conntrack_max __read_mostly;
74EXPORT_SYMBOL_GPL(nf_conntrack_max);
75struct list_head *nf_conntrack_hash __read_mostly;
76struct nf_conn nf_conntrack_untracked __read_mostly;
77unsigned int nf_ct_log_invalid __read_mostly;
78LIST_HEAD(unconfirmed);
79static int nf_conntrack_vmalloc __read_mostly;
80
81static unsigned int nf_conntrack_next_id;
82
83DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
84EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
85
86/*
87 * This scheme offers various size of "struct nf_conn" dependent on
88 * features(helper, nat, ...)
89 */
90
91#define NF_CT_FEATURES_NAMELEN	256
92static struct {
93	/* name of slab cache. printed in /proc/slabinfo */
94	char *name;
95
96	/* size of slab cache */
97	size_t size;
98
99	/* slab cache pointer */
100	kmem_cache_t *cachep;
101
102	/* allocated slab cache + modules which uses this slab cache */
103	int use;
104
105} nf_ct_cache[NF_CT_F_NUM];
106
107/* protect members of nf_ct_cache except of "use" */
108DEFINE_RWLOCK(nf_ct_cache_lock);
109
110/* This avoids calling kmem_cache_create() with same name simultaneously */
111static DEFINE_MUTEX(nf_ct_cache_mutex);
112
113static int nf_conntrack_hash_rnd_initted;
114static unsigned int nf_conntrack_hash_rnd;
115
116static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
117				  unsigned int size, unsigned int rnd)
118{
119	unsigned int a, b;
120	a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
121		  ((tuple->src.l3num) << 16) | tuple->dst.protonum);
122	b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
123			(tuple->src.u.all << 16) | tuple->dst.u.all);
124
125	return jhash_2words(a, b, rnd) % size;
126}
127
128static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
129{
130	return __hash_conntrack(tuple, nf_conntrack_htable_size,
131				nf_conntrack_hash_rnd);
132}
133
134int nf_conntrack_register_cache(u_int32_t features, const char *name,
135				size_t size)
136{
137	int ret = 0;
138	char *cache_name;
139	kmem_cache_t *cachep;
140
141	DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
142	       features, name, size);
143
144	if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
145		DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
146			features);
147		return -EINVAL;
148	}
149
150	mutex_lock(&nf_ct_cache_mutex);
151
152	write_lock_bh(&nf_ct_cache_lock);
153	/* e.g: multiple helpers are loaded */
154	if (nf_ct_cache[features].use > 0) {
155		DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
156		if ((!strncmp(nf_ct_cache[features].name, name,
157			      NF_CT_FEATURES_NAMELEN))
158		    && nf_ct_cache[features].size == size) {
159			DEBUGP("nf_conntrack_register_cache: reusing.\n");
160			nf_ct_cache[features].use++;
161			ret = 0;
162		} else
163			ret = -EBUSY;
164
165		write_unlock_bh(&nf_ct_cache_lock);
166		mutex_unlock(&nf_ct_cache_mutex);
167		return ret;
168	}
169	write_unlock_bh(&nf_ct_cache_lock);
170
171	/*
172	 * The memory space for name of slab cache must be alive until
173	 * cache is destroyed.
174	 */
175	cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
176	if (cache_name == NULL) {
177		DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
178		ret = -ENOMEM;
179		goto out_up_mutex;
180	}
181
182	if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
183						>= NF_CT_FEATURES_NAMELEN) {
184		printk("nf_conntrack_register_cache: name too long\n");
185		ret = -EINVAL;
186		goto out_free_name;
187	}
188
189	cachep = kmem_cache_create(cache_name, size, 0, 0,
190				   NULL, NULL);
191	if (!cachep) {
192		printk("nf_conntrack_register_cache: Can't create slab cache "
193		       "for the features = 0x%x\n", features);
194		ret = -ENOMEM;
195		goto out_free_name;
196	}
197
198	write_lock_bh(&nf_ct_cache_lock);
199	nf_ct_cache[features].use = 1;
200	nf_ct_cache[features].size = size;
201	nf_ct_cache[features].cachep = cachep;
202	nf_ct_cache[features].name = cache_name;
203	write_unlock_bh(&nf_ct_cache_lock);
204
205	goto out_up_mutex;
206
207out_free_name:
208	kfree(cache_name);
209out_up_mutex:
210	mutex_unlock(&nf_ct_cache_mutex);
211	return ret;
212}
213
214/* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
215void nf_conntrack_unregister_cache(u_int32_t features)
216{
217	kmem_cache_t *cachep;
218	char *name;
219
220	/*
221	 * This assures that kmem_cache_create() isn't called before destroying
222	 * slab cache.
223	 */
224	DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
225	mutex_lock(&nf_ct_cache_mutex);
226
227	write_lock_bh(&nf_ct_cache_lock);
228	if (--nf_ct_cache[features].use > 0) {
229		write_unlock_bh(&nf_ct_cache_lock);
230		mutex_unlock(&nf_ct_cache_mutex);
231		return;
232	}
233	cachep = nf_ct_cache[features].cachep;
234	name = nf_ct_cache[features].name;
235	nf_ct_cache[features].cachep = NULL;
236	nf_ct_cache[features].name = NULL;
237	nf_ct_cache[features].size = 0;
238	write_unlock_bh(&nf_ct_cache_lock);
239
240	synchronize_net();
241
242	kmem_cache_destroy(cachep);
243	kfree(name);
244
245	mutex_unlock(&nf_ct_cache_mutex);
246}
247
248int
249nf_ct_get_tuple(const struct sk_buff *skb,
250		unsigned int nhoff,
251		unsigned int dataoff,
252		u_int16_t l3num,
253		u_int8_t protonum,
254		struct nf_conntrack_tuple *tuple,
255		const struct nf_conntrack_l3proto *l3proto,
256		const struct nf_conntrack_l4proto *l4proto)
257{
258	NF_CT_TUPLE_U_BLANK(tuple);
259
260	tuple->src.l3num = l3num;
261	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
262		return 0;
263
264	tuple->dst.protonum = protonum;
265	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
266
267	return l4proto->pkt_to_tuple(skb, dataoff, tuple);
268}
269
270int
271nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
272		   const struct nf_conntrack_tuple *orig,
273		   const struct nf_conntrack_l3proto *l3proto,
274		   const struct nf_conntrack_l4proto *l4proto)
275{
276	NF_CT_TUPLE_U_BLANK(inverse);
277
278	inverse->src.l3num = orig->src.l3num;
279	if (l3proto->invert_tuple(inverse, orig) == 0)
280		return 0;
281
282	inverse->dst.dir = !orig->dst.dir;
283
284	inverse->dst.protonum = orig->dst.protonum;
285	return l4proto->invert_tuple(inverse, orig);
286}
287
288static void
289clean_from_lists(struct nf_conn *ct)
290{
291	DEBUGP("clean_from_lists(%p)\n", ct);
292	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
293	list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
294
295	/* Destroy all pending expectations */
296	nf_ct_remove_expectations(ct);
297}
298
299static void
300destroy_conntrack(struct nf_conntrack *nfct)
301{
302	struct nf_conn *ct = (struct nf_conn *)nfct;
303	struct nf_conn_help *help = nfct_help(ct);
304	struct nf_conntrack_l3proto *l3proto;
305	struct nf_conntrack_l4proto *l4proto;
306
307	DEBUGP("destroy_conntrack(%p)\n", ct);
308	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
309	NF_CT_ASSERT(!timer_pending(&ct->timeout));
310
311	nf_conntrack_event(IPCT_DESTROY, ct);
312	set_bit(IPS_DYING_BIT, &ct->status);
313
314	if (help && help->helper && help->helper->destroy)
315		help->helper->destroy(ct);
316
317	/* To make sure we don't get any weird locking issues here:
318	 * destroy_conntrack() MUST NOT be called with a write lock
319	 * to nf_conntrack_lock!!! -HW */
320	l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
321	if (l3proto && l3proto->destroy)
322		l3proto->destroy(ct);
323
324	l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num, ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
325	if (l4proto && l4proto->destroy)
326		l4proto->destroy(ct);
327
328	if (nf_conntrack_destroyed)
329		nf_conntrack_destroyed(ct);
330
331	write_lock_bh(&nf_conntrack_lock);
332	/* Expectations will have been removed in clean_from_lists,
333	 * except TFTP can create an expectation on the first packet,
334	 * before connection is in the list, so we need to clean here,
335	 * too. */
336	nf_ct_remove_expectations(ct);
337
338	/* We overload first tuple to link into unconfirmed list. */
339	if (!nf_ct_is_confirmed(ct)) {
340		BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
341		list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
342	}
343
344	NF_CT_STAT_INC(delete);
345	write_unlock_bh(&nf_conntrack_lock);
346
347	if (ct->master)
348		nf_ct_put(ct->master);
349
350	DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
351	nf_conntrack_free(ct);
352}
353
354static void death_by_timeout(unsigned long ul_conntrack)
355{
356	struct nf_conn *ct = (void *)ul_conntrack;
357
358	write_lock_bh(&nf_conntrack_lock);
359	/* Inside lock so preempt is disabled on module removal path.
360	 * Otherwise we can get spurious warnings. */
361	NF_CT_STAT_INC(delete_list);
362	clean_from_lists(ct);
363	write_unlock_bh(&nf_conntrack_lock);
364	nf_ct_put(ct);
365}
366
367struct nf_conntrack_tuple_hash *
368__nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
369		    const struct nf_conn *ignored_conntrack)
370{
371	struct nf_conntrack_tuple_hash *h;
372	unsigned int hash = hash_conntrack(tuple);
373
374	list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
375		if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
376		    nf_ct_tuple_equal(tuple, &h->tuple)) {
377			NF_CT_STAT_INC(found);
378			return h;
379		}
380		NF_CT_STAT_INC(searched);
381	}
382
383	return NULL;
384}
385
386/* Find a connection corresponding to a tuple. */
387struct nf_conntrack_tuple_hash *
388nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
389		      const struct nf_conn *ignored_conntrack)
390{
391	struct nf_conntrack_tuple_hash *h;
392
393	read_lock_bh(&nf_conntrack_lock);
394	h = __nf_conntrack_find(tuple, ignored_conntrack);
395	if (h)
396		atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
397	read_unlock_bh(&nf_conntrack_lock);
398
399	return h;
400}
401
402static void __nf_conntrack_hash_insert(struct nf_conn *ct,
403				       unsigned int hash,
404				       unsigned int repl_hash)
405{
406	ct->id = ++nf_conntrack_next_id;
407	list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
408		 &nf_conntrack_hash[hash]);
409	list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
410		 &nf_conntrack_hash[repl_hash]);
411}
412
413void nf_conntrack_hash_insert(struct nf_conn *ct)
414{
415	unsigned int hash, repl_hash;
416
417	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
418	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
419
420	write_lock_bh(&nf_conntrack_lock);
421	__nf_conntrack_hash_insert(ct, hash, repl_hash);
422	write_unlock_bh(&nf_conntrack_lock);
423}
424
425/* Confirm a connection given skb; places it in hash table */
426int
427__nf_conntrack_confirm(struct sk_buff **pskb)
428{
429	unsigned int hash, repl_hash;
430	struct nf_conntrack_tuple_hash *h;
431	struct nf_conn *ct;
432	struct nf_conn_help *help;
433	enum ip_conntrack_info ctinfo;
434
435	ct = nf_ct_get(*pskb, &ctinfo);
436
437	/* ipt_REJECT uses nf_conntrack_attach to attach related
438	   ICMP/TCP RST packets in other direction.  Actual packet
439	   which created connection will be IP_CT_NEW or for an
440	   expected connection, IP_CT_RELATED. */
441	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
442		return NF_ACCEPT;
443
444	hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
445	repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
446
447	/* We're not in hash table, and we refuse to set up related
448	   connections for unconfirmed conns.  But packet copies and
449	   REJECT will give spurious warnings here. */
450	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
451
452	/* No external references means noone else could have
453	   confirmed us. */
454	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
455	DEBUGP("Confirming conntrack %p\n", ct);
456
457	write_lock_bh(&nf_conntrack_lock);
458
459	/* See if there's one in the list already, including reverse:
460	   NAT could have grabbed it without realizing, since we're
461	   not in the hash.  If there is, we lost race. */
462	list_for_each_entry(h, &nf_conntrack_hash[hash], list)
463		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
464				      &h->tuple))
465			goto out;
466	list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
467		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
468				      &h->tuple))
469			goto out;
470
471	/* Remove from unconfirmed list */
472	list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
473
474	__nf_conntrack_hash_insert(ct, hash, repl_hash);
475	/* Timer relative to confirmation time, not original
476	   setting time, otherwise we'd get timer wrap in
477	   weird delay cases. */
478	ct->timeout.expires += jiffies;
479	add_timer(&ct->timeout);
480	atomic_inc(&ct->ct_general.use);
481	set_bit(IPS_CONFIRMED_BIT, &ct->status);
482	NF_CT_STAT_INC(insert);
483	write_unlock_bh(&nf_conntrack_lock);
484	help = nfct_help(ct);
485	if (help && help->helper)
486		nf_conntrack_event_cache(IPCT_HELPER, *pskb);
487#ifdef CONFIG_NF_NAT_NEEDED
488	if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
489	    test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
490		nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
491#endif
492	nf_conntrack_event_cache(master_ct(ct) ?
493				 IPCT_RELATED : IPCT_NEW, *pskb);
494	return NF_ACCEPT;
495
496out:
497	NF_CT_STAT_INC(insert_failed);
498	write_unlock_bh(&nf_conntrack_lock);
499	return NF_DROP;
500}
501
502/* Returns true if a connection correspondings to the tuple (required
503   for NAT). */
504int
505nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
506			 const struct nf_conn *ignored_conntrack)
507{
508	struct nf_conntrack_tuple_hash *h;
509
510	read_lock_bh(&nf_conntrack_lock);
511	h = __nf_conntrack_find(tuple, ignored_conntrack);
512	read_unlock_bh(&nf_conntrack_lock);
513
514	return h != NULL;
515}
516
517/* There's a small race here where we may free a just-assured
518   connection.  Too bad: we're in trouble anyway. */
519static int early_drop(struct list_head *chain)
520{
521	/* Traverse backwards: gives us oldest, which is roughly LRU */
522	struct nf_conntrack_tuple_hash *h;
523	struct nf_conn *ct = NULL, *tmp;
524	int dropped = 0;
525
526	read_lock_bh(&nf_conntrack_lock);
527	list_for_each_entry_reverse(h, chain, list) {
528		tmp = nf_ct_tuplehash_to_ctrack(h);
529		if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
530			ct = tmp;
531			atomic_inc(&ct->ct_general.use);
532			break;
533		}
534	}
535	read_unlock_bh(&nf_conntrack_lock);
536
537	if (!ct)
538		return dropped;
539
540	if (del_timer(&ct->timeout)) {
541		death_by_timeout((unsigned long)ct);
542		dropped = 1;
543		NF_CT_STAT_INC(early_drop);
544	}
545	nf_ct_put(ct);
546	return dropped;
547}
548
549static struct nf_conn *
550__nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
551		     const struct nf_conntrack_tuple *repl,
552		     const struct nf_conntrack_l3proto *l3proto,
553		     u_int32_t features)
554{
555	struct nf_conn *conntrack = NULL;
556	struct nf_conntrack_helper *helper;
557
558	if (unlikely(!nf_conntrack_hash_rnd_initted)) {
559		get_random_bytes(&nf_conntrack_hash_rnd, 4);
560		nf_conntrack_hash_rnd_initted = 1;
561	}
562
563	/* We don't want any race condition at early drop stage */
564	atomic_inc(&nf_conntrack_count);
565
566	if (nf_conntrack_max
567	    && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
568		unsigned int hash = hash_conntrack(orig);
569		/* Try dropping from this hash chain. */
570		if (!early_drop(&nf_conntrack_hash[hash])) {
571			atomic_dec(&nf_conntrack_count);
572			if (net_ratelimit())
573				printk(KERN_WARNING
574				       "nf_conntrack: table full, dropping"
575				       " packet.\n");
576			return ERR_PTR(-ENOMEM);
577		}
578	}
579
580	/*  find features needed by this conntrack. */
581	features |= l3proto->get_features(orig);
582
583	/* FIXME: protect helper list per RCU */
584	read_lock_bh(&nf_conntrack_lock);
585	helper = __nf_ct_helper_find(repl);
586	/* NAT might want to assign a helper later */
587	if (helper || features & NF_CT_F_NAT)
588		features |= NF_CT_F_HELP;
589	read_unlock_bh(&nf_conntrack_lock);
590
591	DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);
592
593	read_lock_bh(&nf_ct_cache_lock);
594
595	if (unlikely(!nf_ct_cache[features].use)) {
596		DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
597			features);
598		goto out;
599	}
600
601	conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
602	if (conntrack == NULL) {
603		DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
604		goto out;
605	}
606
607	memset(conntrack, 0, nf_ct_cache[features].size);
608	conntrack->features = features;
609	atomic_set(&conntrack->ct_general.use, 1);
610	conntrack->ct_general.destroy = destroy_conntrack;
611	conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
612	conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
613	/* Don't set timer yet: wait for confirmation */
614	init_timer(&conntrack->timeout);
615	conntrack->timeout.data = (unsigned long)conntrack;
616	conntrack->timeout.function = death_by_timeout;
617	read_unlock_bh(&nf_ct_cache_lock);
618
619	return conntrack;
620out:
621	read_unlock_bh(&nf_ct_cache_lock);
622	atomic_dec(&nf_conntrack_count);
623	return conntrack;
624}
625
626struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
627				   const struct nf_conntrack_tuple *repl)
628{
629	struct nf_conntrack_l3proto *l3proto;
630
631	l3proto = __nf_ct_l3proto_find(orig->src.l3num);
632	return __nf_conntrack_alloc(orig, repl, l3proto, 0);
633}
634
635void nf_conntrack_free(struct nf_conn *conntrack)
636{
637	u_int32_t features = conntrack->features;
638	NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
639	DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
640	       conntrack);
641	kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
642	atomic_dec(&nf_conntrack_count);
643}
644
645/* Allocate a new conntrack: we return -ENOMEM if classification
646   failed due to stress.  Otherwise it really is unclassifiable. */
647static struct nf_conntrack_tuple_hash *
648init_conntrack(const struct nf_conntrack_tuple *tuple,
649	       struct nf_conntrack_l3proto *l3proto,
650	       struct nf_conntrack_l4proto *l4proto,
651	       struct sk_buff *skb,
652	       unsigned int dataoff)
653{
654	struct nf_conn *conntrack;
655	struct nf_conntrack_tuple repl_tuple;
656	struct nf_conntrack_expect *exp;
657	u_int32_t features = 0;
658
659	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
660		DEBUGP("Can't invert tuple.\n");
661		return NULL;
662	}
663
664	read_lock_bh(&nf_conntrack_lock);
665	exp = __nf_conntrack_expect_find(tuple);
666	if (exp && exp->helper)
667		features = NF_CT_F_HELP;
668	read_unlock_bh(&nf_conntrack_lock);
669
670	conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto, features);
671	if (conntrack == NULL || IS_ERR(conntrack)) {
672		DEBUGP("Can't allocate conntrack.\n");
673		return (struct nf_conntrack_tuple_hash *)conntrack;
674	}
675
676	if (!l4proto->new(conntrack, skb, dataoff)) {
677		nf_conntrack_free(conntrack);
678		DEBUGP("init conntrack: can't track with proto module\n");
679		return NULL;
680	}
681
682	write_lock_bh(&nf_conntrack_lock);
683	exp = find_expectation(tuple);
684
685	if (exp) {
686		DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
687			conntrack, exp);
688		/* Welcome, Mr. Bond.  We've been expecting you... */
689		__set_bit(IPS_EXPECTED_BIT, &conntrack->status);
690		conntrack->master = exp->master;
691		if (exp->helper)
692			nfct_help(conntrack)->helper = exp->helper;
693#ifdef CONFIG_NF_CONNTRACK_MARK
694		conntrack->mark = exp->master->mark;
695#endif
696#ifdef CONFIG_NF_CONNTRACK_SECMARK
697		conntrack->secmark = exp->master->secmark;
698#endif
699		nf_conntrack_get(&conntrack->master->ct_general);
700		NF_CT_STAT_INC(expect_new);
701	} else {
702		struct nf_conn_help *help = nfct_help(conntrack);
703
704		if (help)
705			help->helper = __nf_ct_helper_find(&repl_tuple);
706		NF_CT_STAT_INC(new);
707	}
708
709	/* Overload tuple linked list to put us in unconfirmed list. */
710	list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);
711
712	write_unlock_bh(&nf_conntrack_lock);
713
714	if (exp) {
715		if (exp->expectfn)
716			exp->expectfn(conntrack, exp);
717		nf_conntrack_expect_put(exp);
718	}
719
720	return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
721}
722
723/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
724static inline struct nf_conn *
725resolve_normal_ct(struct sk_buff *skb,
726		  unsigned int dataoff,
727		  u_int16_t l3num,
728		  u_int8_t protonum,
729		  struct nf_conntrack_l3proto *l3proto,
730		  struct nf_conntrack_l4proto *l4proto,
731		  int *set_reply,
732		  enum ip_conntrack_info *ctinfo)
733{
734	struct nf_conntrack_tuple tuple;
735	struct nf_conntrack_tuple_hash *h;
736	struct nf_conn *ct;
737
738	if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
739			     dataoff, l3num, protonum, &tuple, l3proto,
740			     l4proto)) {
741		DEBUGP("resolve_normal_ct: Can't get tuple\n");
742		return NULL;
743	}
744
745	/* look for tuple match */
746	h = nf_conntrack_find_get(&tuple, NULL);
747	if (!h) {
748		h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
749		if (!h)
750			return NULL;
751		if (IS_ERR(h))
752			return (void *)h;
753	}
754	ct = nf_ct_tuplehash_to_ctrack(h);
755
756	/* It exists; we have (non-exclusive) reference. */
757	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
758		*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
759		/* Please set reply bit if this packet OK */
760		*set_reply = 1;
761	} else {
762		/* Once we've had two way comms, always ESTABLISHED. */
763		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
764			DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
765			*ctinfo = IP_CT_ESTABLISHED;
766		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
767			DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
768			*ctinfo = IP_CT_RELATED;
769		} else {
770			DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
771			*ctinfo = IP_CT_NEW;
772		}
773		*set_reply = 0;
774	}
775	skb->nfct = &ct->ct_general;
776	skb->nfctinfo = *ctinfo;
777	return ct;
778}
779
780unsigned int
781nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
782{
783	struct nf_conn *ct;
784	enum ip_conntrack_info ctinfo;
785	struct nf_conntrack_l3proto *l3proto;
786	struct nf_conntrack_l4proto *l4proto;
787	unsigned int dataoff;
788	u_int8_t protonum;
789	int set_reply = 0;
790	int ret;
791
792	/* Previously seen (loopback or untracked)?  Ignore. */
793	if ((*pskb)->nfct) {
794		NF_CT_STAT_INC(ignore);
795		return NF_ACCEPT;
796	}
797
798	l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
799	if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
800		DEBUGP("not prepared to track yet or error occured\n");
801		return -ret;
802	}
803
804	l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
805
806	/* It may be an special packet, error, unclean...
807	 * inverse of the return code tells to the netfilter
808	 * core what to do with the packet. */
809	if (l4proto->error != NULL &&
810	    (ret = l4proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
811		NF_CT_STAT_INC(error);
812		NF_CT_STAT_INC(invalid);
813		return -ret;
814	}
815
816	ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, l4proto,
817			       &set_reply, &ctinfo);
818	if (!ct) {
819		/* Not valid part of a connection */
820		NF_CT_STAT_INC(invalid);
821		return NF_ACCEPT;
822	}
823
824	if (IS_ERR(ct)) {
825		/* Too stressed to deal. */
826		NF_CT_STAT_INC(drop);
827		return NF_DROP;
828	}
829
830	NF_CT_ASSERT((*pskb)->nfct);
831
832	ret = l4proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
833	if (ret < 0) {
834		/* Invalid: inverse of the return code tells
835		 * the netfilter core what to do */
836		DEBUGP("nf_conntrack_in: Can't track with proto module\n");
837		nf_conntrack_put((*pskb)->nfct);
838		(*pskb)->nfct = NULL;
839		NF_CT_STAT_INC(invalid);
840		return -ret;
841	}
842
843	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
844		nf_conntrack_event_cache(IPCT_STATUS, *pskb);
845
846	return ret;
847}
848
849int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
850			 const struct nf_conntrack_tuple *orig)
851{
852	return nf_ct_invert_tuple(inverse, orig,
853				  __nf_ct_l3proto_find(orig->src.l3num),
854				  __nf_ct_l4proto_find(orig->src.l3num,
855						     orig->dst.protonum));
856}
857
858/* Alter reply tuple (maybe alter helper).  This is for NAT, and is
859   implicitly racy: see __nf_conntrack_confirm */
860void nf_conntrack_alter_reply(struct nf_conn *ct,
861			      const struct nf_conntrack_tuple *newreply)
862{
863	struct nf_conn_help *help = nfct_help(ct);
864
865	write_lock_bh(&nf_conntrack_lock);
866	/* Should be unconfirmed, so not in hash table yet */
867	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
868
869	DEBUGP("Altering reply tuple of %p to ", ct);
870	NF_CT_DUMP_TUPLE(newreply);
871
872	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
873	if (!ct->master && help && help->expecting == 0)
874		help->helper = __nf_ct_helper_find(newreply);
875	write_unlock_bh(&nf_conntrack_lock);
876}
877
878/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
879void __nf_ct_refresh_acct(struct nf_conn *ct,
880			  enum ip_conntrack_info ctinfo,
881			  const struct sk_buff *skb,
882			  unsigned long extra_jiffies,
883			  int do_acct)
884{
885	int event = 0;
886
887	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
888	NF_CT_ASSERT(skb);
889
890	write_lock_bh(&nf_conntrack_lock);
891
892	/* Only update if this is not a fixed timeout */
893	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
894		write_unlock_bh(&nf_conntrack_lock);
895		return;
896	}
897
898	/* If not in hash table, timer will not be active yet */
899	if (!nf_ct_is_confirmed(ct)) {
900		ct->timeout.expires = extra_jiffies;
901		event = IPCT_REFRESH;
902	} else {
903		unsigned long newtime = jiffies + extra_jiffies;
904
905		/* Only update the timeout if the new timeout is at least
906		   HZ jiffies from the old timeout. Need del_timer for race
907		   avoidance (may already be dying). */
908		if (newtime - ct->timeout.expires >= HZ
909		    && del_timer(&ct->timeout)) {
910			ct->timeout.expires = newtime;
911			add_timer(&ct->timeout);
912			event = IPCT_REFRESH;
913		}
914	}
915
916#ifdef CONFIG_NF_CT_ACCT
917	if (do_acct) {
918		ct->counters[CTINFO2DIR(ctinfo)].packets++;
919		ct->counters[CTINFO2DIR(ctinfo)].bytes +=
920			skb->len - (unsigned int)(skb->nh.raw - skb->data);
921
922		if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
923		    || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
924			event |= IPCT_COUNTER_FILLING;
925	}
926#endif
927
928	write_unlock_bh(&nf_conntrack_lock);
929
930	/* must be unlocked when calling event cache */
931	if (event)
932		nf_conntrack_event_cache(event, skb);
933}
934
935#if defined(CONFIG_NF_CT_NETLINK) || \
936    defined(CONFIG_NF_CT_NETLINK_MODULE)
937
938#include <linux/netfilter/nfnetlink.h>
939#include <linux/netfilter/nfnetlink_conntrack.h>
940#include <linux/mutex.h>
941
942
943/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
944 * in ip_conntrack_core, since we don't want the protocols to autoload
945 * or depend on ctnetlink */
946int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
947			       const struct nf_conntrack_tuple *tuple)
948{
949	NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
950		&tuple->src.u.tcp.port);
951	NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
952		&tuple->dst.u.tcp.port);
953	return 0;
954
955nfattr_failure:
956	return -1;
957}
958
959static const size_t cta_min_proto[CTA_PROTO_MAX] = {
960	[CTA_PROTO_SRC_PORT-1]  = sizeof(u_int16_t),
961	[CTA_PROTO_DST_PORT-1]  = sizeof(u_int16_t)
962};
963
964int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
965			       struct nf_conntrack_tuple *t)
966{
967	if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
968		return -EINVAL;
969
970	if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
971		return -EINVAL;
972
973	t->src.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
974	t->dst.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);
975
976	return 0;
977}
978#endif
979
980/* Used by ipt_REJECT and ip6t_REJECT. */
981void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
982{
983	struct nf_conn *ct;
984	enum ip_conntrack_info ctinfo;
985
986	/* This ICMP is in reverse direction to the packet which caused it */
987	ct = nf_ct_get(skb, &ctinfo);
988	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
989		ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
990	else
991		ctinfo = IP_CT_RELATED;
992
993	/* Attach to new skbuff, and increment count */
994	nskb->nfct = &ct->ct_general;
995	nskb->nfctinfo = ctinfo;
996	nf_conntrack_get(nskb->nfct);
997}
998
999static inline int
1000do_iter(const struct nf_conntrack_tuple_hash *i,
1001	int (*iter)(struct nf_conn *i, void *data),
1002	void *data)
1003{
1004	return iter(nf_ct_tuplehash_to_ctrack(i), data);
1005}
1006
1007/* Bring out ya dead! */
1008static struct nf_conn *
1009get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1010		void *data, unsigned int *bucket)
1011{
1012	struct nf_conntrack_tuple_hash *h;
1013	struct nf_conn *ct;
1014
1015	write_lock_bh(&nf_conntrack_lock);
1016	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1017		list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
1018			ct = nf_ct_tuplehash_to_ctrack(h);
1019			if (iter(ct, data))
1020				goto found;
1021		}
1022 	}
1023	list_for_each_entry(h, &unconfirmed, list) {
1024		ct = nf_ct_tuplehash_to_ctrack(h);
1025		if (iter(ct, data))
1026			goto found;
1027	}
1028	write_unlock_bh(&nf_conntrack_lock);
1029	return NULL;
1030found:
1031	atomic_inc(&ct->ct_general.use);
1032	write_unlock_bh(&nf_conntrack_lock);
1033	return ct;
1034}
1035
1036void
1037nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
1038{
1039	struct nf_conn *ct;
1040	unsigned int bucket = 0;
1041
1042	while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1043		/* Time to push up daises... */
1044		if (del_timer(&ct->timeout))
1045			death_by_timeout((unsigned long)ct);
1046		/* ... else the timer will get him soon. */
1047
1048		nf_ct_put(ct);
1049	}
1050}
1051
1052static int kill_all(struct nf_conn *i, void *data)
1053{
1054	return 1;
1055}
1056
1057static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
1058{
1059	if (vmalloced)
1060		vfree(hash);
1061	else
1062		free_pages((unsigned long)hash,
1063			   get_order(sizeof(struct list_head) * size));
1064}
1065
1066void nf_conntrack_flush()
1067{
1068	nf_ct_iterate_cleanup(kill_all, NULL);
1069}
1070
1071/* Mishearing the voices in his head, our hero wonders how he's
1072   supposed to kill the mall. */
1073void nf_conntrack_cleanup(void)
1074{
1075	int i;
1076
1077	ip_ct_attach = NULL;
1078
1079	/* This makes sure all current packets have passed through
1080	   netfilter framework.  Roll on, two-stage module
1081	   delete... */
1082	synchronize_net();
1083
1084	nf_ct_event_cache_flush();
1085 i_see_dead_people:
1086	nf_conntrack_flush();
1087	if (atomic_read(&nf_conntrack_count) != 0) {
1088		schedule();
1089		goto i_see_dead_people;
1090	}
1091	/* wait until all references to nf_conntrack_untracked are dropped */
1092	while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1093		schedule();
1094
1095	for (i = 0; i < NF_CT_F_NUM; i++) {
1096		if (nf_ct_cache[i].use == 0)
1097			continue;
1098
1099		NF_CT_ASSERT(nf_ct_cache[i].use == 1);
1100		nf_ct_cache[i].use = 1;
1101		nf_conntrack_unregister_cache(i);
1102	}
1103	kmem_cache_destroy(nf_conntrack_expect_cachep);
1104	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1105			    nf_conntrack_htable_size);
1106
1107	nf_conntrack_l4proto_unregister(&nf_conntrack_l4proto_generic);
1108
1109	/* free l3proto protocol tables */
1110	for (i = 0; i < PF_MAX; i++)
1111		if (nf_ct_protos[i]) {
1112			kfree(nf_ct_protos[i]);
1113			nf_ct_protos[i] = NULL;
1114		}
1115}
1116
1117static struct list_head *alloc_hashtable(int size, int *vmalloced)
1118{
1119	struct list_head *hash;
1120	unsigned int i;
1121
1122	*vmalloced = 0;
1123	hash = (void*)__get_free_pages(GFP_KERNEL,
1124				       get_order(sizeof(struct list_head)
1125						 * size));
1126	if (!hash) {
1127		*vmalloced = 1;
1128		printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1129		hash = vmalloc(sizeof(struct list_head) * size);
1130	}
1131
1132	if (hash)
1133		for (i = 0; i < size; i++)
1134			INIT_LIST_HEAD(&hash[i]);
1135
1136	return hash;
1137}
1138
1139int set_hashsize(const char *val, struct kernel_param *kp)
1140{
1141	int i, bucket, hashsize, vmalloced;
1142	int old_vmalloced, old_size;
1143	int rnd;
1144	struct list_head *hash, *old_hash;
1145	struct nf_conntrack_tuple_hash *h;
1146
1147	/* On boot, we can set this without any fancy locking. */
1148	if (!nf_conntrack_htable_size)
1149		return param_set_uint(val, kp);
1150
1151	hashsize = simple_strtol(val, NULL, 0);
1152	if (!hashsize)
1153		return -EINVAL;
1154
1155	hash = alloc_hashtable(hashsize, &vmalloced);
1156	if (!hash)
1157		return -ENOMEM;
1158
1159	/* We have to rehahs for the new table anyway, so we also can
1160	 * use a newrandom seed */
1161	get_random_bytes(&rnd, 4);
1162
1163	write_lock_bh(&nf_conntrack_lock);
1164	for (i = 0; i < nf_conntrack_htable_size; i++) {
1165		while (!list_empty(&nf_conntrack_hash[i])) {
1166			h = list_entry(nf_conntrack_hash[i].next,
1167				       struct nf_conntrack_tuple_hash, list);
1168			list_del(&h->list);
1169			bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1170			list_add_tail(&h->list, &hash[bucket]);
1171		}
1172	}
1173	old_size = nf_conntrack_htable_size;
1174	old_vmalloced = nf_conntrack_vmalloc;
1175	old_hash = nf_conntrack_hash;
1176
1177	nf_conntrack_htable_size = hashsize;
1178	nf_conntrack_vmalloc = vmalloced;
1179	nf_conntrack_hash = hash;
1180	nf_conntrack_hash_rnd = rnd;
1181	write_unlock_bh(&nf_conntrack_lock);
1182
1183	free_conntrack_hash(old_hash, old_vmalloced, old_size);
1184	return 0;
1185}
1186
1187module_param_call(hashsize, set_hashsize, param_get_uint,
1188		  &nf_conntrack_htable_size, 0600);
1189
1190int __init nf_conntrack_init(void)
1191{
1192	unsigned int i;
1193	int ret;
1194
1195	/* Idea from tcp.c: use 1/16384 of memory.  On i386: 32MB
1196	 * machine has 256 buckets.  >= 1GB machines have 8192 buckets. */
1197	if (!nf_conntrack_htable_size) {
1198		nf_conntrack_htable_size
1199			= (((num_physpages << PAGE_SHIFT) / 16384)
1200			   / sizeof(struct list_head));
1201		if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1202			nf_conntrack_htable_size = 8192;
1203		if (nf_conntrack_htable_size < 16)
1204			nf_conntrack_htable_size = 16;
1205	}
1206	nf_conntrack_max = 8 * nf_conntrack_htable_size;
1207
1208	printk("nf_conntrack version %s (%u buckets, %d max)\n",
1209	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1210	       nf_conntrack_max);
1211
1212	nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
1213					    &nf_conntrack_vmalloc);
1214	if (!nf_conntrack_hash) {
1215		printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1216		goto err_out;
1217	}
1218
1219	ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1220					  sizeof(struct nf_conn));
1221	if (ret < 0) {
1222		printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1223		goto err_free_hash;
1224	}
1225
1226	nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
1227					sizeof(struct nf_conntrack_expect),
1228					0, 0, NULL, NULL);
1229	if (!nf_conntrack_expect_cachep) {
1230		printk(KERN_ERR "Unable to create nf_expect slab cache\n");
1231		goto err_free_conntrack_slab;
1232	}
1233
1234	ret = nf_conntrack_l4proto_register(&nf_conntrack_l4proto_generic);
1235	if (ret < 0)
1236		goto out_free_expect_slab;
1237
1238	/* Don't NEED lock here, but good form anyway. */
1239	write_lock_bh(&nf_conntrack_lock);
1240        for (i = 0; i < AF_MAX; i++)
1241		nf_ct_l3protos[i] = &nf_conntrack_l3proto_generic;
1242        write_unlock_bh(&nf_conntrack_lock);
1243
1244	/* For use by REJECT target */
1245	ip_ct_attach = __nf_conntrack_attach;
1246
1247	/* Set up fake conntrack:
1248	    - to never be deleted, not in any hashes */
1249	atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1250	/*  - and look it like as a confirmed connection */
1251	set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1252
1253	return ret;
1254
1255out_free_expect_slab:
1256	kmem_cache_destroy(nf_conntrack_expect_cachep);
1257err_free_conntrack_slab:
1258	nf_conntrack_unregister_cache(NF_CT_F_BASIC);
1259err_free_hash:
1260	free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1261			    nf_conntrack_htable_size);
1262err_out:
1263	return -ENOMEM;
1264}
1265