iw_rdma.c revision ff51bf841587c75b58d25ed77263158619784dd3
1/*
2 * Copyright (c) 2006 Oracle.  All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35
36#include "rds.h"
37#include "iw.h"
38
39
40/*
41 * This is stored as mr->r_trans_private.
42 */
43struct rds_iw_mr {
44	struct rds_iw_device	*device;
45	struct rds_iw_mr_pool	*pool;
46	struct rdma_cm_id	*cm_id;
47
48	struct ib_mr	*mr;
49	struct ib_fast_reg_page_list *page_list;
50
51	struct rds_iw_mapping	mapping;
52	unsigned char		remap_count;
53};
54
55/*
56 * Our own little MR pool
57 */
58struct rds_iw_mr_pool {
59	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
60
61	struct mutex		flush_lock;		/* serialize fmr invalidate */
62	struct work_struct	flush_worker;		/* flush worker */
63
64	spinlock_t		list_lock;		/* protect variables below */
65	atomic_t		item_count;		/* total # of MRs */
66	atomic_t		dirty_count;		/* # dirty of MRs */
67	struct list_head	dirty_list;		/* dirty mappings */
68	struct list_head	clean_list;		/* unused & unamapped MRs */
69	atomic_t		free_pinned;		/* memory pinned by free MRs */
70	unsigned long		max_message_size;	/* in pages */
71	unsigned long		max_items;
72	unsigned long		max_items_soft;
73	unsigned long		max_free_pinned;
74	int			max_pages;
75};
76
77static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
78static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
79static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
80static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
81			  struct rds_iw_mr *ibmr,
82			  struct scatterlist *sg, unsigned int nents);
83static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
84static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
85			struct list_head *unmap_list,
86			struct list_head *kill_list);
87static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
88
89static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
90{
91	struct rds_iw_device *iwdev;
92	struct rds_iw_cm_id *i_cm_id;
93
94	*rds_iwdev = NULL;
95	*cm_id = NULL;
96
97	list_for_each_entry(iwdev, &rds_iw_devices, list) {
98		spin_lock_irq(&iwdev->spinlock);
99		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
100			struct sockaddr_in *src_addr, *dst_addr;
101
102			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
103			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
104
105			rdsdebug("local ipaddr = %x port %d, "
106				 "remote ipaddr = %x port %d"
107				 "..looking for %x port %d, "
108				 "remote ipaddr = %x port %d\n",
109				src_addr->sin_addr.s_addr,
110				src_addr->sin_port,
111				dst_addr->sin_addr.s_addr,
112				dst_addr->sin_port,
113				rs->rs_bound_addr,
114				rs->rs_bound_port,
115				rs->rs_conn_addr,
116				rs->rs_conn_port);
117#ifdef WORKING_TUPLE_DETECTION
118			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
119			    src_addr->sin_port == rs->rs_bound_port &&
120			    dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
121			    dst_addr->sin_port == rs->rs_conn_port) {
122#else
123			/* FIXME - needs to compare the local and remote
124			 * ipaddr/port tuple, but the ipaddr is the only
125			 * available infomation in the rds_sock (as the rest are
126			 * zero'ed.  It doesn't appear to be properly populated
127			 * during connection setup...
128			 */
129			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
130#endif
131				spin_unlock_irq(&iwdev->spinlock);
132				*rds_iwdev = iwdev;
133				*cm_id = i_cm_id->cm_id;
134				return 0;
135			}
136		}
137		spin_unlock_irq(&iwdev->spinlock);
138	}
139
140	return 1;
141}
142
143static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
144{
145	struct rds_iw_cm_id *i_cm_id;
146
147	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
148	if (!i_cm_id)
149		return -ENOMEM;
150
151	i_cm_id->cm_id = cm_id;
152
153	spin_lock_irq(&rds_iwdev->spinlock);
154	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
155	spin_unlock_irq(&rds_iwdev->spinlock);
156
157	return 0;
158}
159
160static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
161				struct rdma_cm_id *cm_id)
162{
163	struct rds_iw_cm_id *i_cm_id;
164
165	spin_lock_irq(&rds_iwdev->spinlock);
166	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
167		if (i_cm_id->cm_id == cm_id) {
168			list_del(&i_cm_id->list);
169			kfree(i_cm_id);
170			break;
171		}
172	}
173	spin_unlock_irq(&rds_iwdev->spinlock);
174}
175
176
177int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
178{
179	struct sockaddr_in *src_addr, *dst_addr;
180	struct rds_iw_device *rds_iwdev_old;
181	struct rds_sock rs;
182	struct rdma_cm_id *pcm_id;
183	int rc;
184
185	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
186	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
187
188	rs.rs_bound_addr = src_addr->sin_addr.s_addr;
189	rs.rs_bound_port = src_addr->sin_port;
190	rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
191	rs.rs_conn_port = dst_addr->sin_port;
192
193	rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
194	if (rc)
195		rds_iw_remove_cm_id(rds_iwdev, cm_id);
196
197	return rds_iw_add_cm_id(rds_iwdev, cm_id);
198}
199
200void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
201{
202	struct rds_iw_connection *ic = conn->c_transport_data;
203
204	/* conn was previously on the nodev_conns_list */
205	spin_lock_irq(&iw_nodev_conns_lock);
206	BUG_ON(list_empty(&iw_nodev_conns));
207	BUG_ON(list_empty(&ic->iw_node));
208	list_del(&ic->iw_node);
209
210	spin_lock(&rds_iwdev->spinlock);
211	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
212	spin_unlock(&rds_iwdev->spinlock);
213	spin_unlock_irq(&iw_nodev_conns_lock);
214
215	ic->rds_iwdev = rds_iwdev;
216}
217
218void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
219{
220	struct rds_iw_connection *ic = conn->c_transport_data;
221
222	/* place conn on nodev_conns_list */
223	spin_lock(&iw_nodev_conns_lock);
224
225	spin_lock_irq(&rds_iwdev->spinlock);
226	BUG_ON(list_empty(&ic->iw_node));
227	list_del(&ic->iw_node);
228	spin_unlock_irq(&rds_iwdev->spinlock);
229
230	list_add_tail(&ic->iw_node, &iw_nodev_conns);
231
232	spin_unlock(&iw_nodev_conns_lock);
233
234	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
235	ic->rds_iwdev = NULL;
236}
237
238void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
239{
240	struct rds_iw_connection *ic, *_ic;
241	LIST_HEAD(tmp_list);
242
243	/* avoid calling conn_destroy with irqs off */
244	spin_lock_irq(list_lock);
245	list_splice(list, &tmp_list);
246	INIT_LIST_HEAD(list);
247	spin_unlock_irq(list_lock);
248
249	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
250		rds_conn_destroy(ic->conn);
251}
252
253static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
254		struct scatterlist *list, unsigned int sg_len)
255{
256	sg->list = list;
257	sg->len = sg_len;
258	sg->dma_len = 0;
259	sg->dma_npages = 0;
260	sg->bytes = 0;
261}
262
263static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
264			struct rds_iw_scatterlist *sg)
265{
266	struct ib_device *dev = rds_iwdev->dev;
267	u64 *dma_pages = NULL;
268	int i, j, ret;
269
270	WARN_ON(sg->dma_len);
271
272	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
273	if (unlikely(!sg->dma_len)) {
274		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
275		return ERR_PTR(-EBUSY);
276	}
277
278	sg->bytes = 0;
279	sg->dma_npages = 0;
280
281	ret = -EINVAL;
282	for (i = 0; i < sg->dma_len; ++i) {
283		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
284		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
285		u64 end_addr;
286
287		sg->bytes += dma_len;
288
289		end_addr = dma_addr + dma_len;
290		if (dma_addr & PAGE_MASK) {
291			if (i > 0)
292				goto out_unmap;
293			dma_addr &= ~PAGE_MASK;
294		}
295		if (end_addr & PAGE_MASK) {
296			if (i < sg->dma_len - 1)
297				goto out_unmap;
298			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
299		}
300
301		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
302	}
303
304	/* Now gather the dma addrs into one list */
305	if (sg->dma_npages > fastreg_message_size)
306		goto out_unmap;
307
308	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
309	if (!dma_pages) {
310		ret = -ENOMEM;
311		goto out_unmap;
312	}
313
314	for (i = j = 0; i < sg->dma_len; ++i) {
315		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
316		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
317		u64 end_addr;
318
319		end_addr = dma_addr + dma_len;
320		dma_addr &= ~PAGE_MASK;
321		for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
322			dma_pages[j++] = dma_addr;
323		BUG_ON(j > sg->dma_npages);
324	}
325
326	return dma_pages;
327
328out_unmap:
329	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
330	sg->dma_len = 0;
331	kfree(dma_pages);
332	return ERR_PTR(ret);
333}
334
335
336struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
337{
338	struct rds_iw_mr_pool *pool;
339
340	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
341	if (!pool) {
342		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
343		return ERR_PTR(-ENOMEM);
344	}
345
346	pool->device = rds_iwdev;
347	INIT_LIST_HEAD(&pool->dirty_list);
348	INIT_LIST_HEAD(&pool->clean_list);
349	mutex_init(&pool->flush_lock);
350	spin_lock_init(&pool->list_lock);
351	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
352
353	pool->max_message_size = fastreg_message_size;
354	pool->max_items = fastreg_pool_size;
355	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
356	pool->max_pages = fastreg_message_size;
357
358	/* We never allow more than max_items MRs to be allocated.
359	 * When we exceed more than max_items_soft, we start freeing
360	 * items more aggressively.
361	 * Make sure that max_items > max_items_soft > max_items / 2
362	 */
363	pool->max_items_soft = pool->max_items * 3 / 4;
364
365	return pool;
366}
367
368void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
369{
370	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
371
372	iinfo->rdma_mr_max = pool->max_items;
373	iinfo->rdma_mr_size = pool->max_pages;
374}
375
376void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
377{
378	flush_workqueue(rds_wq);
379	rds_iw_flush_mr_pool(pool, 1);
380	BUG_ON(atomic_read(&pool->item_count));
381	BUG_ON(atomic_read(&pool->free_pinned));
382	kfree(pool);
383}
384
385static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
386{
387	struct rds_iw_mr *ibmr = NULL;
388	unsigned long flags;
389
390	spin_lock_irqsave(&pool->list_lock, flags);
391	if (!list_empty(&pool->clean_list)) {
392		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
393		list_del_init(&ibmr->mapping.m_list);
394	}
395	spin_unlock_irqrestore(&pool->list_lock, flags);
396
397	return ibmr;
398}
399
400static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
401{
402	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
403	struct rds_iw_mr *ibmr = NULL;
404	int err = 0, iter = 0;
405
406	while (1) {
407		ibmr = rds_iw_reuse_fmr(pool);
408		if (ibmr)
409			return ibmr;
410
411		/* No clean MRs - now we have the choice of either
412		 * allocating a fresh MR up to the limit imposed by the
413		 * driver, or flush any dirty unused MRs.
414		 * We try to avoid stalling in the send path if possible,
415		 * so we allocate as long as we're allowed to.
416		 *
417		 * We're fussy with enforcing the FMR limit, though. If the driver
418		 * tells us we can't use more than N fmrs, we shouldn't start
419		 * arguing with it */
420		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
421			break;
422
423		atomic_dec(&pool->item_count);
424
425		if (++iter > 2) {
426			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
427			return ERR_PTR(-EAGAIN);
428		}
429
430		/* We do have some empty MRs. Flush them out. */
431		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
432		rds_iw_flush_mr_pool(pool, 0);
433	}
434
435	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
436	if (!ibmr) {
437		err = -ENOMEM;
438		goto out_no_cigar;
439	}
440
441	spin_lock_init(&ibmr->mapping.m_lock);
442	INIT_LIST_HEAD(&ibmr->mapping.m_list);
443	ibmr->mapping.m_mr = ibmr;
444
445	err = rds_iw_init_fastreg(pool, ibmr);
446	if (err)
447		goto out_no_cigar;
448
449	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
450	return ibmr;
451
452out_no_cigar:
453	if (ibmr) {
454		rds_iw_destroy_fastreg(pool, ibmr);
455		kfree(ibmr);
456	}
457	atomic_dec(&pool->item_count);
458	return ERR_PTR(err);
459}
460
461void rds_iw_sync_mr(void *trans_private, int direction)
462{
463	struct rds_iw_mr *ibmr = trans_private;
464	struct rds_iw_device *rds_iwdev = ibmr->device;
465
466	switch (direction) {
467	case DMA_FROM_DEVICE:
468		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
469			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
470		break;
471	case DMA_TO_DEVICE:
472		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
473			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
474		break;
475	}
476}
477
478static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
479{
480	unsigned int item_count;
481
482	item_count = atomic_read(&pool->item_count);
483	if (free_all)
484		return item_count;
485
486	return 0;
487}
488
489/*
490 * Flush our pool of MRs.
491 * At a minimum, all currently unused MRs are unmapped.
492 * If the number of MRs allocated exceeds the limit, we also try
493 * to free as many MRs as needed to get back to this limit.
494 */
495static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
496{
497	struct rds_iw_mr *ibmr, *next;
498	LIST_HEAD(unmap_list);
499	LIST_HEAD(kill_list);
500	unsigned long flags;
501	unsigned int nfreed = 0, ncleaned = 0, free_goal;
502	int ret = 0;
503
504	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
505
506	mutex_lock(&pool->flush_lock);
507
508	spin_lock_irqsave(&pool->list_lock, flags);
509	/* Get the list of all mappings to be destroyed */
510	list_splice_init(&pool->dirty_list, &unmap_list);
511	if (free_all)
512		list_splice_init(&pool->clean_list, &kill_list);
513	spin_unlock_irqrestore(&pool->list_lock, flags);
514
515	free_goal = rds_iw_flush_goal(pool, free_all);
516
517	/* Batched invalidate of dirty MRs.
518	 * For FMR based MRs, the mappings on the unmap list are
519	 * actually members of an ibmr (ibmr->mapping). They either
520	 * migrate to the kill_list, or have been cleaned and should be
521	 * moved to the clean_list.
522	 * For fastregs, they will be dynamically allocated, and
523	 * will be destroyed by the unmap function.
524	 */
525	if (!list_empty(&unmap_list)) {
526		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
527		/* If we've been asked to destroy all MRs, move those
528		 * that were simply cleaned to the kill list */
529		if (free_all)
530			list_splice_init(&unmap_list, &kill_list);
531	}
532
533	/* Destroy any MRs that are past their best before date */
534	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
535		rds_iw_stats_inc(s_iw_rdma_mr_free);
536		list_del(&ibmr->mapping.m_list);
537		rds_iw_destroy_fastreg(pool, ibmr);
538		kfree(ibmr);
539		nfreed++;
540	}
541
542	/* Anything that remains are laundered ibmrs, which we can add
543	 * back to the clean list. */
544	if (!list_empty(&unmap_list)) {
545		spin_lock_irqsave(&pool->list_lock, flags);
546		list_splice(&unmap_list, &pool->clean_list);
547		spin_unlock_irqrestore(&pool->list_lock, flags);
548	}
549
550	atomic_sub(ncleaned, &pool->dirty_count);
551	atomic_sub(nfreed, &pool->item_count);
552
553	mutex_unlock(&pool->flush_lock);
554	return ret;
555}
556
557static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
558{
559	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
560
561	rds_iw_flush_mr_pool(pool, 0);
562}
563
564void rds_iw_free_mr(void *trans_private, int invalidate)
565{
566	struct rds_iw_mr *ibmr = trans_private;
567	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
568
569	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
570	if (!pool)
571		return;
572
573	/* Return it to the pool's free list */
574	rds_iw_free_fastreg(pool, ibmr);
575
576	/* If we've pinned too many pages, request a flush */
577	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
578	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
579		queue_work(rds_wq, &pool->flush_worker);
580
581	if (invalidate) {
582		if (likely(!in_interrupt())) {
583			rds_iw_flush_mr_pool(pool, 0);
584		} else {
585			/* We get here if the user created a MR marked
586			 * as use_once and invalidate at the same time. */
587			queue_work(rds_wq, &pool->flush_worker);
588		}
589	}
590}
591
592void rds_iw_flush_mrs(void)
593{
594	struct rds_iw_device *rds_iwdev;
595
596	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
597		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
598
599		if (pool)
600			rds_iw_flush_mr_pool(pool, 0);
601	}
602}
603
604void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
605		    struct rds_sock *rs, u32 *key_ret)
606{
607	struct rds_iw_device *rds_iwdev;
608	struct rds_iw_mr *ibmr = NULL;
609	struct rdma_cm_id *cm_id;
610	int ret;
611
612	ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
613	if (ret || !cm_id) {
614		ret = -ENODEV;
615		goto out;
616	}
617
618	if (!rds_iwdev->mr_pool) {
619		ret = -ENODEV;
620		goto out;
621	}
622
623	ibmr = rds_iw_alloc_mr(rds_iwdev);
624	if (IS_ERR(ibmr))
625		return ibmr;
626
627	ibmr->cm_id = cm_id;
628	ibmr->device = rds_iwdev;
629
630	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
631	if (ret == 0)
632		*key_ret = ibmr->mr->rkey;
633	else
634		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
635
636out:
637	if (ret) {
638		if (ibmr)
639			rds_iw_free_mr(ibmr, 0);
640		ibmr = ERR_PTR(ret);
641	}
642	return ibmr;
643}
644
645/*
646 * iWARP fastreg handling
647 *
648 * The life cycle of a fastreg registration is a bit different from
649 * FMRs.
650 * The idea behind fastreg is to have one MR, to which we bind different
651 * mappings over time. To avoid stalling on the expensive map and invalidate
652 * operations, these operations are pipelined on the same send queue on
653 * which we want to send the message containing the r_key.
654 *
655 * This creates a bit of a problem for us, as we do not have the destination
656 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
657 * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
658 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
659 * before queuing the SEND. When completions for these arrive, they are
660 * dispatched to the MR has a bit set showing that RDMa can be performed.
661 *
662 * There is another interesting aspect that's related to invalidation.
663 * The application can request that a mapping is invalidated in FREE_MR.
664 * The expectation there is that this invalidation step includes ALL
665 * PREVIOUSLY FREED MRs.
666 */
667static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
668				struct rds_iw_mr *ibmr)
669{
670	struct rds_iw_device *rds_iwdev = pool->device;
671	struct ib_fast_reg_page_list *page_list = NULL;
672	struct ib_mr *mr;
673	int err;
674
675	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
676	if (IS_ERR(mr)) {
677		err = PTR_ERR(mr);
678
679		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
680		return err;
681	}
682
683	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
684	 * is not filled in.
685	 */
686	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
687	if (IS_ERR(page_list)) {
688		err = PTR_ERR(page_list);
689
690		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
691		ib_dereg_mr(mr);
692		return err;
693	}
694
695	ibmr->page_list = page_list;
696	ibmr->mr = mr;
697	return 0;
698}
699
700static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
701{
702	struct rds_iw_mr *ibmr = mapping->m_mr;
703	struct ib_send_wr f_wr, *failed_wr;
704	int ret;
705
706	/*
707	 * Perform a WR for the fast_reg_mr. Each individual page
708	 * in the sg list is added to the fast reg page list and placed
709	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
710	 * counter, which should guarantee uniqueness.
711	 */
712	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
713	mapping->m_rkey = ibmr->mr->rkey;
714
715	memset(&f_wr, 0, sizeof(f_wr));
716	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
717	f_wr.opcode = IB_WR_FAST_REG_MR;
718	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
719	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
720	f_wr.wr.fast_reg.page_list = ibmr->page_list;
721	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
722	f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
723	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
724				IB_ACCESS_REMOTE_READ |
725				IB_ACCESS_REMOTE_WRITE;
726	f_wr.wr.fast_reg.iova_start = 0;
727	f_wr.send_flags = IB_SEND_SIGNALED;
728
729	failed_wr = &f_wr;
730	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
731	BUG_ON(failed_wr != &f_wr);
732	if (ret && printk_ratelimit())
733		printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
734			__func__, __LINE__, ret);
735	return ret;
736}
737
738static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
739{
740	struct ib_send_wr s_wr, *failed_wr;
741	int ret = 0;
742
743	if (!ibmr->cm_id->qp || !ibmr->mr)
744		goto out;
745
746	memset(&s_wr, 0, sizeof(s_wr));
747	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
748	s_wr.opcode = IB_WR_LOCAL_INV;
749	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
750	s_wr.send_flags = IB_SEND_SIGNALED;
751
752	failed_wr = &s_wr;
753	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
754	if (ret && printk_ratelimit()) {
755		printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
756			__func__, __LINE__, ret);
757		goto out;
758	}
759out:
760	return ret;
761}
762
763static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
764			struct rds_iw_mr *ibmr,
765			struct scatterlist *sg,
766			unsigned int sg_len)
767{
768	struct rds_iw_device *rds_iwdev = pool->device;
769	struct rds_iw_mapping *mapping = &ibmr->mapping;
770	u64 *dma_pages;
771	int i, ret = 0;
772
773	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
774
775	dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
776	if (IS_ERR(dma_pages)) {
777		ret = PTR_ERR(dma_pages);
778		dma_pages = NULL;
779		goto out;
780	}
781
782	if (mapping->m_sg.dma_len > pool->max_message_size) {
783		ret = -EMSGSIZE;
784		goto out;
785	}
786
787	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
788		ibmr->page_list->page_list[i] = dma_pages[i];
789
790	ret = rds_iw_rdma_build_fastreg(mapping);
791	if (ret)
792		goto out;
793
794	rds_iw_stats_inc(s_iw_rdma_mr_used);
795
796out:
797	kfree(dma_pages);
798
799	return ret;
800}
801
802/*
803 * "Free" a fastreg MR.
804 */
805static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
806		struct rds_iw_mr *ibmr)
807{
808	unsigned long flags;
809	int ret;
810
811	if (!ibmr->mapping.m_sg.dma_len)
812		return;
813
814	ret = rds_iw_rdma_fastreg_inv(ibmr);
815	if (ret)
816		return;
817
818	/* Try to post the LOCAL_INV WR to the queue. */
819	spin_lock_irqsave(&pool->list_lock, flags);
820
821	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
822	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
823	atomic_inc(&pool->dirty_count);
824
825	spin_unlock_irqrestore(&pool->list_lock, flags);
826}
827
828static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
829				struct list_head *unmap_list,
830				struct list_head *kill_list)
831{
832	struct rds_iw_mapping *mapping, *next;
833	unsigned int ncleaned = 0;
834	LIST_HEAD(laundered);
835
836	/* Batched invalidation of fastreg MRs.
837	 * Why do we do it this way, even though we could pipeline unmap
838	 * and remap? The reason is the application semantics - when the
839	 * application requests an invalidation of MRs, it expects all
840	 * previously released R_Keys to become invalid.
841	 *
842	 * If we implement MR reuse naively, we risk memory corruption
843	 * (this has actually been observed). So the default behavior
844	 * requires that a MR goes through an explicit unmap operation before
845	 * we can reuse it again.
846	 *
847	 * We could probably improve on this a little, by allowing immediate
848	 * reuse of a MR on the same socket (eg you could add small
849	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
850	 * of these without requiring an explicit invalidate).
851	 */
852	while (!list_empty(unmap_list)) {
853		unsigned long flags;
854
855		spin_lock_irqsave(&pool->list_lock, flags);
856		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
857			list_move(&mapping->m_list, &laundered);
858			ncleaned++;
859		}
860		spin_unlock_irqrestore(&pool->list_lock, flags);
861	}
862
863	/* Move all laundered mappings back to the unmap list.
864	 * We do not kill any WRs right now - it doesn't seem the
865	 * fastreg API has a max_remap limit. */
866	list_splice_init(&laundered, unmap_list);
867
868	return ncleaned;
869}
870
871static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
872		struct rds_iw_mr *ibmr)
873{
874	if (ibmr->page_list)
875		ib_free_fast_reg_page_list(ibmr->page_list);
876	if (ibmr->mr)
877		ib_dereg_mr(ibmr->mr);
878}
879