send.c revision d139ff0907dac9ef72fb2cf301e345bac3aec42f
1/*
2 * Copyright (c) 2006 Oracle.  All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/gfp.h>
35#include <net/sock.h>
36#include <linux/in.h>
37#include <linux/list.h>
38
39#include "rds.h"
40
41/* When transmitting messages in rds_send_xmit, we need to emerge from
42 * time to time and briefly release the CPU. Otherwise the softlock watchdog
43 * will kick our shin.
44 * Also, it seems fairer to not let one busy connection stall all the
45 * others.
46 *
47 * send_batch_count is the number of times we'll loop in send_xmit. Setting
48 * it to 0 will restore the old behavior (where we looped until we had
49 * drained the queue).
50 */
51static int send_batch_count = 64;
52module_param(send_batch_count, int, 0444);
53MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
54
55static void rds_send_remove_from_sock(struct list_head *messages, int status);
56
57/*
58 * Reset the send state.  Callers must ensure that this doesn't race with
59 * rds_send_xmit().
60 */
61void rds_send_reset(struct rds_connection *conn)
62{
63	struct rds_message *rm, *tmp;
64	unsigned long flags;
65
66	if (conn->c_xmit_rm) {
67		rm = conn->c_xmit_rm;
68		conn->c_xmit_rm = NULL;
69		/* Tell the user the RDMA op is no longer mapped by the
70		 * transport. This isn't entirely true (it's flushed out
71		 * independently) but as the connection is down, there's
72		 * no ongoing RDMA to/from that memory */
73		rds_message_unmapped(rm);
74		rds_message_put(rm);
75	}
76
77	conn->c_xmit_sg = 0;
78	conn->c_xmit_hdr_off = 0;
79	conn->c_xmit_data_off = 0;
80	conn->c_xmit_atomic_sent = 0;
81	conn->c_xmit_rdma_sent = 0;
82	conn->c_xmit_data_sent = 0;
83
84	conn->c_map_queued = 0;
85
86	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
87	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
88
89	/* Mark messages as retransmissions, and move them to the send q */
90	spin_lock_irqsave(&conn->c_lock, flags);
91	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
92		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
93		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
94	}
95	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
96	spin_unlock_irqrestore(&conn->c_lock, flags);
97}
98
99static int acquire_in_xmit(struct rds_connection *conn)
100{
101	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
102}
103
104static void release_in_xmit(struct rds_connection *conn)
105{
106	clear_bit(RDS_IN_XMIT, &conn->c_flags);
107	smp_mb__after_clear_bit();
108	/*
109	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
110	 * hot path and finding waiters is very rare.  We don't want to walk
111	 * the system-wide hashed waitqueue buckets in the fast path only to
112	 * almost never find waiters.
113	 */
114	if (waitqueue_active(&conn->c_waitq))
115		wake_up_all(&conn->c_waitq);
116}
117
118/*
119 * We're making the concious trade-off here to only send one message
120 * down the connection at a time.
121 *   Pro:
122 *      - tx queueing is a simple fifo list
123 *   	- reassembly is optional and easily done by transports per conn
124 *      - no per flow rx lookup at all, straight to the socket
125 *   	- less per-frag memory and wire overhead
126 *   Con:
127 *      - queued acks can be delayed behind large messages
128 *   Depends:
129 *      - small message latency is higher behind queued large messages
130 *      - large message latency isn't starved by intervening small sends
131 */
132int rds_send_xmit(struct rds_connection *conn)
133{
134	struct rds_message *rm;
135	unsigned long flags;
136	unsigned int tmp;
137	struct scatterlist *sg;
138	int ret = 0;
139	LIST_HEAD(to_be_dropped);
140
141restart:
142
143	/*
144	 * sendmsg calls here after having queued its message on the send
145	 * queue.  We only have one task feeding the connection at a time.  If
146	 * another thread is already feeding the queue then we back off.  This
147	 * avoids blocking the caller and trading per-connection data between
148	 * caches per message.
149	 */
150	if (!acquire_in_xmit(conn)) {
151		rds_stats_inc(s_send_lock_contention);
152		ret = -ENOMEM;
153		goto out;
154	}
155
156	/*
157	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
158	 * we do the opposite to avoid races.
159	 */
160	if (!rds_conn_up(conn)) {
161		release_in_xmit(conn);
162		ret = 0;
163		goto out;
164	}
165
166	if (conn->c_trans->xmit_prepare)
167		conn->c_trans->xmit_prepare(conn);
168
169	/*
170	 * spin trying to push headers and data down the connection until
171	 * the connection doesn't make forward progress.
172	 */
173	while (1) {
174
175		rm = conn->c_xmit_rm;
176
177		/*
178		 * If between sending messages, we can send a pending congestion
179		 * map update.
180		 */
181		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
182			rm = rds_cong_update_alloc(conn);
183			if (IS_ERR(rm)) {
184				ret = PTR_ERR(rm);
185				break;
186			}
187			rm->data.op_active = 1;
188
189			conn->c_xmit_rm = rm;
190		}
191
192		/*
193		 * If not already working on one, grab the next message.
194		 *
195		 * c_xmit_rm holds a ref while we're sending this message down
196		 * the connction.  We can use this ref while holding the
197		 * send_sem.. rds_send_reset() is serialized with it.
198		 */
199		if (!rm) {
200			unsigned int len;
201
202			spin_lock_irqsave(&conn->c_lock, flags);
203
204			if (!list_empty(&conn->c_send_queue)) {
205				rm = list_entry(conn->c_send_queue.next,
206						struct rds_message,
207						m_conn_item);
208				rds_message_addref(rm);
209
210				/*
211				 * Move the message from the send queue to the retransmit
212				 * list right away.
213				 */
214				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
215			}
216
217			spin_unlock_irqrestore(&conn->c_lock, flags);
218
219			if (!rm)
220				break;
221
222			/* Unfortunately, the way Infiniband deals with
223			 * RDMA to a bad MR key is by moving the entire
224			 * queue pair to error state. We cold possibly
225			 * recover from that, but right now we drop the
226			 * connection.
227			 * Therefore, we never retransmit messages with RDMA ops.
228			 */
229			if (rm->rdma.op_active &&
230			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
231				spin_lock_irqsave(&conn->c_lock, flags);
232				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
233					list_move(&rm->m_conn_item, &to_be_dropped);
234				spin_unlock_irqrestore(&conn->c_lock, flags);
235				continue;
236			}
237
238			/* Require an ACK every once in a while */
239			len = ntohl(rm->m_inc.i_hdr.h_len);
240			if (conn->c_unacked_packets == 0 ||
241			    conn->c_unacked_bytes < len) {
242				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
243
244				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
245				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
246				rds_stats_inc(s_send_ack_required);
247			} else {
248				conn->c_unacked_bytes -= len;
249				conn->c_unacked_packets--;
250			}
251
252			conn->c_xmit_rm = rm;
253		}
254
255		/* The transport either sends the whole rdma or none of it */
256		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
257			rm->m_final_op = &rm->rdma;
258			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
259			if (ret)
260				break;
261			conn->c_xmit_rdma_sent = 1;
262
263			/* The transport owns the mapped memory for now.
264			 * You can't unmap it while it's on the send queue */
265			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
266		}
267
268		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
269			rm->m_final_op = &rm->atomic;
270			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
271			if (ret)
272				break;
273			conn->c_xmit_atomic_sent = 1;
274
275			/* The transport owns the mapped memory for now.
276			 * You can't unmap it while it's on the send queue */
277			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
278		}
279
280		/*
281		 * A number of cases require an RDS header to be sent
282		 * even if there is no data.
283		 * We permit 0-byte sends; rds-ping depends on this.
284		 * However, if there are exclusively attached silent ops,
285		 * we skip the hdr/data send, to enable silent operation.
286		 */
287		if (rm->data.op_nents == 0) {
288			int ops_present;
289			int all_ops_are_silent = 1;
290
291			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
292			if (rm->atomic.op_active && !rm->atomic.op_silent)
293				all_ops_are_silent = 0;
294			if (rm->rdma.op_active && !rm->rdma.op_silent)
295				all_ops_are_silent = 0;
296
297			if (ops_present && all_ops_are_silent
298			    && !rm->m_rdma_cookie)
299				rm->data.op_active = 0;
300		}
301
302		if (rm->data.op_active && !conn->c_xmit_data_sent) {
303			rm->m_final_op = &rm->data;
304			ret = conn->c_trans->xmit(conn, rm,
305						  conn->c_xmit_hdr_off,
306						  conn->c_xmit_sg,
307						  conn->c_xmit_data_off);
308			if (ret <= 0)
309				break;
310
311			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
312				tmp = min_t(int, ret,
313					    sizeof(struct rds_header) -
314					    conn->c_xmit_hdr_off);
315				conn->c_xmit_hdr_off += tmp;
316				ret -= tmp;
317			}
318
319			sg = &rm->data.op_sg[conn->c_xmit_sg];
320			while (ret) {
321				tmp = min_t(int, ret, sg->length -
322						      conn->c_xmit_data_off);
323				conn->c_xmit_data_off += tmp;
324				ret -= tmp;
325				if (conn->c_xmit_data_off == sg->length) {
326					conn->c_xmit_data_off = 0;
327					sg++;
328					conn->c_xmit_sg++;
329					BUG_ON(ret != 0 &&
330					       conn->c_xmit_sg == rm->data.op_nents);
331				}
332			}
333
334			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
335			    (conn->c_xmit_sg == rm->data.op_nents))
336				conn->c_xmit_data_sent = 1;
337		}
338
339		/*
340		 * A rm will only take multiple times through this loop
341		 * if there is a data op. Thus, if the data is sent (or there was
342		 * none), then we're done with the rm.
343		 */
344		if (!rm->data.op_active || conn->c_xmit_data_sent) {
345			conn->c_xmit_rm = NULL;
346			conn->c_xmit_sg = 0;
347			conn->c_xmit_hdr_off = 0;
348			conn->c_xmit_data_off = 0;
349			conn->c_xmit_rdma_sent = 0;
350			conn->c_xmit_atomic_sent = 0;
351			conn->c_xmit_data_sent = 0;
352
353			rds_message_put(rm);
354		}
355	}
356
357	if (conn->c_trans->xmit_complete)
358		conn->c_trans->xmit_complete(conn);
359
360	release_in_xmit(conn);
361
362	/* Nuke any messages we decided not to retransmit. */
363	if (!list_empty(&to_be_dropped)) {
364		/* irqs on here, so we can put(), unlike above */
365		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
366			rds_message_put(rm);
367		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
368	}
369
370	/*
371	 * Other senders can queue a message after we last test the send queue
372	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
373	 * not try and send their newly queued message.  We need to check the
374	 * send queue after having cleared RDS_IN_XMIT so that their message
375	 * doesn't get stuck on the send queue.
376	 *
377	 * If the transport cannot continue (i.e ret != 0), then it must
378	 * call us when more room is available, such as from the tx
379	 * completion handler.
380	 */
381	if (ret == 0) {
382		smp_mb();
383		if (!list_empty(&conn->c_send_queue)) {
384			rds_stats_inc(s_send_lock_queue_raced);
385			goto restart;
386		}
387	}
388out:
389	return ret;
390}
391
392static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
393{
394	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
395
396	assert_spin_locked(&rs->rs_lock);
397
398	BUG_ON(rs->rs_snd_bytes < len);
399	rs->rs_snd_bytes -= len;
400
401	if (rs->rs_snd_bytes == 0)
402		rds_stats_inc(s_send_queue_empty);
403}
404
405static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
406				    is_acked_func is_acked)
407{
408	if (is_acked)
409		return is_acked(rm, ack);
410	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
411}
412
413/*
414 * This is pretty similar to what happens below in the ACK
415 * handling code - except that we call here as soon as we get
416 * the IB send completion on the RDMA op and the accompanying
417 * message.
418 */
419void rds_rdma_send_complete(struct rds_message *rm, int status)
420{
421	struct rds_sock *rs = NULL;
422	struct rm_rdma_op *ro;
423	struct rds_notifier *notifier;
424	unsigned long flags;
425
426	spin_lock_irqsave(&rm->m_rs_lock, flags);
427
428	ro = &rm->rdma;
429	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
430	    ro->op_active && ro->op_notify && ro->op_notifier) {
431		notifier = ro->op_notifier;
432		rs = rm->m_rs;
433		sock_hold(rds_rs_to_sk(rs));
434
435		notifier->n_status = status;
436		spin_lock(&rs->rs_lock);
437		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
438		spin_unlock(&rs->rs_lock);
439
440		ro->op_notifier = NULL;
441	}
442
443	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
444
445	if (rs) {
446		rds_wake_sk_sleep(rs);
447		sock_put(rds_rs_to_sk(rs));
448	}
449}
450EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
451
452/*
453 * Just like above, except looks at atomic op
454 */
455void rds_atomic_send_complete(struct rds_message *rm, int status)
456{
457	struct rds_sock *rs = NULL;
458	struct rm_atomic_op *ao;
459	struct rds_notifier *notifier;
460	unsigned long flags;
461
462	spin_lock_irqsave(&rm->m_rs_lock, flags);
463
464	ao = &rm->atomic;
465	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
466	    && ao->op_active && ao->op_notify && ao->op_notifier) {
467		notifier = ao->op_notifier;
468		rs = rm->m_rs;
469		sock_hold(rds_rs_to_sk(rs));
470
471		notifier->n_status = status;
472		spin_lock(&rs->rs_lock);
473		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
474		spin_unlock(&rs->rs_lock);
475
476		ao->op_notifier = NULL;
477	}
478
479	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
480
481	if (rs) {
482		rds_wake_sk_sleep(rs);
483		sock_put(rds_rs_to_sk(rs));
484	}
485}
486EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
487
488/*
489 * This is the same as rds_rdma_send_complete except we
490 * don't do any locking - we have all the ingredients (message,
491 * socket, socket lock) and can just move the notifier.
492 */
493static inline void
494__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
495{
496	struct rm_rdma_op *ro;
497	struct rm_atomic_op *ao;
498
499	ro = &rm->rdma;
500	if (ro->op_active && ro->op_notify && ro->op_notifier) {
501		ro->op_notifier->n_status = status;
502		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
503		ro->op_notifier = NULL;
504	}
505
506	ao = &rm->atomic;
507	if (ao->op_active && ao->op_notify && ao->op_notifier) {
508		ao->op_notifier->n_status = status;
509		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
510		ao->op_notifier = NULL;
511	}
512
513	/* No need to wake the app - caller does this */
514}
515
516/*
517 * This is called from the IB send completion when we detect
518 * a RDMA operation that failed with remote access error.
519 * So speed is not an issue here.
520 */
521struct rds_message *rds_send_get_message(struct rds_connection *conn,
522					 struct rm_rdma_op *op)
523{
524	struct rds_message *rm, *tmp, *found = NULL;
525	unsigned long flags;
526
527	spin_lock_irqsave(&conn->c_lock, flags);
528
529	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
530		if (&rm->rdma == op) {
531			atomic_inc(&rm->m_refcount);
532			found = rm;
533			goto out;
534		}
535	}
536
537	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
538		if (&rm->rdma == op) {
539			atomic_inc(&rm->m_refcount);
540			found = rm;
541			break;
542		}
543	}
544
545out:
546	spin_unlock_irqrestore(&conn->c_lock, flags);
547
548	return found;
549}
550EXPORT_SYMBOL_GPL(rds_send_get_message);
551
552/*
553 * This removes messages from the socket's list if they're on it.  The list
554 * argument must be private to the caller, we must be able to modify it
555 * without locks.  The messages must have a reference held for their
556 * position on the list.  This function will drop that reference after
557 * removing the messages from the 'messages' list regardless of if it found
558 * the messages on the socket list or not.
559 */
560static void rds_send_remove_from_sock(struct list_head *messages, int status)
561{
562	unsigned long flags;
563	struct rds_sock *rs = NULL;
564	struct rds_message *rm;
565
566	while (!list_empty(messages)) {
567		int was_on_sock = 0;
568
569		rm = list_entry(messages->next, struct rds_message,
570				m_conn_item);
571		list_del_init(&rm->m_conn_item);
572
573		/*
574		 * If we see this flag cleared then we're *sure* that someone
575		 * else beat us to removing it from the sock.  If we race
576		 * with their flag update we'll get the lock and then really
577		 * see that the flag has been cleared.
578		 *
579		 * The message spinlock makes sure nobody clears rm->m_rs
580		 * while we're messing with it. It does not prevent the
581		 * message from being removed from the socket, though.
582		 */
583		spin_lock_irqsave(&rm->m_rs_lock, flags);
584		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
585			goto unlock_and_drop;
586
587		if (rs != rm->m_rs) {
588			if (rs) {
589				rds_wake_sk_sleep(rs);
590				sock_put(rds_rs_to_sk(rs));
591			}
592			rs = rm->m_rs;
593			sock_hold(rds_rs_to_sk(rs));
594		}
595		spin_lock(&rs->rs_lock);
596
597		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
598			struct rm_rdma_op *ro = &rm->rdma;
599			struct rds_notifier *notifier;
600
601			list_del_init(&rm->m_sock_item);
602			rds_send_sndbuf_remove(rs, rm);
603
604			if (ro->op_active && ro->op_notifier &&
605			       (ro->op_notify || (ro->op_recverr && status))) {
606				notifier = ro->op_notifier;
607				list_add_tail(&notifier->n_list,
608						&rs->rs_notify_queue);
609				if (!notifier->n_status)
610					notifier->n_status = status;
611				rm->rdma.op_notifier = NULL;
612			}
613			was_on_sock = 1;
614			rm->m_rs = NULL;
615		}
616		spin_unlock(&rs->rs_lock);
617
618unlock_and_drop:
619		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
620		rds_message_put(rm);
621		if (was_on_sock)
622			rds_message_put(rm);
623	}
624
625	if (rs) {
626		rds_wake_sk_sleep(rs);
627		sock_put(rds_rs_to_sk(rs));
628	}
629}
630
631/*
632 * Transports call here when they've determined that the receiver queued
633 * messages up to, and including, the given sequence number.  Messages are
634 * moved to the retrans queue when rds_send_xmit picks them off the send
635 * queue. This means that in the TCP case, the message may not have been
636 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
637 * checks the RDS_MSG_HAS_ACK_SEQ bit.
638 *
639 * XXX It's not clear to me how this is safely serialized with socket
640 * destruction.  Maybe it should bail if it sees SOCK_DEAD.
641 */
642void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
643			 is_acked_func is_acked)
644{
645	struct rds_message *rm, *tmp;
646	unsigned long flags;
647	LIST_HEAD(list);
648
649	spin_lock_irqsave(&conn->c_lock, flags);
650
651	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
652		if (!rds_send_is_acked(rm, ack, is_acked))
653			break;
654
655		list_move(&rm->m_conn_item, &list);
656		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
657	}
658
659	/* order flag updates with spin locks */
660	if (!list_empty(&list))
661		smp_mb__after_clear_bit();
662
663	spin_unlock_irqrestore(&conn->c_lock, flags);
664
665	/* now remove the messages from the sock list as needed */
666	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
667}
668EXPORT_SYMBOL_GPL(rds_send_drop_acked);
669
670void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
671{
672	struct rds_message *rm, *tmp;
673	struct rds_connection *conn;
674	unsigned long flags;
675	LIST_HEAD(list);
676
677	/* get all the messages we're dropping under the rs lock */
678	spin_lock_irqsave(&rs->rs_lock, flags);
679
680	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
681		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
682			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
683			continue;
684
685		list_move(&rm->m_sock_item, &list);
686		rds_send_sndbuf_remove(rs, rm);
687		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
688	}
689
690	/* order flag updates with the rs lock */
691	smp_mb__after_clear_bit();
692
693	spin_unlock_irqrestore(&rs->rs_lock, flags);
694
695	if (list_empty(&list))
696		return;
697
698	/* Remove the messages from the conn */
699	list_for_each_entry(rm, &list, m_sock_item) {
700
701		conn = rm->m_inc.i_conn;
702
703		spin_lock_irqsave(&conn->c_lock, flags);
704		/*
705		 * Maybe someone else beat us to removing rm from the conn.
706		 * If we race with their flag update we'll get the lock and
707		 * then really see that the flag has been cleared.
708		 */
709		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
710			spin_unlock_irqrestore(&conn->c_lock, flags);
711			continue;
712		}
713		list_del_init(&rm->m_conn_item);
714		spin_unlock_irqrestore(&conn->c_lock, flags);
715
716		/*
717		 * Couldn't grab m_rs_lock in top loop (lock ordering),
718		 * but we can now.
719		 */
720		spin_lock_irqsave(&rm->m_rs_lock, flags);
721
722		spin_lock(&rs->rs_lock);
723		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
724		spin_unlock(&rs->rs_lock);
725
726		rm->m_rs = NULL;
727		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
728
729		rds_message_put(rm);
730	}
731
732	rds_wake_sk_sleep(rs);
733
734	while (!list_empty(&list)) {
735		rm = list_entry(list.next, struct rds_message, m_sock_item);
736		list_del_init(&rm->m_sock_item);
737
738		rds_message_wait(rm);
739		rds_message_put(rm);
740	}
741}
742
743/*
744 * we only want this to fire once so we use the callers 'queued'.  It's
745 * possible that another thread can race with us and remove the
746 * message from the flow with RDS_CANCEL_SENT_TO.
747 */
748static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
749			     struct rds_message *rm, __be16 sport,
750			     __be16 dport, int *queued)
751{
752	unsigned long flags;
753	u32 len;
754
755	if (*queued)
756		goto out;
757
758	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
759
760	/* this is the only place which holds both the socket's rs_lock
761	 * and the connection's c_lock */
762	spin_lock_irqsave(&rs->rs_lock, flags);
763
764	/*
765	 * If there is a little space in sndbuf, we don't queue anything,
766	 * and userspace gets -EAGAIN. But poll() indicates there's send
767	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
768	 * freed up by incoming acks. So we check the *old* value of
769	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
770	 * and poll() now knows no more data can be sent.
771	 */
772	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
773		rs->rs_snd_bytes += len;
774
775		/* let recv side know we are close to send space exhaustion.
776		 * This is probably not the optimal way to do it, as this
777		 * means we set the flag on *all* messages as soon as our
778		 * throughput hits a certain threshold.
779		 */
780		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
781			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
782
783		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
784		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
785		rds_message_addref(rm);
786		rm->m_rs = rs;
787
788		/* The code ordering is a little weird, but we're
789		   trying to minimize the time we hold c_lock */
790		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
791		rm->m_inc.i_conn = conn;
792		rds_message_addref(rm);
793
794		spin_lock(&conn->c_lock);
795		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
796		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
797		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
798		spin_unlock(&conn->c_lock);
799
800		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
801			 rm, len, rs, rs->rs_snd_bytes,
802			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
803
804		*queued = 1;
805	}
806
807	spin_unlock_irqrestore(&rs->rs_lock, flags);
808out:
809	return *queued;
810}
811
812/*
813 * rds_message is getting to be quite complicated, and we'd like to allocate
814 * it all in one go. This figures out how big it needs to be up front.
815 */
816static int rds_rm_size(struct msghdr *msg, int data_len)
817{
818	struct cmsghdr *cmsg;
819	int size = 0;
820	int cmsg_groups = 0;
821	int retval;
822
823	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
824		if (!CMSG_OK(msg, cmsg))
825			return -EINVAL;
826
827		if (cmsg->cmsg_level != SOL_RDS)
828			continue;
829
830		switch (cmsg->cmsg_type) {
831		case RDS_CMSG_RDMA_ARGS:
832			cmsg_groups |= 1;
833			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
834			if (retval < 0)
835				return retval;
836			size += retval;
837
838			break;
839
840		case RDS_CMSG_RDMA_DEST:
841		case RDS_CMSG_RDMA_MAP:
842			cmsg_groups |= 2;
843			/* these are valid but do no add any size */
844			break;
845
846		case RDS_CMSG_ATOMIC_CSWP:
847		case RDS_CMSG_ATOMIC_FADD:
848		case RDS_CMSG_MASKED_ATOMIC_CSWP:
849		case RDS_CMSG_MASKED_ATOMIC_FADD:
850			cmsg_groups |= 1;
851			size += sizeof(struct scatterlist);
852			break;
853
854		default:
855			return -EINVAL;
856		}
857
858	}
859
860	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
861
862	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
863	if (cmsg_groups == 3)
864		return -EINVAL;
865
866	return size;
867}
868
869static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
870			 struct msghdr *msg, int *allocated_mr)
871{
872	struct cmsghdr *cmsg;
873	int ret = 0;
874
875	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
876		if (!CMSG_OK(msg, cmsg))
877			return -EINVAL;
878
879		if (cmsg->cmsg_level != SOL_RDS)
880			continue;
881
882		/* As a side effect, RDMA_DEST and RDMA_MAP will set
883		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
884		 */
885		switch (cmsg->cmsg_type) {
886		case RDS_CMSG_RDMA_ARGS:
887			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
888			break;
889
890		case RDS_CMSG_RDMA_DEST:
891			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
892			break;
893
894		case RDS_CMSG_RDMA_MAP:
895			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
896			if (!ret)
897				*allocated_mr = 1;
898			break;
899		case RDS_CMSG_ATOMIC_CSWP:
900		case RDS_CMSG_ATOMIC_FADD:
901		case RDS_CMSG_MASKED_ATOMIC_CSWP:
902		case RDS_CMSG_MASKED_ATOMIC_FADD:
903			ret = rds_cmsg_atomic(rs, rm, cmsg);
904			break;
905
906		default:
907			return -EINVAL;
908		}
909
910		if (ret)
911			break;
912	}
913
914	return ret;
915}
916
917int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
918		size_t payload_len)
919{
920	struct sock *sk = sock->sk;
921	struct rds_sock *rs = rds_sk_to_rs(sk);
922	struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
923	__be32 daddr;
924	__be16 dport;
925	struct rds_message *rm = NULL;
926	struct rds_connection *conn;
927	int ret = 0;
928	int queued = 0, allocated_mr = 0;
929	int nonblock = msg->msg_flags & MSG_DONTWAIT;
930	long timeo = sock_sndtimeo(sk, nonblock);
931
932	/* Mirror Linux UDP mirror of BSD error message compatibility */
933	/* XXX: Perhaps MSG_MORE someday */
934	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
935		printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
936		ret = -EOPNOTSUPP;
937		goto out;
938	}
939
940	if (msg->msg_namelen) {
941		/* XXX fail non-unicast destination IPs? */
942		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
943			ret = -EINVAL;
944			goto out;
945		}
946		daddr = usin->sin_addr.s_addr;
947		dport = usin->sin_port;
948	} else {
949		/* We only care about consistency with ->connect() */
950		lock_sock(sk);
951		daddr = rs->rs_conn_addr;
952		dport = rs->rs_conn_port;
953		release_sock(sk);
954	}
955
956	/* racing with another thread binding seems ok here */
957	if (daddr == 0 || rs->rs_bound_addr == 0) {
958		ret = -ENOTCONN; /* XXX not a great errno */
959		goto out;
960	}
961
962	/* size of rm including all sgs */
963	ret = rds_rm_size(msg, payload_len);
964	if (ret < 0)
965		goto out;
966
967	rm = rds_message_alloc(ret, GFP_KERNEL);
968	if (!rm) {
969		ret = -ENOMEM;
970		goto out;
971	}
972
973	/* Attach data to the rm */
974	if (payload_len) {
975		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
976		if (!rm->data.op_sg) {
977			ret = -ENOMEM;
978			goto out;
979		}
980		ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
981		if (ret)
982			goto out;
983	}
984	rm->data.op_active = 1;
985
986	rm->m_daddr = daddr;
987
988	/* rds_conn_create has a spinlock that runs with IRQ off.
989	 * Caching the conn in the socket helps a lot. */
990	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
991		conn = rs->rs_conn;
992	else {
993		conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
994					rs->rs_transport,
995					sock->sk->sk_allocation);
996		if (IS_ERR(conn)) {
997			ret = PTR_ERR(conn);
998			goto out;
999		}
1000		rs->rs_conn = conn;
1001	}
1002
1003	/* Parse any control messages the user may have included. */
1004	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1005	if (ret)
1006		goto out;
1007
1008	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1009		if (printk_ratelimit())
1010			printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1011			       &rm->rdma, conn->c_trans->xmit_rdma);
1012		ret = -EOPNOTSUPP;
1013		goto out;
1014	}
1015
1016	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1017		if (printk_ratelimit())
1018			printk(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1019			       &rm->atomic, conn->c_trans->xmit_atomic);
1020		ret = -EOPNOTSUPP;
1021		goto out;
1022	}
1023
1024	rds_conn_connect_if_down(conn);
1025
1026	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1027	if (ret) {
1028		rs->rs_seen_congestion = 1;
1029		goto out;
1030	}
1031
1032	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1033				  dport, &queued)) {
1034		rds_stats_inc(s_send_queue_full);
1035		/* XXX make sure this is reasonable */
1036		if (payload_len > rds_sk_sndbuf(rs)) {
1037			ret = -EMSGSIZE;
1038			goto out;
1039		}
1040		if (nonblock) {
1041			ret = -EAGAIN;
1042			goto out;
1043		}
1044
1045		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1046					rds_send_queue_rm(rs, conn, rm,
1047							  rs->rs_bound_port,
1048							  dport,
1049							  &queued),
1050					timeo);
1051		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1052		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1053			continue;
1054
1055		ret = timeo;
1056		if (ret == 0)
1057			ret = -ETIMEDOUT;
1058		goto out;
1059	}
1060
1061	/*
1062	 * By now we've committed to the send.  We reuse rds_send_worker()
1063	 * to retry sends in the rds thread if the transport asks us to.
1064	 */
1065	rds_stats_inc(s_send_queued);
1066
1067	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1068		rds_send_xmit(conn);
1069
1070	rds_message_put(rm);
1071	return payload_len;
1072
1073out:
1074	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1075	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1076	 * or in any other way, we need to destroy the MR again */
1077	if (allocated_mr)
1078		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1079
1080	if (rm)
1081		rds_message_put(rm);
1082	return ret;
1083}
1084
1085/*
1086 * Reply to a ping packet.
1087 */
1088int
1089rds_send_pong(struct rds_connection *conn, __be16 dport)
1090{
1091	struct rds_message *rm;
1092	unsigned long flags;
1093	int ret = 0;
1094
1095	rm = rds_message_alloc(0, GFP_ATOMIC);
1096	if (!rm) {
1097		ret = -ENOMEM;
1098		goto out;
1099	}
1100
1101	rm->m_daddr = conn->c_faddr;
1102	rm->data.op_active = 1;
1103
1104	rds_conn_connect_if_down(conn);
1105
1106	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1107	if (ret)
1108		goto out;
1109
1110	spin_lock_irqsave(&conn->c_lock, flags);
1111	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1112	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1113	rds_message_addref(rm);
1114	rm->m_inc.i_conn = conn;
1115
1116	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1117				    conn->c_next_tx_seq);
1118	conn->c_next_tx_seq++;
1119	spin_unlock_irqrestore(&conn->c_lock, flags);
1120
1121	rds_stats_inc(s_send_queued);
1122	rds_stats_inc(s_send_pong);
1123
1124	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1125		rds_send_xmit(conn);
1126
1127	rds_message_put(rm);
1128	return 0;
1129
1130out:
1131	if (rm)
1132		rds_message_put(rm);
1133	return ret;
1134}
1135