send.c revision ff3d7d36134ef7138803734fdbf91cc986ea7976
1/*
2 * Copyright (c) 2006 Oracle.  All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/gfp.h>
35#include <net/sock.h>
36#include <linux/in.h>
37#include <linux/list.h>
38
39#include "rds.h"
40
41/* When transmitting messages in rds_send_xmit, we need to emerge from
42 * time to time and briefly release the CPU. Otherwise the softlock watchdog
43 * will kick our shin.
44 * Also, it seems fairer to not let one busy connection stall all the
45 * others.
46 *
47 * send_batch_count is the number of times we'll loop in send_xmit. Setting
48 * it to 0 will restore the old behavior (where we looped until we had
49 * drained the queue).
50 */
51static int send_batch_count = 64;
52module_param(send_batch_count, int, 0444);
53MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
54
55/*
56 * Reset the send state. Caller must hold c_send_lock when calling here.
57 */
58void rds_send_reset(struct rds_connection *conn)
59{
60	struct rds_message *rm, *tmp;
61	unsigned long flags;
62
63	if (conn->c_xmit_rm) {
64		/* Tell the user the RDMA op is no longer mapped by the
65		 * transport. This isn't entirely true (it's flushed out
66		 * independently) but as the connection is down, there's
67		 * no ongoing RDMA to/from that memory */
68		rds_message_unmapped(conn->c_xmit_rm);
69		rds_message_put(conn->c_xmit_rm);
70		conn->c_xmit_rm = NULL;
71	}
72	conn->c_xmit_sg = 0;
73	conn->c_xmit_hdr_off = 0;
74	conn->c_xmit_data_off = 0;
75	conn->c_xmit_atomic_sent = 0;
76	conn->c_xmit_rdma_sent = 0;
77	conn->c_xmit_data_sent = 0;
78
79	conn->c_map_queued = 0;
80
81	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
82	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
83
84	/* Mark messages as retransmissions, and move them to the send q */
85	spin_lock_irqsave(&conn->c_lock, flags);
86	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
87		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
88		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
89	}
90	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
91	spin_unlock_irqrestore(&conn->c_lock, flags);
92}
93
94/*
95 * We're making the concious trade-off here to only send one message
96 * down the connection at a time.
97 *   Pro:
98 *      - tx queueing is a simple fifo list
99 *   	- reassembly is optional and easily done by transports per conn
100 *      - no per flow rx lookup at all, straight to the socket
101 *   	- less per-frag memory and wire overhead
102 *   Con:
103 *      - queued acks can be delayed behind large messages
104 *   Depends:
105 *      - small message latency is higher behind queued large messages
106 *      - large message latency isn't starved by intervening small sends
107 */
108int rds_send_xmit(struct rds_connection *conn)
109{
110	struct rds_message *rm;
111	unsigned long flags;
112	unsigned int tmp;
113	unsigned int send_quota = send_batch_count;
114	struct scatterlist *sg;
115	int ret = 0;
116	int was_empty = 0;
117	LIST_HEAD(to_be_dropped);
118
119	/*
120	 * sendmsg calls here after having queued its message on the send
121	 * queue.  We only have one task feeding the connection at a time.  If
122	 * another thread is already feeding the queue then we back off.  This
123	 * avoids blocking the caller and trading per-connection data between
124	 * caches per message.
125	 *
126	 * The sem holder will issue a retry if they notice that someone queued
127	 * a message after they stopped walking the send queue but before they
128	 * dropped the sem.
129	 */
130	if (!mutex_trylock(&conn->c_send_lock)) {
131		rds_stats_inc(s_send_sem_contention);
132		ret = -ENOMEM;
133		goto out;
134	}
135
136	if (conn->c_trans->xmit_prepare)
137		conn->c_trans->xmit_prepare(conn);
138
139	/*
140	 * spin trying to push headers and data down the connection until
141	 * the connection doesn't make forward progress.
142	 */
143	while (--send_quota) {
144
145		rm = conn->c_xmit_rm;
146
147		/*
148		 * If between sending messages, we can send a pending congestion
149		 * map update.
150		 *
151		 * Transports either define a special xmit_cong_map function,
152		 * or we allocate a cong_map message and treat it just like any
153		 * other send.
154		 */
155		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
156			if (conn->c_trans->xmit_cong_map) {
157				unsigned long map_offset = 0;
158				unsigned long map_bytes = sizeof(struct rds_header) +
159					RDS_CONG_MAP_BYTES;
160
161				while (map_bytes) {
162					ret = conn->c_trans->xmit_cong_map(conn, conn->c_lcong,
163									   map_offset);
164					if (ret <= 0) {
165						/* too far down the rabbithole! */
166						mutex_unlock(&conn->c_send_lock);
167						rds_conn_error(conn, "Cong map xmit failed\n");
168						goto out;
169					}
170
171					map_offset += ret;
172					map_bytes -= ret;
173				}
174			} else {
175				/* send cong update like a normal rm */
176				rm = rds_cong_update_alloc(conn);
177				if (IS_ERR(rm)) {
178					ret = PTR_ERR(rm);
179					break;
180				}
181				rm->data.op_active = 1;
182
183				conn->c_xmit_rm = rm;
184			}
185		}
186
187		/*
188		 * If not already working on one, grab the next message.
189		 *
190		 * c_xmit_rm holds a ref while we're sending this message down
191		 * the connction.  We can use this ref while holding the
192		 * send_sem.. rds_send_reset() is serialized with it.
193		 */
194		if (!rm) {
195			unsigned int len;
196
197			spin_lock_irqsave(&conn->c_lock, flags);
198
199			if (!list_empty(&conn->c_send_queue)) {
200				rm = list_entry(conn->c_send_queue.next,
201						struct rds_message,
202						m_conn_item);
203				rds_message_addref(rm);
204
205				/*
206				 * Move the message from the send queue to the retransmit
207				 * list right away.
208				 */
209				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
210			}
211
212			spin_unlock_irqrestore(&conn->c_lock, flags);
213
214			if (!rm) {
215				was_empty = 1;
216				break;
217			}
218
219			/* Unfortunately, the way Infiniband deals with
220			 * RDMA to a bad MR key is by moving the entire
221			 * queue pair to error state. We cold possibly
222			 * recover from that, but right now we drop the
223			 * connection.
224			 * Therefore, we never retransmit messages with RDMA ops.
225			 */
226			if (rm->rdma.op_active &&
227			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
228				spin_lock_irqsave(&conn->c_lock, flags);
229				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
230					list_move(&rm->m_conn_item, &to_be_dropped);
231				spin_unlock_irqrestore(&conn->c_lock, flags);
232				rds_message_put(rm);
233				continue;
234			}
235
236			/* Require an ACK every once in a while */
237			len = ntohl(rm->m_inc.i_hdr.h_len);
238			if (conn->c_unacked_packets == 0 ||
239			    conn->c_unacked_bytes < len) {
240				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
241
242				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
243				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
244				rds_stats_inc(s_send_ack_required);
245			} else {
246				conn->c_unacked_bytes -= len;
247				conn->c_unacked_packets--;
248			}
249
250			conn->c_xmit_rm = rm;
251		}
252
253		/* The transport either sends the whole rdma or none of it */
254		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
255			rm->m_final_op = &rm->rdma;
256			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
257			if (ret)
258				break;
259			conn->c_xmit_rdma_sent = 1;
260
261			/* The transport owns the mapped memory for now.
262			 * You can't unmap it while it's on the send queue */
263			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
264		}
265
266		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
267			rm->m_final_op = &rm->atomic;
268			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
269			if (ret)
270				break;
271			conn->c_xmit_atomic_sent = 1;
272
273			/* The transport owns the mapped memory for now.
274			 * You can't unmap it while it's on the send queue */
275			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
276		}
277
278		/*
279		 * A number of cases require an RDS header to be sent
280		 * even if there is no data.
281		 * We permit 0-byte sends; rds-ping depends on this.
282		 * However, if there are exclusively attached silent ops,
283		 * we skip the hdr/data send, to enable silent operation.
284		 */
285		if (rm->data.op_nents == 0) {
286			int ops_present;
287			int all_ops_are_silent = 1;
288
289			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
290			if (rm->atomic.op_active && !rm->atomic.op_silent)
291				all_ops_are_silent = 0;
292			if (rm->rdma.op_active && !rm->rdma.op_silent)
293				all_ops_are_silent = 0;
294
295			if (ops_present && all_ops_are_silent
296			    && !rm->m_rdma_cookie)
297				rm->data.op_active = 0;
298		}
299
300		if (rm->data.op_active && !conn->c_xmit_data_sent) {
301			rm->m_final_op = &rm->data;
302			ret = conn->c_trans->xmit(conn, rm,
303						  conn->c_xmit_hdr_off,
304						  conn->c_xmit_sg,
305						  conn->c_xmit_data_off);
306			if (ret <= 0)
307				break;
308
309			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
310				tmp = min_t(int, ret,
311					    sizeof(struct rds_header) -
312					    conn->c_xmit_hdr_off);
313				conn->c_xmit_hdr_off += tmp;
314				ret -= tmp;
315			}
316
317			sg = &rm->data.op_sg[conn->c_xmit_sg];
318			while (ret) {
319				tmp = min_t(int, ret, sg->length -
320						      conn->c_xmit_data_off);
321				conn->c_xmit_data_off += tmp;
322				ret -= tmp;
323				if (conn->c_xmit_data_off == sg->length) {
324					conn->c_xmit_data_off = 0;
325					sg++;
326					conn->c_xmit_sg++;
327					BUG_ON(ret != 0 &&
328					       conn->c_xmit_sg == rm->data.op_nents);
329				}
330			}
331
332			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
333			    (conn->c_xmit_sg == rm->data.op_nents))
334				conn->c_xmit_data_sent = 1;
335		}
336
337		/*
338		 * A rm will only take multiple times through this loop
339		 * if there is a data op. Thus, if the data is sent (or there was
340		 * none), then we're done with the rm.
341		 */
342		if (!rm->data.op_active || conn->c_xmit_data_sent) {
343			conn->c_xmit_rm = NULL;
344			conn->c_xmit_sg = 0;
345			conn->c_xmit_hdr_off = 0;
346			conn->c_xmit_data_off = 0;
347			conn->c_xmit_rdma_sent = 0;
348			conn->c_xmit_atomic_sent = 0;
349			conn->c_xmit_data_sent = 0;
350
351			rds_message_put(rm);
352		}
353	}
354
355	/* Nuke any messages we decided not to retransmit. */
356	if (!list_empty(&to_be_dropped))
357		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
358
359	if (conn->c_trans->xmit_complete)
360		conn->c_trans->xmit_complete(conn);
361
362	/*
363	 * We might be racing with another sender who queued a message but
364	 * backed off on noticing that we held the c_send_lock.  If we check
365	 * for queued messages after dropping the sem then either we'll
366	 * see the queued message or the queuer will get the sem.  If we
367	 * notice the queued message then we trigger an immediate retry.
368	 *
369	 * We need to be careful only to do this when we stopped processing
370	 * the send queue because it was empty.  It's the only way we
371	 * stop processing the loop when the transport hasn't taken
372	 * responsibility for forward progress.
373	 */
374	mutex_unlock(&conn->c_send_lock);
375
376	if (send_quota == 0 && !was_empty) {
377		/* We exhausted the send quota, but there's work left to
378		 * do. Return and (re-)schedule the send worker.
379		 */
380		ret = -EAGAIN;
381	}
382
383	if (ret == 0 && was_empty) {
384		/* A simple bit test would be way faster than taking the
385		 * spin lock */
386		spin_lock_irqsave(&conn->c_lock, flags);
387		if (!list_empty(&conn->c_send_queue)) {
388			rds_stats_inc(s_send_sem_queue_raced);
389			ret = -EAGAIN;
390		}
391		spin_unlock_irqrestore(&conn->c_lock, flags);
392	}
393out:
394	return ret;
395}
396
397static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
398{
399	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
400
401	assert_spin_locked(&rs->rs_lock);
402
403	BUG_ON(rs->rs_snd_bytes < len);
404	rs->rs_snd_bytes -= len;
405
406	if (rs->rs_snd_bytes == 0)
407		rds_stats_inc(s_send_queue_empty);
408}
409
410static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
411				    is_acked_func is_acked)
412{
413	if (is_acked)
414		return is_acked(rm, ack);
415	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
416}
417
418/*
419 * Returns true if there are no messages on the send and retransmit queues
420 * which have a sequence number greater than or equal to the given sequence
421 * number.
422 */
423int rds_send_acked_before(struct rds_connection *conn, u64 seq)
424{
425	struct rds_message *rm, *tmp;
426	int ret = 1;
427
428	spin_lock(&conn->c_lock);
429
430	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
431		if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
432			ret = 0;
433		break;
434	}
435
436	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
437		if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
438			ret = 0;
439		break;
440	}
441
442	spin_unlock(&conn->c_lock);
443
444	return ret;
445}
446
447/*
448 * This is pretty similar to what happens below in the ACK
449 * handling code - except that we call here as soon as we get
450 * the IB send completion on the RDMA op and the accompanying
451 * message.
452 */
453void rds_rdma_send_complete(struct rds_message *rm, int status)
454{
455	struct rds_sock *rs = NULL;
456	struct rm_rdma_op *ro;
457	struct rds_notifier *notifier;
458	unsigned long flags;
459
460	spin_lock_irqsave(&rm->m_rs_lock, flags);
461
462	ro = &rm->rdma;
463	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
464	    ro->op_active && ro->op_notify && ro->op_notifier) {
465		notifier = ro->op_notifier;
466		rs = rm->m_rs;
467		sock_hold(rds_rs_to_sk(rs));
468
469		notifier->n_status = status;
470		spin_lock(&rs->rs_lock);
471		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
472		spin_unlock(&rs->rs_lock);
473
474		ro->op_notifier = NULL;
475	}
476
477	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
478
479	if (rs) {
480		rds_wake_sk_sleep(rs);
481		sock_put(rds_rs_to_sk(rs));
482	}
483}
484EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
485
486/*
487 * Just like above, except looks at atomic op
488 */
489void rds_atomic_send_complete(struct rds_message *rm, int status)
490{
491	struct rds_sock *rs = NULL;
492	struct rm_atomic_op *ao;
493	struct rds_notifier *notifier;
494
495	spin_lock(&rm->m_rs_lock);
496
497	ao = &rm->atomic;
498	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
499	    && ao->op_active && ao->op_notify && ao->op_notifier) {
500		notifier = ao->op_notifier;
501		rs = rm->m_rs;
502		sock_hold(rds_rs_to_sk(rs));
503
504		notifier->n_status = status;
505		spin_lock(&rs->rs_lock);
506		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
507		spin_unlock(&rs->rs_lock);
508
509		ao->op_notifier = NULL;
510	}
511
512	spin_unlock(&rm->m_rs_lock);
513
514	if (rs) {
515		rds_wake_sk_sleep(rs);
516		sock_put(rds_rs_to_sk(rs));
517	}
518}
519EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
520
521/*
522 * This is the same as rds_rdma_send_complete except we
523 * don't do any locking - we have all the ingredients (message,
524 * socket, socket lock) and can just move the notifier.
525 */
526static inline void
527__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
528{
529	struct rm_rdma_op *ro;
530	struct rm_atomic_op *ao;
531
532	ro = &rm->rdma;
533	if (ro->op_active && ro->op_notify && ro->op_notifier) {
534		ro->op_notifier->n_status = status;
535		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
536		ro->op_notifier = NULL;
537	}
538
539	ao = &rm->atomic;
540	if (ao->op_active && ao->op_notify && ao->op_notifier) {
541		ao->op_notifier->n_status = status;
542		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
543		ao->op_notifier = NULL;
544	}
545
546	/* No need to wake the app - caller does this */
547}
548
549/*
550 * This is called from the IB send completion when we detect
551 * a RDMA operation that failed with remote access error.
552 * So speed is not an issue here.
553 */
554struct rds_message *rds_send_get_message(struct rds_connection *conn,
555					 struct rm_rdma_op *op)
556{
557	struct rds_message *rm, *tmp, *found = NULL;
558	unsigned long flags;
559
560	spin_lock_irqsave(&conn->c_lock, flags);
561
562	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
563		if (&rm->rdma == op) {
564			atomic_inc(&rm->m_refcount);
565			found = rm;
566			goto out;
567		}
568	}
569
570	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
571		if (&rm->rdma == op) {
572			atomic_inc(&rm->m_refcount);
573			found = rm;
574			break;
575		}
576	}
577
578out:
579	spin_unlock_irqrestore(&conn->c_lock, flags);
580
581	return found;
582}
583EXPORT_SYMBOL_GPL(rds_send_get_message);
584
585/*
586 * This removes messages from the socket's list if they're on it.  The list
587 * argument must be private to the caller, we must be able to modify it
588 * without locks.  The messages must have a reference held for their
589 * position on the list.  This function will drop that reference after
590 * removing the messages from the 'messages' list regardless of if it found
591 * the messages on the socket list or not.
592 */
593void rds_send_remove_from_sock(struct list_head *messages, int status)
594{
595	unsigned long flags;
596	struct rds_sock *rs = NULL;
597	struct rds_message *rm;
598
599	while (!list_empty(messages)) {
600		int was_on_sock = 0;
601
602		rm = list_entry(messages->next, struct rds_message,
603				m_conn_item);
604		list_del_init(&rm->m_conn_item);
605
606		/*
607		 * If we see this flag cleared then we're *sure* that someone
608		 * else beat us to removing it from the sock.  If we race
609		 * with their flag update we'll get the lock and then really
610		 * see that the flag has been cleared.
611		 *
612		 * The message spinlock makes sure nobody clears rm->m_rs
613		 * while we're messing with it. It does not prevent the
614		 * message from being removed from the socket, though.
615		 */
616		spin_lock_irqsave(&rm->m_rs_lock, flags);
617		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
618			goto unlock_and_drop;
619
620		if (rs != rm->m_rs) {
621			if (rs) {
622				rds_wake_sk_sleep(rs);
623				sock_put(rds_rs_to_sk(rs));
624			}
625			rs = rm->m_rs;
626			sock_hold(rds_rs_to_sk(rs));
627		}
628		spin_lock(&rs->rs_lock);
629
630		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
631			struct rm_rdma_op *ro = &rm->rdma;
632			struct rds_notifier *notifier;
633
634			list_del_init(&rm->m_sock_item);
635			rds_send_sndbuf_remove(rs, rm);
636
637			if (ro->op_active && ro->op_notifier &&
638			       (ro->op_notify || (ro->op_recverr && status))) {
639				notifier = ro->op_notifier;
640				list_add_tail(&notifier->n_list,
641						&rs->rs_notify_queue);
642				if (!notifier->n_status)
643					notifier->n_status = status;
644				rm->rdma.op_notifier = NULL;
645			}
646			was_on_sock = 1;
647			rm->m_rs = NULL;
648		}
649		spin_unlock(&rs->rs_lock);
650
651unlock_and_drop:
652		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
653		rds_message_put(rm);
654		if (was_on_sock)
655			rds_message_put(rm);
656	}
657
658	if (rs) {
659		rds_wake_sk_sleep(rs);
660		sock_put(rds_rs_to_sk(rs));
661	}
662}
663
664/*
665 * Transports call here when they've determined that the receiver queued
666 * messages up to, and including, the given sequence number.  Messages are
667 * moved to the retrans queue when rds_send_xmit picks them off the send
668 * queue. This means that in the TCP case, the message may not have been
669 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
670 * checks the RDS_MSG_HAS_ACK_SEQ bit.
671 *
672 * XXX It's not clear to me how this is safely serialized with socket
673 * destruction.  Maybe it should bail if it sees SOCK_DEAD.
674 */
675void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
676			 is_acked_func is_acked)
677{
678	struct rds_message *rm, *tmp;
679	unsigned long flags;
680	LIST_HEAD(list);
681
682	spin_lock_irqsave(&conn->c_lock, flags);
683
684	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
685		if (!rds_send_is_acked(rm, ack, is_acked))
686			break;
687
688		list_move(&rm->m_conn_item, &list);
689		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
690	}
691
692	/* order flag updates with spin locks */
693	if (!list_empty(&list))
694		smp_mb__after_clear_bit();
695
696	spin_unlock_irqrestore(&conn->c_lock, flags);
697
698	/* now remove the messages from the sock list as needed */
699	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
700}
701EXPORT_SYMBOL_GPL(rds_send_drop_acked);
702
703void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
704{
705	struct rds_message *rm, *tmp;
706	struct rds_connection *conn;
707	unsigned long flags;
708	LIST_HEAD(list);
709
710	/* get all the messages we're dropping under the rs lock */
711	spin_lock_irqsave(&rs->rs_lock, flags);
712
713	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
714		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
715			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
716			continue;
717
718		list_move(&rm->m_sock_item, &list);
719		rds_send_sndbuf_remove(rs, rm);
720		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
721	}
722
723	/* order flag updates with the rs lock */
724	smp_mb__after_clear_bit();
725
726	spin_unlock_irqrestore(&rs->rs_lock, flags);
727
728	if (list_empty(&list))
729		return;
730
731	/* Remove the messages from the conn */
732	list_for_each_entry(rm, &list, m_sock_item) {
733
734		conn = rm->m_inc.i_conn;
735
736		spin_lock_irqsave(&conn->c_lock, flags);
737		/*
738		 * Maybe someone else beat us to removing rm from the conn.
739		 * If we race with their flag update we'll get the lock and
740		 * then really see that the flag has been cleared.
741		 */
742		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
743			spin_unlock_irqrestore(&conn->c_lock, flags);
744			continue;
745		}
746		list_del_init(&rm->m_conn_item);
747		spin_unlock_irqrestore(&conn->c_lock, flags);
748
749		/*
750		 * Couldn't grab m_rs_lock in top loop (lock ordering),
751		 * but we can now.
752		 */
753		spin_lock_irqsave(&rm->m_rs_lock, flags);
754
755		spin_lock(&rs->rs_lock);
756		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
757		spin_unlock(&rs->rs_lock);
758
759		rm->m_rs = NULL;
760		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
761
762		rds_message_put(rm);
763	}
764
765	rds_wake_sk_sleep(rs);
766
767	while (!list_empty(&list)) {
768		rm = list_entry(list.next, struct rds_message, m_sock_item);
769		list_del_init(&rm->m_sock_item);
770
771		rds_message_wait(rm);
772		rds_message_put(rm);
773	}
774}
775
776/*
777 * we only want this to fire once so we use the callers 'queued'.  It's
778 * possible that another thread can race with us and remove the
779 * message from the flow with RDS_CANCEL_SENT_TO.
780 */
781static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
782			     struct rds_message *rm, __be16 sport,
783			     __be16 dport, int *queued)
784{
785	unsigned long flags;
786	u32 len;
787
788	if (*queued)
789		goto out;
790
791	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
792
793	/* this is the only place which holds both the socket's rs_lock
794	 * and the connection's c_lock */
795	spin_lock_irqsave(&rs->rs_lock, flags);
796
797	/*
798	 * If there is a little space in sndbuf, we don't queue anything,
799	 * and userspace gets -EAGAIN. But poll() indicates there's send
800	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
801	 * freed up by incoming acks. So we check the *old* value of
802	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
803	 * and poll() now knows no more data can be sent.
804	 */
805	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
806		rs->rs_snd_bytes += len;
807
808		/* let recv side know we are close to send space exhaustion.
809		 * This is probably not the optimal way to do it, as this
810		 * means we set the flag on *all* messages as soon as our
811		 * throughput hits a certain threshold.
812		 */
813		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
814			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
815
816		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
817		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
818		rds_message_addref(rm);
819		rm->m_rs = rs;
820
821		/* The code ordering is a little weird, but we're
822		   trying to minimize the time we hold c_lock */
823		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
824		rm->m_inc.i_conn = conn;
825		rds_message_addref(rm);
826
827		spin_lock(&conn->c_lock);
828		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
829		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
830		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
831		spin_unlock(&conn->c_lock);
832
833		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
834			 rm, len, rs, rs->rs_snd_bytes,
835			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
836
837		*queued = 1;
838	}
839
840	spin_unlock_irqrestore(&rs->rs_lock, flags);
841out:
842	return *queued;
843}
844
845/*
846 * rds_message is getting to be quite complicated, and we'd like to allocate
847 * it all in one go. This figures out how big it needs to be up front.
848 */
849static int rds_rm_size(struct msghdr *msg, int data_len)
850{
851	struct cmsghdr *cmsg;
852	int size = 0;
853	int cmsg_groups = 0;
854	int retval;
855
856	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
857		if (!CMSG_OK(msg, cmsg))
858			return -EINVAL;
859
860		if (cmsg->cmsg_level != SOL_RDS)
861			continue;
862
863		switch (cmsg->cmsg_type) {
864		case RDS_CMSG_RDMA_ARGS:
865			cmsg_groups |= 1;
866			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
867			if (retval < 0)
868				return retval;
869			size += retval;
870
871			break;
872
873		case RDS_CMSG_RDMA_DEST:
874		case RDS_CMSG_RDMA_MAP:
875			cmsg_groups |= 2;
876			/* these are valid but do no add any size */
877			break;
878
879		case RDS_CMSG_ATOMIC_CSWP:
880		case RDS_CMSG_ATOMIC_FADD:
881			cmsg_groups |= 1;
882			size += sizeof(struct scatterlist);
883			break;
884
885		default:
886			return -EINVAL;
887		}
888
889	}
890
891	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
892
893	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
894	if (cmsg_groups == 3)
895		return -EINVAL;
896
897	return size;
898}
899
900static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
901			 struct msghdr *msg, int *allocated_mr)
902{
903	struct cmsghdr *cmsg;
904	int ret = 0;
905
906	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
907		if (!CMSG_OK(msg, cmsg))
908			return -EINVAL;
909
910		if (cmsg->cmsg_level != SOL_RDS)
911			continue;
912
913		/* As a side effect, RDMA_DEST and RDMA_MAP will set
914		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
915		 */
916		switch (cmsg->cmsg_type) {
917		case RDS_CMSG_RDMA_ARGS:
918			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
919			break;
920
921		case RDS_CMSG_RDMA_DEST:
922			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
923			break;
924
925		case RDS_CMSG_RDMA_MAP:
926			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
927			if (!ret)
928				*allocated_mr = 1;
929			break;
930		case RDS_CMSG_ATOMIC_CSWP:
931		case RDS_CMSG_ATOMIC_FADD:
932			ret = rds_cmsg_atomic(rs, rm, cmsg);
933			break;
934
935		default:
936			return -EINVAL;
937		}
938
939		if (ret)
940			break;
941	}
942
943	return ret;
944}
945
946int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
947		size_t payload_len)
948{
949	struct sock *sk = sock->sk;
950	struct rds_sock *rs = rds_sk_to_rs(sk);
951	struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
952	__be32 daddr;
953	__be16 dport;
954	struct rds_message *rm = NULL;
955	struct rds_connection *conn;
956	int ret = 0;
957	int queued = 0, allocated_mr = 0;
958	int nonblock = msg->msg_flags & MSG_DONTWAIT;
959	long timeo = sock_sndtimeo(sk, nonblock);
960
961	/* Mirror Linux UDP mirror of BSD error message compatibility */
962	/* XXX: Perhaps MSG_MORE someday */
963	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
964		printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
965		ret = -EOPNOTSUPP;
966		goto out;
967	}
968
969	if (msg->msg_namelen) {
970		/* XXX fail non-unicast destination IPs? */
971		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
972			ret = -EINVAL;
973			goto out;
974		}
975		daddr = usin->sin_addr.s_addr;
976		dport = usin->sin_port;
977	} else {
978		/* We only care about consistency with ->connect() */
979		lock_sock(sk);
980		daddr = rs->rs_conn_addr;
981		dport = rs->rs_conn_port;
982		release_sock(sk);
983	}
984
985	/* racing with another thread binding seems ok here */
986	if (daddr == 0 || rs->rs_bound_addr == 0) {
987		ret = -ENOTCONN; /* XXX not a great errno */
988		goto out;
989	}
990
991	/* size of rm including all sgs */
992	ret = rds_rm_size(msg, payload_len);
993	if (ret < 0)
994		goto out;
995
996	rm = rds_message_alloc(ret, GFP_KERNEL);
997	if (!rm) {
998		ret = -ENOMEM;
999		goto out;
1000	}
1001
1002	/* Attach data to the rm */
1003	if (payload_len) {
1004		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1005		ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
1006		if (ret)
1007			goto out;
1008	}
1009	rm->data.op_active = 1;
1010
1011	rm->m_daddr = daddr;
1012
1013	/* rds_conn_create has a spinlock that runs with IRQ off.
1014	 * Caching the conn in the socket helps a lot. */
1015	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1016		conn = rs->rs_conn;
1017	else {
1018		conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
1019					rs->rs_transport,
1020					sock->sk->sk_allocation);
1021		if (IS_ERR(conn)) {
1022			ret = PTR_ERR(conn);
1023			goto out;
1024		}
1025		rs->rs_conn = conn;
1026	}
1027
1028	/* Parse any control messages the user may have included. */
1029	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1030	if (ret)
1031		goto out;
1032
1033	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1034		if (printk_ratelimit())
1035			printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1036			       &rm->rdma, conn->c_trans->xmit_rdma);
1037		ret = -EOPNOTSUPP;
1038		goto out;
1039	}
1040
1041	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1042		if (printk_ratelimit())
1043			printk(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1044			       &rm->atomic, conn->c_trans->xmit_atomic);
1045		ret = -EOPNOTSUPP;
1046		goto out;
1047	}
1048
1049	/* If the connection is down, trigger a connect. We may
1050	 * have scheduled a delayed reconnect however - in this case
1051	 * we should not interfere.
1052	 */
1053	if (rds_conn_state(conn) == RDS_CONN_DOWN &&
1054	    !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
1055		queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
1056
1057	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1058	if (ret) {
1059		rs->rs_seen_congestion = 1;
1060		goto out;
1061	}
1062
1063	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1064				  dport, &queued)) {
1065		rds_stats_inc(s_send_queue_full);
1066		/* XXX make sure this is reasonable */
1067		if (payload_len > rds_sk_sndbuf(rs)) {
1068			ret = -EMSGSIZE;
1069			goto out;
1070		}
1071		if (nonblock) {
1072			ret = -EAGAIN;
1073			goto out;
1074		}
1075
1076		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1077					rds_send_queue_rm(rs, conn, rm,
1078							  rs->rs_bound_port,
1079							  dport,
1080							  &queued),
1081					timeo);
1082		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1083		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1084			continue;
1085
1086		ret = timeo;
1087		if (ret == 0)
1088			ret = -ETIMEDOUT;
1089		goto out;
1090	}
1091
1092	/*
1093	 * By now we've committed to the send.  We reuse rds_send_worker()
1094	 * to retry sends in the rds thread if the transport asks us to.
1095	 */
1096	rds_stats_inc(s_send_queued);
1097
1098	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1099		rds_send_worker(&conn->c_send_w.work);
1100
1101	rds_message_put(rm);
1102	return payload_len;
1103
1104out:
1105	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1106	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1107	 * or in any other way, we need to destroy the MR again */
1108	if (allocated_mr)
1109		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1110
1111	if (rm)
1112		rds_message_put(rm);
1113	return ret;
1114}
1115
1116/*
1117 * Reply to a ping packet.
1118 */
1119int
1120rds_send_pong(struct rds_connection *conn, __be16 dport)
1121{
1122	struct rds_message *rm;
1123	unsigned long flags;
1124	int ret = 0;
1125
1126	rm = rds_message_alloc(0, GFP_ATOMIC);
1127	if (!rm) {
1128		ret = -ENOMEM;
1129		goto out;
1130	}
1131
1132	rm->m_daddr = conn->c_faddr;
1133
1134	/* If the connection is down, trigger a connect. We may
1135	 * have scheduled a delayed reconnect however - in this case
1136	 * we should not interfere.
1137	 */
1138	if (rds_conn_state(conn) == RDS_CONN_DOWN &&
1139	    !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
1140		queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
1141
1142	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1143	if (ret)
1144		goto out;
1145
1146	spin_lock_irqsave(&conn->c_lock, flags);
1147	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1148	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1149	rds_message_addref(rm);
1150	rm->m_inc.i_conn = conn;
1151
1152	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1153				    conn->c_next_tx_seq);
1154	conn->c_next_tx_seq++;
1155	spin_unlock_irqrestore(&conn->c_lock, flags);
1156
1157	rds_stats_inc(s_send_queued);
1158	rds_stats_inc(s_send_pong);
1159
1160	queue_delayed_work(rds_wq, &conn->c_send_w, 0);
1161	rds_message_put(rm);
1162	return 0;
1163
1164out:
1165	if (rm)
1166		rds_message_put(rm);
1167	return ret;
1168}
1169