auth.c revision 642f149031d70415d9318b919d50b71e4724adbd
1/* SCTP kernel reference Implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3 *
4 * This file is part of the SCTP kernel reference Implementation
5 *
6 * The SCTP reference implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * The SCTP reference implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 *                 ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING.  If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
22 *
23 * Please send any bug reports or fixes you make to the
24 * email address(es):
25 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
26 *
27 * Or submit a bug report through the following website:
28 *    http://www.sf.net/projects/lksctp
29 *
30 * Written or modified by:
31 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
32 *
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
35 */
36
37#include <linux/types.h>
38#include <linux/crypto.h>
39#include <linux/scatterlist.h>
40#include <net/sctp/sctp.h>
41#include <net/sctp/auth.h>
42
43static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
44	{
45		/* id 0 is reserved.  as all 0 */
46		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
47	},
48	{
49		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
50		.hmac_name="hmac(sha1)",
51		.hmac_len = SCTP_SHA1_SIG_SIZE,
52	},
53	{
54		/* id 2 is reserved as well */
55		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
56	},
57	{
58		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
59		.hmac_name="hmac(sha256)",
60		.hmac_len = SCTP_SHA256_SIG_SIZE,
61	}
62};
63
64
65void sctp_auth_key_put(struct sctp_auth_bytes *key)
66{
67	if (!key)
68		return;
69
70	if (atomic_dec_and_test(&key->refcnt)) {
71		kfree(key);
72		SCTP_DBG_OBJCNT_DEC(keys);
73	}
74}
75
76/* Create a new key structure of a given length */
77static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
78{
79	struct sctp_auth_bytes *key;
80
81	/* Allocate the shared key */
82	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83	if (!key)
84		return NULL;
85
86	key->len = key_len;
87	atomic_set(&key->refcnt, 1);
88	SCTP_DBG_OBJCNT_INC(keys);
89
90	return key;
91}
92
93/* Create a new shared key container with a give key id */
94struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95{
96	struct sctp_shared_key *new;
97
98	/* Allocate the shared key container */
99	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100	if (!new)
101		return NULL;
102
103	INIT_LIST_HEAD(&new->key_list);
104	new->key_id = key_id;
105
106	return new;
107}
108
109/* Free the shared key stucture */
110void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111{
112	BUG_ON(!list_empty(&sh_key->key_list));
113	sctp_auth_key_put(sh_key->key);
114	sh_key->key = NULL;
115	kfree(sh_key);
116}
117
118/* Destory the entire key list.  This is done during the
119 * associon and endpoint free process.
120 */
121void sctp_auth_destroy_keys(struct list_head *keys)
122{
123	struct sctp_shared_key *ep_key;
124	struct sctp_shared_key *tmp;
125
126	if (list_empty(keys))
127		return;
128
129	key_for_each_safe(ep_key, tmp, keys) {
130		list_del_init(&ep_key->key_list);
131		sctp_auth_shkey_free(ep_key);
132	}
133}
134
135/* Compare two byte vectors as numbers.  Return values
136 * are:
137 * 	  0 - vectors are equal
138 * 	< 0 - vector 1 is smaller then vector2
139 * 	> 0 - vector 1 is greater then vector2
140 *
141 * Algorithm is:
142 * 	This is performed by selecting the numerically smaller key vector...
143 *	If the key vectors are equal as numbers but differ in length ...
144 *	the shorter vector is considered smaller
145 *
146 * Examples (with small values):
147 * 	000123456789 > 123456789 (first number is longer)
148 * 	000123456789 < 234567891 (second number is larger numerically)
149 * 	123456789 > 2345678 	 (first number is both larger & longer)
150 */
151static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152			      struct sctp_auth_bytes *vector2)
153{
154	int diff;
155	int i;
156	const __u8 *longer;
157
158	diff = vector1->len - vector2->len;
159	if (diff) {
160		longer = (diff > 0) ? vector1->data : vector2->data;
161
162		/* Check to see if the longer number is
163		 * lead-zero padded.  If it is not, it
164		 * is automatically larger numerically.
165		 */
166		for (i = 0; i < abs(diff); i++ ) {
167			if (longer[i] != 0)
168				return diff;
169		}
170	}
171
172	/* lengths are the same, compare numbers */
173	return memcmp(vector1->data, vector2->data, vector1->len);
174}
175
176/*
177 * Create a key vector as described in SCTP-AUTH, Section 6.1
178 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179 *    parameter sent by each endpoint are concatenated as byte vectors.
180 *    These parameters include the parameter type, parameter length, and
181 *    the parameter value, but padding is omitted; all padding MUST be
182 *    removed from this concatenation before proceeding with further
183 *    computation of keys.  Parameters which were not sent are simply
184 *    omitted from the concatenation process.  The resulting two vectors
185 *    are called the two key vectors.
186 */
187static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188			sctp_random_param_t *random,
189			sctp_chunks_param_t *chunks,
190			sctp_hmac_algo_param_t *hmacs,
191			gfp_t gfp)
192{
193	struct sctp_auth_bytes *new;
194	__u32	len;
195	__u32	offset = 0;
196
197	len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
198        if (chunks)
199		len += ntohs(chunks->param_hdr.length);
200
201	new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
202	if (!new)
203		return NULL;
204
205	new->len = len;
206
207	memcpy(new->data, random, ntohs(random->param_hdr.length));
208	offset += ntohs(random->param_hdr.length);
209
210	if (chunks) {
211		memcpy(new->data + offset, chunks,
212			ntohs(chunks->param_hdr.length));
213		offset += ntohs(chunks->param_hdr.length);
214	}
215
216	memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
217
218	return new;
219}
220
221
222/* Make a key vector based on our local parameters */
223struct sctp_auth_bytes *sctp_auth_make_local_vector(
224				    const struct sctp_association *asoc,
225				    gfp_t gfp)
226{
227	return sctp_auth_make_key_vector(
228				    (sctp_random_param_t*)asoc->c.auth_random,
229				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
230				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
231				    gfp);
232}
233
234/* Make a key vector based on peer's parameters */
235struct sctp_auth_bytes *sctp_auth_make_peer_vector(
236				    const struct sctp_association *asoc,
237				    gfp_t gfp)
238{
239	return sctp_auth_make_key_vector(asoc->peer.peer_random,
240					 asoc->peer.peer_chunks,
241					 asoc->peer.peer_hmacs,
242					 gfp);
243}
244
245
246/* Set the value of the association shared key base on the parameters
247 * given.  The algorithm is:
248 *    From the endpoint pair shared keys and the key vectors the
249 *    association shared keys are computed.  This is performed by selecting
250 *    the numerically smaller key vector and concatenating it to the
251 *    endpoint pair shared key, and then concatenating the numerically
252 *    larger key vector to that.  The result of the concatenation is the
253 *    association shared key.
254 */
255static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
256			struct sctp_shared_key *ep_key,
257			struct sctp_auth_bytes *first_vector,
258			struct sctp_auth_bytes *last_vector,
259			gfp_t gfp)
260{
261	struct sctp_auth_bytes *secret;
262	__u32 offset = 0;
263	__u32 auth_len;
264
265	auth_len = first_vector->len + last_vector->len;
266	if (ep_key->key)
267		auth_len += ep_key->key->len;
268
269	secret = sctp_auth_create_key(auth_len, gfp);
270	if (!secret)
271		return NULL;
272
273	if (ep_key->key) {
274		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
275		offset += ep_key->key->len;
276	}
277
278	memcpy(secret->data + offset, first_vector->data, first_vector->len);
279	offset += first_vector->len;
280
281	memcpy(secret->data + offset, last_vector->data, last_vector->len);
282
283	return secret;
284}
285
286/* Create an association shared key.  Follow the algorithm
287 * described in SCTP-AUTH, Section 6.1
288 */
289static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
290				 const struct sctp_association *asoc,
291				 struct sctp_shared_key *ep_key,
292				 gfp_t gfp)
293{
294	struct sctp_auth_bytes *local_key_vector;
295	struct sctp_auth_bytes *peer_key_vector;
296	struct sctp_auth_bytes	*first_vector,
297				*last_vector;
298	struct sctp_auth_bytes	*secret = NULL;
299	int	cmp;
300
301
302	/* Now we need to build the key vectors
303	 * SCTP-AUTH , Section 6.1
304	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
305	 *    parameter sent by each endpoint are concatenated as byte vectors.
306	 *    These parameters include the parameter type, parameter length, and
307	 *    the parameter value, but padding is omitted; all padding MUST be
308	 *    removed from this concatenation before proceeding with further
309	 *    computation of keys.  Parameters which were not sent are simply
310	 *    omitted from the concatenation process.  The resulting two vectors
311	 *    are called the two key vectors.
312	 */
313
314	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
315	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
316
317	if (!peer_key_vector || !local_key_vector)
318		goto out;
319
320	/* Figure out the order in wich the key_vectors will be
321	 * added to the endpoint shared key.
322	 * SCTP-AUTH, Section 6.1:
323	 *   This is performed by selecting the numerically smaller key
324	 *   vector and concatenating it to the endpoint pair shared
325	 *   key, and then concatenating the numerically larger key
326	 *   vector to that.  If the key vectors are equal as numbers
327	 *   but differ in length, then the concatenation order is the
328	 *   endpoint shared key, followed by the shorter key vector,
329	 *   followed by the longer key vector.  Otherwise, the key
330	 *   vectors are identical, and may be concatenated to the
331	 *   endpoint pair key in any order.
332	 */
333	cmp = sctp_auth_compare_vectors(local_key_vector,
334					peer_key_vector);
335	if (cmp < 0) {
336		first_vector = local_key_vector;
337		last_vector = peer_key_vector;
338	} else {
339		first_vector = peer_key_vector;
340		last_vector = local_key_vector;
341	}
342
343	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
344					    gfp);
345out:
346	kfree(local_key_vector);
347	kfree(peer_key_vector);
348
349	return secret;
350}
351
352/*
353 * Populate the association overlay list with the list
354 * from the endpoint.
355 */
356int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
357				struct sctp_association *asoc,
358				gfp_t gfp)
359{
360	struct sctp_shared_key *sh_key;
361	struct sctp_shared_key *new;
362
363	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
364
365	key_for_each(sh_key, &ep->endpoint_shared_keys) {
366		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
367		if (!new)
368			goto nomem;
369
370		new->key = sh_key->key;
371		sctp_auth_key_hold(new->key);
372		list_add(&new->key_list, &asoc->endpoint_shared_keys);
373	}
374
375	return 0;
376
377nomem:
378	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
379	return -ENOMEM;
380}
381
382
383/* Public interface to creat the association shared key.
384 * See code above for the algorithm.
385 */
386int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
387{
388	struct sctp_auth_bytes	*secret;
389	struct sctp_shared_key *ep_key;
390
391	/* If we don't support AUTH, or peer is not capable
392	 * we don't need to do anything.
393	 */
394	if (!sctp_auth_enable || !asoc->peer.auth_capable)
395		return 0;
396
397	/* If the key_id is non-zero and we couldn't find an
398	 * endpoint pair shared key, we can't compute the
399	 * secret.
400	 * For key_id 0, endpoint pair shared key is a NULL key.
401	 */
402	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
403	BUG_ON(!ep_key);
404
405	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
406	if (!secret)
407		return -ENOMEM;
408
409	sctp_auth_key_put(asoc->asoc_shared_key);
410	asoc->asoc_shared_key = secret;
411
412	return 0;
413}
414
415
416/* Find the endpoint pair shared key based on the key_id */
417struct sctp_shared_key *sctp_auth_get_shkey(
418				const struct sctp_association *asoc,
419				__u16 key_id)
420{
421	struct sctp_shared_key *key = NULL;
422
423	/* First search associations set of endpoint pair shared keys */
424	key_for_each(key, &asoc->endpoint_shared_keys) {
425		if (key->key_id == key_id)
426			break;
427	}
428
429	return key;
430}
431
432/*
433 * Initialize all the possible digest transforms that we can use.  Right now
434 * now, the supported digests are SHA1 and SHA256.  We do this here once
435 * because of the restrictiong that transforms may only be allocated in
436 * user context.  This forces us to pre-allocated all possible transforms
437 * at the endpoint init time.
438 */
439int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
440{
441	struct crypto_hash *tfm = NULL;
442	__u16   id;
443
444	/* if the transforms are already allocted, we are done */
445	if (!sctp_auth_enable) {
446		ep->auth_hmacs = NULL;
447		return 0;
448	}
449
450	if (ep->auth_hmacs)
451		return 0;
452
453	/* Allocated the array of pointers to transorms */
454	ep->auth_hmacs = kzalloc(
455			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
456			    gfp);
457	if (!ep->auth_hmacs)
458		return -ENOMEM;
459
460	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
461
462		/* See is we support the id.  Supported IDs have name and
463		 * length fields set, so that we can allocated and use
464		 * them.  We can safely just check for name, for without the
465		 * name, we can't allocate the TFM.
466		 */
467		if (!sctp_hmac_list[id].hmac_name)
468			continue;
469
470		/* If this TFM has been allocated, we are all set */
471		if (ep->auth_hmacs[id])
472			continue;
473
474		/* Allocate the ID */
475		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
476					CRYPTO_ALG_ASYNC);
477		if (IS_ERR(tfm))
478			goto out_err;
479
480		ep->auth_hmacs[id] = tfm;
481	}
482
483	return 0;
484
485out_err:
486	/* Clean up any successfull allocations */
487	sctp_auth_destroy_hmacs(ep->auth_hmacs);
488	return -ENOMEM;
489}
490
491/* Destroy the hmac tfm array */
492void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
493{
494	int i;
495
496	if (!auth_hmacs)
497		return;
498
499	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
500	{
501		if (auth_hmacs[i])
502			crypto_free_hash(auth_hmacs[i]);
503	}
504	kfree(auth_hmacs);
505}
506
507
508struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
509{
510	return &sctp_hmac_list[hmac_id];
511}
512
513/* Get an hmac description information that we can use to build
514 * the AUTH chunk
515 */
516struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
517{
518	struct sctp_hmac_algo_param *hmacs;
519	__u16 n_elt;
520	__u16 id = 0;
521	int i;
522
523	/* If we have a default entry, use it */
524	if (asoc->default_hmac_id)
525		return &sctp_hmac_list[asoc->default_hmac_id];
526
527	/* Since we do not have a default entry, find the first entry
528	 * we support and return that.  Do not cache that id.
529	 */
530	hmacs = asoc->peer.peer_hmacs;
531	if (!hmacs)
532		return NULL;
533
534	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
535	for (i = 0; i < n_elt; i++) {
536		id = ntohs(hmacs->hmac_ids[i]);
537
538		/* Check the id is in the supported range */
539		if (id > SCTP_AUTH_HMAC_ID_MAX)
540			continue;
541
542		/* See is we support the id.  Supported IDs have name and
543		 * length fields set, so that we can allocated and use
544		 * them.  We can safely just check for name, for without the
545		 * name, we can't allocate the TFM.
546		 */
547		if (!sctp_hmac_list[id].hmac_name)
548			continue;
549
550		break;
551	}
552
553	if (id == 0)
554		return NULL;
555
556	return &sctp_hmac_list[id];
557}
558
559static int __sctp_auth_find_hmacid(__u16 *hmacs, int n_elts, __u16 hmac_id)
560{
561	int  found = 0;
562	int  i;
563
564	for (i = 0; i < n_elts; i++) {
565		if (hmac_id == hmacs[i]) {
566			found = 1;
567			break;
568		}
569	}
570
571	return found;
572}
573
574/* See if the HMAC_ID is one that we claim as supported */
575int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
576				    __u16 hmac_id)
577{
578	struct sctp_hmac_algo_param *hmacs;
579	__u16 n_elt;
580
581	if (!asoc)
582		return 0;
583
584	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
585	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
586
587	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
588}
589
590
591/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
592 * Section 6.1:
593 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
594 *   algorithm it supports.
595 */
596void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
597				     struct sctp_hmac_algo_param *hmacs)
598{
599	struct sctp_endpoint *ep;
600	__u16   id;
601	int	i;
602	int	n_params;
603
604	/* if the default id is already set, use it */
605	if (asoc->default_hmac_id)
606		return;
607
608	n_params = (ntohs(hmacs->param_hdr.length)
609				- sizeof(sctp_paramhdr_t)) >> 1;
610	ep = asoc->ep;
611	for (i = 0; i < n_params; i++) {
612		id = ntohs(hmacs->hmac_ids[i]);
613
614		/* Check the id is in the supported range */
615		if (id > SCTP_AUTH_HMAC_ID_MAX)
616			continue;
617
618		/* If this TFM has been allocated, use this id */
619		if (ep->auth_hmacs[id]) {
620			asoc->default_hmac_id = id;
621			break;
622		}
623	}
624}
625
626
627/* Check to see if the given chunk is supposed to be authenticated */
628static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
629{
630	unsigned short len;
631	int found = 0;
632	int i;
633
634	if (!param)
635		return 0;
636
637	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
638
639	/* SCTP-AUTH, Section 3.2
640	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
641	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
642	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
643	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
644	 */
645	for (i = 0; !found && i < len; i++) {
646		switch (param->chunks[i]) {
647		    case SCTP_CID_INIT:
648		    case SCTP_CID_INIT_ACK:
649		    case SCTP_CID_SHUTDOWN_COMPLETE:
650		    case SCTP_CID_AUTH:
651			break;
652
653		    default:
654			if (param->chunks[i] == chunk)
655			    found = 1;
656			break;
657		}
658	}
659
660	return found;
661}
662
663/* Check if peer requested that this chunk is authenticated */
664int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
665{
666	if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
667		return 0;
668
669	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
670}
671
672/* Check if we requested that peer authenticate this chunk. */
673int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
674{
675	if (!sctp_auth_enable || !asoc)
676		return 0;
677
678	return __sctp_auth_cid(chunk,
679			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
680}
681
682/* SCTP-AUTH: Section 6.2:
683 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
684 *    the hash function H as described by the MAC Identifier and the shared
685 *    association key K based on the endpoint pair shared key described by
686 *    the shared key identifier.  The 'data' used for the computation of
687 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
688 *    zero (as shown in Figure 6) followed by all chunks that are placed
689 *    after the AUTH chunk in the SCTP packet.
690 */
691void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
692			      struct sk_buff *skb,
693			      struct sctp_auth_chunk *auth,
694			      gfp_t gfp)
695{
696	struct scatterlist sg;
697	struct hash_desc desc;
698	struct sctp_auth_bytes *asoc_key;
699	__u16 key_id, hmac_id;
700	__u8 *digest;
701	unsigned char *end;
702	int free_key = 0;
703
704	/* Extract the info we need:
705	 * - hmac id
706	 * - key id
707	 */
708	key_id = ntohs(auth->auth_hdr.shkey_id);
709	hmac_id = ntohs(auth->auth_hdr.hmac_id);
710
711	if (key_id == asoc->active_key_id)
712		asoc_key = asoc->asoc_shared_key;
713	else {
714		struct sctp_shared_key *ep_key;
715
716		ep_key = sctp_auth_get_shkey(asoc, key_id);
717		if (!ep_key)
718			return;
719
720		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
721		if (!asoc_key)
722			return;
723
724		free_key = 1;
725	}
726
727	/* set up scatter list */
728	end = skb_tail_pointer(skb);
729	sg_init_table(&sg, 1);
730	sg_set_buf(&sg, auth, end - (unsigned char *)auth);
731
732	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
733	desc.flags = 0;
734
735	digest = auth->auth_hdr.hmac;
736	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
737		goto free;
738
739	crypto_hash_digest(&desc, &sg, sg.length, digest);
740
741free:
742	if (free_key)
743		sctp_auth_key_put(asoc_key);
744}
745
746/* API Helpers */
747
748/* Add a chunk to the endpoint authenticated chunk list */
749int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
750{
751	struct sctp_chunks_param *p = ep->auth_chunk_list;
752	__u16 nchunks;
753	__u16 param_len;
754
755	/* If this chunk is already specified, we are done */
756	if (__sctp_auth_cid(chunk_id, p))
757		return 0;
758
759	/* Check if we can add this chunk to the array */
760	param_len = ntohs(p->param_hdr.length);
761	nchunks = param_len - sizeof(sctp_paramhdr_t);
762	if (nchunks == SCTP_NUM_CHUNK_TYPES)
763		return -EINVAL;
764
765	p->chunks[nchunks] = chunk_id;
766	p->param_hdr.length = htons(param_len + 1);
767	return 0;
768}
769
770/* Add hmac identifires to the endpoint list of supported hmac ids */
771int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
772			   struct sctp_hmacalgo *hmacs)
773{
774	int has_sha1 = 0;
775	__u16 id;
776	int i;
777
778	/* Scan the list looking for unsupported id.  Also make sure that
779	 * SHA1 is specified.
780	 */
781	for (i = 0; i < hmacs->shmac_num_idents; i++) {
782		id = hmacs->shmac_idents[i];
783
784		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
785			has_sha1 = 1;
786
787		if (!sctp_hmac_list[id].hmac_name)
788			return -EOPNOTSUPP;
789	}
790
791	if (!has_sha1)
792		return -EINVAL;
793
794	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
795		hmacs->shmac_num_idents * sizeof(__u16));
796	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
797				hmacs->shmac_num_idents * sizeof(__u16));
798	return 0;
799}
800
801/* Set a new shared key on either endpoint or association.  If the
802 * the key with a same ID already exists, replace the key (remove the
803 * old key and add a new one).
804 */
805int sctp_auth_set_key(struct sctp_endpoint *ep,
806		      struct sctp_association *asoc,
807		      struct sctp_authkey *auth_key)
808{
809	struct sctp_shared_key *cur_key = NULL;
810	struct sctp_auth_bytes *key;
811	struct list_head *sh_keys;
812	int replace = 0;
813
814	/* Try to find the given key id to see if
815	 * we are doing a replace, or adding a new key
816	 */
817	if (asoc)
818		sh_keys = &asoc->endpoint_shared_keys;
819	else
820		sh_keys = &ep->endpoint_shared_keys;
821
822	key_for_each(cur_key, sh_keys) {
823		if (cur_key->key_id == auth_key->sca_keynumber) {
824			replace = 1;
825			break;
826		}
827	}
828
829	/* If we are not replacing a key id, we need to allocate
830	 * a shared key.
831	 */
832	if (!replace) {
833		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
834						 GFP_KERNEL);
835		if (!cur_key)
836			return -ENOMEM;
837	}
838
839	/* Create a new key data based on the info passed in */
840	key = sctp_auth_create_key(auth_key->sca_keylen, GFP_KERNEL);
841	if (!key)
842		goto nomem;
843
844	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylen);
845
846	/* If we are replacing, remove the old keys data from the
847	 * key id.  If we are adding new key id, add it to the
848	 * list.
849	 */
850	if (replace)
851		sctp_auth_key_put(cur_key->key);
852	else
853		list_add(&cur_key->key_list, sh_keys);
854
855	cur_key->key = key;
856	sctp_auth_key_hold(key);
857
858	return 0;
859nomem:
860	if (!replace)
861		sctp_auth_shkey_free(cur_key);
862
863	return -ENOMEM;
864}
865
866int sctp_auth_set_active_key(struct sctp_endpoint *ep,
867			     struct sctp_association *asoc,
868			     __u16  key_id)
869{
870	struct sctp_shared_key *key;
871	struct list_head *sh_keys;
872	int found = 0;
873
874	/* The key identifier MUST correst to an existing key */
875	if (asoc)
876		sh_keys = &asoc->endpoint_shared_keys;
877	else
878		sh_keys = &ep->endpoint_shared_keys;
879
880	key_for_each(key, sh_keys) {
881		if (key->key_id == key_id) {
882			found = 1;
883			break;
884		}
885	}
886
887	if (!found)
888		return -EINVAL;
889
890	if (asoc) {
891		asoc->active_key_id = key_id;
892		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
893	} else
894		ep->active_key_id = key_id;
895
896	return 0;
897}
898
899int sctp_auth_del_key_id(struct sctp_endpoint *ep,
900			 struct sctp_association *asoc,
901			 __u16  key_id)
902{
903	struct sctp_shared_key *key;
904	struct list_head *sh_keys;
905	int found = 0;
906
907	/* The key identifier MUST NOT be the current active key
908	 * The key identifier MUST correst to an existing key
909	 */
910	if (asoc) {
911		if (asoc->active_key_id == key_id)
912			return -EINVAL;
913
914		sh_keys = &asoc->endpoint_shared_keys;
915	} else {
916		if (ep->active_key_id == key_id)
917			return -EINVAL;
918
919		sh_keys = &ep->endpoint_shared_keys;
920	}
921
922	key_for_each(key, sh_keys) {
923		if (key->key_id == key_id) {
924			found = 1;
925			break;
926		}
927	}
928
929	if (!found)
930		return -EINVAL;
931
932	/* Delete the shared key */
933	list_del_init(&key->key_list);
934	sctp_auth_shkey_free(key);
935
936	return 0;
937}
938