input.c revision 2ce955035081112cf1590c961da8d94324142b5e
1/* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 *                 ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING.  If not, write to
27 * the Free Software Foundation, 59 Temple Place - Suite 330,
28 * Boston, MA 02111-1307, USA.
29 *
30 * Please send any bug reports or fixes you make to the
31 * email address(es):
32 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33 *
34 * Or submit a bug report through the following website:
35 *    http://www.sf.net/projects/lksctp
36 *
37 * Written or modified by:
38 *    La Monte H.P. Yarroll <piggy@acm.org>
39 *    Karl Knutson <karl@athena.chicago.il.us>
40 *    Xingang Guo <xingang.guo@intel.com>
41 *    Jon Grimm <jgrimm@us.ibm.com>
42 *    Hui Huang <hui.huang@nokia.com>
43 *    Daisy Chang <daisyc@us.ibm.com>
44 *    Sridhar Samudrala <sri@us.ibm.com>
45 *    Ardelle Fan <ardelle.fan@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51#include <linux/types.h>
52#include <linux/list.h> /* For struct list_head */
53#include <linux/socket.h>
54#include <linux/ip.h>
55#include <linux/time.h> /* For struct timeval */
56#include <linux/slab.h>
57#include <net/ip.h>
58#include <net/icmp.h>
59#include <net/snmp.h>
60#include <net/sock.h>
61#include <net/xfrm.h>
62#include <net/sctp/sctp.h>
63#include <net/sctp/sm.h>
64#include <net/sctp/checksum.h>
65#include <net/net_namespace.h>
66
67/* Forward declarations for internal helpers. */
68static int sctp_rcv_ootb(struct sk_buff *);
69static struct sctp_association *__sctp_rcv_lookup(struct net *net,
70				      struct sk_buff *skb,
71				      const union sctp_addr *laddr,
72				      const union sctp_addr *paddr,
73				      struct sctp_transport **transportp);
74static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
75						const union sctp_addr *laddr);
76static struct sctp_association *__sctp_lookup_association(
77					struct net *net,
78					const union sctp_addr *local,
79					const union sctp_addr *peer,
80					struct sctp_transport **pt);
81
82static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
83
84
85/* Calculate the SCTP checksum of an SCTP packet.  */
86static inline int sctp_rcv_checksum(struct sk_buff *skb)
87{
88	struct sctphdr *sh = sctp_hdr(skb);
89	__le32 cmp = sh->checksum;
90	struct sk_buff *list;
91	__le32 val;
92	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
93
94	skb_walk_frags(skb, list)
95		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
96					tmp);
97
98	val = sctp_end_cksum(tmp);
99
100	if (val != cmp) {
101		/* CRC failure, dump it. */
102		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
103		return -1;
104	}
105	return 0;
106}
107
108struct sctp_input_cb {
109	union {
110		struct inet_skb_parm	h4;
111#if IS_ENABLED(CONFIG_IPV6)
112		struct inet6_skb_parm	h6;
113#endif
114	} header;
115	struct sctp_chunk *chunk;
116};
117#define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
118
119/*
120 * This is the routine which IP calls when receiving an SCTP packet.
121 */
122int sctp_rcv(struct sk_buff *skb)
123{
124	struct sock *sk;
125	struct sctp_association *asoc;
126	struct sctp_endpoint *ep = NULL;
127	struct sctp_ep_common *rcvr;
128	struct sctp_transport *transport = NULL;
129	struct sctp_chunk *chunk;
130	struct sctphdr *sh;
131	union sctp_addr src;
132	union sctp_addr dest;
133	int family;
134	struct sctp_af *af;
135	struct net *net = dev_net(skb->dev);
136
137	if (skb->pkt_type!=PACKET_HOST)
138		goto discard_it;
139
140	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
141
142	if (skb_linearize(skb))
143		goto discard_it;
144
145	sh = sctp_hdr(skb);
146
147	/* Pull up the IP and SCTP headers. */
148	__skb_pull(skb, skb_transport_offset(skb));
149	if (skb->len < sizeof(struct sctphdr))
150		goto discard_it;
151	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
152		  sctp_rcv_checksum(skb) < 0)
153		goto discard_it;
154
155	skb_pull(skb, sizeof(struct sctphdr));
156
157	/* Make sure we at least have chunk headers worth of data left. */
158	if (skb->len < sizeof(struct sctp_chunkhdr))
159		goto discard_it;
160
161	family = ipver2af(ip_hdr(skb)->version);
162	af = sctp_get_af_specific(family);
163	if (unlikely(!af))
164		goto discard_it;
165
166	/* Initialize local addresses for lookups. */
167	af->from_skb(&src, skb, 1);
168	af->from_skb(&dest, skb, 0);
169
170	/* If the packet is to or from a non-unicast address,
171	 * silently discard the packet.
172	 *
173	 * This is not clearly defined in the RFC except in section
174	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
175	 * Transmission Protocol" 2.1, "It is important to note that the
176	 * IP address of an SCTP transport address must be a routable
177	 * unicast address.  In other words, IP multicast addresses and
178	 * IP broadcast addresses cannot be used in an SCTP transport
179	 * address."
180	 */
181	if (!af->addr_valid(&src, NULL, skb) ||
182	    !af->addr_valid(&dest, NULL, skb))
183		goto discard_it;
184
185	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
186
187	if (!asoc)
188		ep = __sctp_rcv_lookup_endpoint(net, &dest);
189
190	/* Retrieve the common input handling substructure. */
191	rcvr = asoc ? &asoc->base : &ep->base;
192	sk = rcvr->sk;
193
194	/*
195	 * If a frame arrives on an interface and the receiving socket is
196	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
197	 */
198	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
199	{
200		if (asoc) {
201			sctp_association_put(asoc);
202			asoc = NULL;
203		} else {
204			sctp_endpoint_put(ep);
205			ep = NULL;
206		}
207		sk = net->sctp.ctl_sock;
208		ep = sctp_sk(sk)->ep;
209		sctp_endpoint_hold(ep);
210		rcvr = &ep->base;
211	}
212
213	/*
214	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
215	 * An SCTP packet is called an "out of the blue" (OOTB)
216	 * packet if it is correctly formed, i.e., passed the
217	 * receiver's checksum check, but the receiver is not
218	 * able to identify the association to which this
219	 * packet belongs.
220	 */
221	if (!asoc) {
222		if (sctp_rcv_ootb(skb)) {
223			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
224			goto discard_release;
225		}
226	}
227
228	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
229		goto discard_release;
230	nf_reset(skb);
231
232	if (sk_filter(sk, skb))
233		goto discard_release;
234
235	/* Create an SCTP packet structure. */
236	chunk = sctp_chunkify(skb, asoc, sk);
237	if (!chunk)
238		goto discard_release;
239	SCTP_INPUT_CB(skb)->chunk = chunk;
240
241	/* Remember what endpoint is to handle this packet. */
242	chunk->rcvr = rcvr;
243
244	/* Remember the SCTP header. */
245	chunk->sctp_hdr = sh;
246
247	/* Set the source and destination addresses of the incoming chunk.  */
248	sctp_init_addrs(chunk, &src, &dest);
249
250	/* Remember where we came from.  */
251	chunk->transport = transport;
252
253	/* Acquire access to the sock lock. Note: We are safe from other
254	 * bottom halves on this lock, but a user may be in the lock too,
255	 * so check if it is busy.
256	 */
257	sctp_bh_lock_sock(sk);
258
259	if (sk != rcvr->sk) {
260		/* Our cached sk is different from the rcvr->sk.  This is
261		 * because migrate()/accept() may have moved the association
262		 * to a new socket and released all the sockets.  So now we
263		 * are holding a lock on the old socket while the user may
264		 * be doing something with the new socket.  Switch our veiw
265		 * of the current sk.
266		 */
267		sctp_bh_unlock_sock(sk);
268		sk = rcvr->sk;
269		sctp_bh_lock_sock(sk);
270	}
271
272	if (sock_owned_by_user(sk)) {
273		if (sctp_add_backlog(sk, skb)) {
274			sctp_bh_unlock_sock(sk);
275			sctp_chunk_free(chunk);
276			skb = NULL; /* sctp_chunk_free already freed the skb */
277			goto discard_release;
278		}
279		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
280	} else {
281		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
282		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
283	}
284
285	sctp_bh_unlock_sock(sk);
286
287	/* Release the asoc/ep ref we took in the lookup calls. */
288	if (asoc)
289		sctp_association_put(asoc);
290	else
291		sctp_endpoint_put(ep);
292
293	return 0;
294
295discard_it:
296	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
297	kfree_skb(skb);
298	return 0;
299
300discard_release:
301	/* Release the asoc/ep ref we took in the lookup calls. */
302	if (asoc)
303		sctp_association_put(asoc);
304	else
305		sctp_endpoint_put(ep);
306
307	goto discard_it;
308}
309
310/* Process the backlog queue of the socket.  Every skb on
311 * the backlog holds a ref on an association or endpoint.
312 * We hold this ref throughout the state machine to make
313 * sure that the structure we need is still around.
314 */
315int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316{
317	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
318	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
319	struct sctp_ep_common *rcvr = NULL;
320	int backloged = 0;
321
322	rcvr = chunk->rcvr;
323
324	/* If the rcvr is dead then the association or endpoint
325	 * has been deleted and we can safely drop the chunk
326	 * and refs that we are holding.
327	 */
328	if (rcvr->dead) {
329		sctp_chunk_free(chunk);
330		goto done;
331	}
332
333	if (unlikely(rcvr->sk != sk)) {
334		/* In this case, the association moved from one socket to
335		 * another.  We are currently sitting on the backlog of the
336		 * old socket, so we need to move.
337		 * However, since we are here in the process context we
338		 * need to take make sure that the user doesn't own
339		 * the new socket when we process the packet.
340		 * If the new socket is user-owned, queue the chunk to the
341		 * backlog of the new socket without dropping any refs.
342		 * Otherwise, we can safely push the chunk on the inqueue.
343		 */
344
345		sk = rcvr->sk;
346		sctp_bh_lock_sock(sk);
347
348		if (sock_owned_by_user(sk)) {
349			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
350				sctp_chunk_free(chunk);
351			else
352				backloged = 1;
353		} else
354			sctp_inq_push(inqueue, chunk);
355
356		sctp_bh_unlock_sock(sk);
357
358		/* If the chunk was backloged again, don't drop refs */
359		if (backloged)
360			return 0;
361	} else {
362		sctp_inq_push(inqueue, chunk);
363	}
364
365done:
366	/* Release the refs we took in sctp_add_backlog */
367	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
368		sctp_association_put(sctp_assoc(rcvr));
369	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
370		sctp_endpoint_put(sctp_ep(rcvr));
371	else
372		BUG();
373
374	return 0;
375}
376
377static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
378{
379	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
380	struct sctp_ep_common *rcvr = chunk->rcvr;
381	int ret;
382
383	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
384	if (!ret) {
385		/* Hold the assoc/ep while hanging on the backlog queue.
386		 * This way, we know structures we need will not disappear
387		 * from us
388		 */
389		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
390			sctp_association_hold(sctp_assoc(rcvr));
391		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
392			sctp_endpoint_hold(sctp_ep(rcvr));
393		else
394			BUG();
395	}
396	return ret;
397
398}
399
400/* Handle icmp frag needed error. */
401void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
402			   struct sctp_transport *t, __u32 pmtu)
403{
404	if (!t || (t->pathmtu <= pmtu))
405		return;
406
407	if (sock_owned_by_user(sk)) {
408		asoc->pmtu_pending = 1;
409		t->pmtu_pending = 1;
410		return;
411	}
412
413	if (t->param_flags & SPP_PMTUD_ENABLE) {
414		/* Update transports view of the MTU */
415		sctp_transport_update_pmtu(sk, t, pmtu);
416
417		/* Update association pmtu. */
418		sctp_assoc_sync_pmtu(sk, asoc);
419	}
420
421	/* Retransmit with the new pmtu setting.
422	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
423	 * Needed will never be sent, but if a message was sent before
424	 * PMTU discovery was disabled that was larger than the PMTU, it
425	 * would not be fragmented, so it must be re-transmitted fragmented.
426	 */
427	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
428}
429
430void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
431			struct sk_buff *skb)
432{
433	struct dst_entry *dst;
434
435	if (!t)
436		return;
437	dst = sctp_transport_dst_check(t);
438	if (dst)
439		dst->ops->redirect(dst, sk, skb);
440}
441
442/*
443 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
444 *
445 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
446 *        or a "Protocol Unreachable" treat this message as an abort
447 *        with the T bit set.
448 *
449 * This function sends an event to the state machine, which will abort the
450 * association.
451 *
452 */
453void sctp_icmp_proto_unreachable(struct sock *sk,
454			   struct sctp_association *asoc,
455			   struct sctp_transport *t)
456{
457	SCTP_DEBUG_PRINTK("%s\n",  __func__);
458
459	if (sock_owned_by_user(sk)) {
460		if (timer_pending(&t->proto_unreach_timer))
461			return;
462		else {
463			if (!mod_timer(&t->proto_unreach_timer,
464						jiffies + (HZ/20)))
465				sctp_association_hold(asoc);
466		}
467
468	} else {
469		if (timer_pending(&t->proto_unreach_timer) &&
470		    del_timer(&t->proto_unreach_timer))
471			sctp_association_put(asoc);
472
473		sctp_do_sm(SCTP_EVENT_T_OTHER,
474			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
475			   asoc->state, asoc->ep, asoc, t,
476			   GFP_ATOMIC);
477	}
478}
479
480/* Common lookup code for icmp/icmpv6 error handler. */
481struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
482			     struct sctphdr *sctphdr,
483			     struct sctp_association **app,
484			     struct sctp_transport **tpp)
485{
486	union sctp_addr saddr;
487	union sctp_addr daddr;
488	struct sctp_af *af;
489	struct sock *sk = NULL;
490	struct sctp_association *asoc;
491	struct sctp_transport *transport = NULL;
492	struct sctp_init_chunk *chunkhdr;
493	__u32 vtag = ntohl(sctphdr->vtag);
494	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
495
496	*app = NULL; *tpp = NULL;
497
498	af = sctp_get_af_specific(family);
499	if (unlikely(!af)) {
500		return NULL;
501	}
502
503	/* Initialize local addresses for lookups. */
504	af->from_skb(&saddr, skb, 1);
505	af->from_skb(&daddr, skb, 0);
506
507	/* Look for an association that matches the incoming ICMP error
508	 * packet.
509	 */
510	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
511	if (!asoc)
512		return NULL;
513
514	sk = asoc->base.sk;
515
516	/* RFC 4960, Appendix C. ICMP Handling
517	 *
518	 * ICMP6) An implementation MUST validate that the Verification Tag
519	 * contained in the ICMP message matches the Verification Tag of
520	 * the peer.  If the Verification Tag is not 0 and does NOT
521	 * match, discard the ICMP message.  If it is 0 and the ICMP
522	 * message contains enough bytes to verify that the chunk type is
523	 * an INIT chunk and that the Initiate Tag matches the tag of the
524	 * peer, continue with ICMP7.  If the ICMP message is too short
525	 * or the chunk type or the Initiate Tag does not match, silently
526	 * discard the packet.
527	 */
528	if (vtag == 0) {
529		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
530		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
531			  + sizeof(__be32) ||
532		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
533		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
534			goto out;
535		}
536	} else if (vtag != asoc->c.peer_vtag) {
537		goto out;
538	}
539
540	sctp_bh_lock_sock(sk);
541
542	/* If too many ICMPs get dropped on busy
543	 * servers this needs to be solved differently.
544	 */
545	if (sock_owned_by_user(sk))
546		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
547
548	*app = asoc;
549	*tpp = transport;
550	return sk;
551
552out:
553	if (asoc)
554		sctp_association_put(asoc);
555	return NULL;
556}
557
558/* Common cleanup code for icmp/icmpv6 error handler. */
559void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
560{
561	sctp_bh_unlock_sock(sk);
562	if (asoc)
563		sctp_association_put(asoc);
564}
565
566/*
567 * This routine is called by the ICMP module when it gets some
568 * sort of error condition.  If err < 0 then the socket should
569 * be closed and the error returned to the user.  If err > 0
570 * it's just the icmp type << 8 | icmp code.  After adjustment
571 * header points to the first 8 bytes of the sctp header.  We need
572 * to find the appropriate port.
573 *
574 * The locking strategy used here is very "optimistic". When
575 * someone else accesses the socket the ICMP is just dropped
576 * and for some paths there is no check at all.
577 * A more general error queue to queue errors for later handling
578 * is probably better.
579 *
580 */
581void sctp_v4_err(struct sk_buff *skb, __u32 info)
582{
583	const struct iphdr *iph = (const struct iphdr *)skb->data;
584	const int ihlen = iph->ihl * 4;
585	const int type = icmp_hdr(skb)->type;
586	const int code = icmp_hdr(skb)->code;
587	struct sock *sk;
588	struct sctp_association *asoc = NULL;
589	struct sctp_transport *transport;
590	struct inet_sock *inet;
591	sk_buff_data_t saveip, savesctp;
592	int err;
593	struct net *net = dev_net(skb->dev);
594
595	if (skb->len < ihlen + 8) {
596		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
597		return;
598	}
599
600	/* Fix up skb to look at the embedded net header. */
601	saveip = skb->network_header;
602	savesctp = skb->transport_header;
603	skb_reset_network_header(skb);
604	skb_set_transport_header(skb, ihlen);
605	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
606	/* Put back, the original values. */
607	skb->network_header = saveip;
608	skb->transport_header = savesctp;
609	if (!sk) {
610		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
611		return;
612	}
613	/* Warning:  The sock lock is held.  Remember to call
614	 * sctp_err_finish!
615	 */
616
617	switch (type) {
618	case ICMP_PARAMETERPROB:
619		err = EPROTO;
620		break;
621	case ICMP_DEST_UNREACH:
622		if (code > NR_ICMP_UNREACH)
623			goto out_unlock;
624
625		/* PMTU discovery (RFC1191) */
626		if (ICMP_FRAG_NEEDED == code) {
627			sctp_icmp_frag_needed(sk, asoc, transport, info);
628			goto out_unlock;
629		}
630		else {
631			if (ICMP_PROT_UNREACH == code) {
632				sctp_icmp_proto_unreachable(sk, asoc,
633							    transport);
634				goto out_unlock;
635			}
636		}
637		err = icmp_err_convert[code].errno;
638		break;
639	case ICMP_TIME_EXCEEDED:
640		/* Ignore any time exceeded errors due to fragment reassembly
641		 * timeouts.
642		 */
643		if (ICMP_EXC_FRAGTIME == code)
644			goto out_unlock;
645
646		err = EHOSTUNREACH;
647		break;
648	case ICMP_REDIRECT:
649		sctp_icmp_redirect(sk, transport, skb);
650		err = 0;
651		break;
652	default:
653		goto out_unlock;
654	}
655
656	inet = inet_sk(sk);
657	if (!sock_owned_by_user(sk) && inet->recverr) {
658		sk->sk_err = err;
659		sk->sk_error_report(sk);
660	} else {  /* Only an error on timeout */
661		sk->sk_err_soft = err;
662	}
663
664out_unlock:
665	sctp_err_finish(sk, asoc);
666}
667
668/*
669 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
670 *
671 * This function scans all the chunks in the OOTB packet to determine if
672 * the packet should be discarded right away.  If a response might be needed
673 * for this packet, or, if further processing is possible, the packet will
674 * be queued to a proper inqueue for the next phase of handling.
675 *
676 * Output:
677 * Return 0 - If further processing is needed.
678 * Return 1 - If the packet can be discarded right away.
679 */
680static int sctp_rcv_ootb(struct sk_buff *skb)
681{
682	sctp_chunkhdr_t *ch;
683	__u8 *ch_end;
684
685	ch = (sctp_chunkhdr_t *) skb->data;
686
687	/* Scan through all the chunks in the packet.  */
688	do {
689		/* Break out if chunk length is less then minimal. */
690		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
691			break;
692
693		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
694		if (ch_end > skb_tail_pointer(skb))
695			break;
696
697		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
698		 * receiver MUST silently discard the OOTB packet and take no
699		 * further action.
700		 */
701		if (SCTP_CID_ABORT == ch->type)
702			goto discard;
703
704		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
705		 * chunk, the receiver should silently discard the packet
706		 * and take no further action.
707		 */
708		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
709			goto discard;
710
711		/* RFC 4460, 2.11.2
712		 * This will discard packets with INIT chunk bundled as
713		 * subsequent chunks in the packet.  When INIT is first,
714		 * the normal INIT processing will discard the chunk.
715		 */
716		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
717			goto discard;
718
719		ch = (sctp_chunkhdr_t *) ch_end;
720	} while (ch_end < skb_tail_pointer(skb));
721
722	return 0;
723
724discard:
725	return 1;
726}
727
728/* Insert endpoint into the hash table.  */
729static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
730{
731	struct net *net = sock_net(ep->base.sk);
732	struct sctp_ep_common *epb;
733	struct sctp_hashbucket *head;
734
735	epb = &ep->base;
736
737	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
738	head = &sctp_ep_hashtable[epb->hashent];
739
740	sctp_write_lock(&head->lock);
741	hlist_add_head(&epb->node, &head->chain);
742	sctp_write_unlock(&head->lock);
743}
744
745/* Add an endpoint to the hash. Local BH-safe. */
746void sctp_hash_endpoint(struct sctp_endpoint *ep)
747{
748	sctp_local_bh_disable();
749	__sctp_hash_endpoint(ep);
750	sctp_local_bh_enable();
751}
752
753/* Remove endpoint from the hash table.  */
754static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
755{
756	struct net *net = sock_net(ep->base.sk);
757	struct sctp_hashbucket *head;
758	struct sctp_ep_common *epb;
759
760	epb = &ep->base;
761
762	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
763
764	head = &sctp_ep_hashtable[epb->hashent];
765
766	sctp_write_lock(&head->lock);
767	hlist_del_init(&epb->node);
768	sctp_write_unlock(&head->lock);
769}
770
771/* Remove endpoint from the hash.  Local BH-safe. */
772void sctp_unhash_endpoint(struct sctp_endpoint *ep)
773{
774	sctp_local_bh_disable();
775	__sctp_unhash_endpoint(ep);
776	sctp_local_bh_enable();
777}
778
779/* Look up an endpoint. */
780static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
781						const union sctp_addr *laddr)
782{
783	struct sctp_hashbucket *head;
784	struct sctp_ep_common *epb;
785	struct sctp_endpoint *ep;
786	struct hlist_node *node;
787	int hash;
788
789	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
790	head = &sctp_ep_hashtable[hash];
791	read_lock(&head->lock);
792	sctp_for_each_hentry(epb, node, &head->chain) {
793		ep = sctp_ep(epb);
794		if (sctp_endpoint_is_match(ep, net, laddr))
795			goto hit;
796	}
797
798	ep = sctp_sk(net->sctp.ctl_sock)->ep;
799
800hit:
801	sctp_endpoint_hold(ep);
802	read_unlock(&head->lock);
803	return ep;
804}
805
806/* Insert association into the hash table.  */
807static void __sctp_hash_established(struct sctp_association *asoc)
808{
809	struct net *net = sock_net(asoc->base.sk);
810	struct sctp_ep_common *epb;
811	struct sctp_hashbucket *head;
812
813	epb = &asoc->base;
814
815	/* Calculate which chain this entry will belong to. */
816	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
817					 asoc->peer.port);
818
819	head = &sctp_assoc_hashtable[epb->hashent];
820
821	sctp_write_lock(&head->lock);
822	hlist_add_head(&epb->node, &head->chain);
823	sctp_write_unlock(&head->lock);
824}
825
826/* Add an association to the hash. Local BH-safe. */
827void sctp_hash_established(struct sctp_association *asoc)
828{
829	if (asoc->temp)
830		return;
831
832	sctp_local_bh_disable();
833	__sctp_hash_established(asoc);
834	sctp_local_bh_enable();
835}
836
837/* Remove association from the hash table.  */
838static void __sctp_unhash_established(struct sctp_association *asoc)
839{
840	struct net *net = sock_net(asoc->base.sk);
841	struct sctp_hashbucket *head;
842	struct sctp_ep_common *epb;
843
844	epb = &asoc->base;
845
846	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
847					 asoc->peer.port);
848
849	head = &sctp_assoc_hashtable[epb->hashent];
850
851	sctp_write_lock(&head->lock);
852	hlist_del_init(&epb->node);
853	sctp_write_unlock(&head->lock);
854}
855
856/* Remove association from the hash table.  Local BH-safe. */
857void sctp_unhash_established(struct sctp_association *asoc)
858{
859	if (asoc->temp)
860		return;
861
862	sctp_local_bh_disable();
863	__sctp_unhash_established(asoc);
864	sctp_local_bh_enable();
865}
866
867/* Look up an association. */
868static struct sctp_association *__sctp_lookup_association(
869					struct net *net,
870					const union sctp_addr *local,
871					const union sctp_addr *peer,
872					struct sctp_transport **pt)
873{
874	struct sctp_hashbucket *head;
875	struct sctp_ep_common *epb;
876	struct sctp_association *asoc;
877	struct sctp_transport *transport;
878	struct hlist_node *node;
879	int hash;
880
881	/* Optimize here for direct hit, only listening connections can
882	 * have wildcards anyways.
883	 */
884	hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port),
885				 ntohs(peer->v4.sin_port));
886	head = &sctp_assoc_hashtable[hash];
887	read_lock(&head->lock);
888	sctp_for_each_hentry(epb, node, &head->chain) {
889		asoc = sctp_assoc(epb);
890		transport = sctp_assoc_is_match(asoc, net, local, peer);
891		if (transport)
892			goto hit;
893	}
894
895	read_unlock(&head->lock);
896
897	return NULL;
898
899hit:
900	*pt = transport;
901	sctp_association_hold(asoc);
902	read_unlock(&head->lock);
903	return asoc;
904}
905
906/* Look up an association. BH-safe. */
907SCTP_STATIC
908struct sctp_association *sctp_lookup_association(struct net *net,
909						 const union sctp_addr *laddr,
910						 const union sctp_addr *paddr,
911					    struct sctp_transport **transportp)
912{
913	struct sctp_association *asoc;
914
915	sctp_local_bh_disable();
916	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
917	sctp_local_bh_enable();
918
919	return asoc;
920}
921
922/* Is there an association matching the given local and peer addresses? */
923int sctp_has_association(struct net *net,
924			 const union sctp_addr *laddr,
925			 const union sctp_addr *paddr)
926{
927	struct sctp_association *asoc;
928	struct sctp_transport *transport;
929
930	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
931		sctp_association_put(asoc);
932		return 1;
933	}
934
935	return 0;
936}
937
938/*
939 * SCTP Implementors Guide, 2.18 Handling of address
940 * parameters within the INIT or INIT-ACK.
941 *
942 * D) When searching for a matching TCB upon reception of an INIT
943 *    or INIT-ACK chunk the receiver SHOULD use not only the
944 *    source address of the packet (containing the INIT or
945 *    INIT-ACK) but the receiver SHOULD also use all valid
946 *    address parameters contained within the chunk.
947 *
948 * 2.18.3 Solution description
949 *
950 * This new text clearly specifies to an implementor the need
951 * to look within the INIT or INIT-ACK. Any implementation that
952 * does not do this, may not be able to establish associations
953 * in certain circumstances.
954 *
955 */
956static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
957	struct sk_buff *skb,
958	const union sctp_addr *laddr, struct sctp_transport **transportp)
959{
960	struct sctp_association *asoc;
961	union sctp_addr addr;
962	union sctp_addr *paddr = &addr;
963	struct sctphdr *sh = sctp_hdr(skb);
964	union sctp_params params;
965	sctp_init_chunk_t *init;
966	struct sctp_transport *transport;
967	struct sctp_af *af;
968
969	/*
970	 * This code will NOT touch anything inside the chunk--it is
971	 * strictly READ-ONLY.
972	 *
973	 * RFC 2960 3  SCTP packet Format
974	 *
975	 * Multiple chunks can be bundled into one SCTP packet up to
976	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
977	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
978	 * other chunk in a packet.  See Section 6.10 for more details
979	 * on chunk bundling.
980	 */
981
982	/* Find the start of the TLVs and the end of the chunk.  This is
983	 * the region we search for address parameters.
984	 */
985	init = (sctp_init_chunk_t *)skb->data;
986
987	/* Walk the parameters looking for embedded addresses. */
988	sctp_walk_params(params, init, init_hdr.params) {
989
990		/* Note: Ignoring hostname addresses. */
991		af = sctp_get_af_specific(param_type2af(params.p->type));
992		if (!af)
993			continue;
994
995		af->from_addr_param(paddr, params.addr, sh->source, 0);
996
997		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
998		if (asoc)
999			return asoc;
1000	}
1001
1002	return NULL;
1003}
1004
1005/* ADD-IP, Section 5.2
1006 * When an endpoint receives an ASCONF Chunk from the remote peer
1007 * special procedures may be needed to identify the association the
1008 * ASCONF Chunk is associated with. To properly find the association
1009 * the following procedures SHOULD be followed:
1010 *
1011 * D2) If the association is not found, use the address found in the
1012 * Address Parameter TLV combined with the port number found in the
1013 * SCTP common header. If found proceed to rule D4.
1014 *
1015 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1016 * address found in the ASCONF Address Parameter TLV of each of the
1017 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1018 */
1019static struct sctp_association *__sctp_rcv_asconf_lookup(
1020					struct net *net,
1021					sctp_chunkhdr_t *ch,
1022					const union sctp_addr *laddr,
1023					__be16 peer_port,
1024					struct sctp_transport **transportp)
1025{
1026	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1027	struct sctp_af *af;
1028	union sctp_addr_param *param;
1029	union sctp_addr paddr;
1030
1031	/* Skip over the ADDIP header and find the Address parameter */
1032	param = (union sctp_addr_param *)(asconf + 1);
1033
1034	af = sctp_get_af_specific(param_type2af(param->p.type));
1035	if (unlikely(!af))
1036		return NULL;
1037
1038	af->from_addr_param(&paddr, param, peer_port, 0);
1039
1040	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1041}
1042
1043
1044/* SCTP-AUTH, Section 6.3:
1045*    If the receiver does not find a STCB for a packet containing an AUTH
1046*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1047*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1048*    association.
1049*
1050* This means that any chunks that can help us identify the association need
1051* to be looked at to find this association.
1052*/
1053static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1054				      struct sk_buff *skb,
1055				      const union sctp_addr *laddr,
1056				      struct sctp_transport **transportp)
1057{
1058	struct sctp_association *asoc = NULL;
1059	sctp_chunkhdr_t *ch;
1060	int have_auth = 0;
1061	unsigned int chunk_num = 1;
1062	__u8 *ch_end;
1063
1064	/* Walk through the chunks looking for AUTH or ASCONF chunks
1065	 * to help us find the association.
1066	 */
1067	ch = (sctp_chunkhdr_t *) skb->data;
1068	do {
1069		/* Break out if chunk length is less then minimal. */
1070		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1071			break;
1072
1073		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1074		if (ch_end > skb_tail_pointer(skb))
1075			break;
1076
1077		switch(ch->type) {
1078		    case SCTP_CID_AUTH:
1079			    have_auth = chunk_num;
1080			    break;
1081
1082		    case SCTP_CID_COOKIE_ECHO:
1083			    /* If a packet arrives containing an AUTH chunk as
1084			     * a first chunk, a COOKIE-ECHO chunk as the second
1085			     * chunk, and possibly more chunks after them, and
1086			     * the receiver does not have an STCB for that
1087			     * packet, then authentication is based on
1088			     * the contents of the COOKIE- ECHO chunk.
1089			     */
1090			    if (have_auth == 1 && chunk_num == 2)
1091				    return NULL;
1092			    break;
1093
1094		    case SCTP_CID_ASCONF:
1095			    if (have_auth || sctp_addip_noauth)
1096				    asoc = __sctp_rcv_asconf_lookup(
1097							net, ch, laddr,
1098							sctp_hdr(skb)->source,
1099							transportp);
1100		    default:
1101			    break;
1102		}
1103
1104		if (asoc)
1105			break;
1106
1107		ch = (sctp_chunkhdr_t *) ch_end;
1108		chunk_num++;
1109	} while (ch_end < skb_tail_pointer(skb));
1110
1111	return asoc;
1112}
1113
1114/*
1115 * There are circumstances when we need to look inside the SCTP packet
1116 * for information to help us find the association.   Examples
1117 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1118 * chunks.
1119 */
1120static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1121				      struct sk_buff *skb,
1122				      const union sctp_addr *laddr,
1123				      struct sctp_transport **transportp)
1124{
1125	sctp_chunkhdr_t *ch;
1126
1127	ch = (sctp_chunkhdr_t *) skb->data;
1128
1129	/* The code below will attempt to walk the chunk and extract
1130	 * parameter information.  Before we do that, we need to verify
1131	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1132	 * walk off the end.
1133	 */
1134	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1135		return NULL;
1136
1137	/* If this is INIT/INIT-ACK look inside the chunk too. */
1138	switch (ch->type) {
1139	case SCTP_CID_INIT:
1140	case SCTP_CID_INIT_ACK:
1141		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1142		break;
1143
1144	default:
1145		return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1146		break;
1147	}
1148
1149
1150	return NULL;
1151}
1152
1153/* Lookup an association for an inbound skb. */
1154static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1155				      struct sk_buff *skb,
1156				      const union sctp_addr *paddr,
1157				      const union sctp_addr *laddr,
1158				      struct sctp_transport **transportp)
1159{
1160	struct sctp_association *asoc;
1161
1162	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1163
1164	/* Further lookup for INIT/INIT-ACK packets.
1165	 * SCTP Implementors Guide, 2.18 Handling of address
1166	 * parameters within the INIT or INIT-ACK.
1167	 */
1168	if (!asoc)
1169		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1170
1171	return asoc;
1172}
1173