input.c revision 6a435732accd9e3f4a8d9c320fabe578b1bf5add
1/* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 *                 ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING.  If not, write to
27 * the Free Software Foundation, 59 Temple Place - Suite 330,
28 * Boston, MA 02111-1307, USA.
29 *
30 * Please send any bug reports or fixes you make to the
31 * email address(es):
32 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33 *
34 * Or submit a bug report through the following website:
35 *    http://www.sf.net/projects/lksctp
36 *
37 * Written or modified by:
38 *    La Monte H.P. Yarroll <piggy@acm.org>
39 *    Karl Knutson <karl@athena.chicago.il.us>
40 *    Xingang Guo <xingang.guo@intel.com>
41 *    Jon Grimm <jgrimm@us.ibm.com>
42 *    Hui Huang <hui.huang@nokia.com>
43 *    Daisy Chang <daisyc@us.ibm.com>
44 *    Sridhar Samudrala <sri@us.ibm.com>
45 *    Ardelle Fan <ardelle.fan@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51#include <linux/types.h>
52#include <linux/list.h> /* For struct list_head */
53#include <linux/socket.h>
54#include <linux/ip.h>
55#include <linux/time.h> /* For struct timeval */
56#include <linux/slab.h>
57#include <net/ip.h>
58#include <net/icmp.h>
59#include <net/snmp.h>
60#include <net/sock.h>
61#include <net/xfrm.h>
62#include <net/sctp/sctp.h>
63#include <net/sctp/sm.h>
64#include <net/sctp/checksum.h>
65#include <net/net_namespace.h>
66
67/* Forward declarations for internal helpers. */
68static int sctp_rcv_ootb(struct sk_buff *);
69static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
70				      const union sctp_addr *laddr,
71				      const union sctp_addr *paddr,
72				      struct sctp_transport **transportp);
73static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
74static struct sctp_association *__sctp_lookup_association(
75					const union sctp_addr *local,
76					const union sctp_addr *peer,
77					struct sctp_transport **pt);
78
79static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
80
81
82/* Calculate the SCTP checksum of an SCTP packet.  */
83static inline int sctp_rcv_checksum(struct sk_buff *skb)
84{
85	struct sctphdr *sh = sctp_hdr(skb);
86	__le32 cmp = sh->checksum;
87	struct sk_buff *list;
88	__le32 val;
89	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
90
91	skb_walk_frags(skb, list)
92		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
93					tmp);
94
95	val = sctp_end_cksum(tmp);
96
97	if (val != cmp) {
98		/* CRC failure, dump it. */
99		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
100		return -1;
101	}
102	return 0;
103}
104
105struct sctp_input_cb {
106	union {
107		struct inet_skb_parm	h4;
108#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
109		struct inet6_skb_parm	h6;
110#endif
111	} header;
112	struct sctp_chunk *chunk;
113};
114#define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
115
116/*
117 * This is the routine which IP calls when receiving an SCTP packet.
118 */
119int sctp_rcv(struct sk_buff *skb)
120{
121	struct sock *sk;
122	struct sctp_association *asoc;
123	struct sctp_endpoint *ep = NULL;
124	struct sctp_ep_common *rcvr;
125	struct sctp_transport *transport = NULL;
126	struct sctp_chunk *chunk;
127	struct sctphdr *sh;
128	union sctp_addr src;
129	union sctp_addr dest;
130	int family;
131	struct sctp_af *af;
132
133	if (skb->pkt_type!=PACKET_HOST)
134		goto discard_it;
135
136	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
137
138	if (skb_linearize(skb))
139		goto discard_it;
140
141	sh = sctp_hdr(skb);
142
143	/* Pull up the IP and SCTP headers. */
144	__skb_pull(skb, skb_transport_offset(skb));
145	if (skb->len < sizeof(struct sctphdr))
146		goto discard_it;
147	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
148		  sctp_rcv_checksum(skb) < 0)
149		goto discard_it;
150
151	skb_pull(skb, sizeof(struct sctphdr));
152
153	/* Make sure we at least have chunk headers worth of data left. */
154	if (skb->len < sizeof(struct sctp_chunkhdr))
155		goto discard_it;
156
157	family = ipver2af(ip_hdr(skb)->version);
158	af = sctp_get_af_specific(family);
159	if (unlikely(!af))
160		goto discard_it;
161
162	/* Initialize local addresses for lookups. */
163	af->from_skb(&src, skb, 1);
164	af->from_skb(&dest, skb, 0);
165
166	/* If the packet is to or from a non-unicast address,
167	 * silently discard the packet.
168	 *
169	 * This is not clearly defined in the RFC except in section
170	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
171	 * Transmission Protocol" 2.1, "It is important to note that the
172	 * IP address of an SCTP transport address must be a routable
173	 * unicast address.  In other words, IP multicast addresses and
174	 * IP broadcast addresses cannot be used in an SCTP transport
175	 * address."
176	 */
177	if (!af->addr_valid(&src, NULL, skb) ||
178	    !af->addr_valid(&dest, NULL, skb))
179		goto discard_it;
180
181	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
182
183	if (!asoc)
184		ep = __sctp_rcv_lookup_endpoint(&dest);
185
186	/* Retrieve the common input handling substructure. */
187	rcvr = asoc ? &asoc->base : &ep->base;
188	sk = rcvr->sk;
189
190	/*
191	 * If a frame arrives on an interface and the receiving socket is
192	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
193	 */
194	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
195	{
196		if (asoc) {
197			sctp_association_put(asoc);
198			asoc = NULL;
199		} else {
200			sctp_endpoint_put(ep);
201			ep = NULL;
202		}
203		sk = sctp_get_ctl_sock();
204		ep = sctp_sk(sk)->ep;
205		sctp_endpoint_hold(ep);
206		rcvr = &ep->base;
207	}
208
209	/*
210	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
211	 * An SCTP packet is called an "out of the blue" (OOTB)
212	 * packet if it is correctly formed, i.e., passed the
213	 * receiver's checksum check, but the receiver is not
214	 * able to identify the association to which this
215	 * packet belongs.
216	 */
217	if (!asoc) {
218		if (sctp_rcv_ootb(skb)) {
219			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
220			goto discard_release;
221		}
222	}
223
224	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
225		goto discard_release;
226	nf_reset(skb);
227
228	if (sk_filter(sk, skb))
229		goto discard_release;
230
231	/* Create an SCTP packet structure. */
232	chunk = sctp_chunkify(skb, asoc, sk);
233	if (!chunk)
234		goto discard_release;
235	SCTP_INPUT_CB(skb)->chunk = chunk;
236
237	/* Remember what endpoint is to handle this packet. */
238	chunk->rcvr = rcvr;
239
240	/* Remember the SCTP header. */
241	chunk->sctp_hdr = sh;
242
243	/* Set the source and destination addresses of the incoming chunk.  */
244	sctp_init_addrs(chunk, &src, &dest);
245
246	/* Remember where we came from.  */
247	chunk->transport = transport;
248
249	/* Acquire access to the sock lock. Note: We are safe from other
250	 * bottom halves on this lock, but a user may be in the lock too,
251	 * so check if it is busy.
252	 */
253	sctp_bh_lock_sock(sk);
254
255	if (sk != rcvr->sk) {
256		/* Our cached sk is different from the rcvr->sk.  This is
257		 * because migrate()/accept() may have moved the association
258		 * to a new socket and released all the sockets.  So now we
259		 * are holding a lock on the old socket while the user may
260		 * be doing something with the new socket.  Switch our veiw
261		 * of the current sk.
262		 */
263		sctp_bh_unlock_sock(sk);
264		sk = rcvr->sk;
265		sctp_bh_lock_sock(sk);
266	}
267
268	if (sock_owned_by_user(sk)) {
269		if (sctp_add_backlog(sk, skb)) {
270			sctp_bh_unlock_sock(sk);
271			sctp_chunk_free(chunk);
272			skb = NULL; /* sctp_chunk_free already freed the skb */
273			goto discard_release;
274		}
275		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
276	} else {
277		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
278		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
279	}
280
281	sctp_bh_unlock_sock(sk);
282
283	/* Release the asoc/ep ref we took in the lookup calls. */
284	if (asoc)
285		sctp_association_put(asoc);
286	else
287		sctp_endpoint_put(ep);
288
289	return 0;
290
291discard_it:
292	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
293	kfree_skb(skb);
294	return 0;
295
296discard_release:
297	/* Release the asoc/ep ref we took in the lookup calls. */
298	if (asoc)
299		sctp_association_put(asoc);
300	else
301		sctp_endpoint_put(ep);
302
303	goto discard_it;
304}
305
306/* Process the backlog queue of the socket.  Every skb on
307 * the backlog holds a ref on an association or endpoint.
308 * We hold this ref throughout the state machine to make
309 * sure that the structure we need is still around.
310 */
311int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
312{
313	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
314	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
315	struct sctp_ep_common *rcvr = NULL;
316	int backloged = 0;
317
318	rcvr = chunk->rcvr;
319
320	/* If the rcvr is dead then the association or endpoint
321	 * has been deleted and we can safely drop the chunk
322	 * and refs that we are holding.
323	 */
324	if (rcvr->dead) {
325		sctp_chunk_free(chunk);
326		goto done;
327	}
328
329	if (unlikely(rcvr->sk != sk)) {
330		/* In this case, the association moved from one socket to
331		 * another.  We are currently sitting on the backlog of the
332		 * old socket, so we need to move.
333		 * However, since we are here in the process context we
334		 * need to take make sure that the user doesn't own
335		 * the new socket when we process the packet.
336		 * If the new socket is user-owned, queue the chunk to the
337		 * backlog of the new socket without dropping any refs.
338		 * Otherwise, we can safely push the chunk on the inqueue.
339		 */
340
341		sk = rcvr->sk;
342		sctp_bh_lock_sock(sk);
343
344		if (sock_owned_by_user(sk)) {
345			if (sk_add_backlog(sk, skb))
346				sctp_chunk_free(chunk);
347			else
348				backloged = 1;
349		} else
350			sctp_inq_push(inqueue, chunk);
351
352		sctp_bh_unlock_sock(sk);
353
354		/* If the chunk was backloged again, don't drop refs */
355		if (backloged)
356			return 0;
357	} else {
358		sctp_inq_push(inqueue, chunk);
359	}
360
361done:
362	/* Release the refs we took in sctp_add_backlog */
363	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
364		sctp_association_put(sctp_assoc(rcvr));
365	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
366		sctp_endpoint_put(sctp_ep(rcvr));
367	else
368		BUG();
369
370	return 0;
371}
372
373static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
374{
375	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
376	struct sctp_ep_common *rcvr = chunk->rcvr;
377	int ret;
378
379	ret = sk_add_backlog(sk, skb);
380	if (!ret) {
381		/* Hold the assoc/ep while hanging on the backlog queue.
382		 * This way, we know structures we need will not disappear
383		 * from us
384		 */
385		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
386			sctp_association_hold(sctp_assoc(rcvr));
387		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
388			sctp_endpoint_hold(sctp_ep(rcvr));
389		else
390			BUG();
391	}
392	return ret;
393
394}
395
396/* Handle icmp frag needed error. */
397void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
398			   struct sctp_transport *t, __u32 pmtu)
399{
400	if (!t || (t->pathmtu <= pmtu))
401		return;
402
403	if (sock_owned_by_user(sk)) {
404		asoc->pmtu_pending = 1;
405		t->pmtu_pending = 1;
406		return;
407	}
408
409	if (t->param_flags & SPP_PMTUD_ENABLE) {
410		/* Update transports view of the MTU */
411		sctp_transport_update_pmtu(t, pmtu);
412
413		/* Update association pmtu. */
414		sctp_assoc_sync_pmtu(asoc);
415	}
416
417	/* Retransmit with the new pmtu setting.
418	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
419	 * Needed will never be sent, but if a message was sent before
420	 * PMTU discovery was disabled that was larger than the PMTU, it
421	 * would not be fragmented, so it must be re-transmitted fragmented.
422	 */
423	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
424}
425
426/*
427 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
428 *
429 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
430 *        or a "Protocol Unreachable" treat this message as an abort
431 *        with the T bit set.
432 *
433 * This function sends an event to the state machine, which will abort the
434 * association.
435 *
436 */
437void sctp_icmp_proto_unreachable(struct sock *sk,
438			   struct sctp_association *asoc,
439			   struct sctp_transport *t)
440{
441	SCTP_DEBUG_PRINTK("%s\n",  __func__);
442
443	if (sock_owned_by_user(sk)) {
444		if (timer_pending(&t->proto_unreach_timer))
445			return;
446		else {
447			if (!mod_timer(&t->proto_unreach_timer,
448						jiffies + (HZ/20)))
449				sctp_association_hold(asoc);
450		}
451
452	} else {
453		if (timer_pending(&t->proto_unreach_timer) &&
454		    del_timer(&t->proto_unreach_timer))
455			sctp_association_put(asoc);
456
457		sctp_do_sm(SCTP_EVENT_T_OTHER,
458			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
459			   asoc->state, asoc->ep, asoc, t,
460			   GFP_ATOMIC);
461	}
462}
463
464/* Common lookup code for icmp/icmpv6 error handler. */
465struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
466			     struct sctphdr *sctphdr,
467			     struct sctp_association **app,
468			     struct sctp_transport **tpp)
469{
470	union sctp_addr saddr;
471	union sctp_addr daddr;
472	struct sctp_af *af;
473	struct sock *sk = NULL;
474	struct sctp_association *asoc;
475	struct sctp_transport *transport = NULL;
476	struct sctp_init_chunk *chunkhdr;
477	__u32 vtag = ntohl(sctphdr->vtag);
478	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
479
480	*app = NULL; *tpp = NULL;
481
482	af = sctp_get_af_specific(family);
483	if (unlikely(!af)) {
484		return NULL;
485	}
486
487	/* Initialize local addresses for lookups. */
488	af->from_skb(&saddr, skb, 1);
489	af->from_skb(&daddr, skb, 0);
490
491	/* Look for an association that matches the incoming ICMP error
492	 * packet.
493	 */
494	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
495	if (!asoc)
496		return NULL;
497
498	sk = asoc->base.sk;
499
500	/* RFC 4960, Appendix C. ICMP Handling
501	 *
502	 * ICMP6) An implementation MUST validate that the Verification Tag
503	 * contained in the ICMP message matches the Verification Tag of
504	 * the peer.  If the Verification Tag is not 0 and does NOT
505	 * match, discard the ICMP message.  If it is 0 and the ICMP
506	 * message contains enough bytes to verify that the chunk type is
507	 * an INIT chunk and that the Initiate Tag matches the tag of the
508	 * peer, continue with ICMP7.  If the ICMP message is too short
509	 * or the chunk type or the Initiate Tag does not match, silently
510	 * discard the packet.
511	 */
512	if (vtag == 0) {
513		chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr
514				+ sizeof(struct sctphdr));
515		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
516			  + sizeof(__be32) ||
517		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
518		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
519			goto out;
520		}
521	} else if (vtag != asoc->c.peer_vtag) {
522		goto out;
523	}
524
525	sctp_bh_lock_sock(sk);
526
527	/* If too many ICMPs get dropped on busy
528	 * servers this needs to be solved differently.
529	 */
530	if (sock_owned_by_user(sk))
531		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
532
533	*app = asoc;
534	*tpp = transport;
535	return sk;
536
537out:
538	if (asoc)
539		sctp_association_put(asoc);
540	return NULL;
541}
542
543/* Common cleanup code for icmp/icmpv6 error handler. */
544void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
545{
546	sctp_bh_unlock_sock(sk);
547	if (asoc)
548		sctp_association_put(asoc);
549}
550
551/*
552 * This routine is called by the ICMP module when it gets some
553 * sort of error condition.  If err < 0 then the socket should
554 * be closed and the error returned to the user.  If err > 0
555 * it's just the icmp type << 8 | icmp code.  After adjustment
556 * header points to the first 8 bytes of the sctp header.  We need
557 * to find the appropriate port.
558 *
559 * The locking strategy used here is very "optimistic". When
560 * someone else accesses the socket the ICMP is just dropped
561 * and for some paths there is no check at all.
562 * A more general error queue to queue errors for later handling
563 * is probably better.
564 *
565 */
566void sctp_v4_err(struct sk_buff *skb, __u32 info)
567{
568	struct iphdr *iph = (struct iphdr *)skb->data;
569	const int ihlen = iph->ihl * 4;
570	const int type = icmp_hdr(skb)->type;
571	const int code = icmp_hdr(skb)->code;
572	struct sock *sk;
573	struct sctp_association *asoc = NULL;
574	struct sctp_transport *transport;
575	struct inet_sock *inet;
576	sk_buff_data_t saveip, savesctp;
577	int err;
578
579	if (skb->len < ihlen + 8) {
580		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
581		return;
582	}
583
584	/* Fix up skb to look at the embedded net header. */
585	saveip = skb->network_header;
586	savesctp = skb->transport_header;
587	skb_reset_network_header(skb);
588	skb_set_transport_header(skb, ihlen);
589	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
590	/* Put back, the original values. */
591	skb->network_header = saveip;
592	skb->transport_header = savesctp;
593	if (!sk) {
594		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
595		return;
596	}
597	/* Warning:  The sock lock is held.  Remember to call
598	 * sctp_err_finish!
599	 */
600
601	switch (type) {
602	case ICMP_PARAMETERPROB:
603		err = EPROTO;
604		break;
605	case ICMP_DEST_UNREACH:
606		if (code > NR_ICMP_UNREACH)
607			goto out_unlock;
608
609		/* PMTU discovery (RFC1191) */
610		if (ICMP_FRAG_NEEDED == code) {
611			sctp_icmp_frag_needed(sk, asoc, transport, info);
612			goto out_unlock;
613		}
614		else {
615			if (ICMP_PROT_UNREACH == code) {
616				sctp_icmp_proto_unreachable(sk, asoc,
617							    transport);
618				goto out_unlock;
619			}
620		}
621		err = icmp_err_convert[code].errno;
622		break;
623	case ICMP_TIME_EXCEEDED:
624		/* Ignore any time exceeded errors due to fragment reassembly
625		 * timeouts.
626		 */
627		if (ICMP_EXC_FRAGTIME == code)
628			goto out_unlock;
629
630		err = EHOSTUNREACH;
631		break;
632	default:
633		goto out_unlock;
634	}
635
636	inet = inet_sk(sk);
637	if (!sock_owned_by_user(sk) && inet->recverr) {
638		sk->sk_err = err;
639		sk->sk_error_report(sk);
640	} else {  /* Only an error on timeout */
641		sk->sk_err_soft = err;
642	}
643
644out_unlock:
645	sctp_err_finish(sk, asoc);
646}
647
648/*
649 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
650 *
651 * This function scans all the chunks in the OOTB packet to determine if
652 * the packet should be discarded right away.  If a response might be needed
653 * for this packet, or, if further processing is possible, the packet will
654 * be queued to a proper inqueue for the next phase of handling.
655 *
656 * Output:
657 * Return 0 - If further processing is needed.
658 * Return 1 - If the packet can be discarded right away.
659 */
660static int sctp_rcv_ootb(struct sk_buff *skb)
661{
662	sctp_chunkhdr_t *ch;
663	__u8 *ch_end;
664	sctp_errhdr_t *err;
665
666	ch = (sctp_chunkhdr_t *) skb->data;
667
668	/* Scan through all the chunks in the packet.  */
669	do {
670		/* Break out if chunk length is less then minimal. */
671		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
672			break;
673
674		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
675		if (ch_end > skb_tail_pointer(skb))
676			break;
677
678		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
679		 * receiver MUST silently discard the OOTB packet and take no
680		 * further action.
681		 */
682		if (SCTP_CID_ABORT == ch->type)
683			goto discard;
684
685		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
686		 * chunk, the receiver should silently discard the packet
687		 * and take no further action.
688		 */
689		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
690			goto discard;
691
692		/* RFC 4460, 2.11.2
693		 * This will discard packets with INIT chunk bundled as
694		 * subsequent chunks in the packet.  When INIT is first,
695		 * the normal INIT processing will discard the chunk.
696		 */
697		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
698			goto discard;
699
700		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
701		 * or a COOKIE ACK the SCTP Packet should be silently
702		 * discarded.
703		 */
704		if (SCTP_CID_COOKIE_ACK == ch->type)
705			goto discard;
706
707		if (SCTP_CID_ERROR == ch->type) {
708			sctp_walk_errors(err, ch) {
709				if (SCTP_ERROR_STALE_COOKIE == err->cause)
710					goto discard;
711			}
712		}
713
714		ch = (sctp_chunkhdr_t *) ch_end;
715	} while (ch_end < skb_tail_pointer(skb));
716
717	return 0;
718
719discard:
720	return 1;
721}
722
723/* Insert endpoint into the hash table.  */
724static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
725{
726	struct sctp_ep_common *epb;
727	struct sctp_hashbucket *head;
728
729	epb = &ep->base;
730
731	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
732	head = &sctp_ep_hashtable[epb->hashent];
733
734	sctp_write_lock(&head->lock);
735	hlist_add_head(&epb->node, &head->chain);
736	sctp_write_unlock(&head->lock);
737}
738
739/* Add an endpoint to the hash. Local BH-safe. */
740void sctp_hash_endpoint(struct sctp_endpoint *ep)
741{
742	sctp_local_bh_disable();
743	__sctp_hash_endpoint(ep);
744	sctp_local_bh_enable();
745}
746
747/* Remove endpoint from the hash table.  */
748static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
749{
750	struct sctp_hashbucket *head;
751	struct sctp_ep_common *epb;
752
753	epb = &ep->base;
754
755	if (hlist_unhashed(&epb->node))
756		return;
757
758	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
759
760	head = &sctp_ep_hashtable[epb->hashent];
761
762	sctp_write_lock(&head->lock);
763	__hlist_del(&epb->node);
764	sctp_write_unlock(&head->lock);
765}
766
767/* Remove endpoint from the hash.  Local BH-safe. */
768void sctp_unhash_endpoint(struct sctp_endpoint *ep)
769{
770	sctp_local_bh_disable();
771	__sctp_unhash_endpoint(ep);
772	sctp_local_bh_enable();
773}
774
775/* Look up an endpoint. */
776static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
777{
778	struct sctp_hashbucket *head;
779	struct sctp_ep_common *epb;
780	struct sctp_endpoint *ep;
781	struct hlist_node *node;
782	int hash;
783
784	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
785	head = &sctp_ep_hashtable[hash];
786	read_lock(&head->lock);
787	sctp_for_each_hentry(epb, node, &head->chain) {
788		ep = sctp_ep(epb);
789		if (sctp_endpoint_is_match(ep, laddr))
790			goto hit;
791	}
792
793	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
794
795hit:
796	sctp_endpoint_hold(ep);
797	read_unlock(&head->lock);
798	return ep;
799}
800
801/* Insert association into the hash table.  */
802static void __sctp_hash_established(struct sctp_association *asoc)
803{
804	struct sctp_ep_common *epb;
805	struct sctp_hashbucket *head;
806
807	epb = &asoc->base;
808
809	/* Calculate which chain this entry will belong to. */
810	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
811
812	head = &sctp_assoc_hashtable[epb->hashent];
813
814	sctp_write_lock(&head->lock);
815	hlist_add_head(&epb->node, &head->chain);
816	sctp_write_unlock(&head->lock);
817}
818
819/* Add an association to the hash. Local BH-safe. */
820void sctp_hash_established(struct sctp_association *asoc)
821{
822	if (asoc->temp)
823		return;
824
825	sctp_local_bh_disable();
826	__sctp_hash_established(asoc);
827	sctp_local_bh_enable();
828}
829
830/* Remove association from the hash table.  */
831static void __sctp_unhash_established(struct sctp_association *asoc)
832{
833	struct sctp_hashbucket *head;
834	struct sctp_ep_common *epb;
835
836	epb = &asoc->base;
837
838	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
839					 asoc->peer.port);
840
841	head = &sctp_assoc_hashtable[epb->hashent];
842
843	sctp_write_lock(&head->lock);
844	__hlist_del(&epb->node);
845	sctp_write_unlock(&head->lock);
846}
847
848/* Remove association from the hash table.  Local BH-safe. */
849void sctp_unhash_established(struct sctp_association *asoc)
850{
851	if (asoc->temp)
852		return;
853
854	sctp_local_bh_disable();
855	__sctp_unhash_established(asoc);
856	sctp_local_bh_enable();
857}
858
859/* Look up an association. */
860static struct sctp_association *__sctp_lookup_association(
861					const union sctp_addr *local,
862					const union sctp_addr *peer,
863					struct sctp_transport **pt)
864{
865	struct sctp_hashbucket *head;
866	struct sctp_ep_common *epb;
867	struct sctp_association *asoc;
868	struct sctp_transport *transport;
869	struct hlist_node *node;
870	int hash;
871
872	/* Optimize here for direct hit, only listening connections can
873	 * have wildcards anyways.
874	 */
875	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
876	head = &sctp_assoc_hashtable[hash];
877	read_lock(&head->lock);
878	sctp_for_each_hentry(epb, node, &head->chain) {
879		asoc = sctp_assoc(epb);
880		transport = sctp_assoc_is_match(asoc, local, peer);
881		if (transport)
882			goto hit;
883	}
884
885	read_unlock(&head->lock);
886
887	return NULL;
888
889hit:
890	*pt = transport;
891	sctp_association_hold(asoc);
892	read_unlock(&head->lock);
893	return asoc;
894}
895
896/* Look up an association. BH-safe. */
897SCTP_STATIC
898struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
899						 const union sctp_addr *paddr,
900					    struct sctp_transport **transportp)
901{
902	struct sctp_association *asoc;
903
904	sctp_local_bh_disable();
905	asoc = __sctp_lookup_association(laddr, paddr, transportp);
906	sctp_local_bh_enable();
907
908	return asoc;
909}
910
911/* Is there an association matching the given local and peer addresses? */
912int sctp_has_association(const union sctp_addr *laddr,
913			 const union sctp_addr *paddr)
914{
915	struct sctp_association *asoc;
916	struct sctp_transport *transport;
917
918	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
919		sctp_association_put(asoc);
920		return 1;
921	}
922
923	return 0;
924}
925
926/*
927 * SCTP Implementors Guide, 2.18 Handling of address
928 * parameters within the INIT or INIT-ACK.
929 *
930 * D) When searching for a matching TCB upon reception of an INIT
931 *    or INIT-ACK chunk the receiver SHOULD use not only the
932 *    source address of the packet (containing the INIT or
933 *    INIT-ACK) but the receiver SHOULD also use all valid
934 *    address parameters contained within the chunk.
935 *
936 * 2.18.3 Solution description
937 *
938 * This new text clearly specifies to an implementor the need
939 * to look within the INIT or INIT-ACK. Any implementation that
940 * does not do this, may not be able to establish associations
941 * in certain circumstances.
942 *
943 */
944static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
945	const union sctp_addr *laddr, struct sctp_transport **transportp)
946{
947	struct sctp_association *asoc;
948	union sctp_addr addr;
949	union sctp_addr *paddr = &addr;
950	struct sctphdr *sh = sctp_hdr(skb);
951	union sctp_params params;
952	sctp_init_chunk_t *init;
953	struct sctp_transport *transport;
954	struct sctp_af *af;
955
956	/*
957	 * This code will NOT touch anything inside the chunk--it is
958	 * strictly READ-ONLY.
959	 *
960	 * RFC 2960 3  SCTP packet Format
961	 *
962	 * Multiple chunks can be bundled into one SCTP packet up to
963	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
964	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
965	 * other chunk in a packet.  See Section 6.10 for more details
966	 * on chunk bundling.
967	 */
968
969	/* Find the start of the TLVs and the end of the chunk.  This is
970	 * the region we search for address parameters.
971	 */
972	init = (sctp_init_chunk_t *)skb->data;
973
974	/* Walk the parameters looking for embedded addresses. */
975	sctp_walk_params(params, init, init_hdr.params) {
976
977		/* Note: Ignoring hostname addresses. */
978		af = sctp_get_af_specific(param_type2af(params.p->type));
979		if (!af)
980			continue;
981
982		af->from_addr_param(paddr, params.addr, sh->source, 0);
983
984		asoc = __sctp_lookup_association(laddr, paddr, &transport);
985		if (asoc)
986			return asoc;
987	}
988
989	return NULL;
990}
991
992/* ADD-IP, Section 5.2
993 * When an endpoint receives an ASCONF Chunk from the remote peer
994 * special procedures may be needed to identify the association the
995 * ASCONF Chunk is associated with. To properly find the association
996 * the following procedures SHOULD be followed:
997 *
998 * D2) If the association is not found, use the address found in the
999 * Address Parameter TLV combined with the port number found in the
1000 * SCTP common header. If found proceed to rule D4.
1001 *
1002 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1003 * address found in the ASCONF Address Parameter TLV of each of the
1004 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1005 */
1006static struct sctp_association *__sctp_rcv_asconf_lookup(
1007					sctp_chunkhdr_t *ch,
1008					const union sctp_addr *laddr,
1009					__be16 peer_port,
1010					struct sctp_transport **transportp)
1011{
1012	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1013	struct sctp_af *af;
1014	union sctp_addr_param *param;
1015	union sctp_addr paddr;
1016
1017	/* Skip over the ADDIP header and find the Address parameter */
1018	param = (union sctp_addr_param *)(asconf + 1);
1019
1020	af = sctp_get_af_specific(param_type2af(param->p.type));
1021	if (unlikely(!af))
1022		return NULL;
1023
1024	af->from_addr_param(&paddr, param, peer_port, 0);
1025
1026	return __sctp_lookup_association(laddr, &paddr, transportp);
1027}
1028
1029
1030/* SCTP-AUTH, Section 6.3:
1031*    If the receiver does not find a STCB for a packet containing an AUTH
1032*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1033*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1034*    association.
1035*
1036* This means that any chunks that can help us identify the association need
1037* to be looked at to find this association.
1038*/
1039static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1040				      const union sctp_addr *laddr,
1041				      struct sctp_transport **transportp)
1042{
1043	struct sctp_association *asoc = NULL;
1044	sctp_chunkhdr_t *ch;
1045	int have_auth = 0;
1046	unsigned int chunk_num = 1;
1047	__u8 *ch_end;
1048
1049	/* Walk through the chunks looking for AUTH or ASCONF chunks
1050	 * to help us find the association.
1051	 */
1052	ch = (sctp_chunkhdr_t *) skb->data;
1053	do {
1054		/* Break out if chunk length is less then minimal. */
1055		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1056			break;
1057
1058		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1059		if (ch_end > skb_tail_pointer(skb))
1060			break;
1061
1062		switch(ch->type) {
1063		    case SCTP_CID_AUTH:
1064			    have_auth = chunk_num;
1065			    break;
1066
1067		    case SCTP_CID_COOKIE_ECHO:
1068			    /* If a packet arrives containing an AUTH chunk as
1069			     * a first chunk, a COOKIE-ECHO chunk as the second
1070			     * chunk, and possibly more chunks after them, and
1071			     * the receiver does not have an STCB for that
1072			     * packet, then authentication is based on
1073			     * the contents of the COOKIE- ECHO chunk.
1074			     */
1075			    if (have_auth == 1 && chunk_num == 2)
1076				    return NULL;
1077			    break;
1078
1079		    case SCTP_CID_ASCONF:
1080			    if (have_auth || sctp_addip_noauth)
1081				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1082							sctp_hdr(skb)->source,
1083							transportp);
1084		    default:
1085			    break;
1086		}
1087
1088		if (asoc)
1089			break;
1090
1091		ch = (sctp_chunkhdr_t *) ch_end;
1092		chunk_num++;
1093	} while (ch_end < skb_tail_pointer(skb));
1094
1095	return asoc;
1096}
1097
1098/*
1099 * There are circumstances when we need to look inside the SCTP packet
1100 * for information to help us find the association.   Examples
1101 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1102 * chunks.
1103 */
1104static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1105				      const union sctp_addr *laddr,
1106				      struct sctp_transport **transportp)
1107{
1108	sctp_chunkhdr_t *ch;
1109
1110	ch = (sctp_chunkhdr_t *) skb->data;
1111
1112	/* The code below will attempt to walk the chunk and extract
1113	 * parameter information.  Before we do that, we need to verify
1114	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1115	 * walk off the end.
1116	 */
1117	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1118		return NULL;
1119
1120	/* If this is INIT/INIT-ACK look inside the chunk too. */
1121	switch (ch->type) {
1122	case SCTP_CID_INIT:
1123	case SCTP_CID_INIT_ACK:
1124		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1125		break;
1126
1127	default:
1128		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1129		break;
1130	}
1131
1132
1133	return NULL;
1134}
1135
1136/* Lookup an association for an inbound skb. */
1137static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1138				      const union sctp_addr *paddr,
1139				      const union sctp_addr *laddr,
1140				      struct sctp_transport **transportp)
1141{
1142	struct sctp_association *asoc;
1143
1144	asoc = __sctp_lookup_association(laddr, paddr, transportp);
1145
1146	/* Further lookup for INIT/INIT-ACK packets.
1147	 * SCTP Implementors Guide, 2.18 Handling of address
1148	 * parameters within the INIT or INIT-ACK.
1149	 */
1150	if (!asoc)
1151		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1152
1153	return asoc;
1154}
1155