input.c revision 7115e632f90952454ab6426e0d2151327162a30f
1/* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 *                 ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING.  If not, write to
27 * the Free Software Foundation, 59 Temple Place - Suite 330,
28 * Boston, MA 02111-1307, USA.
29 *
30 * Please send any bug reports or fixes you make to the
31 * email address(es):
32 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33 *
34 * Or submit a bug report through the following website:
35 *    http://www.sf.net/projects/lksctp
36 *
37 * Written or modified by:
38 *    La Monte H.P. Yarroll <piggy@acm.org>
39 *    Karl Knutson <karl@athena.chicago.il.us>
40 *    Xingang Guo <xingang.guo@intel.com>
41 *    Jon Grimm <jgrimm@us.ibm.com>
42 *    Hui Huang <hui.huang@nokia.com>
43 *    Daisy Chang <daisyc@us.ibm.com>
44 *    Sridhar Samudrala <sri@us.ibm.com>
45 *    Ardelle Fan <ardelle.fan@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51#include <linux/types.h>
52#include <linux/list.h> /* For struct list_head */
53#include <linux/socket.h>
54#include <linux/ip.h>
55#include <linux/time.h> /* For struct timeval */
56#include <net/ip.h>
57#include <net/icmp.h>
58#include <net/snmp.h>
59#include <net/sock.h>
60#include <net/xfrm.h>
61#include <net/sctp/sctp.h>
62#include <net/sctp/sm.h>
63#include <net/sctp/checksum.h>
64
65/* Forward declarations for internal helpers. */
66static int sctp_rcv_ootb(struct sk_buff *);
67static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
68				      const union sctp_addr *laddr,
69				      const union sctp_addr *paddr,
70				      struct sctp_transport **transportp);
71static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
72static struct sctp_association *__sctp_lookup_association(
73					const union sctp_addr *local,
74					const union sctp_addr *peer,
75					struct sctp_transport **pt);
76
77static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
78
79
80/* Calculate the SCTP checksum of an SCTP packet.  */
81static inline int sctp_rcv_checksum(struct sk_buff *skb)
82{
83	struct sk_buff *list = skb_shinfo(skb)->frag_list;
84	struct sctphdr *sh = sctp_hdr(skb);
85	__u32 cmp = ntohl(sh->checksum);
86	__u32 val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
87
88	for (; list; list = list->next)
89		val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
90					val);
91
92	val = sctp_end_cksum(val);
93
94	if (val != cmp) {
95		/* CRC failure, dump it. */
96		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
97		return -1;
98	}
99	return 0;
100}
101
102struct sctp_input_cb {
103	union {
104		struct inet_skb_parm	h4;
105#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
106		struct inet6_skb_parm	h6;
107#endif
108	} header;
109	struct sctp_chunk *chunk;
110};
111#define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
112
113/*
114 * This is the routine which IP calls when receiving an SCTP packet.
115 */
116int sctp_rcv(struct sk_buff *skb)
117{
118	struct sock *sk;
119	struct sctp_association *asoc;
120	struct sctp_endpoint *ep = NULL;
121	struct sctp_ep_common *rcvr;
122	struct sctp_transport *transport = NULL;
123	struct sctp_chunk *chunk;
124	struct sctphdr *sh;
125	union sctp_addr src;
126	union sctp_addr dest;
127	int family;
128	struct sctp_af *af;
129
130	if (skb->pkt_type!=PACKET_HOST)
131		goto discard_it;
132
133	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
134
135	if (skb_linearize(skb))
136		goto discard_it;
137
138	sh = sctp_hdr(skb);
139
140	/* Pull up the IP and SCTP headers. */
141	__skb_pull(skb, skb_transport_offset(skb));
142	if (skb->len < sizeof(struct sctphdr))
143		goto discard_it;
144	if (!skb_csum_unnecessary(skb) && sctp_rcv_checksum(skb) < 0)
145		goto discard_it;
146
147	skb_pull(skb, sizeof(struct sctphdr));
148
149	/* Make sure we at least have chunk headers worth of data left. */
150	if (skb->len < sizeof(struct sctp_chunkhdr))
151		goto discard_it;
152
153	family = ipver2af(ip_hdr(skb)->version);
154	af = sctp_get_af_specific(family);
155	if (unlikely(!af))
156		goto discard_it;
157
158	/* Initialize local addresses for lookups. */
159	af->from_skb(&src, skb, 1);
160	af->from_skb(&dest, skb, 0);
161
162	/* If the packet is to or from a non-unicast address,
163	 * silently discard the packet.
164	 *
165	 * This is not clearly defined in the RFC except in section
166	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
167	 * Transmission Protocol" 2.1, "It is important to note that the
168	 * IP address of an SCTP transport address must be a routable
169	 * unicast address.  In other words, IP multicast addresses and
170	 * IP broadcast addresses cannot be used in an SCTP transport
171	 * address."
172	 */
173	if (!af->addr_valid(&src, NULL, skb) ||
174	    !af->addr_valid(&dest, NULL, skb))
175		goto discard_it;
176
177	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
178
179	if (!asoc)
180		ep = __sctp_rcv_lookup_endpoint(&dest);
181
182	/* Retrieve the common input handling substructure. */
183	rcvr = asoc ? &asoc->base : &ep->base;
184	sk = rcvr->sk;
185
186	/*
187	 * If a frame arrives on an interface and the receiving socket is
188	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
189	 */
190	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
191	{
192		if (asoc) {
193			sctp_association_put(asoc);
194			asoc = NULL;
195		} else {
196			sctp_endpoint_put(ep);
197			ep = NULL;
198		}
199		sk = sctp_get_ctl_sock();
200		ep = sctp_sk(sk)->ep;
201		sctp_endpoint_hold(ep);
202		rcvr = &ep->base;
203	}
204
205	/*
206	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
207	 * An SCTP packet is called an "out of the blue" (OOTB)
208	 * packet if it is correctly formed, i.e., passed the
209	 * receiver's checksum check, but the receiver is not
210	 * able to identify the association to which this
211	 * packet belongs.
212	 */
213	if (!asoc) {
214		if (sctp_rcv_ootb(skb)) {
215			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
216			goto discard_release;
217		}
218	}
219
220	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
221		goto discard_release;
222	nf_reset(skb);
223
224	if (sk_filter(sk, skb))
225		goto discard_release;
226
227	/* Create an SCTP packet structure. */
228	chunk = sctp_chunkify(skb, asoc, sk);
229	if (!chunk)
230		goto discard_release;
231	SCTP_INPUT_CB(skb)->chunk = chunk;
232
233	/* Remember what endpoint is to handle this packet. */
234	chunk->rcvr = rcvr;
235
236	/* Remember the SCTP header. */
237	chunk->sctp_hdr = sh;
238
239	/* Set the source and destination addresses of the incoming chunk.  */
240	sctp_init_addrs(chunk, &src, &dest);
241
242	/* Remember where we came from.  */
243	chunk->transport = transport;
244
245	/* Acquire access to the sock lock. Note: We are safe from other
246	 * bottom halves on this lock, but a user may be in the lock too,
247	 * so check if it is busy.
248	 */
249	sctp_bh_lock_sock(sk);
250
251	if (sock_owned_by_user(sk)) {
252		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
253		sctp_add_backlog(sk, skb);
254	} else {
255		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
256		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
257	}
258
259	sctp_bh_unlock_sock(sk);
260
261	/* Release the asoc/ep ref we took in the lookup calls. */
262	if (asoc)
263		sctp_association_put(asoc);
264	else
265		sctp_endpoint_put(ep);
266
267	return 0;
268
269discard_it:
270	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
271	kfree_skb(skb);
272	return 0;
273
274discard_release:
275	/* Release the asoc/ep ref we took in the lookup calls. */
276	if (asoc)
277		sctp_association_put(asoc);
278	else
279		sctp_endpoint_put(ep);
280
281	goto discard_it;
282}
283
284/* Process the backlog queue of the socket.  Every skb on
285 * the backlog holds a ref on an association or endpoint.
286 * We hold this ref throughout the state machine to make
287 * sure that the structure we need is still around.
288 */
289int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
290{
291	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
292	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
293	struct sctp_ep_common *rcvr = NULL;
294	int backloged = 0;
295
296	rcvr = chunk->rcvr;
297
298	/* If the rcvr is dead then the association or endpoint
299	 * has been deleted and we can safely drop the chunk
300	 * and refs that we are holding.
301	 */
302	if (rcvr->dead) {
303		sctp_chunk_free(chunk);
304		goto done;
305	}
306
307	if (unlikely(rcvr->sk != sk)) {
308		/* In this case, the association moved from one socket to
309		 * another.  We are currently sitting on the backlog of the
310		 * old socket, so we need to move.
311		 * However, since we are here in the process context we
312		 * need to take make sure that the user doesn't own
313		 * the new socket when we process the packet.
314		 * If the new socket is user-owned, queue the chunk to the
315		 * backlog of the new socket without dropping any refs.
316		 * Otherwise, we can safely push the chunk on the inqueue.
317		 */
318
319		sk = rcvr->sk;
320		sctp_bh_lock_sock(sk);
321
322		if (sock_owned_by_user(sk)) {
323			sk_add_backlog(sk, skb);
324			backloged = 1;
325		} else
326			sctp_inq_push(inqueue, chunk);
327
328		sctp_bh_unlock_sock(sk);
329
330		/* If the chunk was backloged again, don't drop refs */
331		if (backloged)
332			return 0;
333	} else {
334		sctp_inq_push(inqueue, chunk);
335	}
336
337done:
338	/* Release the refs we took in sctp_add_backlog */
339	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
340		sctp_association_put(sctp_assoc(rcvr));
341	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
342		sctp_endpoint_put(sctp_ep(rcvr));
343	else
344		BUG();
345
346	return 0;
347}
348
349static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
350{
351	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
352	struct sctp_ep_common *rcvr = chunk->rcvr;
353
354	/* Hold the assoc/ep while hanging on the backlog queue.
355	 * This way, we know structures we need will not disappear from us
356	 */
357	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
358		sctp_association_hold(sctp_assoc(rcvr));
359	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
360		sctp_endpoint_hold(sctp_ep(rcvr));
361	else
362		BUG();
363
364	sk_add_backlog(sk, skb);
365}
366
367/* Handle icmp frag needed error. */
368void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
369			   struct sctp_transport *t, __u32 pmtu)
370{
371	if (!t || (t->pathmtu == pmtu))
372		return;
373
374	if (sock_owned_by_user(sk)) {
375		asoc->pmtu_pending = 1;
376		t->pmtu_pending = 1;
377		return;
378	}
379
380	if (t->param_flags & SPP_PMTUD_ENABLE) {
381		/* Update transports view of the MTU */
382		sctp_transport_update_pmtu(t, pmtu);
383
384		/* Update association pmtu. */
385		sctp_assoc_sync_pmtu(asoc);
386	}
387
388	/* Retransmit with the new pmtu setting.
389	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
390	 * Needed will never be sent, but if a message was sent before
391	 * PMTU discovery was disabled that was larger than the PMTU, it
392	 * would not be fragmented, so it must be re-transmitted fragmented.
393	 */
394	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
395}
396
397/*
398 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
399 *
400 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
401 *        or a "Protocol Unreachable" treat this message as an abort
402 *        with the T bit set.
403 *
404 * This function sends an event to the state machine, which will abort the
405 * association.
406 *
407 */
408void sctp_icmp_proto_unreachable(struct sock *sk,
409			   struct sctp_association *asoc,
410			   struct sctp_transport *t)
411{
412	SCTP_DEBUG_PRINTK("%s\n",  __func__);
413
414	sctp_do_sm(SCTP_EVENT_T_OTHER,
415		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
416		   asoc->state, asoc->ep, asoc, t,
417		   GFP_ATOMIC);
418
419}
420
421/* Common lookup code for icmp/icmpv6 error handler. */
422struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
423			     struct sctphdr *sctphdr,
424			     struct sctp_association **app,
425			     struct sctp_transport **tpp)
426{
427	union sctp_addr saddr;
428	union sctp_addr daddr;
429	struct sctp_af *af;
430	struct sock *sk = NULL;
431	struct sctp_association *asoc;
432	struct sctp_transport *transport = NULL;
433	struct sctp_init_chunk *chunkhdr;
434	__u32 vtag = ntohl(sctphdr->vtag);
435	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
436
437	*app = NULL; *tpp = NULL;
438
439	af = sctp_get_af_specific(family);
440	if (unlikely(!af)) {
441		return NULL;
442	}
443
444	/* Initialize local addresses for lookups. */
445	af->from_skb(&saddr, skb, 1);
446	af->from_skb(&daddr, skb, 0);
447
448	/* Look for an association that matches the incoming ICMP error
449	 * packet.
450	 */
451	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
452	if (!asoc)
453		return NULL;
454
455	sk = asoc->base.sk;
456
457	/* RFC 4960, Appendix C. ICMP Handling
458	 *
459	 * ICMP6) An implementation MUST validate that the Verification Tag
460	 * contained in the ICMP message matches the Verification Tag of
461	 * the peer.  If the Verification Tag is not 0 and does NOT
462	 * match, discard the ICMP message.  If it is 0 and the ICMP
463	 * message contains enough bytes to verify that the chunk type is
464	 * an INIT chunk and that the Initiate Tag matches the tag of the
465	 * peer, continue with ICMP7.  If the ICMP message is too short
466	 * or the chunk type or the Initiate Tag does not match, silently
467	 * discard the packet.
468	 */
469	if (vtag == 0) {
470		chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr
471				+ sizeof(struct sctphdr));
472		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
473			  + sizeof(__be32) ||
474		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
475		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
476			goto out;
477		}
478	} else if (vtag != asoc->c.peer_vtag) {
479		goto out;
480	}
481
482	sctp_bh_lock_sock(sk);
483
484	/* If too many ICMPs get dropped on busy
485	 * servers this needs to be solved differently.
486	 */
487	if (sock_owned_by_user(sk))
488		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
489
490	*app = asoc;
491	*tpp = transport;
492	return sk;
493
494out:
495	if (asoc)
496		sctp_association_put(asoc);
497	return NULL;
498}
499
500/* Common cleanup code for icmp/icmpv6 error handler. */
501void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
502{
503	sctp_bh_unlock_sock(sk);
504	if (asoc)
505		sctp_association_put(asoc);
506}
507
508/*
509 * This routine is called by the ICMP module when it gets some
510 * sort of error condition.  If err < 0 then the socket should
511 * be closed and the error returned to the user.  If err > 0
512 * it's just the icmp type << 8 | icmp code.  After adjustment
513 * header points to the first 8 bytes of the sctp header.  We need
514 * to find the appropriate port.
515 *
516 * The locking strategy used here is very "optimistic". When
517 * someone else accesses the socket the ICMP is just dropped
518 * and for some paths there is no check at all.
519 * A more general error queue to queue errors for later handling
520 * is probably better.
521 *
522 */
523void sctp_v4_err(struct sk_buff *skb, __u32 info)
524{
525	struct iphdr *iph = (struct iphdr *)skb->data;
526	const int ihlen = iph->ihl * 4;
527	const int type = icmp_hdr(skb)->type;
528	const int code = icmp_hdr(skb)->code;
529	struct sock *sk;
530	struct sctp_association *asoc = NULL;
531	struct sctp_transport *transport;
532	struct inet_sock *inet;
533	sk_buff_data_t saveip, savesctp;
534	int err;
535
536	if (skb->len < ihlen + 8) {
537		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
538		return;
539	}
540
541	/* Fix up skb to look at the embedded net header. */
542	saveip = skb->network_header;
543	savesctp = skb->transport_header;
544	skb_reset_network_header(skb);
545	skb_set_transport_header(skb, ihlen);
546	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
547	/* Put back, the original values. */
548	skb->network_header = saveip;
549	skb->transport_header = savesctp;
550	if (!sk) {
551		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
552		return;
553	}
554	/* Warning:  The sock lock is held.  Remember to call
555	 * sctp_err_finish!
556	 */
557
558	switch (type) {
559	case ICMP_PARAMETERPROB:
560		err = EPROTO;
561		break;
562	case ICMP_DEST_UNREACH:
563		if (code > NR_ICMP_UNREACH)
564			goto out_unlock;
565
566		/* PMTU discovery (RFC1191) */
567		if (ICMP_FRAG_NEEDED == code) {
568			sctp_icmp_frag_needed(sk, asoc, transport, info);
569			goto out_unlock;
570		}
571		else {
572			if (ICMP_PROT_UNREACH == code) {
573				sctp_icmp_proto_unreachable(sk, asoc,
574							    transport);
575				goto out_unlock;
576			}
577		}
578		err = icmp_err_convert[code].errno;
579		break;
580	case ICMP_TIME_EXCEEDED:
581		/* Ignore any time exceeded errors due to fragment reassembly
582		 * timeouts.
583		 */
584		if (ICMP_EXC_FRAGTIME == code)
585			goto out_unlock;
586
587		err = EHOSTUNREACH;
588		break;
589	default:
590		goto out_unlock;
591	}
592
593	inet = inet_sk(sk);
594	if (!sock_owned_by_user(sk) && inet->recverr) {
595		sk->sk_err = err;
596		sk->sk_error_report(sk);
597	} else {  /* Only an error on timeout */
598		sk->sk_err_soft = err;
599	}
600
601out_unlock:
602	sctp_err_finish(sk, asoc);
603}
604
605/*
606 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
607 *
608 * This function scans all the chunks in the OOTB packet to determine if
609 * the packet should be discarded right away.  If a response might be needed
610 * for this packet, or, if further processing is possible, the packet will
611 * be queued to a proper inqueue for the next phase of handling.
612 *
613 * Output:
614 * Return 0 - If further processing is needed.
615 * Return 1 - If the packet can be discarded right away.
616 */
617static int sctp_rcv_ootb(struct sk_buff *skb)
618{
619	sctp_chunkhdr_t *ch;
620	__u8 *ch_end;
621	sctp_errhdr_t *err;
622
623	ch = (sctp_chunkhdr_t *) skb->data;
624
625	/* Scan through all the chunks in the packet.  */
626	do {
627		/* Break out if chunk length is less then minimal. */
628		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
629			break;
630
631		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
632		if (ch_end > skb_tail_pointer(skb))
633			break;
634
635		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
636		 * receiver MUST silently discard the OOTB packet and take no
637		 * further action.
638		 */
639		if (SCTP_CID_ABORT == ch->type)
640			goto discard;
641
642		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
643		 * chunk, the receiver should silently discard the packet
644		 * and take no further action.
645		 */
646		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
647			goto discard;
648
649		/* RFC 4460, 2.11.2
650		 * This will discard packets with INIT chunk bundled as
651		 * subsequent chunks in the packet.  When INIT is first,
652		 * the normal INIT processing will discard the chunk.
653		 */
654		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
655			goto discard;
656
657		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
658		 * or a COOKIE ACK the SCTP Packet should be silently
659		 * discarded.
660		 */
661		if (SCTP_CID_COOKIE_ACK == ch->type)
662			goto discard;
663
664		if (SCTP_CID_ERROR == ch->type) {
665			sctp_walk_errors(err, ch) {
666				if (SCTP_ERROR_STALE_COOKIE == err->cause)
667					goto discard;
668			}
669		}
670
671		ch = (sctp_chunkhdr_t *) ch_end;
672	} while (ch_end < skb_tail_pointer(skb));
673
674	return 0;
675
676discard:
677	return 1;
678}
679
680/* Insert endpoint into the hash table.  */
681static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
682{
683	struct sctp_ep_common *epb;
684	struct sctp_hashbucket *head;
685
686	epb = &ep->base;
687
688	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
689	head = &sctp_ep_hashtable[epb->hashent];
690
691	sctp_write_lock(&head->lock);
692	hlist_add_head(&epb->node, &head->chain);
693	sctp_write_unlock(&head->lock);
694}
695
696/* Add an endpoint to the hash. Local BH-safe. */
697void sctp_hash_endpoint(struct sctp_endpoint *ep)
698{
699	sctp_local_bh_disable();
700	__sctp_hash_endpoint(ep);
701	sctp_local_bh_enable();
702}
703
704/* Remove endpoint from the hash table.  */
705static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
706{
707	struct sctp_hashbucket *head;
708	struct sctp_ep_common *epb;
709
710	epb = &ep->base;
711
712	if (hlist_unhashed(&epb->node))
713		return;
714
715	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
716
717	head = &sctp_ep_hashtable[epb->hashent];
718
719	sctp_write_lock(&head->lock);
720	__hlist_del(&epb->node);
721	sctp_write_unlock(&head->lock);
722}
723
724/* Remove endpoint from the hash.  Local BH-safe. */
725void sctp_unhash_endpoint(struct sctp_endpoint *ep)
726{
727	sctp_local_bh_disable();
728	__sctp_unhash_endpoint(ep);
729	sctp_local_bh_enable();
730}
731
732/* Look up an endpoint. */
733static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
734{
735	struct sctp_hashbucket *head;
736	struct sctp_ep_common *epb;
737	struct sctp_endpoint *ep;
738	struct hlist_node *node;
739	int hash;
740
741	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
742	head = &sctp_ep_hashtable[hash];
743	read_lock(&head->lock);
744	sctp_for_each_hentry(epb, node, &head->chain) {
745		ep = sctp_ep(epb);
746		if (sctp_endpoint_is_match(ep, laddr))
747			goto hit;
748	}
749
750	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
751
752hit:
753	sctp_endpoint_hold(ep);
754	read_unlock(&head->lock);
755	return ep;
756}
757
758/* Insert association into the hash table.  */
759static void __sctp_hash_established(struct sctp_association *asoc)
760{
761	struct sctp_ep_common *epb;
762	struct sctp_hashbucket *head;
763
764	epb = &asoc->base;
765
766	/* Calculate which chain this entry will belong to. */
767	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
768
769	head = &sctp_assoc_hashtable[epb->hashent];
770
771	sctp_write_lock(&head->lock);
772	hlist_add_head(&epb->node, &head->chain);
773	sctp_write_unlock(&head->lock);
774}
775
776/* Add an association to the hash. Local BH-safe. */
777void sctp_hash_established(struct sctp_association *asoc)
778{
779	if (asoc->temp)
780		return;
781
782	sctp_local_bh_disable();
783	__sctp_hash_established(asoc);
784	sctp_local_bh_enable();
785}
786
787/* Remove association from the hash table.  */
788static void __sctp_unhash_established(struct sctp_association *asoc)
789{
790	struct sctp_hashbucket *head;
791	struct sctp_ep_common *epb;
792
793	epb = &asoc->base;
794
795	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
796					 asoc->peer.port);
797
798	head = &sctp_assoc_hashtable[epb->hashent];
799
800	sctp_write_lock(&head->lock);
801	__hlist_del(&epb->node);
802	sctp_write_unlock(&head->lock);
803}
804
805/* Remove association from the hash table.  Local BH-safe. */
806void sctp_unhash_established(struct sctp_association *asoc)
807{
808	if (asoc->temp)
809		return;
810
811	sctp_local_bh_disable();
812	__sctp_unhash_established(asoc);
813	sctp_local_bh_enable();
814}
815
816/* Look up an association. */
817static struct sctp_association *__sctp_lookup_association(
818					const union sctp_addr *local,
819					const union sctp_addr *peer,
820					struct sctp_transport **pt)
821{
822	struct sctp_hashbucket *head;
823	struct sctp_ep_common *epb;
824	struct sctp_association *asoc;
825	struct sctp_transport *transport;
826	struct hlist_node *node;
827	int hash;
828
829	/* Optimize here for direct hit, only listening connections can
830	 * have wildcards anyways.
831	 */
832	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
833	head = &sctp_assoc_hashtable[hash];
834	read_lock(&head->lock);
835	sctp_for_each_hentry(epb, node, &head->chain) {
836		asoc = sctp_assoc(epb);
837		transport = sctp_assoc_is_match(asoc, local, peer);
838		if (transport)
839			goto hit;
840	}
841
842	read_unlock(&head->lock);
843
844	return NULL;
845
846hit:
847	*pt = transport;
848	sctp_association_hold(asoc);
849	read_unlock(&head->lock);
850	return asoc;
851}
852
853/* Look up an association. BH-safe. */
854SCTP_STATIC
855struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
856						 const union sctp_addr *paddr,
857					    struct sctp_transport **transportp)
858{
859	struct sctp_association *asoc;
860
861	sctp_local_bh_disable();
862	asoc = __sctp_lookup_association(laddr, paddr, transportp);
863	sctp_local_bh_enable();
864
865	return asoc;
866}
867
868/* Is there an association matching the given local and peer addresses? */
869int sctp_has_association(const union sctp_addr *laddr,
870			 const union sctp_addr *paddr)
871{
872	struct sctp_association *asoc;
873	struct sctp_transport *transport;
874
875	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
876		sctp_association_put(asoc);
877		return 1;
878	}
879
880	return 0;
881}
882
883/*
884 * SCTP Implementors Guide, 2.18 Handling of address
885 * parameters within the INIT or INIT-ACK.
886 *
887 * D) When searching for a matching TCB upon reception of an INIT
888 *    or INIT-ACK chunk the receiver SHOULD use not only the
889 *    source address of the packet (containing the INIT or
890 *    INIT-ACK) but the receiver SHOULD also use all valid
891 *    address parameters contained within the chunk.
892 *
893 * 2.18.3 Solution description
894 *
895 * This new text clearly specifies to an implementor the need
896 * to look within the INIT or INIT-ACK. Any implementation that
897 * does not do this, may not be able to establish associations
898 * in certain circumstances.
899 *
900 */
901static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
902	const union sctp_addr *laddr, struct sctp_transport **transportp)
903{
904	struct sctp_association *asoc;
905	union sctp_addr addr;
906	union sctp_addr *paddr = &addr;
907	struct sctphdr *sh = sctp_hdr(skb);
908	sctp_chunkhdr_t *ch;
909	union sctp_params params;
910	sctp_init_chunk_t *init;
911	struct sctp_transport *transport;
912	struct sctp_af *af;
913
914	ch = (sctp_chunkhdr_t *) skb->data;
915
916	/*
917	 * This code will NOT touch anything inside the chunk--it is
918	 * strictly READ-ONLY.
919	 *
920	 * RFC 2960 3  SCTP packet Format
921	 *
922	 * Multiple chunks can be bundled into one SCTP packet up to
923	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
924	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
925	 * other chunk in a packet.  See Section 6.10 for more details
926	 * on chunk bundling.
927	 */
928
929	/* Find the start of the TLVs and the end of the chunk.  This is
930	 * the region we search for address parameters.
931	 */
932	init = (sctp_init_chunk_t *)skb->data;
933
934	/* Walk the parameters looking for embedded addresses. */
935	sctp_walk_params(params, init, init_hdr.params) {
936
937		/* Note: Ignoring hostname addresses. */
938		af = sctp_get_af_specific(param_type2af(params.p->type));
939		if (!af)
940			continue;
941
942		af->from_addr_param(paddr, params.addr, sh->source, 0);
943
944		asoc = __sctp_lookup_association(laddr, paddr, &transport);
945		if (asoc)
946			return asoc;
947	}
948
949	return NULL;
950}
951
952/* ADD-IP, Section 5.2
953 * When an endpoint receives an ASCONF Chunk from the remote peer
954 * special procedures may be needed to identify the association the
955 * ASCONF Chunk is associated with. To properly find the association
956 * the following procedures SHOULD be followed:
957 *
958 * D2) If the association is not found, use the address found in the
959 * Address Parameter TLV combined with the port number found in the
960 * SCTP common header. If found proceed to rule D4.
961 *
962 * D2-ext) If more than one ASCONF Chunks are packed together, use the
963 * address found in the ASCONF Address Parameter TLV of each of the
964 * subsequent ASCONF Chunks. If found, proceed to rule D4.
965 */
966static struct sctp_association *__sctp_rcv_asconf_lookup(
967					sctp_chunkhdr_t *ch,
968					const union sctp_addr *laddr,
969					__be16 peer_port,
970					struct sctp_transport **transportp)
971{
972	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
973	struct sctp_af *af;
974	union sctp_addr_param *param;
975	union sctp_addr paddr;
976
977	/* Skip over the ADDIP header and find the Address parameter */
978	param = (union sctp_addr_param *)(asconf + 1);
979
980	af = sctp_get_af_specific(param_type2af(param->v4.param_hdr.type));
981	if (unlikely(!af))
982		return NULL;
983
984	af->from_addr_param(&paddr, param, peer_port, 0);
985
986	return __sctp_lookup_association(laddr, &paddr, transportp);
987}
988
989
990/* SCTP-AUTH, Section 6.3:
991*    If the receiver does not find a STCB for a packet containing an AUTH
992*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
993*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
994*    association.
995*
996* This means that any chunks that can help us identify the association need
997* to be looked at to find this assocation.
998*/
999static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1000				      const union sctp_addr *laddr,
1001				      struct sctp_transport **transportp)
1002{
1003	struct sctp_association *asoc = NULL;
1004	sctp_chunkhdr_t *ch;
1005	int have_auth = 0;
1006	unsigned int chunk_num = 1;
1007	__u8 *ch_end;
1008
1009	/* Walk through the chunks looking for AUTH or ASCONF chunks
1010	 * to help us find the association.
1011	 */
1012	ch = (sctp_chunkhdr_t *) skb->data;
1013	do {
1014		/* Break out if chunk length is less then minimal. */
1015		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1016			break;
1017
1018		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1019		if (ch_end > skb_tail_pointer(skb))
1020			break;
1021
1022		switch(ch->type) {
1023		    case SCTP_CID_AUTH:
1024			    have_auth = chunk_num;
1025			    break;
1026
1027		    case SCTP_CID_COOKIE_ECHO:
1028			    /* If a packet arrives containing an AUTH chunk as
1029			     * a first chunk, a COOKIE-ECHO chunk as the second
1030			     * chunk, and possibly more chunks after them, and
1031			     * the receiver does not have an STCB for that
1032			     * packet, then authentication is based on
1033			     * the contents of the COOKIE- ECHO chunk.
1034			     */
1035			    if (have_auth == 1 && chunk_num == 2)
1036				    return NULL;
1037			    break;
1038
1039		    case SCTP_CID_ASCONF:
1040			    if (have_auth || sctp_addip_noauth)
1041				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1042							sctp_hdr(skb)->source,
1043							transportp);
1044		    default:
1045			    break;
1046		}
1047
1048		if (asoc)
1049			break;
1050
1051		ch = (sctp_chunkhdr_t *) ch_end;
1052		chunk_num++;
1053	} while (ch_end < skb_tail_pointer(skb));
1054
1055	return asoc;
1056}
1057
1058/*
1059 * There are circumstances when we need to look inside the SCTP packet
1060 * for information to help us find the association.   Examples
1061 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1062 * chunks.
1063 */
1064static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1065				      const union sctp_addr *laddr,
1066				      struct sctp_transport **transportp)
1067{
1068	sctp_chunkhdr_t *ch;
1069
1070	ch = (sctp_chunkhdr_t *) skb->data;
1071
1072	/* The code below will attempt to walk the chunk and extract
1073	 * parameter information.  Before we do that, we need to verify
1074	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1075	 * walk off the end.
1076	 */
1077	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1078		return NULL;
1079
1080	/* If this is INIT/INIT-ACK look inside the chunk too. */
1081	switch (ch->type) {
1082	case SCTP_CID_INIT:
1083	case SCTP_CID_INIT_ACK:
1084		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1085		break;
1086
1087	default:
1088		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1089		break;
1090	}
1091
1092
1093	return NULL;
1094}
1095
1096/* Lookup an association for an inbound skb. */
1097static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1098				      const union sctp_addr *paddr,
1099				      const union sctp_addr *laddr,
1100				      struct sctp_transport **transportp)
1101{
1102	struct sctp_association *asoc;
1103
1104	asoc = __sctp_lookup_association(laddr, paddr, transportp);
1105
1106	/* Further lookup for INIT/INIT-ACK packets.
1107	 * SCTP Implementors Guide, 2.18 Handling of address
1108	 * parameters within the INIT or INIT-ACK.
1109	 */
1110	if (!asoc)
1111		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1112
1113	return asoc;
1114}
1115