cache.c revision 06497524589f2a7717da33969d541674e0a27da6
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <linux/smp_lock.h>
32#include <asm/ioctls.h>
33#include <linux/sunrpc/types.h>
34#include <linux/sunrpc/cache.h>
35#include <linux/sunrpc/stats.h>
36#include <linux/sunrpc/rpc_pipe_fs.h>
37
38#define	 RPCDBG_FACILITY RPCDBG_CACHE
39
40static int cache_defer_req(struct cache_req *req, struct cache_head *item);
41static void cache_revisit_request(struct cache_head *item);
42
43static void cache_init(struct cache_head *h)
44{
45	time_t now = seconds_since_boot();
46	h->next = NULL;
47	h->flags = 0;
48	kref_init(&h->ref);
49	h->expiry_time = now + CACHE_NEW_EXPIRY;
50	h->last_refresh = now;
51}
52
53static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54{
55	return  (h->expiry_time < seconds_since_boot()) ||
56		(detail->flush_time > h->last_refresh);
57}
58
59struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60				       struct cache_head *key, int hash)
61{
62	struct cache_head **head,  **hp;
63	struct cache_head *new = NULL, *freeme = NULL;
64
65	head = &detail->hash_table[hash];
66
67	read_lock(&detail->hash_lock);
68
69	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70		struct cache_head *tmp = *hp;
71		if (detail->match(tmp, key)) {
72			if (cache_is_expired(detail, tmp))
73				/* This entry is expired, we will discard it. */
74				break;
75			cache_get(tmp);
76			read_unlock(&detail->hash_lock);
77			return tmp;
78		}
79	}
80	read_unlock(&detail->hash_lock);
81	/* Didn't find anything, insert an empty entry */
82
83	new = detail->alloc();
84	if (!new)
85		return NULL;
86	/* must fully initialise 'new', else
87	 * we might get lose if we need to
88	 * cache_put it soon.
89	 */
90	cache_init(new);
91	detail->init(new, key);
92
93	write_lock(&detail->hash_lock);
94
95	/* check if entry appeared while we slept */
96	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97		struct cache_head *tmp = *hp;
98		if (detail->match(tmp, key)) {
99			if (cache_is_expired(detail, tmp)) {
100				*hp = tmp->next;
101				tmp->next = NULL;
102				detail->entries --;
103				freeme = tmp;
104				break;
105			}
106			cache_get(tmp);
107			write_unlock(&detail->hash_lock);
108			cache_put(new, detail);
109			return tmp;
110		}
111	}
112	new->next = *head;
113	*head = new;
114	detail->entries++;
115	cache_get(new);
116	write_unlock(&detail->hash_lock);
117
118	if (freeme)
119		cache_put(freeme, detail);
120	return new;
121}
122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128{
129	head->expiry_time = expiry;
130	head->last_refresh = seconds_since_boot();
131	set_bit(CACHE_VALID, &head->flags);
132}
133
134static void cache_fresh_unlocked(struct cache_head *head,
135				 struct cache_detail *detail)
136{
137	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
138		cache_revisit_request(head);
139		cache_dequeue(detail, head);
140	}
141}
142
143struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
144				       struct cache_head *new, struct cache_head *old, int hash)
145{
146	/* The 'old' entry is to be replaced by 'new'.
147	 * If 'old' is not VALID, we update it directly,
148	 * otherwise we need to replace it
149	 */
150	struct cache_head **head;
151	struct cache_head *tmp;
152
153	if (!test_bit(CACHE_VALID, &old->flags)) {
154		write_lock(&detail->hash_lock);
155		if (!test_bit(CACHE_VALID, &old->flags)) {
156			if (test_bit(CACHE_NEGATIVE, &new->flags))
157				set_bit(CACHE_NEGATIVE, &old->flags);
158			else
159				detail->update(old, new);
160			cache_fresh_locked(old, new->expiry_time);
161			write_unlock(&detail->hash_lock);
162			cache_fresh_unlocked(old, detail);
163			return old;
164		}
165		write_unlock(&detail->hash_lock);
166	}
167	/* We need to insert a new entry */
168	tmp = detail->alloc();
169	if (!tmp) {
170		cache_put(old, detail);
171		return NULL;
172	}
173	cache_init(tmp);
174	detail->init(tmp, old);
175	head = &detail->hash_table[hash];
176
177	write_lock(&detail->hash_lock);
178	if (test_bit(CACHE_NEGATIVE, &new->flags))
179		set_bit(CACHE_NEGATIVE, &tmp->flags);
180	else
181		detail->update(tmp, new);
182	tmp->next = *head;
183	*head = tmp;
184	detail->entries++;
185	cache_get(tmp);
186	cache_fresh_locked(tmp, new->expiry_time);
187	cache_fresh_locked(old, 0);
188	write_unlock(&detail->hash_lock);
189	cache_fresh_unlocked(tmp, detail);
190	cache_fresh_unlocked(old, detail);
191	cache_put(old, detail);
192	return tmp;
193}
194EXPORT_SYMBOL_GPL(sunrpc_cache_update);
195
196static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
197{
198	if (!cd->cache_upcall)
199		return -EINVAL;
200	return cd->cache_upcall(cd, h);
201}
202
203static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
204{
205	if (!test_bit(CACHE_VALID, &h->flags))
206		return -EAGAIN;
207	else {
208		/* entry is valid */
209		if (test_bit(CACHE_NEGATIVE, &h->flags))
210			return -ENOENT;
211		else
212			return 0;
213	}
214}
215
216/*
217 * This is the generic cache management routine for all
218 * the authentication caches.
219 * It checks the currency of a cache item and will (later)
220 * initiate an upcall to fill it if needed.
221 *
222 *
223 * Returns 0 if the cache_head can be used, or cache_puts it and returns
224 * -EAGAIN if upcall is pending and request has been queued
225 * -ETIMEDOUT if upcall failed or request could not be queue or
226 *           upcall completed but item is still invalid (implying that
227 *           the cache item has been replaced with a newer one).
228 * -ENOENT if cache entry was negative
229 */
230int cache_check(struct cache_detail *detail,
231		    struct cache_head *h, struct cache_req *rqstp)
232{
233	int rv;
234	long refresh_age, age;
235
236	/* First decide return status as best we can */
237	rv = cache_is_valid(detail, h);
238
239	/* now see if we want to start an upcall */
240	refresh_age = (h->expiry_time - h->last_refresh);
241	age = seconds_since_boot() - h->last_refresh;
242
243	if (rqstp == NULL) {
244		if (rv == -EAGAIN)
245			rv = -ENOENT;
246	} else if (rv == -EAGAIN || age > refresh_age/2) {
247		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
248				refresh_age, age);
249		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
250			switch (cache_make_upcall(detail, h)) {
251			case -EINVAL:
252				clear_bit(CACHE_PENDING, &h->flags);
253				cache_revisit_request(h);
254				if (rv == -EAGAIN) {
255					set_bit(CACHE_NEGATIVE, &h->flags);
256					cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
257					cache_fresh_unlocked(h, detail);
258					rv = -ENOENT;
259				}
260				break;
261
262			case -EAGAIN:
263				clear_bit(CACHE_PENDING, &h->flags);
264				cache_revisit_request(h);
265				break;
266			}
267		}
268	}
269
270	if (rv == -EAGAIN) {
271		if (cache_defer_req(rqstp, h) < 0) {
272			/* Request is not deferred */
273			rv = cache_is_valid(detail, h);
274			if (rv == -EAGAIN)
275				rv = -ETIMEDOUT;
276		}
277	}
278	if (rv)
279		cache_put(h, detail);
280	return rv;
281}
282EXPORT_SYMBOL_GPL(cache_check);
283
284/*
285 * caches need to be periodically cleaned.
286 * For this we maintain a list of cache_detail and
287 * a current pointer into that list and into the table
288 * for that entry.
289 *
290 * Each time clean_cache is called it finds the next non-empty entry
291 * in the current table and walks the list in that entry
292 * looking for entries that can be removed.
293 *
294 * An entry gets removed if:
295 * - The expiry is before current time
296 * - The last_refresh time is before the flush_time for that cache
297 *
298 * later we might drop old entries with non-NEVER expiry if that table
299 * is getting 'full' for some definition of 'full'
300 *
301 * The question of "how often to scan a table" is an interesting one
302 * and is answered in part by the use of the "nextcheck" field in the
303 * cache_detail.
304 * When a scan of a table begins, the nextcheck field is set to a time
305 * that is well into the future.
306 * While scanning, if an expiry time is found that is earlier than the
307 * current nextcheck time, nextcheck is set to that expiry time.
308 * If the flush_time is ever set to a time earlier than the nextcheck
309 * time, the nextcheck time is then set to that flush_time.
310 *
311 * A table is then only scanned if the current time is at least
312 * the nextcheck time.
313 *
314 */
315
316static LIST_HEAD(cache_list);
317static DEFINE_SPINLOCK(cache_list_lock);
318static struct cache_detail *current_detail;
319static int current_index;
320
321static void do_cache_clean(struct work_struct *work);
322static struct delayed_work cache_cleaner;
323
324static void sunrpc_init_cache_detail(struct cache_detail *cd)
325{
326	rwlock_init(&cd->hash_lock);
327	INIT_LIST_HEAD(&cd->queue);
328	spin_lock(&cache_list_lock);
329	cd->nextcheck = 0;
330	cd->entries = 0;
331	atomic_set(&cd->readers, 0);
332	cd->last_close = 0;
333	cd->last_warn = -1;
334	list_add(&cd->others, &cache_list);
335	spin_unlock(&cache_list_lock);
336
337	/* start the cleaning process */
338	schedule_delayed_work(&cache_cleaner, 0);
339}
340
341static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
342{
343	cache_purge(cd);
344	spin_lock(&cache_list_lock);
345	write_lock(&cd->hash_lock);
346	if (cd->entries || atomic_read(&cd->inuse)) {
347		write_unlock(&cd->hash_lock);
348		spin_unlock(&cache_list_lock);
349		goto out;
350	}
351	if (current_detail == cd)
352		current_detail = NULL;
353	list_del_init(&cd->others);
354	write_unlock(&cd->hash_lock);
355	spin_unlock(&cache_list_lock);
356	if (list_empty(&cache_list)) {
357		/* module must be being unloaded so its safe to kill the worker */
358		cancel_delayed_work_sync(&cache_cleaner);
359	}
360	return;
361out:
362	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
363}
364
365/* clean cache tries to find something to clean
366 * and cleans it.
367 * It returns 1 if it cleaned something,
368 *            0 if it didn't find anything this time
369 *           -1 if it fell off the end of the list.
370 */
371static int cache_clean(void)
372{
373	int rv = 0;
374	struct list_head *next;
375
376	spin_lock(&cache_list_lock);
377
378	/* find a suitable table if we don't already have one */
379	while (current_detail == NULL ||
380	    current_index >= current_detail->hash_size) {
381		if (current_detail)
382			next = current_detail->others.next;
383		else
384			next = cache_list.next;
385		if (next == &cache_list) {
386			current_detail = NULL;
387			spin_unlock(&cache_list_lock);
388			return -1;
389		}
390		current_detail = list_entry(next, struct cache_detail, others);
391		if (current_detail->nextcheck > seconds_since_boot())
392			current_index = current_detail->hash_size;
393		else {
394			current_index = 0;
395			current_detail->nextcheck = seconds_since_boot()+30*60;
396		}
397	}
398
399	/* find a non-empty bucket in the table */
400	while (current_detail &&
401	       current_index < current_detail->hash_size &&
402	       current_detail->hash_table[current_index] == NULL)
403		current_index++;
404
405	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
406
407	if (current_detail && current_index < current_detail->hash_size) {
408		struct cache_head *ch, **cp;
409		struct cache_detail *d;
410
411		write_lock(&current_detail->hash_lock);
412
413		/* Ok, now to clean this strand */
414
415		cp = & current_detail->hash_table[current_index];
416		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
417			if (current_detail->nextcheck > ch->expiry_time)
418				current_detail->nextcheck = ch->expiry_time+1;
419			if (!cache_is_expired(current_detail, ch))
420				continue;
421
422			*cp = ch->next;
423			ch->next = NULL;
424			current_detail->entries--;
425			rv = 1;
426			break;
427		}
428
429		write_unlock(&current_detail->hash_lock);
430		d = current_detail;
431		if (!ch)
432			current_index ++;
433		spin_unlock(&cache_list_lock);
434		if (ch) {
435			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
436				cache_dequeue(current_detail, ch);
437			cache_revisit_request(ch);
438			cache_put(ch, d);
439		}
440	} else
441		spin_unlock(&cache_list_lock);
442
443	return rv;
444}
445
446/*
447 * We want to regularly clean the cache, so we need to schedule some work ...
448 */
449static void do_cache_clean(struct work_struct *work)
450{
451	int delay = 5;
452	if (cache_clean() == -1)
453		delay = round_jiffies_relative(30*HZ);
454
455	if (list_empty(&cache_list))
456		delay = 0;
457
458	if (delay)
459		schedule_delayed_work(&cache_cleaner, delay);
460}
461
462
463/*
464 * Clean all caches promptly.  This just calls cache_clean
465 * repeatedly until we are sure that every cache has had a chance to
466 * be fully cleaned
467 */
468void cache_flush(void)
469{
470	while (cache_clean() != -1)
471		cond_resched();
472	while (cache_clean() != -1)
473		cond_resched();
474}
475EXPORT_SYMBOL_GPL(cache_flush);
476
477void cache_purge(struct cache_detail *detail)
478{
479	detail->flush_time = LONG_MAX;
480	detail->nextcheck = seconds_since_boot();
481	cache_flush();
482	detail->flush_time = 1;
483}
484EXPORT_SYMBOL_GPL(cache_purge);
485
486
487/*
488 * Deferral and Revisiting of Requests.
489 *
490 * If a cache lookup finds a pending entry, we
491 * need to defer the request and revisit it later.
492 * All deferred requests are stored in a hash table,
493 * indexed by "struct cache_head *".
494 * As it may be wasteful to store a whole request
495 * structure, we allow the request to provide a
496 * deferred form, which must contain a
497 * 'struct cache_deferred_req'
498 * This cache_deferred_req contains a method to allow
499 * it to be revisited when cache info is available
500 */
501
502#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
503#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
504
505#define	DFR_MAX	300	/* ??? */
506
507static DEFINE_SPINLOCK(cache_defer_lock);
508static LIST_HEAD(cache_defer_list);
509static struct list_head cache_defer_hash[DFR_HASHSIZE];
510static int cache_defer_cnt;
511
512static void __unhash_deferred_req(struct cache_deferred_req *dreq)
513{
514	list_del_init(&dreq->recent);
515	list_del_init(&dreq->hash);
516	cache_defer_cnt--;
517}
518
519static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
520{
521	int hash = DFR_HASH(item);
522
523	list_add(&dreq->recent, &cache_defer_list);
524	if (cache_defer_hash[hash].next == NULL)
525		INIT_LIST_HEAD(&cache_defer_hash[hash]);
526	list_add(&dreq->hash, &cache_defer_hash[hash]);
527}
528
529static int setup_deferral(struct cache_deferred_req *dreq, struct cache_head *item)
530{
531	struct cache_deferred_req *discard;
532
533	dreq->item = item;
534
535	spin_lock(&cache_defer_lock);
536
537	__hash_deferred_req(dreq, item);
538
539	/* it is in, now maybe clean up */
540	discard = NULL;
541	if (++cache_defer_cnt > DFR_MAX) {
542		discard = list_entry(cache_defer_list.prev,
543				     struct cache_deferred_req, recent);
544		__unhash_deferred_req(discard);
545	}
546	spin_unlock(&cache_defer_lock);
547
548	if (discard)
549		/* there was one too many */
550		discard->revisit(discard, 1);
551
552	if (!test_bit(CACHE_PENDING, &item->flags)) {
553		/* must have just been validated... */
554		cache_revisit_request(item);
555		return -EAGAIN;
556	}
557	return 0;
558}
559
560struct thread_deferred_req {
561	struct cache_deferred_req handle;
562	struct completion completion;
563};
564
565static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
566{
567	struct thread_deferred_req *dr =
568		container_of(dreq, struct thread_deferred_req, handle);
569	complete(&dr->completion);
570}
571
572static int cache_wait_req(struct cache_req *req, struct cache_head *item)
573{
574	struct thread_deferred_req sleeper;
575	struct cache_deferred_req *dreq = &sleeper.handle;
576	int ret;
577
578	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
579	dreq->revisit = cache_restart_thread;
580
581	ret = setup_deferral(dreq, item);
582	if (ret)
583		return ret;
584
585	if (wait_for_completion_interruptible_timeout(
586		    &sleeper.completion, req->thread_wait) <= 0) {
587		/* The completion wasn't completed, so we need
588		 * to clean up
589		 */
590		spin_lock(&cache_defer_lock);
591		if (!list_empty(&sleeper.handle.hash)) {
592			__unhash_deferred_req(&sleeper.handle);
593			spin_unlock(&cache_defer_lock);
594		} else {
595			/* cache_revisit_request already removed
596			 * this from the hash table, but hasn't
597			 * called ->revisit yet.  It will very soon
598			 * and we need to wait for it.
599			 */
600			spin_unlock(&cache_defer_lock);
601			wait_for_completion(&sleeper.completion);
602		}
603	}
604	if (test_bit(CACHE_PENDING, &item->flags)) {
605		/* item is still pending, try request
606		 * deferral
607		 */
608		return -ETIMEDOUT;
609	}
610	/* only return success if we actually deferred the
611	 * request.  In this case we waited until it was
612	 * answered so no deferral has happened - rather
613	 * an answer already exists.
614	 */
615	return -EEXIST;
616}
617
618static int cache_defer_req(struct cache_req *req, struct cache_head *item)
619{
620	struct cache_deferred_req *dreq;
621	int ret;
622
623	if (cache_defer_cnt >= DFR_MAX) {
624		/* too much in the cache, randomly drop this one,
625		 * or continue and drop the oldest
626		 */
627		if (net_random()&1)
628			return -ENOMEM;
629	}
630	if (req->thread_wait) {
631		ret = cache_wait_req(req, item);
632		if (ret != -ETIMEDOUT)
633			return ret;
634	}
635	dreq = req->defer(req);
636	if (dreq == NULL)
637		return -ENOMEM;
638	return setup_deferral(dreq, item);
639}
640
641static void cache_revisit_request(struct cache_head *item)
642{
643	struct cache_deferred_req *dreq;
644	struct list_head pending;
645
646	struct list_head *lp;
647	int hash = DFR_HASH(item);
648
649	INIT_LIST_HEAD(&pending);
650	spin_lock(&cache_defer_lock);
651
652	lp = cache_defer_hash[hash].next;
653	if (lp) {
654		while (lp != &cache_defer_hash[hash]) {
655			dreq = list_entry(lp, struct cache_deferred_req, hash);
656			lp = lp->next;
657			if (dreq->item == item) {
658				__unhash_deferred_req(dreq);
659				list_add(&dreq->recent, &pending);
660			}
661		}
662	}
663	spin_unlock(&cache_defer_lock);
664
665	while (!list_empty(&pending)) {
666		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
667		list_del_init(&dreq->recent);
668		dreq->revisit(dreq, 0);
669	}
670}
671
672void cache_clean_deferred(void *owner)
673{
674	struct cache_deferred_req *dreq, *tmp;
675	struct list_head pending;
676
677
678	INIT_LIST_HEAD(&pending);
679	spin_lock(&cache_defer_lock);
680
681	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
682		if (dreq->owner == owner)
683			__unhash_deferred_req(dreq);
684	}
685	spin_unlock(&cache_defer_lock);
686
687	while (!list_empty(&pending)) {
688		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689		list_del_init(&dreq->recent);
690		dreq->revisit(dreq, 1);
691	}
692}
693
694/*
695 * communicate with user-space
696 *
697 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
698 * On read, you get a full request, or block.
699 * On write, an update request is processed.
700 * Poll works if anything to read, and always allows write.
701 *
702 * Implemented by linked list of requests.  Each open file has
703 * a ->private that also exists in this list.  New requests are added
704 * to the end and may wakeup and preceding readers.
705 * New readers are added to the head.  If, on read, an item is found with
706 * CACHE_UPCALLING clear, we free it from the list.
707 *
708 */
709
710static DEFINE_SPINLOCK(queue_lock);
711static DEFINE_MUTEX(queue_io_mutex);
712
713struct cache_queue {
714	struct list_head	list;
715	int			reader;	/* if 0, then request */
716};
717struct cache_request {
718	struct cache_queue	q;
719	struct cache_head	*item;
720	char			* buf;
721	int			len;
722	int			readers;
723};
724struct cache_reader {
725	struct cache_queue	q;
726	int			offset;	/* if non-0, we have a refcnt on next request */
727};
728
729static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
730			  loff_t *ppos, struct cache_detail *cd)
731{
732	struct cache_reader *rp = filp->private_data;
733	struct cache_request *rq;
734	struct inode *inode = filp->f_path.dentry->d_inode;
735	int err;
736
737	if (count == 0)
738		return 0;
739
740	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
741			      * readers on this file */
742 again:
743	spin_lock(&queue_lock);
744	/* need to find next request */
745	while (rp->q.list.next != &cd->queue &&
746	       list_entry(rp->q.list.next, struct cache_queue, list)
747	       ->reader) {
748		struct list_head *next = rp->q.list.next;
749		list_move(&rp->q.list, next);
750	}
751	if (rp->q.list.next == &cd->queue) {
752		spin_unlock(&queue_lock);
753		mutex_unlock(&inode->i_mutex);
754		BUG_ON(rp->offset);
755		return 0;
756	}
757	rq = container_of(rp->q.list.next, struct cache_request, q.list);
758	BUG_ON(rq->q.reader);
759	if (rp->offset == 0)
760		rq->readers++;
761	spin_unlock(&queue_lock);
762
763	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
764		err = -EAGAIN;
765		spin_lock(&queue_lock);
766		list_move(&rp->q.list, &rq->q.list);
767		spin_unlock(&queue_lock);
768	} else {
769		if (rp->offset + count > rq->len)
770			count = rq->len - rp->offset;
771		err = -EFAULT;
772		if (copy_to_user(buf, rq->buf + rp->offset, count))
773			goto out;
774		rp->offset += count;
775		if (rp->offset >= rq->len) {
776			rp->offset = 0;
777			spin_lock(&queue_lock);
778			list_move(&rp->q.list, &rq->q.list);
779			spin_unlock(&queue_lock);
780		}
781		err = 0;
782	}
783 out:
784	if (rp->offset == 0) {
785		/* need to release rq */
786		spin_lock(&queue_lock);
787		rq->readers--;
788		if (rq->readers == 0 &&
789		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
790			list_del(&rq->q.list);
791			spin_unlock(&queue_lock);
792			cache_put(rq->item, cd);
793			kfree(rq->buf);
794			kfree(rq);
795		} else
796			spin_unlock(&queue_lock);
797	}
798	if (err == -EAGAIN)
799		goto again;
800	mutex_unlock(&inode->i_mutex);
801	return err ? err :  count;
802}
803
804static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
805				 size_t count, struct cache_detail *cd)
806{
807	ssize_t ret;
808
809	if (copy_from_user(kaddr, buf, count))
810		return -EFAULT;
811	kaddr[count] = '\0';
812	ret = cd->cache_parse(cd, kaddr, count);
813	if (!ret)
814		ret = count;
815	return ret;
816}
817
818static ssize_t cache_slow_downcall(const char __user *buf,
819				   size_t count, struct cache_detail *cd)
820{
821	static char write_buf[8192]; /* protected by queue_io_mutex */
822	ssize_t ret = -EINVAL;
823
824	if (count >= sizeof(write_buf))
825		goto out;
826	mutex_lock(&queue_io_mutex);
827	ret = cache_do_downcall(write_buf, buf, count, cd);
828	mutex_unlock(&queue_io_mutex);
829out:
830	return ret;
831}
832
833static ssize_t cache_downcall(struct address_space *mapping,
834			      const char __user *buf,
835			      size_t count, struct cache_detail *cd)
836{
837	struct page *page;
838	char *kaddr;
839	ssize_t ret = -ENOMEM;
840
841	if (count >= PAGE_CACHE_SIZE)
842		goto out_slow;
843
844	page = find_or_create_page(mapping, 0, GFP_KERNEL);
845	if (!page)
846		goto out_slow;
847
848	kaddr = kmap(page);
849	ret = cache_do_downcall(kaddr, buf, count, cd);
850	kunmap(page);
851	unlock_page(page);
852	page_cache_release(page);
853	return ret;
854out_slow:
855	return cache_slow_downcall(buf, count, cd);
856}
857
858static ssize_t cache_write(struct file *filp, const char __user *buf,
859			   size_t count, loff_t *ppos,
860			   struct cache_detail *cd)
861{
862	struct address_space *mapping = filp->f_mapping;
863	struct inode *inode = filp->f_path.dentry->d_inode;
864	ssize_t ret = -EINVAL;
865
866	if (!cd->cache_parse)
867		goto out;
868
869	mutex_lock(&inode->i_mutex);
870	ret = cache_downcall(mapping, buf, count, cd);
871	mutex_unlock(&inode->i_mutex);
872out:
873	return ret;
874}
875
876static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
877
878static unsigned int cache_poll(struct file *filp, poll_table *wait,
879			       struct cache_detail *cd)
880{
881	unsigned int mask;
882	struct cache_reader *rp = filp->private_data;
883	struct cache_queue *cq;
884
885	poll_wait(filp, &queue_wait, wait);
886
887	/* alway allow write */
888	mask = POLL_OUT | POLLWRNORM;
889
890	if (!rp)
891		return mask;
892
893	spin_lock(&queue_lock);
894
895	for (cq= &rp->q; &cq->list != &cd->queue;
896	     cq = list_entry(cq->list.next, struct cache_queue, list))
897		if (!cq->reader) {
898			mask |= POLLIN | POLLRDNORM;
899			break;
900		}
901	spin_unlock(&queue_lock);
902	return mask;
903}
904
905static int cache_ioctl(struct inode *ino, struct file *filp,
906		       unsigned int cmd, unsigned long arg,
907		       struct cache_detail *cd)
908{
909	int len = 0;
910	struct cache_reader *rp = filp->private_data;
911	struct cache_queue *cq;
912
913	if (cmd != FIONREAD || !rp)
914		return -EINVAL;
915
916	spin_lock(&queue_lock);
917
918	/* only find the length remaining in current request,
919	 * or the length of the next request
920	 */
921	for (cq= &rp->q; &cq->list != &cd->queue;
922	     cq = list_entry(cq->list.next, struct cache_queue, list))
923		if (!cq->reader) {
924			struct cache_request *cr =
925				container_of(cq, struct cache_request, q);
926			len = cr->len - rp->offset;
927			break;
928		}
929	spin_unlock(&queue_lock);
930
931	return put_user(len, (int __user *)arg);
932}
933
934static int cache_open(struct inode *inode, struct file *filp,
935		      struct cache_detail *cd)
936{
937	struct cache_reader *rp = NULL;
938
939	if (!cd || !try_module_get(cd->owner))
940		return -EACCES;
941	nonseekable_open(inode, filp);
942	if (filp->f_mode & FMODE_READ) {
943		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
944		if (!rp)
945			return -ENOMEM;
946		rp->offset = 0;
947		rp->q.reader = 1;
948		atomic_inc(&cd->readers);
949		spin_lock(&queue_lock);
950		list_add(&rp->q.list, &cd->queue);
951		spin_unlock(&queue_lock);
952	}
953	filp->private_data = rp;
954	return 0;
955}
956
957static int cache_release(struct inode *inode, struct file *filp,
958			 struct cache_detail *cd)
959{
960	struct cache_reader *rp = filp->private_data;
961
962	if (rp) {
963		spin_lock(&queue_lock);
964		if (rp->offset) {
965			struct cache_queue *cq;
966			for (cq= &rp->q; &cq->list != &cd->queue;
967			     cq = list_entry(cq->list.next, struct cache_queue, list))
968				if (!cq->reader) {
969					container_of(cq, struct cache_request, q)
970						->readers--;
971					break;
972				}
973			rp->offset = 0;
974		}
975		list_del(&rp->q.list);
976		spin_unlock(&queue_lock);
977
978		filp->private_data = NULL;
979		kfree(rp);
980
981		cd->last_close = seconds_since_boot();
982		atomic_dec(&cd->readers);
983	}
984	module_put(cd->owner);
985	return 0;
986}
987
988
989
990static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
991{
992	struct cache_queue *cq;
993	spin_lock(&queue_lock);
994	list_for_each_entry(cq, &detail->queue, list)
995		if (!cq->reader) {
996			struct cache_request *cr = container_of(cq, struct cache_request, q);
997			if (cr->item != ch)
998				continue;
999			if (cr->readers != 0)
1000				continue;
1001			list_del(&cr->q.list);
1002			spin_unlock(&queue_lock);
1003			cache_put(cr->item, detail);
1004			kfree(cr->buf);
1005			kfree(cr);
1006			return;
1007		}
1008	spin_unlock(&queue_lock);
1009}
1010
1011/*
1012 * Support routines for text-based upcalls.
1013 * Fields are separated by spaces.
1014 * Fields are either mangled to quote space tab newline slosh with slosh
1015 * or a hexified with a leading \x
1016 * Record is terminated with newline.
1017 *
1018 */
1019
1020void qword_add(char **bpp, int *lp, char *str)
1021{
1022	char *bp = *bpp;
1023	int len = *lp;
1024	char c;
1025
1026	if (len < 0) return;
1027
1028	while ((c=*str++) && len)
1029		switch(c) {
1030		case ' ':
1031		case '\t':
1032		case '\n':
1033		case '\\':
1034			if (len >= 4) {
1035				*bp++ = '\\';
1036				*bp++ = '0' + ((c & 0300)>>6);
1037				*bp++ = '0' + ((c & 0070)>>3);
1038				*bp++ = '0' + ((c & 0007)>>0);
1039			}
1040			len -= 4;
1041			break;
1042		default:
1043			*bp++ = c;
1044			len--;
1045		}
1046	if (c || len <1) len = -1;
1047	else {
1048		*bp++ = ' ';
1049		len--;
1050	}
1051	*bpp = bp;
1052	*lp = len;
1053}
1054EXPORT_SYMBOL_GPL(qword_add);
1055
1056void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1057{
1058	char *bp = *bpp;
1059	int len = *lp;
1060
1061	if (len < 0) return;
1062
1063	if (len > 2) {
1064		*bp++ = '\\';
1065		*bp++ = 'x';
1066		len -= 2;
1067		while (blen && len >= 2) {
1068			unsigned char c = *buf++;
1069			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1070			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1071			len -= 2;
1072			blen--;
1073		}
1074	}
1075	if (blen || len<1) len = -1;
1076	else {
1077		*bp++ = ' ';
1078		len--;
1079	}
1080	*bpp = bp;
1081	*lp = len;
1082}
1083EXPORT_SYMBOL_GPL(qword_addhex);
1084
1085static void warn_no_listener(struct cache_detail *detail)
1086{
1087	if (detail->last_warn != detail->last_close) {
1088		detail->last_warn = detail->last_close;
1089		if (detail->warn_no_listener)
1090			detail->warn_no_listener(detail, detail->last_close != 0);
1091	}
1092}
1093
1094static bool cache_listeners_exist(struct cache_detail *detail)
1095{
1096	if (atomic_read(&detail->readers))
1097		return true;
1098	if (detail->last_close == 0)
1099		/* This cache was never opened */
1100		return false;
1101	if (detail->last_close < seconds_since_boot() - 30)
1102		/*
1103		 * We allow for the possibility that someone might
1104		 * restart a userspace daemon without restarting the
1105		 * server; but after 30 seconds, we give up.
1106		 */
1107		 return false;
1108	return true;
1109}
1110
1111/*
1112 * register an upcall request to user-space and queue it up for read() by the
1113 * upcall daemon.
1114 *
1115 * Each request is at most one page long.
1116 */
1117int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1118		void (*cache_request)(struct cache_detail *,
1119				      struct cache_head *,
1120				      char **,
1121				      int *))
1122{
1123
1124	char *buf;
1125	struct cache_request *crq;
1126	char *bp;
1127	int len;
1128
1129	if (!cache_listeners_exist(detail)) {
1130		warn_no_listener(detail);
1131		return -EINVAL;
1132	}
1133
1134	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1135	if (!buf)
1136		return -EAGAIN;
1137
1138	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1139	if (!crq) {
1140		kfree(buf);
1141		return -EAGAIN;
1142	}
1143
1144	bp = buf; len = PAGE_SIZE;
1145
1146	cache_request(detail, h, &bp, &len);
1147
1148	if (len < 0) {
1149		kfree(buf);
1150		kfree(crq);
1151		return -EAGAIN;
1152	}
1153	crq->q.reader = 0;
1154	crq->item = cache_get(h);
1155	crq->buf = buf;
1156	crq->len = PAGE_SIZE - len;
1157	crq->readers = 0;
1158	spin_lock(&queue_lock);
1159	list_add_tail(&crq->q.list, &detail->queue);
1160	spin_unlock(&queue_lock);
1161	wake_up(&queue_wait);
1162	return 0;
1163}
1164EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1165
1166/*
1167 * parse a message from user-space and pass it
1168 * to an appropriate cache
1169 * Messages are, like requests, separated into fields by
1170 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1171 *
1172 * Message is
1173 *   reply cachename expiry key ... content....
1174 *
1175 * key and content are both parsed by cache
1176 */
1177
1178#define isodigit(c) (isdigit(c) && c <= '7')
1179int qword_get(char **bpp, char *dest, int bufsize)
1180{
1181	/* return bytes copied, or -1 on error */
1182	char *bp = *bpp;
1183	int len = 0;
1184
1185	while (*bp == ' ') bp++;
1186
1187	if (bp[0] == '\\' && bp[1] == 'x') {
1188		/* HEX STRING */
1189		bp += 2;
1190		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1191			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1192			bp++;
1193			byte <<= 4;
1194			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1195			*dest++ = byte;
1196			bp++;
1197			len++;
1198		}
1199	} else {
1200		/* text with \nnn octal quoting */
1201		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1202			if (*bp == '\\' &&
1203			    isodigit(bp[1]) && (bp[1] <= '3') &&
1204			    isodigit(bp[2]) &&
1205			    isodigit(bp[3])) {
1206				int byte = (*++bp -'0');
1207				bp++;
1208				byte = (byte << 3) | (*bp++ - '0');
1209				byte = (byte << 3) | (*bp++ - '0');
1210				*dest++ = byte;
1211				len++;
1212			} else {
1213				*dest++ = *bp++;
1214				len++;
1215			}
1216		}
1217	}
1218
1219	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1220		return -1;
1221	while (*bp == ' ') bp++;
1222	*bpp = bp;
1223	*dest = '\0';
1224	return len;
1225}
1226EXPORT_SYMBOL_GPL(qword_get);
1227
1228
1229/*
1230 * support /proc/sunrpc/cache/$CACHENAME/content
1231 * as a seqfile.
1232 * We call ->cache_show passing NULL for the item to
1233 * get a header, then pass each real item in the cache
1234 */
1235
1236struct handle {
1237	struct cache_detail *cd;
1238};
1239
1240static void *c_start(struct seq_file *m, loff_t *pos)
1241	__acquires(cd->hash_lock)
1242{
1243	loff_t n = *pos;
1244	unsigned hash, entry;
1245	struct cache_head *ch;
1246	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1247
1248
1249	read_lock(&cd->hash_lock);
1250	if (!n--)
1251		return SEQ_START_TOKEN;
1252	hash = n >> 32;
1253	entry = n & ((1LL<<32) - 1);
1254
1255	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1256		if (!entry--)
1257			return ch;
1258	n &= ~((1LL<<32) - 1);
1259	do {
1260		hash++;
1261		n += 1LL<<32;
1262	} while(hash < cd->hash_size &&
1263		cd->hash_table[hash]==NULL);
1264	if (hash >= cd->hash_size)
1265		return NULL;
1266	*pos = n+1;
1267	return cd->hash_table[hash];
1268}
1269
1270static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1271{
1272	struct cache_head *ch = p;
1273	int hash = (*pos >> 32);
1274	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1275
1276	if (p == SEQ_START_TOKEN)
1277		hash = 0;
1278	else if (ch->next == NULL) {
1279		hash++;
1280		*pos += 1LL<<32;
1281	} else {
1282		++*pos;
1283		return ch->next;
1284	}
1285	*pos &= ~((1LL<<32) - 1);
1286	while (hash < cd->hash_size &&
1287	       cd->hash_table[hash] == NULL) {
1288		hash++;
1289		*pos += 1LL<<32;
1290	}
1291	if (hash >= cd->hash_size)
1292		return NULL;
1293	++*pos;
1294	return cd->hash_table[hash];
1295}
1296
1297static void c_stop(struct seq_file *m, void *p)
1298	__releases(cd->hash_lock)
1299{
1300	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1301	read_unlock(&cd->hash_lock);
1302}
1303
1304static int c_show(struct seq_file *m, void *p)
1305{
1306	struct cache_head *cp = p;
1307	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1308
1309	if (p == SEQ_START_TOKEN)
1310		return cd->cache_show(m, cd, NULL);
1311
1312	ifdebug(CACHE)
1313		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1314			   convert_to_wallclock(cp->expiry_time),
1315			   atomic_read(&cp->ref.refcount), cp->flags);
1316	cache_get(cp);
1317	if (cache_check(cd, cp, NULL))
1318		/* cache_check does a cache_put on failure */
1319		seq_printf(m, "# ");
1320	else
1321		cache_put(cp, cd);
1322
1323	return cd->cache_show(m, cd, cp);
1324}
1325
1326static const struct seq_operations cache_content_op = {
1327	.start	= c_start,
1328	.next	= c_next,
1329	.stop	= c_stop,
1330	.show	= c_show,
1331};
1332
1333static int content_open(struct inode *inode, struct file *file,
1334			struct cache_detail *cd)
1335{
1336	struct handle *han;
1337
1338	if (!cd || !try_module_get(cd->owner))
1339		return -EACCES;
1340	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1341	if (han == NULL) {
1342		module_put(cd->owner);
1343		return -ENOMEM;
1344	}
1345
1346	han->cd = cd;
1347	return 0;
1348}
1349
1350static int content_release(struct inode *inode, struct file *file,
1351		struct cache_detail *cd)
1352{
1353	int ret = seq_release_private(inode, file);
1354	module_put(cd->owner);
1355	return ret;
1356}
1357
1358static int open_flush(struct inode *inode, struct file *file,
1359			struct cache_detail *cd)
1360{
1361	if (!cd || !try_module_get(cd->owner))
1362		return -EACCES;
1363	return nonseekable_open(inode, file);
1364}
1365
1366static int release_flush(struct inode *inode, struct file *file,
1367			struct cache_detail *cd)
1368{
1369	module_put(cd->owner);
1370	return 0;
1371}
1372
1373static ssize_t read_flush(struct file *file, char __user *buf,
1374			  size_t count, loff_t *ppos,
1375			  struct cache_detail *cd)
1376{
1377	char tbuf[20];
1378	unsigned long p = *ppos;
1379	size_t len;
1380
1381	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1382	len = strlen(tbuf);
1383	if (p >= len)
1384		return 0;
1385	len -= p;
1386	if (len > count)
1387		len = count;
1388	if (copy_to_user(buf, (void*)(tbuf+p), len))
1389		return -EFAULT;
1390	*ppos += len;
1391	return len;
1392}
1393
1394static ssize_t write_flush(struct file *file, const char __user *buf,
1395			   size_t count, loff_t *ppos,
1396			   struct cache_detail *cd)
1397{
1398	char tbuf[20];
1399	char *bp, *ep;
1400
1401	if (*ppos || count > sizeof(tbuf)-1)
1402		return -EINVAL;
1403	if (copy_from_user(tbuf, buf, count))
1404		return -EFAULT;
1405	tbuf[count] = 0;
1406	simple_strtoul(tbuf, &ep, 0);
1407	if (*ep && *ep != '\n')
1408		return -EINVAL;
1409
1410	bp = tbuf;
1411	cd->flush_time = get_expiry(&bp);
1412	cd->nextcheck = seconds_since_boot();
1413	cache_flush();
1414
1415	*ppos += count;
1416	return count;
1417}
1418
1419static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1420				 size_t count, loff_t *ppos)
1421{
1422	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1423
1424	return cache_read(filp, buf, count, ppos, cd);
1425}
1426
1427static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1428				  size_t count, loff_t *ppos)
1429{
1430	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1431
1432	return cache_write(filp, buf, count, ppos, cd);
1433}
1434
1435static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1436{
1437	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1438
1439	return cache_poll(filp, wait, cd);
1440}
1441
1442static long cache_ioctl_procfs(struct file *filp,
1443			       unsigned int cmd, unsigned long arg)
1444{
1445	long ret;
1446	struct inode *inode = filp->f_path.dentry->d_inode;
1447	struct cache_detail *cd = PDE(inode)->data;
1448
1449	lock_kernel();
1450	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1451	unlock_kernel();
1452
1453	return ret;
1454}
1455
1456static int cache_open_procfs(struct inode *inode, struct file *filp)
1457{
1458	struct cache_detail *cd = PDE(inode)->data;
1459
1460	return cache_open(inode, filp, cd);
1461}
1462
1463static int cache_release_procfs(struct inode *inode, struct file *filp)
1464{
1465	struct cache_detail *cd = PDE(inode)->data;
1466
1467	return cache_release(inode, filp, cd);
1468}
1469
1470static const struct file_operations cache_file_operations_procfs = {
1471	.owner		= THIS_MODULE,
1472	.llseek		= no_llseek,
1473	.read		= cache_read_procfs,
1474	.write		= cache_write_procfs,
1475	.poll		= cache_poll_procfs,
1476	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1477	.open		= cache_open_procfs,
1478	.release	= cache_release_procfs,
1479};
1480
1481static int content_open_procfs(struct inode *inode, struct file *filp)
1482{
1483	struct cache_detail *cd = PDE(inode)->data;
1484
1485	return content_open(inode, filp, cd);
1486}
1487
1488static int content_release_procfs(struct inode *inode, struct file *filp)
1489{
1490	struct cache_detail *cd = PDE(inode)->data;
1491
1492	return content_release(inode, filp, cd);
1493}
1494
1495static const struct file_operations content_file_operations_procfs = {
1496	.open		= content_open_procfs,
1497	.read		= seq_read,
1498	.llseek		= seq_lseek,
1499	.release	= content_release_procfs,
1500};
1501
1502static int open_flush_procfs(struct inode *inode, struct file *filp)
1503{
1504	struct cache_detail *cd = PDE(inode)->data;
1505
1506	return open_flush(inode, filp, cd);
1507}
1508
1509static int release_flush_procfs(struct inode *inode, struct file *filp)
1510{
1511	struct cache_detail *cd = PDE(inode)->data;
1512
1513	return release_flush(inode, filp, cd);
1514}
1515
1516static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1517			    size_t count, loff_t *ppos)
1518{
1519	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1520
1521	return read_flush(filp, buf, count, ppos, cd);
1522}
1523
1524static ssize_t write_flush_procfs(struct file *filp,
1525				  const char __user *buf,
1526				  size_t count, loff_t *ppos)
1527{
1528	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1529
1530	return write_flush(filp, buf, count, ppos, cd);
1531}
1532
1533static const struct file_operations cache_flush_operations_procfs = {
1534	.open		= open_flush_procfs,
1535	.read		= read_flush_procfs,
1536	.write		= write_flush_procfs,
1537	.release	= release_flush_procfs,
1538};
1539
1540static void remove_cache_proc_entries(struct cache_detail *cd)
1541{
1542	if (cd->u.procfs.proc_ent == NULL)
1543		return;
1544	if (cd->u.procfs.flush_ent)
1545		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1546	if (cd->u.procfs.channel_ent)
1547		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1548	if (cd->u.procfs.content_ent)
1549		remove_proc_entry("content", cd->u.procfs.proc_ent);
1550	cd->u.procfs.proc_ent = NULL;
1551	remove_proc_entry(cd->name, proc_net_rpc);
1552}
1553
1554#ifdef CONFIG_PROC_FS
1555static int create_cache_proc_entries(struct cache_detail *cd)
1556{
1557	struct proc_dir_entry *p;
1558
1559	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1560	if (cd->u.procfs.proc_ent == NULL)
1561		goto out_nomem;
1562	cd->u.procfs.channel_ent = NULL;
1563	cd->u.procfs.content_ent = NULL;
1564
1565	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1566			     cd->u.procfs.proc_ent,
1567			     &cache_flush_operations_procfs, cd);
1568	cd->u.procfs.flush_ent = p;
1569	if (p == NULL)
1570		goto out_nomem;
1571
1572	if (cd->cache_upcall || cd->cache_parse) {
1573		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1574				     cd->u.procfs.proc_ent,
1575				     &cache_file_operations_procfs, cd);
1576		cd->u.procfs.channel_ent = p;
1577		if (p == NULL)
1578			goto out_nomem;
1579	}
1580	if (cd->cache_show) {
1581		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1582				cd->u.procfs.proc_ent,
1583				&content_file_operations_procfs, cd);
1584		cd->u.procfs.content_ent = p;
1585		if (p == NULL)
1586			goto out_nomem;
1587	}
1588	return 0;
1589out_nomem:
1590	remove_cache_proc_entries(cd);
1591	return -ENOMEM;
1592}
1593#else /* CONFIG_PROC_FS */
1594static int create_cache_proc_entries(struct cache_detail *cd)
1595{
1596	return 0;
1597}
1598#endif
1599
1600void __init cache_initialize(void)
1601{
1602	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1603}
1604
1605int cache_register(struct cache_detail *cd)
1606{
1607	int ret;
1608
1609	sunrpc_init_cache_detail(cd);
1610	ret = create_cache_proc_entries(cd);
1611	if (ret)
1612		sunrpc_destroy_cache_detail(cd);
1613	return ret;
1614}
1615EXPORT_SYMBOL_GPL(cache_register);
1616
1617void cache_unregister(struct cache_detail *cd)
1618{
1619	remove_cache_proc_entries(cd);
1620	sunrpc_destroy_cache_detail(cd);
1621}
1622EXPORT_SYMBOL_GPL(cache_unregister);
1623
1624static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1625				 size_t count, loff_t *ppos)
1626{
1627	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1628
1629	return cache_read(filp, buf, count, ppos, cd);
1630}
1631
1632static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1633				  size_t count, loff_t *ppos)
1634{
1635	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1636
1637	return cache_write(filp, buf, count, ppos, cd);
1638}
1639
1640static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1641{
1642	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1643
1644	return cache_poll(filp, wait, cd);
1645}
1646
1647static long cache_ioctl_pipefs(struct file *filp,
1648			      unsigned int cmd, unsigned long arg)
1649{
1650	struct inode *inode = filp->f_dentry->d_inode;
1651	struct cache_detail *cd = RPC_I(inode)->private;
1652	long ret;
1653
1654	lock_kernel();
1655	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1656	unlock_kernel();
1657
1658	return ret;
1659}
1660
1661static int cache_open_pipefs(struct inode *inode, struct file *filp)
1662{
1663	struct cache_detail *cd = RPC_I(inode)->private;
1664
1665	return cache_open(inode, filp, cd);
1666}
1667
1668static int cache_release_pipefs(struct inode *inode, struct file *filp)
1669{
1670	struct cache_detail *cd = RPC_I(inode)->private;
1671
1672	return cache_release(inode, filp, cd);
1673}
1674
1675const struct file_operations cache_file_operations_pipefs = {
1676	.owner		= THIS_MODULE,
1677	.llseek		= no_llseek,
1678	.read		= cache_read_pipefs,
1679	.write		= cache_write_pipefs,
1680	.poll		= cache_poll_pipefs,
1681	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1682	.open		= cache_open_pipefs,
1683	.release	= cache_release_pipefs,
1684};
1685
1686static int content_open_pipefs(struct inode *inode, struct file *filp)
1687{
1688	struct cache_detail *cd = RPC_I(inode)->private;
1689
1690	return content_open(inode, filp, cd);
1691}
1692
1693static int content_release_pipefs(struct inode *inode, struct file *filp)
1694{
1695	struct cache_detail *cd = RPC_I(inode)->private;
1696
1697	return content_release(inode, filp, cd);
1698}
1699
1700const struct file_operations content_file_operations_pipefs = {
1701	.open		= content_open_pipefs,
1702	.read		= seq_read,
1703	.llseek		= seq_lseek,
1704	.release	= content_release_pipefs,
1705};
1706
1707static int open_flush_pipefs(struct inode *inode, struct file *filp)
1708{
1709	struct cache_detail *cd = RPC_I(inode)->private;
1710
1711	return open_flush(inode, filp, cd);
1712}
1713
1714static int release_flush_pipefs(struct inode *inode, struct file *filp)
1715{
1716	struct cache_detail *cd = RPC_I(inode)->private;
1717
1718	return release_flush(inode, filp, cd);
1719}
1720
1721static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1722			    size_t count, loff_t *ppos)
1723{
1724	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1725
1726	return read_flush(filp, buf, count, ppos, cd);
1727}
1728
1729static ssize_t write_flush_pipefs(struct file *filp,
1730				  const char __user *buf,
1731				  size_t count, loff_t *ppos)
1732{
1733	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1734
1735	return write_flush(filp, buf, count, ppos, cd);
1736}
1737
1738const struct file_operations cache_flush_operations_pipefs = {
1739	.open		= open_flush_pipefs,
1740	.read		= read_flush_pipefs,
1741	.write		= write_flush_pipefs,
1742	.release	= release_flush_pipefs,
1743};
1744
1745int sunrpc_cache_register_pipefs(struct dentry *parent,
1746				 const char *name, mode_t umode,
1747				 struct cache_detail *cd)
1748{
1749	struct qstr q;
1750	struct dentry *dir;
1751	int ret = 0;
1752
1753	sunrpc_init_cache_detail(cd);
1754	q.name = name;
1755	q.len = strlen(name);
1756	q.hash = full_name_hash(q.name, q.len);
1757	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1758	if (!IS_ERR(dir))
1759		cd->u.pipefs.dir = dir;
1760	else {
1761		sunrpc_destroy_cache_detail(cd);
1762		ret = PTR_ERR(dir);
1763	}
1764	return ret;
1765}
1766EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1767
1768void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1769{
1770	rpc_remove_cache_dir(cd->u.pipefs.dir);
1771	cd->u.pipefs.dir = NULL;
1772	sunrpc_destroy_cache_detail(cd);
1773}
1774EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1775
1776