cache.c revision 200724a7074281e7a0bf1101784a59fecddfa77d
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <asm/ioctls.h>
32#include <linux/sunrpc/types.h>
33#include <linux/sunrpc/cache.h>
34#include <linux/sunrpc/stats.h>
35#include <linux/sunrpc/rpc_pipe_fs.h>
36#include "netns.h"
37
38#define	 RPCDBG_FACILITY RPCDBG_CACHE
39
40static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41static void cache_revisit_request(struct cache_head *item);
42
43static void cache_init(struct cache_head *h)
44{
45	time_t now = seconds_since_boot();
46	h->next = NULL;
47	h->flags = 0;
48	kref_init(&h->ref);
49	h->expiry_time = now + CACHE_NEW_EXPIRY;
50	h->last_refresh = now;
51}
52
53static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54{
55	return  (h->expiry_time < seconds_since_boot()) ||
56		(detail->flush_time > h->last_refresh);
57}
58
59struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60				       struct cache_head *key, int hash)
61{
62	struct cache_head **head,  **hp;
63	struct cache_head *new = NULL, *freeme = NULL;
64
65	head = &detail->hash_table[hash];
66
67	read_lock(&detail->hash_lock);
68
69	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70		struct cache_head *tmp = *hp;
71		if (detail->match(tmp, key)) {
72			if (cache_is_expired(detail, tmp))
73				/* This entry is expired, we will discard it. */
74				break;
75			cache_get(tmp);
76			read_unlock(&detail->hash_lock);
77			return tmp;
78		}
79	}
80	read_unlock(&detail->hash_lock);
81	/* Didn't find anything, insert an empty entry */
82
83	new = detail->alloc();
84	if (!new)
85		return NULL;
86	/* must fully initialise 'new', else
87	 * we might get lose if we need to
88	 * cache_put it soon.
89	 */
90	cache_init(new);
91	detail->init(new, key);
92
93	write_lock(&detail->hash_lock);
94
95	/* check if entry appeared while we slept */
96	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97		struct cache_head *tmp = *hp;
98		if (detail->match(tmp, key)) {
99			if (cache_is_expired(detail, tmp)) {
100				*hp = tmp->next;
101				tmp->next = NULL;
102				detail->entries --;
103				freeme = tmp;
104				break;
105			}
106			cache_get(tmp);
107			write_unlock(&detail->hash_lock);
108			cache_put(new, detail);
109			return tmp;
110		}
111	}
112	new->next = *head;
113	*head = new;
114	detail->entries++;
115	cache_get(new);
116	write_unlock(&detail->hash_lock);
117
118	if (freeme)
119		cache_put(freeme, detail);
120	return new;
121}
122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128{
129	head->expiry_time = expiry;
130	head->last_refresh = seconds_since_boot();
131	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132	set_bit(CACHE_VALID, &head->flags);
133}
134
135static void cache_fresh_unlocked(struct cache_head *head,
136				 struct cache_detail *detail)
137{
138	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139		cache_revisit_request(head);
140		cache_dequeue(detail, head);
141	}
142}
143
144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145				       struct cache_head *new, struct cache_head *old, int hash)
146{
147	/* The 'old' entry is to be replaced by 'new'.
148	 * If 'old' is not VALID, we update it directly,
149	 * otherwise we need to replace it
150	 */
151	struct cache_head **head;
152	struct cache_head *tmp;
153
154	if (!test_bit(CACHE_VALID, &old->flags)) {
155		write_lock(&detail->hash_lock);
156		if (!test_bit(CACHE_VALID, &old->flags)) {
157			if (test_bit(CACHE_NEGATIVE, &new->flags))
158				set_bit(CACHE_NEGATIVE, &old->flags);
159			else
160				detail->update(old, new);
161			cache_fresh_locked(old, new->expiry_time);
162			write_unlock(&detail->hash_lock);
163			cache_fresh_unlocked(old, detail);
164			return old;
165		}
166		write_unlock(&detail->hash_lock);
167	}
168	/* We need to insert a new entry */
169	tmp = detail->alloc();
170	if (!tmp) {
171		cache_put(old, detail);
172		return NULL;
173	}
174	cache_init(tmp);
175	detail->init(tmp, old);
176	head = &detail->hash_table[hash];
177
178	write_lock(&detail->hash_lock);
179	if (test_bit(CACHE_NEGATIVE, &new->flags))
180		set_bit(CACHE_NEGATIVE, &tmp->flags);
181	else
182		detail->update(tmp, new);
183	tmp->next = *head;
184	*head = tmp;
185	detail->entries++;
186	cache_get(tmp);
187	cache_fresh_locked(tmp, new->expiry_time);
188	cache_fresh_locked(old, 0);
189	write_unlock(&detail->hash_lock);
190	cache_fresh_unlocked(tmp, detail);
191	cache_fresh_unlocked(old, detail);
192	cache_put(old, detail);
193	return tmp;
194}
195EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198{
199	if (!cd->cache_upcall)
200		return -EINVAL;
201	return cd->cache_upcall(cd, h);
202}
203
204static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205{
206	if (!test_bit(CACHE_VALID, &h->flags))
207		return -EAGAIN;
208	else {
209		/* entry is valid */
210		if (test_bit(CACHE_NEGATIVE, &h->flags))
211			return -ENOENT;
212		else {
213			/*
214			 * In combination with write barrier in
215			 * sunrpc_cache_update, ensures that anyone
216			 * using the cache entry after this sees the
217			 * updated contents:
218			 */
219			smp_rmb();
220			return 0;
221		}
222	}
223}
224
225static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226{
227	int rv;
228
229	write_lock(&detail->hash_lock);
230	rv = cache_is_valid(detail, h);
231	if (rv != -EAGAIN) {
232		write_unlock(&detail->hash_lock);
233		return rv;
234	}
235	set_bit(CACHE_NEGATIVE, &h->flags);
236	cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237	write_unlock(&detail->hash_lock);
238	cache_fresh_unlocked(h, detail);
239	return -ENOENT;
240}
241
242/*
243 * This is the generic cache management routine for all
244 * the authentication caches.
245 * It checks the currency of a cache item and will (later)
246 * initiate an upcall to fill it if needed.
247 *
248 *
249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
250 * -EAGAIN if upcall is pending and request has been queued
251 * -ETIMEDOUT if upcall failed or request could not be queue or
252 *           upcall completed but item is still invalid (implying that
253 *           the cache item has been replaced with a newer one).
254 * -ENOENT if cache entry was negative
255 */
256int cache_check(struct cache_detail *detail,
257		    struct cache_head *h, struct cache_req *rqstp)
258{
259	int rv;
260	long refresh_age, age;
261
262	/* First decide return status as best we can */
263	rv = cache_is_valid(detail, h);
264
265	/* now see if we want to start an upcall */
266	refresh_age = (h->expiry_time - h->last_refresh);
267	age = seconds_since_boot() - h->last_refresh;
268
269	if (rqstp == NULL) {
270		if (rv == -EAGAIN)
271			rv = -ENOENT;
272	} else if (rv == -EAGAIN || age > refresh_age/2) {
273		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
274				refresh_age, age);
275		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276			switch (cache_make_upcall(detail, h)) {
277			case -EINVAL:
278				clear_bit(CACHE_PENDING, &h->flags);
279				cache_revisit_request(h);
280				rv = try_to_negate_entry(detail, h);
281				break;
282			case -EAGAIN:
283				clear_bit(CACHE_PENDING, &h->flags);
284				cache_revisit_request(h);
285				break;
286			}
287		}
288	}
289
290	if (rv == -EAGAIN) {
291		if (!cache_defer_req(rqstp, h)) {
292			/*
293			 * Request was not deferred; handle it as best
294			 * we can ourselves:
295			 */
296			rv = cache_is_valid(detail, h);
297			if (rv == -EAGAIN)
298				rv = -ETIMEDOUT;
299		}
300	}
301	if (rv)
302		cache_put(h, detail);
303	return rv;
304}
305EXPORT_SYMBOL_GPL(cache_check);
306
307/*
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
311 * for that entry.
312 *
313 * Each time clean_cache is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
316 *
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
320 *
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
323 *
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
326 * cache_detail.
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
333 *
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
336 *
337 */
338
339static LIST_HEAD(cache_list);
340static DEFINE_SPINLOCK(cache_list_lock);
341static struct cache_detail *current_detail;
342static int current_index;
343
344static void do_cache_clean(struct work_struct *work);
345static struct delayed_work cache_cleaner;
346
347void sunrpc_init_cache_detail(struct cache_detail *cd)
348{
349	rwlock_init(&cd->hash_lock);
350	INIT_LIST_HEAD(&cd->queue);
351	spin_lock(&cache_list_lock);
352	cd->nextcheck = 0;
353	cd->entries = 0;
354	atomic_set(&cd->readers, 0);
355	cd->last_close = 0;
356	cd->last_warn = -1;
357	list_add(&cd->others, &cache_list);
358	spin_unlock(&cache_list_lock);
359
360	/* start the cleaning process */
361	schedule_delayed_work(&cache_cleaner, 0);
362}
363EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364
365void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366{
367	cache_purge(cd);
368	spin_lock(&cache_list_lock);
369	write_lock(&cd->hash_lock);
370	if (cd->entries || atomic_read(&cd->inuse)) {
371		write_unlock(&cd->hash_lock);
372		spin_unlock(&cache_list_lock);
373		goto out;
374	}
375	if (current_detail == cd)
376		current_detail = NULL;
377	list_del_init(&cd->others);
378	write_unlock(&cd->hash_lock);
379	spin_unlock(&cache_list_lock);
380	if (list_empty(&cache_list)) {
381		/* module must be being unloaded so its safe to kill the worker */
382		cancel_delayed_work_sync(&cache_cleaner);
383	}
384	return;
385out:
386	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
387}
388EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
389
390/* clean cache tries to find something to clean
391 * and cleans it.
392 * It returns 1 if it cleaned something,
393 *            0 if it didn't find anything this time
394 *           -1 if it fell off the end of the list.
395 */
396static int cache_clean(void)
397{
398	int rv = 0;
399	struct list_head *next;
400
401	spin_lock(&cache_list_lock);
402
403	/* find a suitable table if we don't already have one */
404	while (current_detail == NULL ||
405	    current_index >= current_detail->hash_size) {
406		if (current_detail)
407			next = current_detail->others.next;
408		else
409			next = cache_list.next;
410		if (next == &cache_list) {
411			current_detail = NULL;
412			spin_unlock(&cache_list_lock);
413			return -1;
414		}
415		current_detail = list_entry(next, struct cache_detail, others);
416		if (current_detail->nextcheck > seconds_since_boot())
417			current_index = current_detail->hash_size;
418		else {
419			current_index = 0;
420			current_detail->nextcheck = seconds_since_boot()+30*60;
421		}
422	}
423
424	/* find a non-empty bucket in the table */
425	while (current_detail &&
426	       current_index < current_detail->hash_size &&
427	       current_detail->hash_table[current_index] == NULL)
428		current_index++;
429
430	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
431
432	if (current_detail && current_index < current_detail->hash_size) {
433		struct cache_head *ch, **cp;
434		struct cache_detail *d;
435
436		write_lock(&current_detail->hash_lock);
437
438		/* Ok, now to clean this strand */
439
440		cp = & current_detail->hash_table[current_index];
441		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
442			if (current_detail->nextcheck > ch->expiry_time)
443				current_detail->nextcheck = ch->expiry_time+1;
444			if (!cache_is_expired(current_detail, ch))
445				continue;
446
447			*cp = ch->next;
448			ch->next = NULL;
449			current_detail->entries--;
450			rv = 1;
451			break;
452		}
453
454		write_unlock(&current_detail->hash_lock);
455		d = current_detail;
456		if (!ch)
457			current_index ++;
458		spin_unlock(&cache_list_lock);
459		if (ch) {
460			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
461				cache_dequeue(current_detail, ch);
462			cache_revisit_request(ch);
463			cache_put(ch, d);
464		}
465	} else
466		spin_unlock(&cache_list_lock);
467
468	return rv;
469}
470
471/*
472 * We want to regularly clean the cache, so we need to schedule some work ...
473 */
474static void do_cache_clean(struct work_struct *work)
475{
476	int delay = 5;
477	if (cache_clean() == -1)
478		delay = round_jiffies_relative(30*HZ);
479
480	if (list_empty(&cache_list))
481		delay = 0;
482
483	if (delay)
484		schedule_delayed_work(&cache_cleaner, delay);
485}
486
487
488/*
489 * Clean all caches promptly.  This just calls cache_clean
490 * repeatedly until we are sure that every cache has had a chance to
491 * be fully cleaned
492 */
493void cache_flush(void)
494{
495	while (cache_clean() != -1)
496		cond_resched();
497	while (cache_clean() != -1)
498		cond_resched();
499}
500EXPORT_SYMBOL_GPL(cache_flush);
501
502void cache_purge(struct cache_detail *detail)
503{
504	detail->flush_time = LONG_MAX;
505	detail->nextcheck = seconds_since_boot();
506	cache_flush();
507	detail->flush_time = 1;
508}
509EXPORT_SYMBOL_GPL(cache_purge);
510
511
512/*
513 * Deferral and Revisiting of Requests.
514 *
515 * If a cache lookup finds a pending entry, we
516 * need to defer the request and revisit it later.
517 * All deferred requests are stored in a hash table,
518 * indexed by "struct cache_head *".
519 * As it may be wasteful to store a whole request
520 * structure, we allow the request to provide a
521 * deferred form, which must contain a
522 * 'struct cache_deferred_req'
523 * This cache_deferred_req contains a method to allow
524 * it to be revisited when cache info is available
525 */
526
527#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
528#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529
530#define	DFR_MAX	300	/* ??? */
531
532static DEFINE_SPINLOCK(cache_defer_lock);
533static LIST_HEAD(cache_defer_list);
534static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
535static int cache_defer_cnt;
536
537static void __unhash_deferred_req(struct cache_deferred_req *dreq)
538{
539	hlist_del_init(&dreq->hash);
540	if (!list_empty(&dreq->recent)) {
541		list_del_init(&dreq->recent);
542		cache_defer_cnt--;
543	}
544}
545
546static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
547{
548	int hash = DFR_HASH(item);
549
550	INIT_LIST_HEAD(&dreq->recent);
551	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
552}
553
554static void setup_deferral(struct cache_deferred_req *dreq,
555			   struct cache_head *item,
556			   int count_me)
557{
558
559	dreq->item = item;
560
561	spin_lock(&cache_defer_lock);
562
563	__hash_deferred_req(dreq, item);
564
565	if (count_me) {
566		cache_defer_cnt++;
567		list_add(&dreq->recent, &cache_defer_list);
568	}
569
570	spin_unlock(&cache_defer_lock);
571
572}
573
574struct thread_deferred_req {
575	struct cache_deferred_req handle;
576	struct completion completion;
577};
578
579static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
580{
581	struct thread_deferred_req *dr =
582		container_of(dreq, struct thread_deferred_req, handle);
583	complete(&dr->completion);
584}
585
586static void cache_wait_req(struct cache_req *req, struct cache_head *item)
587{
588	struct thread_deferred_req sleeper;
589	struct cache_deferred_req *dreq = &sleeper.handle;
590
591	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
592	dreq->revisit = cache_restart_thread;
593
594	setup_deferral(dreq, item, 0);
595
596	if (!test_bit(CACHE_PENDING, &item->flags) ||
597	    wait_for_completion_interruptible_timeout(
598		    &sleeper.completion, req->thread_wait) <= 0) {
599		/* The completion wasn't completed, so we need
600		 * to clean up
601		 */
602		spin_lock(&cache_defer_lock);
603		if (!hlist_unhashed(&sleeper.handle.hash)) {
604			__unhash_deferred_req(&sleeper.handle);
605			spin_unlock(&cache_defer_lock);
606		} else {
607			/* cache_revisit_request already removed
608			 * this from the hash table, but hasn't
609			 * called ->revisit yet.  It will very soon
610			 * and we need to wait for it.
611			 */
612			spin_unlock(&cache_defer_lock);
613			wait_for_completion(&sleeper.completion);
614		}
615	}
616}
617
618static void cache_limit_defers(void)
619{
620	/* Make sure we haven't exceed the limit of allowed deferred
621	 * requests.
622	 */
623	struct cache_deferred_req *discard = NULL;
624
625	if (cache_defer_cnt <= DFR_MAX)
626		return;
627
628	spin_lock(&cache_defer_lock);
629
630	/* Consider removing either the first or the last */
631	if (cache_defer_cnt > DFR_MAX) {
632		if (net_random() & 1)
633			discard = list_entry(cache_defer_list.next,
634					     struct cache_deferred_req, recent);
635		else
636			discard = list_entry(cache_defer_list.prev,
637					     struct cache_deferred_req, recent);
638		__unhash_deferred_req(discard);
639	}
640	spin_unlock(&cache_defer_lock);
641	if (discard)
642		discard->revisit(discard, 1);
643}
644
645/* Return true if and only if a deferred request is queued. */
646static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
647{
648	struct cache_deferred_req *dreq;
649
650	if (req->thread_wait) {
651		cache_wait_req(req, item);
652		if (!test_bit(CACHE_PENDING, &item->flags))
653			return false;
654	}
655	dreq = req->defer(req);
656	if (dreq == NULL)
657		return false;
658	setup_deferral(dreq, item, 1);
659	if (!test_bit(CACHE_PENDING, &item->flags))
660		/* Bit could have been cleared before we managed to
661		 * set up the deferral, so need to revisit just in case
662		 */
663		cache_revisit_request(item);
664
665	cache_limit_defers();
666	return true;
667}
668
669static void cache_revisit_request(struct cache_head *item)
670{
671	struct cache_deferred_req *dreq;
672	struct list_head pending;
673	struct hlist_node *lp, *tmp;
674	int hash = DFR_HASH(item);
675
676	INIT_LIST_HEAD(&pending);
677	spin_lock(&cache_defer_lock);
678
679	hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
680		if (dreq->item == item) {
681			__unhash_deferred_req(dreq);
682			list_add(&dreq->recent, &pending);
683		}
684
685	spin_unlock(&cache_defer_lock);
686
687	while (!list_empty(&pending)) {
688		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689		list_del_init(&dreq->recent);
690		dreq->revisit(dreq, 0);
691	}
692}
693
694void cache_clean_deferred(void *owner)
695{
696	struct cache_deferred_req *dreq, *tmp;
697	struct list_head pending;
698
699
700	INIT_LIST_HEAD(&pending);
701	spin_lock(&cache_defer_lock);
702
703	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
704		if (dreq->owner == owner) {
705			__unhash_deferred_req(dreq);
706			list_add(&dreq->recent, &pending);
707		}
708	}
709	spin_unlock(&cache_defer_lock);
710
711	while (!list_empty(&pending)) {
712		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
713		list_del_init(&dreq->recent);
714		dreq->revisit(dreq, 1);
715	}
716}
717
718/*
719 * communicate with user-space
720 *
721 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
722 * On read, you get a full request, or block.
723 * On write, an update request is processed.
724 * Poll works if anything to read, and always allows write.
725 *
726 * Implemented by linked list of requests.  Each open file has
727 * a ->private that also exists in this list.  New requests are added
728 * to the end and may wakeup and preceding readers.
729 * New readers are added to the head.  If, on read, an item is found with
730 * CACHE_UPCALLING clear, we free it from the list.
731 *
732 */
733
734static DEFINE_SPINLOCK(queue_lock);
735static DEFINE_MUTEX(queue_io_mutex);
736
737struct cache_queue {
738	struct list_head	list;
739	int			reader;	/* if 0, then request */
740};
741struct cache_request {
742	struct cache_queue	q;
743	struct cache_head	*item;
744	char			* buf;
745	int			len;
746	int			readers;
747};
748struct cache_reader {
749	struct cache_queue	q;
750	int			offset;	/* if non-0, we have a refcnt on next request */
751};
752
753static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
754			  loff_t *ppos, struct cache_detail *cd)
755{
756	struct cache_reader *rp = filp->private_data;
757	struct cache_request *rq;
758	struct inode *inode = filp->f_path.dentry->d_inode;
759	int err;
760
761	if (count == 0)
762		return 0;
763
764	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
765			      * readers on this file */
766 again:
767	spin_lock(&queue_lock);
768	/* need to find next request */
769	while (rp->q.list.next != &cd->queue &&
770	       list_entry(rp->q.list.next, struct cache_queue, list)
771	       ->reader) {
772		struct list_head *next = rp->q.list.next;
773		list_move(&rp->q.list, next);
774	}
775	if (rp->q.list.next == &cd->queue) {
776		spin_unlock(&queue_lock);
777		mutex_unlock(&inode->i_mutex);
778		BUG_ON(rp->offset);
779		return 0;
780	}
781	rq = container_of(rp->q.list.next, struct cache_request, q.list);
782	BUG_ON(rq->q.reader);
783	if (rp->offset == 0)
784		rq->readers++;
785	spin_unlock(&queue_lock);
786
787	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
788		err = -EAGAIN;
789		spin_lock(&queue_lock);
790		list_move(&rp->q.list, &rq->q.list);
791		spin_unlock(&queue_lock);
792	} else {
793		if (rp->offset + count > rq->len)
794			count = rq->len - rp->offset;
795		err = -EFAULT;
796		if (copy_to_user(buf, rq->buf + rp->offset, count))
797			goto out;
798		rp->offset += count;
799		if (rp->offset >= rq->len) {
800			rp->offset = 0;
801			spin_lock(&queue_lock);
802			list_move(&rp->q.list, &rq->q.list);
803			spin_unlock(&queue_lock);
804		}
805		err = 0;
806	}
807 out:
808	if (rp->offset == 0) {
809		/* need to release rq */
810		spin_lock(&queue_lock);
811		rq->readers--;
812		if (rq->readers == 0 &&
813		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
814			list_del(&rq->q.list);
815			spin_unlock(&queue_lock);
816			cache_put(rq->item, cd);
817			kfree(rq->buf);
818			kfree(rq);
819		} else
820			spin_unlock(&queue_lock);
821	}
822	if (err == -EAGAIN)
823		goto again;
824	mutex_unlock(&inode->i_mutex);
825	return err ? err :  count;
826}
827
828static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
829				 size_t count, struct cache_detail *cd)
830{
831	ssize_t ret;
832
833	if (count == 0)
834		return -EINVAL;
835	if (copy_from_user(kaddr, buf, count))
836		return -EFAULT;
837	kaddr[count] = '\0';
838	ret = cd->cache_parse(cd, kaddr, count);
839	if (!ret)
840		ret = count;
841	return ret;
842}
843
844static ssize_t cache_slow_downcall(const char __user *buf,
845				   size_t count, struct cache_detail *cd)
846{
847	static char write_buf[8192]; /* protected by queue_io_mutex */
848	ssize_t ret = -EINVAL;
849
850	if (count >= sizeof(write_buf))
851		goto out;
852	mutex_lock(&queue_io_mutex);
853	ret = cache_do_downcall(write_buf, buf, count, cd);
854	mutex_unlock(&queue_io_mutex);
855out:
856	return ret;
857}
858
859static ssize_t cache_downcall(struct address_space *mapping,
860			      const char __user *buf,
861			      size_t count, struct cache_detail *cd)
862{
863	struct page *page;
864	char *kaddr;
865	ssize_t ret = -ENOMEM;
866
867	if (count >= PAGE_CACHE_SIZE)
868		goto out_slow;
869
870	page = find_or_create_page(mapping, 0, GFP_KERNEL);
871	if (!page)
872		goto out_slow;
873
874	kaddr = kmap(page);
875	ret = cache_do_downcall(kaddr, buf, count, cd);
876	kunmap(page);
877	unlock_page(page);
878	page_cache_release(page);
879	return ret;
880out_slow:
881	return cache_slow_downcall(buf, count, cd);
882}
883
884static ssize_t cache_write(struct file *filp, const char __user *buf,
885			   size_t count, loff_t *ppos,
886			   struct cache_detail *cd)
887{
888	struct address_space *mapping = filp->f_mapping;
889	struct inode *inode = filp->f_path.dentry->d_inode;
890	ssize_t ret = -EINVAL;
891
892	if (!cd->cache_parse)
893		goto out;
894
895	mutex_lock(&inode->i_mutex);
896	ret = cache_downcall(mapping, buf, count, cd);
897	mutex_unlock(&inode->i_mutex);
898out:
899	return ret;
900}
901
902static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
903
904static unsigned int cache_poll(struct file *filp, poll_table *wait,
905			       struct cache_detail *cd)
906{
907	unsigned int mask;
908	struct cache_reader *rp = filp->private_data;
909	struct cache_queue *cq;
910
911	poll_wait(filp, &queue_wait, wait);
912
913	/* alway allow write */
914	mask = POLL_OUT | POLLWRNORM;
915
916	if (!rp)
917		return mask;
918
919	spin_lock(&queue_lock);
920
921	for (cq= &rp->q; &cq->list != &cd->queue;
922	     cq = list_entry(cq->list.next, struct cache_queue, list))
923		if (!cq->reader) {
924			mask |= POLLIN | POLLRDNORM;
925			break;
926		}
927	spin_unlock(&queue_lock);
928	return mask;
929}
930
931static int cache_ioctl(struct inode *ino, struct file *filp,
932		       unsigned int cmd, unsigned long arg,
933		       struct cache_detail *cd)
934{
935	int len = 0;
936	struct cache_reader *rp = filp->private_data;
937	struct cache_queue *cq;
938
939	if (cmd != FIONREAD || !rp)
940		return -EINVAL;
941
942	spin_lock(&queue_lock);
943
944	/* only find the length remaining in current request,
945	 * or the length of the next request
946	 */
947	for (cq= &rp->q; &cq->list != &cd->queue;
948	     cq = list_entry(cq->list.next, struct cache_queue, list))
949		if (!cq->reader) {
950			struct cache_request *cr =
951				container_of(cq, struct cache_request, q);
952			len = cr->len - rp->offset;
953			break;
954		}
955	spin_unlock(&queue_lock);
956
957	return put_user(len, (int __user *)arg);
958}
959
960static int cache_open(struct inode *inode, struct file *filp,
961		      struct cache_detail *cd)
962{
963	struct cache_reader *rp = NULL;
964
965	if (!cd || !try_module_get(cd->owner))
966		return -EACCES;
967	nonseekable_open(inode, filp);
968	if (filp->f_mode & FMODE_READ) {
969		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
970		if (!rp)
971			return -ENOMEM;
972		rp->offset = 0;
973		rp->q.reader = 1;
974		atomic_inc(&cd->readers);
975		spin_lock(&queue_lock);
976		list_add(&rp->q.list, &cd->queue);
977		spin_unlock(&queue_lock);
978	}
979	filp->private_data = rp;
980	return 0;
981}
982
983static int cache_release(struct inode *inode, struct file *filp,
984			 struct cache_detail *cd)
985{
986	struct cache_reader *rp = filp->private_data;
987
988	if (rp) {
989		spin_lock(&queue_lock);
990		if (rp->offset) {
991			struct cache_queue *cq;
992			for (cq= &rp->q; &cq->list != &cd->queue;
993			     cq = list_entry(cq->list.next, struct cache_queue, list))
994				if (!cq->reader) {
995					container_of(cq, struct cache_request, q)
996						->readers--;
997					break;
998				}
999			rp->offset = 0;
1000		}
1001		list_del(&rp->q.list);
1002		spin_unlock(&queue_lock);
1003
1004		filp->private_data = NULL;
1005		kfree(rp);
1006
1007		cd->last_close = seconds_since_boot();
1008		atomic_dec(&cd->readers);
1009	}
1010	module_put(cd->owner);
1011	return 0;
1012}
1013
1014
1015
1016static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1017{
1018	struct cache_queue *cq;
1019	spin_lock(&queue_lock);
1020	list_for_each_entry(cq, &detail->queue, list)
1021		if (!cq->reader) {
1022			struct cache_request *cr = container_of(cq, struct cache_request, q);
1023			if (cr->item != ch)
1024				continue;
1025			if (cr->readers != 0)
1026				continue;
1027			list_del(&cr->q.list);
1028			spin_unlock(&queue_lock);
1029			cache_put(cr->item, detail);
1030			kfree(cr->buf);
1031			kfree(cr);
1032			return;
1033		}
1034	spin_unlock(&queue_lock);
1035}
1036
1037/*
1038 * Support routines for text-based upcalls.
1039 * Fields are separated by spaces.
1040 * Fields are either mangled to quote space tab newline slosh with slosh
1041 * or a hexified with a leading \x
1042 * Record is terminated with newline.
1043 *
1044 */
1045
1046void qword_add(char **bpp, int *lp, char *str)
1047{
1048	char *bp = *bpp;
1049	int len = *lp;
1050	char c;
1051
1052	if (len < 0) return;
1053
1054	while ((c=*str++) && len)
1055		switch(c) {
1056		case ' ':
1057		case '\t':
1058		case '\n':
1059		case '\\':
1060			if (len >= 4) {
1061				*bp++ = '\\';
1062				*bp++ = '0' + ((c & 0300)>>6);
1063				*bp++ = '0' + ((c & 0070)>>3);
1064				*bp++ = '0' + ((c & 0007)>>0);
1065			}
1066			len -= 4;
1067			break;
1068		default:
1069			*bp++ = c;
1070			len--;
1071		}
1072	if (c || len <1) len = -1;
1073	else {
1074		*bp++ = ' ';
1075		len--;
1076	}
1077	*bpp = bp;
1078	*lp = len;
1079}
1080EXPORT_SYMBOL_GPL(qword_add);
1081
1082void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1083{
1084	char *bp = *bpp;
1085	int len = *lp;
1086
1087	if (len < 0) return;
1088
1089	if (len > 2) {
1090		*bp++ = '\\';
1091		*bp++ = 'x';
1092		len -= 2;
1093		while (blen && len >= 2) {
1094			unsigned char c = *buf++;
1095			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1096			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1097			len -= 2;
1098			blen--;
1099		}
1100	}
1101	if (blen || len<1) len = -1;
1102	else {
1103		*bp++ = ' ';
1104		len--;
1105	}
1106	*bpp = bp;
1107	*lp = len;
1108}
1109EXPORT_SYMBOL_GPL(qword_addhex);
1110
1111static void warn_no_listener(struct cache_detail *detail)
1112{
1113	if (detail->last_warn != detail->last_close) {
1114		detail->last_warn = detail->last_close;
1115		if (detail->warn_no_listener)
1116			detail->warn_no_listener(detail, detail->last_close != 0);
1117	}
1118}
1119
1120static bool cache_listeners_exist(struct cache_detail *detail)
1121{
1122	if (atomic_read(&detail->readers))
1123		return true;
1124	if (detail->last_close == 0)
1125		/* This cache was never opened */
1126		return false;
1127	if (detail->last_close < seconds_since_boot() - 30)
1128		/*
1129		 * We allow for the possibility that someone might
1130		 * restart a userspace daemon without restarting the
1131		 * server; but after 30 seconds, we give up.
1132		 */
1133		 return false;
1134	return true;
1135}
1136
1137/*
1138 * register an upcall request to user-space and queue it up for read() by the
1139 * upcall daemon.
1140 *
1141 * Each request is at most one page long.
1142 */
1143int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1144		void (*cache_request)(struct cache_detail *,
1145				      struct cache_head *,
1146				      char **,
1147				      int *))
1148{
1149
1150	char *buf;
1151	struct cache_request *crq;
1152	char *bp;
1153	int len;
1154
1155	if (!cache_listeners_exist(detail)) {
1156		warn_no_listener(detail);
1157		return -EINVAL;
1158	}
1159
1160	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1161	if (!buf)
1162		return -EAGAIN;
1163
1164	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1165	if (!crq) {
1166		kfree(buf);
1167		return -EAGAIN;
1168	}
1169
1170	bp = buf; len = PAGE_SIZE;
1171
1172	cache_request(detail, h, &bp, &len);
1173
1174	if (len < 0) {
1175		kfree(buf);
1176		kfree(crq);
1177		return -EAGAIN;
1178	}
1179	crq->q.reader = 0;
1180	crq->item = cache_get(h);
1181	crq->buf = buf;
1182	crq->len = PAGE_SIZE - len;
1183	crq->readers = 0;
1184	spin_lock(&queue_lock);
1185	list_add_tail(&crq->q.list, &detail->queue);
1186	spin_unlock(&queue_lock);
1187	wake_up(&queue_wait);
1188	return 0;
1189}
1190EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1191
1192/*
1193 * parse a message from user-space and pass it
1194 * to an appropriate cache
1195 * Messages are, like requests, separated into fields by
1196 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1197 *
1198 * Message is
1199 *   reply cachename expiry key ... content....
1200 *
1201 * key and content are both parsed by cache
1202 */
1203
1204#define isodigit(c) (isdigit(c) && c <= '7')
1205int qword_get(char **bpp, char *dest, int bufsize)
1206{
1207	/* return bytes copied, or -1 on error */
1208	char *bp = *bpp;
1209	int len = 0;
1210
1211	while (*bp == ' ') bp++;
1212
1213	if (bp[0] == '\\' && bp[1] == 'x') {
1214		/* HEX STRING */
1215		bp += 2;
1216		while (len < bufsize) {
1217			int h, l;
1218
1219			h = hex_to_bin(bp[0]);
1220			if (h < 0)
1221				break;
1222
1223			l = hex_to_bin(bp[1]);
1224			if (l < 0)
1225				break;
1226
1227			*dest++ = (h << 4) | l;
1228			bp += 2;
1229			len++;
1230		}
1231	} else {
1232		/* text with \nnn octal quoting */
1233		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1234			if (*bp == '\\' &&
1235			    isodigit(bp[1]) && (bp[1] <= '3') &&
1236			    isodigit(bp[2]) &&
1237			    isodigit(bp[3])) {
1238				int byte = (*++bp -'0');
1239				bp++;
1240				byte = (byte << 3) | (*bp++ - '0');
1241				byte = (byte << 3) | (*bp++ - '0');
1242				*dest++ = byte;
1243				len++;
1244			} else {
1245				*dest++ = *bp++;
1246				len++;
1247			}
1248		}
1249	}
1250
1251	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1252		return -1;
1253	while (*bp == ' ') bp++;
1254	*bpp = bp;
1255	*dest = '\0';
1256	return len;
1257}
1258EXPORT_SYMBOL_GPL(qword_get);
1259
1260
1261/*
1262 * support /proc/sunrpc/cache/$CACHENAME/content
1263 * as a seqfile.
1264 * We call ->cache_show passing NULL for the item to
1265 * get a header, then pass each real item in the cache
1266 */
1267
1268struct handle {
1269	struct cache_detail *cd;
1270};
1271
1272static void *c_start(struct seq_file *m, loff_t *pos)
1273	__acquires(cd->hash_lock)
1274{
1275	loff_t n = *pos;
1276	unsigned int hash, entry;
1277	struct cache_head *ch;
1278	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1279
1280
1281	read_lock(&cd->hash_lock);
1282	if (!n--)
1283		return SEQ_START_TOKEN;
1284	hash = n >> 32;
1285	entry = n & ((1LL<<32) - 1);
1286
1287	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1288		if (!entry--)
1289			return ch;
1290	n &= ~((1LL<<32) - 1);
1291	do {
1292		hash++;
1293		n += 1LL<<32;
1294	} while(hash < cd->hash_size &&
1295		cd->hash_table[hash]==NULL);
1296	if (hash >= cd->hash_size)
1297		return NULL;
1298	*pos = n+1;
1299	return cd->hash_table[hash];
1300}
1301
1302static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1303{
1304	struct cache_head *ch = p;
1305	int hash = (*pos >> 32);
1306	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1307
1308	if (p == SEQ_START_TOKEN)
1309		hash = 0;
1310	else if (ch->next == NULL) {
1311		hash++;
1312		*pos += 1LL<<32;
1313	} else {
1314		++*pos;
1315		return ch->next;
1316	}
1317	*pos &= ~((1LL<<32) - 1);
1318	while (hash < cd->hash_size &&
1319	       cd->hash_table[hash] == NULL) {
1320		hash++;
1321		*pos += 1LL<<32;
1322	}
1323	if (hash >= cd->hash_size)
1324		return NULL;
1325	++*pos;
1326	return cd->hash_table[hash];
1327}
1328
1329static void c_stop(struct seq_file *m, void *p)
1330	__releases(cd->hash_lock)
1331{
1332	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1333	read_unlock(&cd->hash_lock);
1334}
1335
1336static int c_show(struct seq_file *m, void *p)
1337{
1338	struct cache_head *cp = p;
1339	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1340
1341	if (p == SEQ_START_TOKEN)
1342		return cd->cache_show(m, cd, NULL);
1343
1344	ifdebug(CACHE)
1345		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1346			   convert_to_wallclock(cp->expiry_time),
1347			   atomic_read(&cp->ref.refcount), cp->flags);
1348	cache_get(cp);
1349	if (cache_check(cd, cp, NULL))
1350		/* cache_check does a cache_put on failure */
1351		seq_printf(m, "# ");
1352	else {
1353		if (cache_is_expired(cd, cp))
1354			seq_printf(m, "# ");
1355		cache_put(cp, cd);
1356	}
1357
1358	return cd->cache_show(m, cd, cp);
1359}
1360
1361static const struct seq_operations cache_content_op = {
1362	.start	= c_start,
1363	.next	= c_next,
1364	.stop	= c_stop,
1365	.show	= c_show,
1366};
1367
1368static int content_open(struct inode *inode, struct file *file,
1369			struct cache_detail *cd)
1370{
1371	struct handle *han;
1372
1373	if (!cd || !try_module_get(cd->owner))
1374		return -EACCES;
1375	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1376	if (han == NULL) {
1377		module_put(cd->owner);
1378		return -ENOMEM;
1379	}
1380
1381	han->cd = cd;
1382	return 0;
1383}
1384
1385static int content_release(struct inode *inode, struct file *file,
1386		struct cache_detail *cd)
1387{
1388	int ret = seq_release_private(inode, file);
1389	module_put(cd->owner);
1390	return ret;
1391}
1392
1393static int open_flush(struct inode *inode, struct file *file,
1394			struct cache_detail *cd)
1395{
1396	if (!cd || !try_module_get(cd->owner))
1397		return -EACCES;
1398	return nonseekable_open(inode, file);
1399}
1400
1401static int release_flush(struct inode *inode, struct file *file,
1402			struct cache_detail *cd)
1403{
1404	module_put(cd->owner);
1405	return 0;
1406}
1407
1408static ssize_t read_flush(struct file *file, char __user *buf,
1409			  size_t count, loff_t *ppos,
1410			  struct cache_detail *cd)
1411{
1412	char tbuf[20];
1413	unsigned long p = *ppos;
1414	size_t len;
1415
1416	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1417	len = strlen(tbuf);
1418	if (p >= len)
1419		return 0;
1420	len -= p;
1421	if (len > count)
1422		len = count;
1423	if (copy_to_user(buf, (void*)(tbuf+p), len))
1424		return -EFAULT;
1425	*ppos += len;
1426	return len;
1427}
1428
1429static ssize_t write_flush(struct file *file, const char __user *buf,
1430			   size_t count, loff_t *ppos,
1431			   struct cache_detail *cd)
1432{
1433	char tbuf[20];
1434	char *bp, *ep;
1435
1436	if (*ppos || count > sizeof(tbuf)-1)
1437		return -EINVAL;
1438	if (copy_from_user(tbuf, buf, count))
1439		return -EFAULT;
1440	tbuf[count] = 0;
1441	simple_strtoul(tbuf, &ep, 0);
1442	if (*ep && *ep != '\n')
1443		return -EINVAL;
1444
1445	bp = tbuf;
1446	cd->flush_time = get_expiry(&bp);
1447	cd->nextcheck = seconds_since_boot();
1448	cache_flush();
1449
1450	*ppos += count;
1451	return count;
1452}
1453
1454static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1455				 size_t count, loff_t *ppos)
1456{
1457	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1458
1459	return cache_read(filp, buf, count, ppos, cd);
1460}
1461
1462static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1463				  size_t count, loff_t *ppos)
1464{
1465	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1466
1467	return cache_write(filp, buf, count, ppos, cd);
1468}
1469
1470static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1471{
1472	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1473
1474	return cache_poll(filp, wait, cd);
1475}
1476
1477static long cache_ioctl_procfs(struct file *filp,
1478			       unsigned int cmd, unsigned long arg)
1479{
1480	struct inode *inode = filp->f_path.dentry->d_inode;
1481	struct cache_detail *cd = PDE(inode)->data;
1482
1483	return cache_ioctl(inode, filp, cmd, arg, cd);
1484}
1485
1486static int cache_open_procfs(struct inode *inode, struct file *filp)
1487{
1488	struct cache_detail *cd = PDE(inode)->data;
1489
1490	return cache_open(inode, filp, cd);
1491}
1492
1493static int cache_release_procfs(struct inode *inode, struct file *filp)
1494{
1495	struct cache_detail *cd = PDE(inode)->data;
1496
1497	return cache_release(inode, filp, cd);
1498}
1499
1500static const struct file_operations cache_file_operations_procfs = {
1501	.owner		= THIS_MODULE,
1502	.llseek		= no_llseek,
1503	.read		= cache_read_procfs,
1504	.write		= cache_write_procfs,
1505	.poll		= cache_poll_procfs,
1506	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1507	.open		= cache_open_procfs,
1508	.release	= cache_release_procfs,
1509};
1510
1511static int content_open_procfs(struct inode *inode, struct file *filp)
1512{
1513	struct cache_detail *cd = PDE(inode)->data;
1514
1515	return content_open(inode, filp, cd);
1516}
1517
1518static int content_release_procfs(struct inode *inode, struct file *filp)
1519{
1520	struct cache_detail *cd = PDE(inode)->data;
1521
1522	return content_release(inode, filp, cd);
1523}
1524
1525static const struct file_operations content_file_operations_procfs = {
1526	.open		= content_open_procfs,
1527	.read		= seq_read,
1528	.llseek		= seq_lseek,
1529	.release	= content_release_procfs,
1530};
1531
1532static int open_flush_procfs(struct inode *inode, struct file *filp)
1533{
1534	struct cache_detail *cd = PDE(inode)->data;
1535
1536	return open_flush(inode, filp, cd);
1537}
1538
1539static int release_flush_procfs(struct inode *inode, struct file *filp)
1540{
1541	struct cache_detail *cd = PDE(inode)->data;
1542
1543	return release_flush(inode, filp, cd);
1544}
1545
1546static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1547			    size_t count, loff_t *ppos)
1548{
1549	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1550
1551	return read_flush(filp, buf, count, ppos, cd);
1552}
1553
1554static ssize_t write_flush_procfs(struct file *filp,
1555				  const char __user *buf,
1556				  size_t count, loff_t *ppos)
1557{
1558	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1559
1560	return write_flush(filp, buf, count, ppos, cd);
1561}
1562
1563static const struct file_operations cache_flush_operations_procfs = {
1564	.open		= open_flush_procfs,
1565	.read		= read_flush_procfs,
1566	.write		= write_flush_procfs,
1567	.release	= release_flush_procfs,
1568	.llseek		= no_llseek,
1569};
1570
1571static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1572{
1573	struct sunrpc_net *sn;
1574
1575	if (cd->u.procfs.proc_ent == NULL)
1576		return;
1577	if (cd->u.procfs.flush_ent)
1578		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1579	if (cd->u.procfs.channel_ent)
1580		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1581	if (cd->u.procfs.content_ent)
1582		remove_proc_entry("content", cd->u.procfs.proc_ent);
1583	cd->u.procfs.proc_ent = NULL;
1584	sn = net_generic(net, sunrpc_net_id);
1585	remove_proc_entry(cd->name, sn->proc_net_rpc);
1586}
1587
1588#ifdef CONFIG_PROC_FS
1589static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1590{
1591	struct proc_dir_entry *p;
1592	struct sunrpc_net *sn;
1593
1594	sn = net_generic(net, sunrpc_net_id);
1595	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1596	if (cd->u.procfs.proc_ent == NULL)
1597		goto out_nomem;
1598	cd->u.procfs.channel_ent = NULL;
1599	cd->u.procfs.content_ent = NULL;
1600
1601	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1602			     cd->u.procfs.proc_ent,
1603			     &cache_flush_operations_procfs, cd);
1604	cd->u.procfs.flush_ent = p;
1605	if (p == NULL)
1606		goto out_nomem;
1607
1608	if (cd->cache_upcall || cd->cache_parse) {
1609		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1610				     cd->u.procfs.proc_ent,
1611				     &cache_file_operations_procfs, cd);
1612		cd->u.procfs.channel_ent = p;
1613		if (p == NULL)
1614			goto out_nomem;
1615	}
1616	if (cd->cache_show) {
1617		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1618				cd->u.procfs.proc_ent,
1619				&content_file_operations_procfs, cd);
1620		cd->u.procfs.content_ent = p;
1621		if (p == NULL)
1622			goto out_nomem;
1623	}
1624	return 0;
1625out_nomem:
1626	remove_cache_proc_entries(cd, net);
1627	return -ENOMEM;
1628}
1629#else /* CONFIG_PROC_FS */
1630static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1631{
1632	return 0;
1633}
1634#endif
1635
1636void __init cache_initialize(void)
1637{
1638	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1639}
1640
1641int cache_register_net(struct cache_detail *cd, struct net *net)
1642{
1643	int ret;
1644
1645	sunrpc_init_cache_detail(cd);
1646	ret = create_cache_proc_entries(cd, net);
1647	if (ret)
1648		sunrpc_destroy_cache_detail(cd);
1649	return ret;
1650}
1651EXPORT_SYMBOL_GPL(cache_register_net);
1652
1653void cache_unregister_net(struct cache_detail *cd, struct net *net)
1654{
1655	remove_cache_proc_entries(cd, net);
1656	sunrpc_destroy_cache_detail(cd);
1657}
1658EXPORT_SYMBOL_GPL(cache_unregister_net);
1659
1660struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1661{
1662	struct cache_detail *cd;
1663
1664	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1665	if (cd == NULL)
1666		return ERR_PTR(-ENOMEM);
1667
1668	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1669				 GFP_KERNEL);
1670	if (cd->hash_table == NULL) {
1671		kfree(cd);
1672		return ERR_PTR(-ENOMEM);
1673	}
1674	cd->net = net;
1675	return cd;
1676}
1677EXPORT_SYMBOL_GPL(cache_create_net);
1678
1679void cache_destroy_net(struct cache_detail *cd, struct net *net)
1680{
1681	kfree(cd->hash_table);
1682	kfree(cd);
1683}
1684EXPORT_SYMBOL_GPL(cache_destroy_net);
1685
1686static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1687				 size_t count, loff_t *ppos)
1688{
1689	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1690
1691	return cache_read(filp, buf, count, ppos, cd);
1692}
1693
1694static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1695				  size_t count, loff_t *ppos)
1696{
1697	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1698
1699	return cache_write(filp, buf, count, ppos, cd);
1700}
1701
1702static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1703{
1704	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1705
1706	return cache_poll(filp, wait, cd);
1707}
1708
1709static long cache_ioctl_pipefs(struct file *filp,
1710			      unsigned int cmd, unsigned long arg)
1711{
1712	struct inode *inode = filp->f_dentry->d_inode;
1713	struct cache_detail *cd = RPC_I(inode)->private;
1714
1715	return cache_ioctl(inode, filp, cmd, arg, cd);
1716}
1717
1718static int cache_open_pipefs(struct inode *inode, struct file *filp)
1719{
1720	struct cache_detail *cd = RPC_I(inode)->private;
1721
1722	return cache_open(inode, filp, cd);
1723}
1724
1725static int cache_release_pipefs(struct inode *inode, struct file *filp)
1726{
1727	struct cache_detail *cd = RPC_I(inode)->private;
1728
1729	return cache_release(inode, filp, cd);
1730}
1731
1732const struct file_operations cache_file_operations_pipefs = {
1733	.owner		= THIS_MODULE,
1734	.llseek		= no_llseek,
1735	.read		= cache_read_pipefs,
1736	.write		= cache_write_pipefs,
1737	.poll		= cache_poll_pipefs,
1738	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1739	.open		= cache_open_pipefs,
1740	.release	= cache_release_pipefs,
1741};
1742
1743static int content_open_pipefs(struct inode *inode, struct file *filp)
1744{
1745	struct cache_detail *cd = RPC_I(inode)->private;
1746
1747	return content_open(inode, filp, cd);
1748}
1749
1750static int content_release_pipefs(struct inode *inode, struct file *filp)
1751{
1752	struct cache_detail *cd = RPC_I(inode)->private;
1753
1754	return content_release(inode, filp, cd);
1755}
1756
1757const struct file_operations content_file_operations_pipefs = {
1758	.open		= content_open_pipefs,
1759	.read		= seq_read,
1760	.llseek		= seq_lseek,
1761	.release	= content_release_pipefs,
1762};
1763
1764static int open_flush_pipefs(struct inode *inode, struct file *filp)
1765{
1766	struct cache_detail *cd = RPC_I(inode)->private;
1767
1768	return open_flush(inode, filp, cd);
1769}
1770
1771static int release_flush_pipefs(struct inode *inode, struct file *filp)
1772{
1773	struct cache_detail *cd = RPC_I(inode)->private;
1774
1775	return release_flush(inode, filp, cd);
1776}
1777
1778static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1779			    size_t count, loff_t *ppos)
1780{
1781	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1782
1783	return read_flush(filp, buf, count, ppos, cd);
1784}
1785
1786static ssize_t write_flush_pipefs(struct file *filp,
1787				  const char __user *buf,
1788				  size_t count, loff_t *ppos)
1789{
1790	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1791
1792	return write_flush(filp, buf, count, ppos, cd);
1793}
1794
1795const struct file_operations cache_flush_operations_pipefs = {
1796	.open		= open_flush_pipefs,
1797	.read		= read_flush_pipefs,
1798	.write		= write_flush_pipefs,
1799	.release	= release_flush_pipefs,
1800	.llseek		= no_llseek,
1801};
1802
1803int sunrpc_cache_register_pipefs(struct dentry *parent,
1804				 const char *name, umode_t umode,
1805				 struct cache_detail *cd)
1806{
1807	struct qstr q;
1808	struct dentry *dir;
1809	int ret = 0;
1810
1811	q.name = name;
1812	q.len = strlen(name);
1813	q.hash = full_name_hash(q.name, q.len);
1814	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1815	if (!IS_ERR(dir))
1816		cd->u.pipefs.dir = dir;
1817	else
1818		ret = PTR_ERR(dir);
1819	return ret;
1820}
1821EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1822
1823void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1824{
1825	rpc_remove_cache_dir(cd->u.pipefs.dir);
1826	cd->u.pipefs.dir = NULL;
1827}
1828EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1829
1830