cache.c revision 2ce8f047d5f3c0d782838bd2ecb6e4c440268e6d
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <asm/ioctls.h>
31#include <linux/sunrpc/types.h>
32#include <linux/sunrpc/cache.h>
33#include <linux/sunrpc/stats.h>
34
35#define	 RPCDBG_FACILITY RPCDBG_CACHE
36
37static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38static void cache_revisit_request(struct cache_head *item);
39
40static void cache_init(struct cache_head *h)
41{
42	time_t now = get_seconds();
43	h->next = NULL;
44	h->flags = 0;
45	kref_init(&h->ref);
46	h->expiry_time = now + CACHE_NEW_EXPIRY;
47	h->last_refresh = now;
48}
49
50struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51				       struct cache_head *key, int hash)
52{
53	struct cache_head **head,  **hp;
54	struct cache_head *new = NULL;
55
56	head = &detail->hash_table[hash];
57
58	read_lock(&detail->hash_lock);
59
60	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61		struct cache_head *tmp = *hp;
62		if (detail->match(tmp, key)) {
63			cache_get(tmp);
64			read_unlock(&detail->hash_lock);
65			return tmp;
66		}
67	}
68	read_unlock(&detail->hash_lock);
69	/* Didn't find anything, insert an empty entry */
70
71	new = detail->alloc();
72	if (!new)
73		return NULL;
74	/* must fully initialise 'new', else
75	 * we might get lose if we need to
76	 * cache_put it soon.
77	 */
78	cache_init(new);
79	detail->init(new, key);
80
81	write_lock(&detail->hash_lock);
82
83	/* check if entry appeared while we slept */
84	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85		struct cache_head *tmp = *hp;
86		if (detail->match(tmp, key)) {
87			cache_get(tmp);
88			write_unlock(&detail->hash_lock);
89			cache_put(new, detail);
90			return tmp;
91		}
92	}
93	new->next = *head;
94	*head = new;
95	detail->entries++;
96	cache_get(new);
97	write_unlock(&detail->hash_lock);
98
99	return new;
100}
101EXPORT_SYMBOL(sunrpc_cache_lookup);
102
103
104static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105
106static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107{
108	head->expiry_time = expiry;
109	head->last_refresh = get_seconds();
110	return !test_and_set_bit(CACHE_VALID, &head->flags);
111}
112
113static void cache_fresh_unlocked(struct cache_head *head,
114			struct cache_detail *detail, int new)
115{
116	if (new)
117		cache_revisit_request(head);
118	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119		cache_revisit_request(head);
120		queue_loose(detail, head);
121	}
122}
123
124struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125				       struct cache_head *new, struct cache_head *old, int hash)
126{
127	/* The 'old' entry is to be replaced by 'new'.
128	 * If 'old' is not VALID, we update it directly,
129	 * otherwise we need to replace it
130	 */
131	struct cache_head **head;
132	struct cache_head *tmp;
133	int is_new;
134
135	if (!test_bit(CACHE_VALID, &old->flags)) {
136		write_lock(&detail->hash_lock);
137		if (!test_bit(CACHE_VALID, &old->flags)) {
138			if (test_bit(CACHE_NEGATIVE, &new->flags))
139				set_bit(CACHE_NEGATIVE, &old->flags);
140			else
141				detail->update(old, new);
142			is_new = cache_fresh_locked(old, new->expiry_time);
143			write_unlock(&detail->hash_lock);
144			cache_fresh_unlocked(old, detail, is_new);
145			return old;
146		}
147		write_unlock(&detail->hash_lock);
148	}
149	/* We need to insert a new entry */
150	tmp = detail->alloc();
151	if (!tmp) {
152		cache_put(old, detail);
153		return NULL;
154	}
155	cache_init(tmp);
156	detail->init(tmp, old);
157	head = &detail->hash_table[hash];
158
159	write_lock(&detail->hash_lock);
160	if (test_bit(CACHE_NEGATIVE, &new->flags))
161		set_bit(CACHE_NEGATIVE, &tmp->flags);
162	else
163		detail->update(tmp, new);
164	tmp->next = *head;
165	*head = tmp;
166	detail->entries++;
167	cache_get(tmp);
168	is_new = cache_fresh_locked(tmp, new->expiry_time);
169	cache_fresh_locked(old, 0);
170	write_unlock(&detail->hash_lock);
171	cache_fresh_unlocked(tmp, detail, is_new);
172	cache_fresh_unlocked(old, detail, 0);
173	cache_put(old, detail);
174	return tmp;
175}
176EXPORT_SYMBOL(sunrpc_cache_update);
177
178static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179/*
180 * This is the generic cache management routine for all
181 * the authentication caches.
182 * It checks the currency of a cache item and will (later)
183 * initiate an upcall to fill it if needed.
184 *
185 *
186 * Returns 0 if the cache_head can be used, or cache_puts it and returns
187 * -EAGAIN if upcall is pending,
188 * -ETIMEDOUT if upcall failed and should be retried,
189 * -ENOENT if cache entry was negative
190 */
191int cache_check(struct cache_detail *detail,
192		    struct cache_head *h, struct cache_req *rqstp)
193{
194	int rv;
195	long refresh_age, age;
196
197	/* First decide return status as best we can */
198	if (!test_bit(CACHE_VALID, &h->flags) ||
199	    h->expiry_time < get_seconds())
200		rv = -EAGAIN;
201	else if (detail->flush_time > h->last_refresh)
202		rv = -EAGAIN;
203	else {
204		/* entry is valid */
205		if (test_bit(CACHE_NEGATIVE, &h->flags))
206			rv = -ENOENT;
207		else rv = 0;
208	}
209
210	/* now see if we want to start an upcall */
211	refresh_age = (h->expiry_time - h->last_refresh);
212	age = get_seconds() - h->last_refresh;
213
214	if (rqstp == NULL) {
215		if (rv == -EAGAIN)
216			rv = -ENOENT;
217	} else if (rv == -EAGAIN || age > refresh_age/2) {
218		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219				refresh_age, age);
220		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221			switch (cache_make_upcall(detail, h)) {
222			case -EINVAL:
223				clear_bit(CACHE_PENDING, &h->flags);
224				if (rv == -EAGAIN) {
225					set_bit(CACHE_NEGATIVE, &h->flags);
226					cache_fresh_unlocked(h, detail,
227					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228					rv = -ENOENT;
229				}
230				break;
231
232			case -EAGAIN:
233				clear_bit(CACHE_PENDING, &h->flags);
234				cache_revisit_request(h);
235				break;
236			}
237		}
238	}
239
240	if (rv == -EAGAIN)
241		if (cache_defer_req(rqstp, h) != 0)
242			rv = -ETIMEDOUT;
243
244	if (rv)
245		cache_put(h, detail);
246	return rv;
247}
248EXPORT_SYMBOL(cache_check);
249
250/*
251 * caches need to be periodically cleaned.
252 * For this we maintain a list of cache_detail and
253 * a current pointer into that list and into the table
254 * for that entry.
255 *
256 * Each time clean_cache is called it finds the next non-empty entry
257 * in the current table and walks the list in that entry
258 * looking for entries that can be removed.
259 *
260 * An entry gets removed if:
261 * - The expiry is before current time
262 * - The last_refresh time is before the flush_time for that cache
263 *
264 * later we might drop old entries with non-NEVER expiry if that table
265 * is getting 'full' for some definition of 'full'
266 *
267 * The question of "how often to scan a table" is an interesting one
268 * and is answered in part by the use of the "nextcheck" field in the
269 * cache_detail.
270 * When a scan of a table begins, the nextcheck field is set to a time
271 * that is well into the future.
272 * While scanning, if an expiry time is found that is earlier than the
273 * current nextcheck time, nextcheck is set to that expiry time.
274 * If the flush_time is ever set to a time earlier than the nextcheck
275 * time, the nextcheck time is then set to that flush_time.
276 *
277 * A table is then only scanned if the current time is at least
278 * the nextcheck time.
279 *
280 */
281
282static LIST_HEAD(cache_list);
283static DEFINE_SPINLOCK(cache_list_lock);
284static struct cache_detail *current_detail;
285static int current_index;
286
287static const struct file_operations cache_file_operations;
288static const struct file_operations content_file_operations;
289static const struct file_operations cache_flush_operations;
290
291static void do_cache_clean(struct work_struct *work);
292static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
293
294static void remove_cache_proc_entries(struct cache_detail *cd)
295{
296	if (cd->proc_ent == NULL)
297		return;
298	if (cd->flush_ent)
299		remove_proc_entry("flush", cd->proc_ent);
300	if (cd->channel_ent)
301		remove_proc_entry("channel", cd->proc_ent);
302	if (cd->content_ent)
303		remove_proc_entry("content", cd->proc_ent);
304	cd->proc_ent = NULL;
305	remove_proc_entry(cd->name, proc_net_rpc);
306}
307
308#ifdef CONFIG_PROC_FS
309static int create_cache_proc_entries(struct cache_detail *cd)
310{
311	struct proc_dir_entry *p;
312
313	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
314	if (cd->proc_ent == NULL)
315		goto out_nomem;
316	cd->proc_ent->owner = cd->owner;
317	cd->channel_ent = cd->content_ent = NULL;
318
319	p = proc_create("flush", S_IFREG|S_IRUSR|S_IWUSR,
320			cd->proc_ent, &cache_flush_operations);
321	cd->flush_ent = p;
322	if (p == NULL)
323		goto out_nomem;
324	p->owner = cd->owner;
325	p->data = cd;
326
327	if (cd->cache_request || cd->cache_parse) {
328		p = proc_create("channel", S_IFREG|S_IRUSR|S_IWUSR,
329				cd->proc_ent, &cache_file_operations);
330		cd->channel_ent = p;
331		if (p == NULL)
332			goto out_nomem;
333		p->owner = cd->owner;
334		p->data = cd;
335	}
336	if (cd->cache_show) {
337		p = proc_create("content", S_IFREG|S_IRUSR|S_IWUSR,
338				cd->proc_ent, &content_file_operations);
339		cd->content_ent = p;
340		if (p == NULL)
341			goto out_nomem;
342		p->owner = cd->owner;
343		p->data = cd;
344	}
345	return 0;
346out_nomem:
347	remove_cache_proc_entries(cd);
348	return -ENOMEM;
349}
350#else /* CONFIG_PROC_FS */
351static int create_cache_proc_entries(struct cache_detail *cd)
352{
353	return 0;
354}
355#endif
356
357int cache_register(struct cache_detail *cd)
358{
359	int ret;
360
361	ret = create_cache_proc_entries(cd);
362	if (ret)
363		return ret;
364	rwlock_init(&cd->hash_lock);
365	INIT_LIST_HEAD(&cd->queue);
366	spin_lock(&cache_list_lock);
367	cd->nextcheck = 0;
368	cd->entries = 0;
369	atomic_set(&cd->readers, 0);
370	cd->last_close = 0;
371	cd->last_warn = -1;
372	list_add(&cd->others, &cache_list);
373	spin_unlock(&cache_list_lock);
374
375	/* start the cleaning process */
376	schedule_delayed_work(&cache_cleaner, 0);
377	return 0;
378}
379EXPORT_SYMBOL(cache_register);
380
381void cache_unregister(struct cache_detail *cd)
382{
383	cache_purge(cd);
384	spin_lock(&cache_list_lock);
385	write_lock(&cd->hash_lock);
386	if (cd->entries || atomic_read(&cd->inuse)) {
387		write_unlock(&cd->hash_lock);
388		spin_unlock(&cache_list_lock);
389		goto out;
390	}
391	if (current_detail == cd)
392		current_detail = NULL;
393	list_del_init(&cd->others);
394	write_unlock(&cd->hash_lock);
395	spin_unlock(&cache_list_lock);
396	remove_cache_proc_entries(cd);
397	if (list_empty(&cache_list)) {
398		/* module must be being unloaded so its safe to kill the worker */
399		cancel_delayed_work_sync(&cache_cleaner);
400	}
401	return;
402out:
403	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
404}
405EXPORT_SYMBOL(cache_unregister);
406
407/* clean cache tries to find something to clean
408 * and cleans it.
409 * It returns 1 if it cleaned something,
410 *            0 if it didn't find anything this time
411 *           -1 if it fell off the end of the list.
412 */
413static int cache_clean(void)
414{
415	int rv = 0;
416	struct list_head *next;
417
418	spin_lock(&cache_list_lock);
419
420	/* find a suitable table if we don't already have one */
421	while (current_detail == NULL ||
422	    current_index >= current_detail->hash_size) {
423		if (current_detail)
424			next = current_detail->others.next;
425		else
426			next = cache_list.next;
427		if (next == &cache_list) {
428			current_detail = NULL;
429			spin_unlock(&cache_list_lock);
430			return -1;
431		}
432		current_detail = list_entry(next, struct cache_detail, others);
433		if (current_detail->nextcheck > get_seconds())
434			current_index = current_detail->hash_size;
435		else {
436			current_index = 0;
437			current_detail->nextcheck = get_seconds()+30*60;
438		}
439	}
440
441	/* find a non-empty bucket in the table */
442	while (current_detail &&
443	       current_index < current_detail->hash_size &&
444	       current_detail->hash_table[current_index] == NULL)
445		current_index++;
446
447	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
448
449	if (current_detail && current_index < current_detail->hash_size) {
450		struct cache_head *ch, **cp;
451		struct cache_detail *d;
452
453		write_lock(&current_detail->hash_lock);
454
455		/* Ok, now to clean this strand */
456
457		cp = & current_detail->hash_table[current_index];
458		ch = *cp;
459		for (; ch; cp= & ch->next, ch= *cp) {
460			if (current_detail->nextcheck > ch->expiry_time)
461				current_detail->nextcheck = ch->expiry_time+1;
462			if (ch->expiry_time >= get_seconds()
463			    && ch->last_refresh >= current_detail->flush_time
464				)
465				continue;
466			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
467				queue_loose(current_detail, ch);
468
469			if (atomic_read(&ch->ref.refcount) == 1)
470				break;
471		}
472		if (ch) {
473			*cp = ch->next;
474			ch->next = NULL;
475			current_detail->entries--;
476			rv = 1;
477		}
478		write_unlock(&current_detail->hash_lock);
479		d = current_detail;
480		if (!ch)
481			current_index ++;
482		spin_unlock(&cache_list_lock);
483		if (ch)
484			cache_put(ch, d);
485	} else
486		spin_unlock(&cache_list_lock);
487
488	return rv;
489}
490
491/*
492 * We want to regularly clean the cache, so we need to schedule some work ...
493 */
494static void do_cache_clean(struct work_struct *work)
495{
496	int delay = 5;
497	if (cache_clean() == -1)
498		delay = 30*HZ;
499
500	if (list_empty(&cache_list))
501		delay = 0;
502
503	if (delay)
504		schedule_delayed_work(&cache_cleaner, delay);
505}
506
507
508/*
509 * Clean all caches promptly.  This just calls cache_clean
510 * repeatedly until we are sure that every cache has had a chance to
511 * be fully cleaned
512 */
513void cache_flush(void)
514{
515	while (cache_clean() != -1)
516		cond_resched();
517	while (cache_clean() != -1)
518		cond_resched();
519}
520EXPORT_SYMBOL(cache_flush);
521
522void cache_purge(struct cache_detail *detail)
523{
524	detail->flush_time = LONG_MAX;
525	detail->nextcheck = get_seconds();
526	cache_flush();
527	detail->flush_time = 1;
528}
529EXPORT_SYMBOL(cache_purge);
530
531
532/*
533 * Deferral and Revisiting of Requests.
534 *
535 * If a cache lookup finds a pending entry, we
536 * need to defer the request and revisit it later.
537 * All deferred requests are stored in a hash table,
538 * indexed by "struct cache_head *".
539 * As it may be wasteful to store a whole request
540 * structure, we allow the request to provide a
541 * deferred form, which must contain a
542 * 'struct cache_deferred_req'
543 * This cache_deferred_req contains a method to allow
544 * it to be revisited when cache info is available
545 */
546
547#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
548#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
549
550#define	DFR_MAX	300	/* ??? */
551
552static DEFINE_SPINLOCK(cache_defer_lock);
553static LIST_HEAD(cache_defer_list);
554static struct list_head cache_defer_hash[DFR_HASHSIZE];
555static int cache_defer_cnt;
556
557static int cache_defer_req(struct cache_req *req, struct cache_head *item)
558{
559	struct cache_deferred_req *dreq;
560	int hash = DFR_HASH(item);
561
562	if (cache_defer_cnt >= DFR_MAX) {
563		/* too much in the cache, randomly drop this one,
564		 * or continue and drop the oldest below
565		 */
566		if (net_random()&1)
567			return -ETIMEDOUT;
568	}
569	dreq = req->defer(req);
570	if (dreq == NULL)
571		return -ETIMEDOUT;
572
573	dreq->item = item;
574	dreq->recv_time = get_seconds();
575
576	spin_lock(&cache_defer_lock);
577
578	list_add(&dreq->recent, &cache_defer_list);
579
580	if (cache_defer_hash[hash].next == NULL)
581		INIT_LIST_HEAD(&cache_defer_hash[hash]);
582	list_add(&dreq->hash, &cache_defer_hash[hash]);
583
584	/* it is in, now maybe clean up */
585	dreq = NULL;
586	if (++cache_defer_cnt > DFR_MAX) {
587		dreq = list_entry(cache_defer_list.prev,
588				  struct cache_deferred_req, recent);
589		list_del(&dreq->recent);
590		list_del(&dreq->hash);
591		cache_defer_cnt--;
592	}
593	spin_unlock(&cache_defer_lock);
594
595	if (dreq) {
596		/* there was one too many */
597		dreq->revisit(dreq, 1);
598	}
599	if (!test_bit(CACHE_PENDING, &item->flags)) {
600		/* must have just been validated... */
601		cache_revisit_request(item);
602	}
603	return 0;
604}
605
606static void cache_revisit_request(struct cache_head *item)
607{
608	struct cache_deferred_req *dreq;
609	struct list_head pending;
610
611	struct list_head *lp;
612	int hash = DFR_HASH(item);
613
614	INIT_LIST_HEAD(&pending);
615	spin_lock(&cache_defer_lock);
616
617	lp = cache_defer_hash[hash].next;
618	if (lp) {
619		while (lp != &cache_defer_hash[hash]) {
620			dreq = list_entry(lp, struct cache_deferred_req, hash);
621			lp = lp->next;
622			if (dreq->item == item) {
623				list_del(&dreq->hash);
624				list_move(&dreq->recent, &pending);
625				cache_defer_cnt--;
626			}
627		}
628	}
629	spin_unlock(&cache_defer_lock);
630
631	while (!list_empty(&pending)) {
632		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
633		list_del_init(&dreq->recent);
634		dreq->revisit(dreq, 0);
635	}
636}
637
638void cache_clean_deferred(void *owner)
639{
640	struct cache_deferred_req *dreq, *tmp;
641	struct list_head pending;
642
643
644	INIT_LIST_HEAD(&pending);
645	spin_lock(&cache_defer_lock);
646
647	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
648		if (dreq->owner == owner) {
649			list_del(&dreq->hash);
650			list_move(&dreq->recent, &pending);
651			cache_defer_cnt--;
652		}
653	}
654	spin_unlock(&cache_defer_lock);
655
656	while (!list_empty(&pending)) {
657		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
658		list_del_init(&dreq->recent);
659		dreq->revisit(dreq, 1);
660	}
661}
662
663/*
664 * communicate with user-space
665 *
666 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
667 * On read, you get a full request, or block.
668 * On write, an update request is processed.
669 * Poll works if anything to read, and always allows write.
670 *
671 * Implemented by linked list of requests.  Each open file has
672 * a ->private that also exists in this list.  New requests are added
673 * to the end and may wakeup and preceding readers.
674 * New readers are added to the head.  If, on read, an item is found with
675 * CACHE_UPCALLING clear, we free it from the list.
676 *
677 */
678
679static DEFINE_SPINLOCK(queue_lock);
680static DEFINE_MUTEX(queue_io_mutex);
681
682struct cache_queue {
683	struct list_head	list;
684	int			reader;	/* if 0, then request */
685};
686struct cache_request {
687	struct cache_queue	q;
688	struct cache_head	*item;
689	char			* buf;
690	int			len;
691	int			readers;
692};
693struct cache_reader {
694	struct cache_queue	q;
695	int			offset;	/* if non-0, we have a refcnt on next request */
696};
697
698static ssize_t
699cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
700{
701	struct cache_reader *rp = filp->private_data;
702	struct cache_request *rq;
703	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
704	int err;
705
706	if (count == 0)
707		return 0;
708
709	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
710			      * readers on this file */
711 again:
712	spin_lock(&queue_lock);
713	/* need to find next request */
714	while (rp->q.list.next != &cd->queue &&
715	       list_entry(rp->q.list.next, struct cache_queue, list)
716	       ->reader) {
717		struct list_head *next = rp->q.list.next;
718		list_move(&rp->q.list, next);
719	}
720	if (rp->q.list.next == &cd->queue) {
721		spin_unlock(&queue_lock);
722		mutex_unlock(&queue_io_mutex);
723		BUG_ON(rp->offset);
724		return 0;
725	}
726	rq = container_of(rp->q.list.next, struct cache_request, q.list);
727	BUG_ON(rq->q.reader);
728	if (rp->offset == 0)
729		rq->readers++;
730	spin_unlock(&queue_lock);
731
732	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
733		err = -EAGAIN;
734		spin_lock(&queue_lock);
735		list_move(&rp->q.list, &rq->q.list);
736		spin_unlock(&queue_lock);
737	} else {
738		if (rp->offset + count > rq->len)
739			count = rq->len - rp->offset;
740		err = -EFAULT;
741		if (copy_to_user(buf, rq->buf + rp->offset, count))
742			goto out;
743		rp->offset += count;
744		if (rp->offset >= rq->len) {
745			rp->offset = 0;
746			spin_lock(&queue_lock);
747			list_move(&rp->q.list, &rq->q.list);
748			spin_unlock(&queue_lock);
749		}
750		err = 0;
751	}
752 out:
753	if (rp->offset == 0) {
754		/* need to release rq */
755		spin_lock(&queue_lock);
756		rq->readers--;
757		if (rq->readers == 0 &&
758		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
759			list_del(&rq->q.list);
760			spin_unlock(&queue_lock);
761			cache_put(rq->item, cd);
762			kfree(rq->buf);
763			kfree(rq);
764		} else
765			spin_unlock(&queue_lock);
766	}
767	if (err == -EAGAIN)
768		goto again;
769	mutex_unlock(&queue_io_mutex);
770	return err ? err :  count;
771}
772
773static char write_buf[8192]; /* protected by queue_io_mutex */
774
775static ssize_t
776cache_write(struct file *filp, const char __user *buf, size_t count,
777	    loff_t *ppos)
778{
779	int err;
780	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
781
782	if (count == 0)
783		return 0;
784	if (count >= sizeof(write_buf))
785		return -EINVAL;
786
787	mutex_lock(&queue_io_mutex);
788
789	if (copy_from_user(write_buf, buf, count)) {
790		mutex_unlock(&queue_io_mutex);
791		return -EFAULT;
792	}
793	write_buf[count] = '\0';
794	if (cd->cache_parse)
795		err = cd->cache_parse(cd, write_buf, count);
796	else
797		err = -EINVAL;
798
799	mutex_unlock(&queue_io_mutex);
800	return err ? err : count;
801}
802
803static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
804
805static unsigned int
806cache_poll(struct file *filp, poll_table *wait)
807{
808	unsigned int mask;
809	struct cache_reader *rp = filp->private_data;
810	struct cache_queue *cq;
811	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
812
813	poll_wait(filp, &queue_wait, wait);
814
815	/* alway allow write */
816	mask = POLL_OUT | POLLWRNORM;
817
818	if (!rp)
819		return mask;
820
821	spin_lock(&queue_lock);
822
823	for (cq= &rp->q; &cq->list != &cd->queue;
824	     cq = list_entry(cq->list.next, struct cache_queue, list))
825		if (!cq->reader) {
826			mask |= POLLIN | POLLRDNORM;
827			break;
828		}
829	spin_unlock(&queue_lock);
830	return mask;
831}
832
833static int
834cache_ioctl(struct inode *ino, struct file *filp,
835	    unsigned int cmd, unsigned long arg)
836{
837	int len = 0;
838	struct cache_reader *rp = filp->private_data;
839	struct cache_queue *cq;
840	struct cache_detail *cd = PDE(ino)->data;
841
842	if (cmd != FIONREAD || !rp)
843		return -EINVAL;
844
845	spin_lock(&queue_lock);
846
847	/* only find the length remaining in current request,
848	 * or the length of the next request
849	 */
850	for (cq= &rp->q; &cq->list != &cd->queue;
851	     cq = list_entry(cq->list.next, struct cache_queue, list))
852		if (!cq->reader) {
853			struct cache_request *cr =
854				container_of(cq, struct cache_request, q);
855			len = cr->len - rp->offset;
856			break;
857		}
858	spin_unlock(&queue_lock);
859
860	return put_user(len, (int __user *)arg);
861}
862
863static int
864cache_open(struct inode *inode, struct file *filp)
865{
866	struct cache_reader *rp = NULL;
867
868	nonseekable_open(inode, filp);
869	if (filp->f_mode & FMODE_READ) {
870		struct cache_detail *cd = PDE(inode)->data;
871
872		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
873		if (!rp)
874			return -ENOMEM;
875		rp->offset = 0;
876		rp->q.reader = 1;
877		atomic_inc(&cd->readers);
878		spin_lock(&queue_lock);
879		list_add(&rp->q.list, &cd->queue);
880		spin_unlock(&queue_lock);
881	}
882	filp->private_data = rp;
883	return 0;
884}
885
886static int
887cache_release(struct inode *inode, struct file *filp)
888{
889	struct cache_reader *rp = filp->private_data;
890	struct cache_detail *cd = PDE(inode)->data;
891
892	if (rp) {
893		spin_lock(&queue_lock);
894		if (rp->offset) {
895			struct cache_queue *cq;
896			for (cq= &rp->q; &cq->list != &cd->queue;
897			     cq = list_entry(cq->list.next, struct cache_queue, list))
898				if (!cq->reader) {
899					container_of(cq, struct cache_request, q)
900						->readers--;
901					break;
902				}
903			rp->offset = 0;
904		}
905		list_del(&rp->q.list);
906		spin_unlock(&queue_lock);
907
908		filp->private_data = NULL;
909		kfree(rp);
910
911		cd->last_close = get_seconds();
912		atomic_dec(&cd->readers);
913	}
914	return 0;
915}
916
917
918
919static const struct file_operations cache_file_operations = {
920	.owner		= THIS_MODULE,
921	.llseek		= no_llseek,
922	.read		= cache_read,
923	.write		= cache_write,
924	.poll		= cache_poll,
925	.ioctl		= cache_ioctl, /* for FIONREAD */
926	.open		= cache_open,
927	.release	= cache_release,
928};
929
930
931static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
932{
933	struct cache_queue *cq;
934	spin_lock(&queue_lock);
935	list_for_each_entry(cq, &detail->queue, list)
936		if (!cq->reader) {
937			struct cache_request *cr = container_of(cq, struct cache_request, q);
938			if (cr->item != ch)
939				continue;
940			if (cr->readers != 0)
941				continue;
942			list_del(&cr->q.list);
943			spin_unlock(&queue_lock);
944			cache_put(cr->item, detail);
945			kfree(cr->buf);
946			kfree(cr);
947			return;
948		}
949	spin_unlock(&queue_lock);
950}
951
952/*
953 * Support routines for text-based upcalls.
954 * Fields are separated by spaces.
955 * Fields are either mangled to quote space tab newline slosh with slosh
956 * or a hexified with a leading \x
957 * Record is terminated with newline.
958 *
959 */
960
961void qword_add(char **bpp, int *lp, char *str)
962{
963	char *bp = *bpp;
964	int len = *lp;
965	char c;
966
967	if (len < 0) return;
968
969	while ((c=*str++) && len)
970		switch(c) {
971		case ' ':
972		case '\t':
973		case '\n':
974		case '\\':
975			if (len >= 4) {
976				*bp++ = '\\';
977				*bp++ = '0' + ((c & 0300)>>6);
978				*bp++ = '0' + ((c & 0070)>>3);
979				*bp++ = '0' + ((c & 0007)>>0);
980			}
981			len -= 4;
982			break;
983		default:
984			*bp++ = c;
985			len--;
986		}
987	if (c || len <1) len = -1;
988	else {
989		*bp++ = ' ';
990		len--;
991	}
992	*bpp = bp;
993	*lp = len;
994}
995EXPORT_SYMBOL(qword_add);
996
997void qword_addhex(char **bpp, int *lp, char *buf, int blen)
998{
999	char *bp = *bpp;
1000	int len = *lp;
1001
1002	if (len < 0) return;
1003
1004	if (len > 2) {
1005		*bp++ = '\\';
1006		*bp++ = 'x';
1007		len -= 2;
1008		while (blen && len >= 2) {
1009			unsigned char c = *buf++;
1010			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1011			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1012			len -= 2;
1013			blen--;
1014		}
1015	}
1016	if (blen || len<1) len = -1;
1017	else {
1018		*bp++ = ' ';
1019		len--;
1020	}
1021	*bpp = bp;
1022	*lp = len;
1023}
1024EXPORT_SYMBOL(qword_addhex);
1025
1026static void warn_no_listener(struct cache_detail *detail)
1027{
1028	if (detail->last_warn != detail->last_close) {
1029		detail->last_warn = detail->last_close;
1030		if (detail->warn_no_listener)
1031			detail->warn_no_listener(detail);
1032	}
1033}
1034
1035/*
1036 * register an upcall request to user-space.
1037 * Each request is at most one page long.
1038 */
1039static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1040{
1041
1042	char *buf;
1043	struct cache_request *crq;
1044	char *bp;
1045	int len;
1046
1047	if (detail->cache_request == NULL)
1048		return -EINVAL;
1049
1050	if (atomic_read(&detail->readers) == 0 &&
1051	    detail->last_close < get_seconds() - 30) {
1052			warn_no_listener(detail);
1053			return -EINVAL;
1054	}
1055
1056	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1057	if (!buf)
1058		return -EAGAIN;
1059
1060	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1061	if (!crq) {
1062		kfree(buf);
1063		return -EAGAIN;
1064	}
1065
1066	bp = buf; len = PAGE_SIZE;
1067
1068	detail->cache_request(detail, h, &bp, &len);
1069
1070	if (len < 0) {
1071		kfree(buf);
1072		kfree(crq);
1073		return -EAGAIN;
1074	}
1075	crq->q.reader = 0;
1076	crq->item = cache_get(h);
1077	crq->buf = buf;
1078	crq->len = PAGE_SIZE - len;
1079	crq->readers = 0;
1080	spin_lock(&queue_lock);
1081	list_add_tail(&crq->q.list, &detail->queue);
1082	spin_unlock(&queue_lock);
1083	wake_up(&queue_wait);
1084	return 0;
1085}
1086
1087/*
1088 * parse a message from user-space and pass it
1089 * to an appropriate cache
1090 * Messages are, like requests, separated into fields by
1091 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1092 *
1093 * Message is
1094 *   reply cachename expiry key ... content....
1095 *
1096 * key and content are both parsed by cache
1097 */
1098
1099#define isodigit(c) (isdigit(c) && c <= '7')
1100int qword_get(char **bpp, char *dest, int bufsize)
1101{
1102	/* return bytes copied, or -1 on error */
1103	char *bp = *bpp;
1104	int len = 0;
1105
1106	while (*bp == ' ') bp++;
1107
1108	if (bp[0] == '\\' && bp[1] == 'x') {
1109		/* HEX STRING */
1110		bp += 2;
1111		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1112			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1113			bp++;
1114			byte <<= 4;
1115			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1116			*dest++ = byte;
1117			bp++;
1118			len++;
1119		}
1120	} else {
1121		/* text with \nnn octal quoting */
1122		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1123			if (*bp == '\\' &&
1124			    isodigit(bp[1]) && (bp[1] <= '3') &&
1125			    isodigit(bp[2]) &&
1126			    isodigit(bp[3])) {
1127				int byte = (*++bp -'0');
1128				bp++;
1129				byte = (byte << 3) | (*bp++ - '0');
1130				byte = (byte << 3) | (*bp++ - '0');
1131				*dest++ = byte;
1132				len++;
1133			} else {
1134				*dest++ = *bp++;
1135				len++;
1136			}
1137		}
1138	}
1139
1140	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1141		return -1;
1142	while (*bp == ' ') bp++;
1143	*bpp = bp;
1144	*dest = '\0';
1145	return len;
1146}
1147EXPORT_SYMBOL(qword_get);
1148
1149
1150/*
1151 * support /proc/sunrpc/cache/$CACHENAME/content
1152 * as a seqfile.
1153 * We call ->cache_show passing NULL for the item to
1154 * get a header, then pass each real item in the cache
1155 */
1156
1157struct handle {
1158	struct cache_detail *cd;
1159};
1160
1161static void *c_start(struct seq_file *m, loff_t *pos)
1162	__acquires(cd->hash_lock)
1163{
1164	loff_t n = *pos;
1165	unsigned hash, entry;
1166	struct cache_head *ch;
1167	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1168
1169
1170	read_lock(&cd->hash_lock);
1171	if (!n--)
1172		return SEQ_START_TOKEN;
1173	hash = n >> 32;
1174	entry = n & ((1LL<<32) - 1);
1175
1176	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1177		if (!entry--)
1178			return ch;
1179	n &= ~((1LL<<32) - 1);
1180	do {
1181		hash++;
1182		n += 1LL<<32;
1183	} while(hash < cd->hash_size &&
1184		cd->hash_table[hash]==NULL);
1185	if (hash >= cd->hash_size)
1186		return NULL;
1187	*pos = n+1;
1188	return cd->hash_table[hash];
1189}
1190
1191static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1192{
1193	struct cache_head *ch = p;
1194	int hash = (*pos >> 32);
1195	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1196
1197	if (p == SEQ_START_TOKEN)
1198		hash = 0;
1199	else if (ch->next == NULL) {
1200		hash++;
1201		*pos += 1LL<<32;
1202	} else {
1203		++*pos;
1204		return ch->next;
1205	}
1206	*pos &= ~((1LL<<32) - 1);
1207	while (hash < cd->hash_size &&
1208	       cd->hash_table[hash] == NULL) {
1209		hash++;
1210		*pos += 1LL<<32;
1211	}
1212	if (hash >= cd->hash_size)
1213		return NULL;
1214	++*pos;
1215	return cd->hash_table[hash];
1216}
1217
1218static void c_stop(struct seq_file *m, void *p)
1219	__releases(cd->hash_lock)
1220{
1221	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1222	read_unlock(&cd->hash_lock);
1223}
1224
1225static int c_show(struct seq_file *m, void *p)
1226{
1227	struct cache_head *cp = p;
1228	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1229
1230	if (p == SEQ_START_TOKEN)
1231		return cd->cache_show(m, cd, NULL);
1232
1233	ifdebug(CACHE)
1234		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1235			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1236	cache_get(cp);
1237	if (cache_check(cd, cp, NULL))
1238		/* cache_check does a cache_put on failure */
1239		seq_printf(m, "# ");
1240	else
1241		cache_put(cp, cd);
1242
1243	return cd->cache_show(m, cd, cp);
1244}
1245
1246static const struct seq_operations cache_content_op = {
1247	.start	= c_start,
1248	.next	= c_next,
1249	.stop	= c_stop,
1250	.show	= c_show,
1251};
1252
1253static int content_open(struct inode *inode, struct file *file)
1254{
1255	struct handle *han;
1256	struct cache_detail *cd = PDE(inode)->data;
1257
1258	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1259	if (han == NULL)
1260		return -ENOMEM;
1261
1262	han->cd = cd;
1263	return 0;
1264}
1265
1266static const struct file_operations content_file_operations = {
1267	.open		= content_open,
1268	.read		= seq_read,
1269	.llseek		= seq_lseek,
1270	.release	= seq_release_private,
1271};
1272
1273static ssize_t read_flush(struct file *file, char __user *buf,
1274			    size_t count, loff_t *ppos)
1275{
1276	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1277	char tbuf[20];
1278	unsigned long p = *ppos;
1279	size_t len;
1280
1281	sprintf(tbuf, "%lu\n", cd->flush_time);
1282	len = strlen(tbuf);
1283	if (p >= len)
1284		return 0;
1285	len -= p;
1286	if (len > count)
1287		len = count;
1288	if (copy_to_user(buf, (void*)(tbuf+p), len))
1289		return -EFAULT;
1290	*ppos += len;
1291	return len;
1292}
1293
1294static ssize_t write_flush(struct file * file, const char __user * buf,
1295			     size_t count, loff_t *ppos)
1296{
1297	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1298	char tbuf[20];
1299	char *ep;
1300	long flushtime;
1301	if (*ppos || count > sizeof(tbuf)-1)
1302		return -EINVAL;
1303	if (copy_from_user(tbuf, buf, count))
1304		return -EFAULT;
1305	tbuf[count] = 0;
1306	flushtime = simple_strtoul(tbuf, &ep, 0);
1307	if (*ep && *ep != '\n')
1308		return -EINVAL;
1309
1310	cd->flush_time = flushtime;
1311	cd->nextcheck = get_seconds();
1312	cache_flush();
1313
1314	*ppos += count;
1315	return count;
1316}
1317
1318static const struct file_operations cache_flush_operations = {
1319	.open		= nonseekable_open,
1320	.read		= read_flush,
1321	.write		= write_flush,
1322};
1323