cache.c revision 52bad64d95bd89e08c49ec5a071fa6dcbe5a1a9c
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <asm/ioctls.h>
31#include <linux/sunrpc/types.h>
32#include <linux/sunrpc/cache.h>
33#include <linux/sunrpc/stats.h>
34
35#define	 RPCDBG_FACILITY RPCDBG_CACHE
36
37static void cache_defer_req(struct cache_req *req, struct cache_head *item);
38static void cache_revisit_request(struct cache_head *item);
39
40static void cache_init(struct cache_head *h)
41{
42	time_t now = get_seconds();
43	h->next = NULL;
44	h->flags = 0;
45	kref_init(&h->ref);
46	h->expiry_time = now + CACHE_NEW_EXPIRY;
47	h->last_refresh = now;
48}
49
50struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51				       struct cache_head *key, int hash)
52{
53	struct cache_head **head,  **hp;
54	struct cache_head *new = NULL;
55
56	head = &detail->hash_table[hash];
57
58	read_lock(&detail->hash_lock);
59
60	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61		struct cache_head *tmp = *hp;
62		if (detail->match(tmp, key)) {
63			cache_get(tmp);
64			read_unlock(&detail->hash_lock);
65			return tmp;
66		}
67	}
68	read_unlock(&detail->hash_lock);
69	/* Didn't find anything, insert an empty entry */
70
71	new = detail->alloc();
72	if (!new)
73		return NULL;
74	/* must fully initialise 'new', else
75	 * we might get lose if we need to
76	 * cache_put it soon.
77	 */
78	cache_init(new);
79	detail->init(new, key);
80
81	write_lock(&detail->hash_lock);
82
83	/* check if entry appeared while we slept */
84	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85		struct cache_head *tmp = *hp;
86		if (detail->match(tmp, key)) {
87			cache_get(tmp);
88			write_unlock(&detail->hash_lock);
89			cache_put(new, detail);
90			return tmp;
91		}
92	}
93	new->next = *head;
94	*head = new;
95	detail->entries++;
96	cache_get(new);
97	write_unlock(&detail->hash_lock);
98
99	return new;
100}
101EXPORT_SYMBOL(sunrpc_cache_lookup);
102
103
104static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105
106static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107{
108	head->expiry_time = expiry;
109	head->last_refresh = get_seconds();
110	return !test_and_set_bit(CACHE_VALID, &head->flags);
111}
112
113static void cache_fresh_unlocked(struct cache_head *head,
114			struct cache_detail *detail, int new)
115{
116	if (new)
117		cache_revisit_request(head);
118	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119		cache_revisit_request(head);
120		queue_loose(detail, head);
121	}
122}
123
124struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125				       struct cache_head *new, struct cache_head *old, int hash)
126{
127	/* The 'old' entry is to be replaced by 'new'.
128	 * If 'old' is not VALID, we update it directly,
129	 * otherwise we need to replace it
130	 */
131	struct cache_head **head;
132	struct cache_head *tmp;
133	int is_new;
134
135	if (!test_bit(CACHE_VALID, &old->flags)) {
136		write_lock(&detail->hash_lock);
137		if (!test_bit(CACHE_VALID, &old->flags)) {
138			if (test_bit(CACHE_NEGATIVE, &new->flags))
139				set_bit(CACHE_NEGATIVE, &old->flags);
140			else
141				detail->update(old, new);
142			is_new = cache_fresh_locked(old, new->expiry_time);
143			write_unlock(&detail->hash_lock);
144			cache_fresh_unlocked(old, detail, is_new);
145			return old;
146		}
147		write_unlock(&detail->hash_lock);
148	}
149	/* We need to insert a new entry */
150	tmp = detail->alloc();
151	if (!tmp) {
152		cache_put(old, detail);
153		return NULL;
154	}
155	cache_init(tmp);
156	detail->init(tmp, old);
157	head = &detail->hash_table[hash];
158
159	write_lock(&detail->hash_lock);
160	if (test_bit(CACHE_NEGATIVE, &new->flags))
161		set_bit(CACHE_NEGATIVE, &tmp->flags);
162	else
163		detail->update(tmp, new);
164	tmp->next = *head;
165	*head = tmp;
166	detail->entries++;
167	cache_get(tmp);
168	is_new = cache_fresh_locked(tmp, new->expiry_time);
169	cache_fresh_locked(old, 0);
170	write_unlock(&detail->hash_lock);
171	cache_fresh_unlocked(tmp, detail, is_new);
172	cache_fresh_unlocked(old, detail, 0);
173	cache_put(old, detail);
174	return tmp;
175}
176EXPORT_SYMBOL(sunrpc_cache_update);
177
178static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179/*
180 * This is the generic cache management routine for all
181 * the authentication caches.
182 * It checks the currency of a cache item and will (later)
183 * initiate an upcall to fill it if needed.
184 *
185 *
186 * Returns 0 if the cache_head can be used, or cache_puts it and returns
187 * -EAGAIN if upcall is pending,
188 * -ENOENT if cache entry was negative
189 */
190int cache_check(struct cache_detail *detail,
191		    struct cache_head *h, struct cache_req *rqstp)
192{
193	int rv;
194	long refresh_age, age;
195
196	/* First decide return status as best we can */
197	if (!test_bit(CACHE_VALID, &h->flags) ||
198	    h->expiry_time < get_seconds())
199		rv = -EAGAIN;
200	else if (detail->flush_time > h->last_refresh)
201		rv = -EAGAIN;
202	else {
203		/* entry is valid */
204		if (test_bit(CACHE_NEGATIVE, &h->flags))
205			rv = -ENOENT;
206		else rv = 0;
207	}
208
209	/* now see if we want to start an upcall */
210	refresh_age = (h->expiry_time - h->last_refresh);
211	age = get_seconds() - h->last_refresh;
212
213	if (rqstp == NULL) {
214		if (rv == -EAGAIN)
215			rv = -ENOENT;
216	} else if (rv == -EAGAIN || age > refresh_age/2) {
217		dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
218		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
219			switch (cache_make_upcall(detail, h)) {
220			case -EINVAL:
221				clear_bit(CACHE_PENDING, &h->flags);
222				if (rv == -EAGAIN) {
223					set_bit(CACHE_NEGATIVE, &h->flags);
224					cache_fresh_unlocked(h, detail,
225					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
226					rv = -ENOENT;
227				}
228				break;
229
230			case -EAGAIN:
231				clear_bit(CACHE_PENDING, &h->flags);
232				cache_revisit_request(h);
233				break;
234			}
235		}
236	}
237
238	if (rv == -EAGAIN)
239		cache_defer_req(rqstp, h);
240
241	if (rv)
242		cache_put(h, detail);
243	return rv;
244}
245
246/*
247 * caches need to be periodically cleaned.
248 * For this we maintain a list of cache_detail and
249 * a current pointer into that list and into the table
250 * for that entry.
251 *
252 * Each time clean_cache is called it finds the next non-empty entry
253 * in the current table and walks the list in that entry
254 * looking for entries that can be removed.
255 *
256 * An entry gets removed if:
257 * - The expiry is before current time
258 * - The last_refresh time is before the flush_time for that cache
259 *
260 * later we might drop old entries with non-NEVER expiry if that table
261 * is getting 'full' for some definition of 'full'
262 *
263 * The question of "how often to scan a table" is an interesting one
264 * and is answered in part by the use of the "nextcheck" field in the
265 * cache_detail.
266 * When a scan of a table begins, the nextcheck field is set to a time
267 * that is well into the future.
268 * While scanning, if an expiry time is found that is earlier than the
269 * current nextcheck time, nextcheck is set to that expiry time.
270 * If the flush_time is ever set to a time earlier than the nextcheck
271 * time, the nextcheck time is then set to that flush_time.
272 *
273 * A table is then only scanned if the current time is at least
274 * the nextcheck time.
275 *
276 */
277
278static LIST_HEAD(cache_list);
279static DEFINE_SPINLOCK(cache_list_lock);
280static struct cache_detail *current_detail;
281static int current_index;
282
283static struct file_operations cache_file_operations;
284static struct file_operations content_file_operations;
285static struct file_operations cache_flush_operations;
286
287static void do_cache_clean(void *data);
288static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean, NULL);
289
290void cache_register(struct cache_detail *cd)
291{
292	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
293	if (cd->proc_ent) {
294		struct proc_dir_entry *p;
295		cd->proc_ent->owner = cd->owner;
296		cd->channel_ent = cd->content_ent = NULL;
297
298 		p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
299 				      cd->proc_ent);
300		cd->flush_ent =  p;
301 		if (p) {
302 			p->proc_fops = &cache_flush_operations;
303 			p->owner = cd->owner;
304 			p->data = cd;
305 		}
306
307		if (cd->cache_request || cd->cache_parse) {
308			p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
309					      cd->proc_ent);
310			cd->channel_ent = p;
311			if (p) {
312				p->proc_fops = &cache_file_operations;
313				p->owner = cd->owner;
314				p->data = cd;
315			}
316		}
317 		if (cd->cache_show) {
318 			p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
319 					      cd->proc_ent);
320			cd->content_ent = p;
321 			if (p) {
322 				p->proc_fops = &content_file_operations;
323 				p->owner = cd->owner;
324 				p->data = cd;
325 			}
326 		}
327	}
328	rwlock_init(&cd->hash_lock);
329	INIT_LIST_HEAD(&cd->queue);
330	spin_lock(&cache_list_lock);
331	cd->nextcheck = 0;
332	cd->entries = 0;
333	atomic_set(&cd->readers, 0);
334	cd->last_close = 0;
335	cd->last_warn = -1;
336	list_add(&cd->others, &cache_list);
337	spin_unlock(&cache_list_lock);
338
339	/* start the cleaning process */
340	schedule_delayed_work(&cache_cleaner, 0);
341}
342
343int cache_unregister(struct cache_detail *cd)
344{
345	cache_purge(cd);
346	spin_lock(&cache_list_lock);
347	write_lock(&cd->hash_lock);
348	if (cd->entries || atomic_read(&cd->inuse)) {
349		write_unlock(&cd->hash_lock);
350		spin_unlock(&cache_list_lock);
351		return -EBUSY;
352	}
353	if (current_detail == cd)
354		current_detail = NULL;
355	list_del_init(&cd->others);
356	write_unlock(&cd->hash_lock);
357	spin_unlock(&cache_list_lock);
358	if (cd->proc_ent) {
359		if (cd->flush_ent)
360			remove_proc_entry("flush", cd->proc_ent);
361		if (cd->channel_ent)
362			remove_proc_entry("channel", cd->proc_ent);
363		if (cd->content_ent)
364			remove_proc_entry("content", cd->proc_ent);
365
366		cd->proc_ent = NULL;
367		remove_proc_entry(cd->name, proc_net_rpc);
368	}
369	if (list_empty(&cache_list)) {
370		/* module must be being unloaded so its safe to kill the worker */
371		cancel_delayed_work(&cache_cleaner);
372		flush_scheduled_work();
373	}
374	return 0;
375}
376
377/* clean cache tries to find something to clean
378 * and cleans it.
379 * It returns 1 if it cleaned something,
380 *            0 if it didn't find anything this time
381 *           -1 if it fell off the end of the list.
382 */
383static int cache_clean(void)
384{
385	int rv = 0;
386	struct list_head *next;
387
388	spin_lock(&cache_list_lock);
389
390	/* find a suitable table if we don't already have one */
391	while (current_detail == NULL ||
392	    current_index >= current_detail->hash_size) {
393		if (current_detail)
394			next = current_detail->others.next;
395		else
396			next = cache_list.next;
397		if (next == &cache_list) {
398			current_detail = NULL;
399			spin_unlock(&cache_list_lock);
400			return -1;
401		}
402		current_detail = list_entry(next, struct cache_detail, others);
403		if (current_detail->nextcheck > get_seconds())
404			current_index = current_detail->hash_size;
405		else {
406			current_index = 0;
407			current_detail->nextcheck = get_seconds()+30*60;
408		}
409	}
410
411	/* find a non-empty bucket in the table */
412	while (current_detail &&
413	       current_index < current_detail->hash_size &&
414	       current_detail->hash_table[current_index] == NULL)
415		current_index++;
416
417	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
418
419	if (current_detail && current_index < current_detail->hash_size) {
420		struct cache_head *ch, **cp;
421		struct cache_detail *d;
422
423		write_lock(&current_detail->hash_lock);
424
425		/* Ok, now to clean this strand */
426
427		cp = & current_detail->hash_table[current_index];
428		ch = *cp;
429		for (; ch; cp= & ch->next, ch= *cp) {
430			if (current_detail->nextcheck > ch->expiry_time)
431				current_detail->nextcheck = ch->expiry_time+1;
432			if (ch->expiry_time >= get_seconds()
433			    && ch->last_refresh >= current_detail->flush_time
434				)
435				continue;
436			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
437				queue_loose(current_detail, ch);
438
439			if (atomic_read(&ch->ref.refcount) == 1)
440				break;
441		}
442		if (ch) {
443			*cp = ch->next;
444			ch->next = NULL;
445			current_detail->entries--;
446			rv = 1;
447		}
448		write_unlock(&current_detail->hash_lock);
449		d = current_detail;
450		if (!ch)
451			current_index ++;
452		spin_unlock(&cache_list_lock);
453		if (ch)
454			cache_put(ch, d);
455	} else
456		spin_unlock(&cache_list_lock);
457
458	return rv;
459}
460
461/*
462 * We want to regularly clean the cache, so we need to schedule some work ...
463 */
464static void do_cache_clean(void *data)
465{
466	int delay = 5;
467	if (cache_clean() == -1)
468		delay = 30*HZ;
469
470	if (list_empty(&cache_list))
471		delay = 0;
472
473	if (delay)
474		schedule_delayed_work(&cache_cleaner, delay);
475}
476
477
478/*
479 * Clean all caches promptly.  This just calls cache_clean
480 * repeatedly until we are sure that every cache has had a chance to
481 * be fully cleaned
482 */
483void cache_flush(void)
484{
485	while (cache_clean() != -1)
486		cond_resched();
487	while (cache_clean() != -1)
488		cond_resched();
489}
490
491void cache_purge(struct cache_detail *detail)
492{
493	detail->flush_time = LONG_MAX;
494	detail->nextcheck = get_seconds();
495	cache_flush();
496	detail->flush_time = 1;
497}
498
499
500
501/*
502 * Deferral and Revisiting of Requests.
503 *
504 * If a cache lookup finds a pending entry, we
505 * need to defer the request and revisit it later.
506 * All deferred requests are stored in a hash table,
507 * indexed by "struct cache_head *".
508 * As it may be wasteful to store a whole request
509 * structure, we allow the request to provide a
510 * deferred form, which must contain a
511 * 'struct cache_deferred_req'
512 * This cache_deferred_req contains a method to allow
513 * it to be revisited when cache info is available
514 */
515
516#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
517#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
518
519#define	DFR_MAX	300	/* ??? */
520
521static DEFINE_SPINLOCK(cache_defer_lock);
522static LIST_HEAD(cache_defer_list);
523static struct list_head cache_defer_hash[DFR_HASHSIZE];
524static int cache_defer_cnt;
525
526static void cache_defer_req(struct cache_req *req, struct cache_head *item)
527{
528	struct cache_deferred_req *dreq;
529	int hash = DFR_HASH(item);
530
531	dreq = req->defer(req);
532	if (dreq == NULL)
533		return;
534
535	dreq->item = item;
536	dreq->recv_time = get_seconds();
537
538	spin_lock(&cache_defer_lock);
539
540	list_add(&dreq->recent, &cache_defer_list);
541
542	if (cache_defer_hash[hash].next == NULL)
543		INIT_LIST_HEAD(&cache_defer_hash[hash]);
544	list_add(&dreq->hash, &cache_defer_hash[hash]);
545
546	/* it is in, now maybe clean up */
547	dreq = NULL;
548	if (++cache_defer_cnt > DFR_MAX) {
549		/* too much in the cache, randomly drop
550		 * first or last
551		 */
552		if (net_random()&1)
553			dreq = list_entry(cache_defer_list.next,
554					  struct cache_deferred_req,
555					  recent);
556		else
557			dreq = list_entry(cache_defer_list.prev,
558					  struct cache_deferred_req,
559					  recent);
560		list_del(&dreq->recent);
561		list_del(&dreq->hash);
562		cache_defer_cnt--;
563	}
564	spin_unlock(&cache_defer_lock);
565
566	if (dreq) {
567		/* there was one too many */
568		dreq->revisit(dreq, 1);
569	}
570	if (!test_bit(CACHE_PENDING, &item->flags)) {
571		/* must have just been validated... */
572		cache_revisit_request(item);
573	}
574}
575
576static void cache_revisit_request(struct cache_head *item)
577{
578	struct cache_deferred_req *dreq;
579	struct list_head pending;
580
581	struct list_head *lp;
582	int hash = DFR_HASH(item);
583
584	INIT_LIST_HEAD(&pending);
585	spin_lock(&cache_defer_lock);
586
587	lp = cache_defer_hash[hash].next;
588	if (lp) {
589		while (lp != &cache_defer_hash[hash]) {
590			dreq = list_entry(lp, struct cache_deferred_req, hash);
591			lp = lp->next;
592			if (dreq->item == item) {
593				list_del(&dreq->hash);
594				list_move(&dreq->recent, &pending);
595				cache_defer_cnt--;
596			}
597		}
598	}
599	spin_unlock(&cache_defer_lock);
600
601	while (!list_empty(&pending)) {
602		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
603		list_del_init(&dreq->recent);
604		dreq->revisit(dreq, 0);
605	}
606}
607
608void cache_clean_deferred(void *owner)
609{
610	struct cache_deferred_req *dreq, *tmp;
611	struct list_head pending;
612
613
614	INIT_LIST_HEAD(&pending);
615	spin_lock(&cache_defer_lock);
616
617	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
618		if (dreq->owner == owner) {
619			list_del(&dreq->hash);
620			list_move(&dreq->recent, &pending);
621			cache_defer_cnt--;
622		}
623	}
624	spin_unlock(&cache_defer_lock);
625
626	while (!list_empty(&pending)) {
627		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
628		list_del_init(&dreq->recent);
629		dreq->revisit(dreq, 1);
630	}
631}
632
633/*
634 * communicate with user-space
635 *
636 * We have a magic /proc file - /proc/sunrpc/cache
637 * On read, you get a full request, or block
638 * On write, an update request is processed
639 * Poll works if anything to read, and always allows write
640 *
641 * Implemented by linked list of requests.  Each open file has
642 * a ->private that also exists in this list.  New request are added
643 * to the end and may wakeup and preceding readers.
644 * New readers are added to the head.  If, on read, an item is found with
645 * CACHE_UPCALLING clear, we free it from the list.
646 *
647 */
648
649static DEFINE_SPINLOCK(queue_lock);
650static DEFINE_MUTEX(queue_io_mutex);
651
652struct cache_queue {
653	struct list_head	list;
654	int			reader;	/* if 0, then request */
655};
656struct cache_request {
657	struct cache_queue	q;
658	struct cache_head	*item;
659	char			* buf;
660	int			len;
661	int			readers;
662};
663struct cache_reader {
664	struct cache_queue	q;
665	int			offset;	/* if non-0, we have a refcnt on next request */
666};
667
668static ssize_t
669cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
670{
671	struct cache_reader *rp = filp->private_data;
672	struct cache_request *rq;
673	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
674	int err;
675
676	if (count == 0)
677		return 0;
678
679	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
680			      * readers on this file */
681 again:
682	spin_lock(&queue_lock);
683	/* need to find next request */
684	while (rp->q.list.next != &cd->queue &&
685	       list_entry(rp->q.list.next, struct cache_queue, list)
686	       ->reader) {
687		struct list_head *next = rp->q.list.next;
688		list_move(&rp->q.list, next);
689	}
690	if (rp->q.list.next == &cd->queue) {
691		spin_unlock(&queue_lock);
692		mutex_unlock(&queue_io_mutex);
693		BUG_ON(rp->offset);
694		return 0;
695	}
696	rq = container_of(rp->q.list.next, struct cache_request, q.list);
697	BUG_ON(rq->q.reader);
698	if (rp->offset == 0)
699		rq->readers++;
700	spin_unlock(&queue_lock);
701
702	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
703		err = -EAGAIN;
704		spin_lock(&queue_lock);
705		list_move(&rp->q.list, &rq->q.list);
706		spin_unlock(&queue_lock);
707	} else {
708		if (rp->offset + count > rq->len)
709			count = rq->len - rp->offset;
710		err = -EFAULT;
711		if (copy_to_user(buf, rq->buf + rp->offset, count))
712			goto out;
713		rp->offset += count;
714		if (rp->offset >= rq->len) {
715			rp->offset = 0;
716			spin_lock(&queue_lock);
717			list_move(&rp->q.list, &rq->q.list);
718			spin_unlock(&queue_lock);
719		}
720		err = 0;
721	}
722 out:
723	if (rp->offset == 0) {
724		/* need to release rq */
725		spin_lock(&queue_lock);
726		rq->readers--;
727		if (rq->readers == 0 &&
728		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
729			list_del(&rq->q.list);
730			spin_unlock(&queue_lock);
731			cache_put(rq->item, cd);
732			kfree(rq->buf);
733			kfree(rq);
734		} else
735			spin_unlock(&queue_lock);
736	}
737	if (err == -EAGAIN)
738		goto again;
739	mutex_unlock(&queue_io_mutex);
740	return err ? err :  count;
741}
742
743static char write_buf[8192]; /* protected by queue_io_mutex */
744
745static ssize_t
746cache_write(struct file *filp, const char __user *buf, size_t count,
747	    loff_t *ppos)
748{
749	int err;
750	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
751
752	if (count == 0)
753		return 0;
754	if (count >= sizeof(write_buf))
755		return -EINVAL;
756
757	mutex_lock(&queue_io_mutex);
758
759	if (copy_from_user(write_buf, buf, count)) {
760		mutex_unlock(&queue_io_mutex);
761		return -EFAULT;
762	}
763	write_buf[count] = '\0';
764	if (cd->cache_parse)
765		err = cd->cache_parse(cd, write_buf, count);
766	else
767		err = -EINVAL;
768
769	mutex_unlock(&queue_io_mutex);
770	return err ? err : count;
771}
772
773static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
774
775static unsigned int
776cache_poll(struct file *filp, poll_table *wait)
777{
778	unsigned int mask;
779	struct cache_reader *rp = filp->private_data;
780	struct cache_queue *cq;
781	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
782
783	poll_wait(filp, &queue_wait, wait);
784
785	/* alway allow write */
786	mask = POLL_OUT | POLLWRNORM;
787
788	if (!rp)
789		return mask;
790
791	spin_lock(&queue_lock);
792
793	for (cq= &rp->q; &cq->list != &cd->queue;
794	     cq = list_entry(cq->list.next, struct cache_queue, list))
795		if (!cq->reader) {
796			mask |= POLLIN | POLLRDNORM;
797			break;
798		}
799	spin_unlock(&queue_lock);
800	return mask;
801}
802
803static int
804cache_ioctl(struct inode *ino, struct file *filp,
805	    unsigned int cmd, unsigned long arg)
806{
807	int len = 0;
808	struct cache_reader *rp = filp->private_data;
809	struct cache_queue *cq;
810	struct cache_detail *cd = PDE(ino)->data;
811
812	if (cmd != FIONREAD || !rp)
813		return -EINVAL;
814
815	spin_lock(&queue_lock);
816
817	/* only find the length remaining in current request,
818	 * or the length of the next request
819	 */
820	for (cq= &rp->q; &cq->list != &cd->queue;
821	     cq = list_entry(cq->list.next, struct cache_queue, list))
822		if (!cq->reader) {
823			struct cache_request *cr =
824				container_of(cq, struct cache_request, q);
825			len = cr->len - rp->offset;
826			break;
827		}
828	spin_unlock(&queue_lock);
829
830	return put_user(len, (int __user *)arg);
831}
832
833static int
834cache_open(struct inode *inode, struct file *filp)
835{
836	struct cache_reader *rp = NULL;
837
838	nonseekable_open(inode, filp);
839	if (filp->f_mode & FMODE_READ) {
840		struct cache_detail *cd = PDE(inode)->data;
841
842		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
843		if (!rp)
844			return -ENOMEM;
845		rp->offset = 0;
846		rp->q.reader = 1;
847		atomic_inc(&cd->readers);
848		spin_lock(&queue_lock);
849		list_add(&rp->q.list, &cd->queue);
850		spin_unlock(&queue_lock);
851	}
852	filp->private_data = rp;
853	return 0;
854}
855
856static int
857cache_release(struct inode *inode, struct file *filp)
858{
859	struct cache_reader *rp = filp->private_data;
860	struct cache_detail *cd = PDE(inode)->data;
861
862	if (rp) {
863		spin_lock(&queue_lock);
864		if (rp->offset) {
865			struct cache_queue *cq;
866			for (cq= &rp->q; &cq->list != &cd->queue;
867			     cq = list_entry(cq->list.next, struct cache_queue, list))
868				if (!cq->reader) {
869					container_of(cq, struct cache_request, q)
870						->readers--;
871					break;
872				}
873			rp->offset = 0;
874		}
875		list_del(&rp->q.list);
876		spin_unlock(&queue_lock);
877
878		filp->private_data = NULL;
879		kfree(rp);
880
881		cd->last_close = get_seconds();
882		atomic_dec(&cd->readers);
883	}
884	return 0;
885}
886
887
888
889static struct file_operations cache_file_operations = {
890	.owner		= THIS_MODULE,
891	.llseek		= no_llseek,
892	.read		= cache_read,
893	.write		= cache_write,
894	.poll		= cache_poll,
895	.ioctl		= cache_ioctl, /* for FIONREAD */
896	.open		= cache_open,
897	.release	= cache_release,
898};
899
900
901static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
902{
903	struct cache_queue *cq;
904	spin_lock(&queue_lock);
905	list_for_each_entry(cq, &detail->queue, list)
906		if (!cq->reader) {
907			struct cache_request *cr = container_of(cq, struct cache_request, q);
908			if (cr->item != ch)
909				continue;
910			if (cr->readers != 0)
911				continue;
912			list_del(&cr->q.list);
913			spin_unlock(&queue_lock);
914			cache_put(cr->item, detail);
915			kfree(cr->buf);
916			kfree(cr);
917			return;
918		}
919	spin_unlock(&queue_lock);
920}
921
922/*
923 * Support routines for text-based upcalls.
924 * Fields are separated by spaces.
925 * Fields are either mangled to quote space tab newline slosh with slosh
926 * or a hexified with a leading \x
927 * Record is terminated with newline.
928 *
929 */
930
931void qword_add(char **bpp, int *lp, char *str)
932{
933	char *bp = *bpp;
934	int len = *lp;
935	char c;
936
937	if (len < 0) return;
938
939	while ((c=*str++) && len)
940		switch(c) {
941		case ' ':
942		case '\t':
943		case '\n':
944		case '\\':
945			if (len >= 4) {
946				*bp++ = '\\';
947				*bp++ = '0' + ((c & 0300)>>6);
948				*bp++ = '0' + ((c & 0070)>>3);
949				*bp++ = '0' + ((c & 0007)>>0);
950			}
951			len -= 4;
952			break;
953		default:
954			*bp++ = c;
955			len--;
956		}
957	if (c || len <1) len = -1;
958	else {
959		*bp++ = ' ';
960		len--;
961	}
962	*bpp = bp;
963	*lp = len;
964}
965
966void qword_addhex(char **bpp, int *lp, char *buf, int blen)
967{
968	char *bp = *bpp;
969	int len = *lp;
970
971	if (len < 0) return;
972
973	if (len > 2) {
974		*bp++ = '\\';
975		*bp++ = 'x';
976		len -= 2;
977		while (blen && len >= 2) {
978			unsigned char c = *buf++;
979			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
980			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
981			len -= 2;
982			blen--;
983		}
984	}
985	if (blen || len<1) len = -1;
986	else {
987		*bp++ = ' ';
988		len--;
989	}
990	*bpp = bp;
991	*lp = len;
992}
993
994static void warn_no_listener(struct cache_detail *detail)
995{
996	if (detail->last_warn != detail->last_close) {
997		detail->last_warn = detail->last_close;
998		if (detail->warn_no_listener)
999			detail->warn_no_listener(detail);
1000	}
1001}
1002
1003/*
1004 * register an upcall request to user-space.
1005 * Each request is at most one page long.
1006 */
1007static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1008{
1009
1010	char *buf;
1011	struct cache_request *crq;
1012	char *bp;
1013	int len;
1014
1015	if (detail->cache_request == NULL)
1016		return -EINVAL;
1017
1018	if (atomic_read(&detail->readers) == 0 &&
1019	    detail->last_close < get_seconds() - 30) {
1020			warn_no_listener(detail);
1021			return -EINVAL;
1022	}
1023
1024	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1025	if (!buf)
1026		return -EAGAIN;
1027
1028	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1029	if (!crq) {
1030		kfree(buf);
1031		return -EAGAIN;
1032	}
1033
1034	bp = buf; len = PAGE_SIZE;
1035
1036	detail->cache_request(detail, h, &bp, &len);
1037
1038	if (len < 0) {
1039		kfree(buf);
1040		kfree(crq);
1041		return -EAGAIN;
1042	}
1043	crq->q.reader = 0;
1044	crq->item = cache_get(h);
1045	crq->buf = buf;
1046	crq->len = PAGE_SIZE - len;
1047	crq->readers = 0;
1048	spin_lock(&queue_lock);
1049	list_add_tail(&crq->q.list, &detail->queue);
1050	spin_unlock(&queue_lock);
1051	wake_up(&queue_wait);
1052	return 0;
1053}
1054
1055/*
1056 * parse a message from user-space and pass it
1057 * to an appropriate cache
1058 * Messages are, like requests, separated into fields by
1059 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1060 *
1061 * Message is
1062 *   reply cachename expiry key ... content....
1063 *
1064 * key and content are both parsed by cache
1065 */
1066
1067#define isodigit(c) (isdigit(c) && c <= '7')
1068int qword_get(char **bpp, char *dest, int bufsize)
1069{
1070	/* return bytes copied, or -1 on error */
1071	char *bp = *bpp;
1072	int len = 0;
1073
1074	while (*bp == ' ') bp++;
1075
1076	if (bp[0] == '\\' && bp[1] == 'x') {
1077		/* HEX STRING */
1078		bp += 2;
1079		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1080			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1081			bp++;
1082			byte <<= 4;
1083			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1084			*dest++ = byte;
1085			bp++;
1086			len++;
1087		}
1088	} else {
1089		/* text with \nnn octal quoting */
1090		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1091			if (*bp == '\\' &&
1092			    isodigit(bp[1]) && (bp[1] <= '3') &&
1093			    isodigit(bp[2]) &&
1094			    isodigit(bp[3])) {
1095				int byte = (*++bp -'0');
1096				bp++;
1097				byte = (byte << 3) | (*bp++ - '0');
1098				byte = (byte << 3) | (*bp++ - '0');
1099				*dest++ = byte;
1100				len++;
1101			} else {
1102				*dest++ = *bp++;
1103				len++;
1104			}
1105		}
1106	}
1107
1108	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1109		return -1;
1110	while (*bp == ' ') bp++;
1111	*bpp = bp;
1112	*dest = '\0';
1113	return len;
1114}
1115
1116
1117/*
1118 * support /proc/sunrpc/cache/$CACHENAME/content
1119 * as a seqfile.
1120 * We call ->cache_show passing NULL for the item to
1121 * get a header, then pass each real item in the cache
1122 */
1123
1124struct handle {
1125	struct cache_detail *cd;
1126};
1127
1128static void *c_start(struct seq_file *m, loff_t *pos)
1129{
1130	loff_t n = *pos;
1131	unsigned hash, entry;
1132	struct cache_head *ch;
1133	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1134
1135
1136	read_lock(&cd->hash_lock);
1137	if (!n--)
1138		return SEQ_START_TOKEN;
1139	hash = n >> 32;
1140	entry = n & ((1LL<<32) - 1);
1141
1142	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1143		if (!entry--)
1144			return ch;
1145	n &= ~((1LL<<32) - 1);
1146	do {
1147		hash++;
1148		n += 1LL<<32;
1149	} while(hash < cd->hash_size &&
1150		cd->hash_table[hash]==NULL);
1151	if (hash >= cd->hash_size)
1152		return NULL;
1153	*pos = n+1;
1154	return cd->hash_table[hash];
1155}
1156
1157static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1158{
1159	struct cache_head *ch = p;
1160	int hash = (*pos >> 32);
1161	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1162
1163	if (p == SEQ_START_TOKEN)
1164		hash = 0;
1165	else if (ch->next == NULL) {
1166		hash++;
1167		*pos += 1LL<<32;
1168	} else {
1169		++*pos;
1170		return ch->next;
1171	}
1172	*pos &= ~((1LL<<32) - 1);
1173	while (hash < cd->hash_size &&
1174	       cd->hash_table[hash] == NULL) {
1175		hash++;
1176		*pos += 1LL<<32;
1177	}
1178	if (hash >= cd->hash_size)
1179		return NULL;
1180	++*pos;
1181	return cd->hash_table[hash];
1182}
1183
1184static void c_stop(struct seq_file *m, void *p)
1185{
1186	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1187	read_unlock(&cd->hash_lock);
1188}
1189
1190static int c_show(struct seq_file *m, void *p)
1191{
1192	struct cache_head *cp = p;
1193	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1194
1195	if (p == SEQ_START_TOKEN)
1196		return cd->cache_show(m, cd, NULL);
1197
1198	ifdebug(CACHE)
1199		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1200			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1201	cache_get(cp);
1202	if (cache_check(cd, cp, NULL))
1203		/* cache_check does a cache_put on failure */
1204		seq_printf(m, "# ");
1205	else
1206		cache_put(cp, cd);
1207
1208	return cd->cache_show(m, cd, cp);
1209}
1210
1211static struct seq_operations cache_content_op = {
1212	.start	= c_start,
1213	.next	= c_next,
1214	.stop	= c_stop,
1215	.show	= c_show,
1216};
1217
1218static int content_open(struct inode *inode, struct file *file)
1219{
1220	int res;
1221	struct handle *han;
1222	struct cache_detail *cd = PDE(inode)->data;
1223
1224	han = kmalloc(sizeof(*han), GFP_KERNEL);
1225	if (han == NULL)
1226		return -ENOMEM;
1227
1228	han->cd = cd;
1229
1230	res = seq_open(file, &cache_content_op);
1231	if (res)
1232		kfree(han);
1233	else
1234		((struct seq_file *)file->private_data)->private = han;
1235
1236	return res;
1237}
1238static int content_release(struct inode *inode, struct file *file)
1239{
1240	struct seq_file *m = (struct seq_file *)file->private_data;
1241	struct handle *han = m->private;
1242	kfree(han);
1243	m->private = NULL;
1244	return seq_release(inode, file);
1245}
1246
1247static struct file_operations content_file_operations = {
1248	.open		= content_open,
1249	.read		= seq_read,
1250	.llseek		= seq_lseek,
1251	.release	= content_release,
1252};
1253
1254static ssize_t read_flush(struct file *file, char __user *buf,
1255			    size_t count, loff_t *ppos)
1256{
1257	struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1258	char tbuf[20];
1259	unsigned long p = *ppos;
1260	int len;
1261
1262	sprintf(tbuf, "%lu\n", cd->flush_time);
1263	len = strlen(tbuf);
1264	if (p >= len)
1265		return 0;
1266	len -= p;
1267	if (len > count) len = count;
1268	if (copy_to_user(buf, (void*)(tbuf+p), len))
1269		len = -EFAULT;
1270	else
1271		*ppos += len;
1272	return len;
1273}
1274
1275static ssize_t write_flush(struct file * file, const char __user * buf,
1276			     size_t count, loff_t *ppos)
1277{
1278	struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1279	char tbuf[20];
1280	char *ep;
1281	long flushtime;
1282	if (*ppos || count > sizeof(tbuf)-1)
1283		return -EINVAL;
1284	if (copy_from_user(tbuf, buf, count))
1285		return -EFAULT;
1286	tbuf[count] = 0;
1287	flushtime = simple_strtoul(tbuf, &ep, 0);
1288	if (*ep && *ep != '\n')
1289		return -EINVAL;
1290
1291	cd->flush_time = flushtime;
1292	cd->nextcheck = get_seconds();
1293	cache_flush();
1294
1295	*ppos += count;
1296	return count;
1297}
1298
1299static struct file_operations cache_flush_operations = {
1300	.open		= nonseekable_open,
1301	.read		= read_flush,
1302	.write		= write_flush,
1303};
1304