cache.c revision 8eab945c5616fc984e97b922d6a2559be93f39a1
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <linux/smp_lock.h>
32#include <asm/ioctls.h>
33#include <linux/sunrpc/types.h>
34#include <linux/sunrpc/cache.h>
35#include <linux/sunrpc/stats.h>
36#include <linux/sunrpc/rpc_pipe_fs.h>
37#include <linux/smp_lock.h>
38
39#define	 RPCDBG_FACILITY RPCDBG_CACHE
40
41static int cache_defer_req(struct cache_req *req, struct cache_head *item);
42static void cache_revisit_request(struct cache_head *item);
43
44static void cache_init(struct cache_head *h)
45{
46	time_t now = get_seconds();
47	h->next = NULL;
48	h->flags = 0;
49	kref_init(&h->ref);
50	h->expiry_time = now + CACHE_NEW_EXPIRY;
51	h->last_refresh = now;
52}
53
54static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
55{
56	return  (h->expiry_time < get_seconds()) ||
57		(detail->flush_time > h->last_refresh);
58}
59
60struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
61				       struct cache_head *key, int hash)
62{
63	struct cache_head **head,  **hp;
64	struct cache_head *new = NULL, *freeme = NULL;
65
66	head = &detail->hash_table[hash];
67
68	read_lock(&detail->hash_lock);
69
70	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
71		struct cache_head *tmp = *hp;
72		if (detail->match(tmp, key)) {
73			if (cache_is_expired(detail, tmp))
74				/* This entry is expired, we will discard it. */
75				break;
76			cache_get(tmp);
77			read_unlock(&detail->hash_lock);
78			return tmp;
79		}
80	}
81	read_unlock(&detail->hash_lock);
82	/* Didn't find anything, insert an empty entry */
83
84	new = detail->alloc();
85	if (!new)
86		return NULL;
87	/* must fully initialise 'new', else
88	 * we might get lose if we need to
89	 * cache_put it soon.
90	 */
91	cache_init(new);
92	detail->init(new, key);
93
94	write_lock(&detail->hash_lock);
95
96	/* check if entry appeared while we slept */
97	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
98		struct cache_head *tmp = *hp;
99		if (detail->match(tmp, key)) {
100			if (cache_is_expired(detail, tmp)) {
101				*hp = tmp->next;
102				tmp->next = NULL;
103				detail->entries --;
104				freeme = tmp;
105				break;
106			}
107			cache_get(tmp);
108			write_unlock(&detail->hash_lock);
109			cache_put(new, detail);
110			return tmp;
111		}
112	}
113	new->next = *head;
114	*head = new;
115	detail->entries++;
116	cache_get(new);
117	write_unlock(&detail->hash_lock);
118
119	if (freeme)
120		cache_put(freeme, detail);
121	return new;
122}
123EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
124
125
126static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
127
128static void cache_fresh_locked(struct cache_head *head, time_t expiry)
129{
130	head->expiry_time = expiry;
131	head->last_refresh = get_seconds();
132	set_bit(CACHE_VALID, &head->flags);
133}
134
135static void cache_fresh_unlocked(struct cache_head *head,
136				 struct cache_detail *detail)
137{
138	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139		cache_revisit_request(head);
140		cache_dequeue(detail, head);
141	}
142}
143
144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145				       struct cache_head *new, struct cache_head *old, int hash)
146{
147	/* The 'old' entry is to be replaced by 'new'.
148	 * If 'old' is not VALID, we update it directly,
149	 * otherwise we need to replace it
150	 */
151	struct cache_head **head;
152	struct cache_head *tmp;
153
154	if (!test_bit(CACHE_VALID, &old->flags)) {
155		write_lock(&detail->hash_lock);
156		if (!test_bit(CACHE_VALID, &old->flags)) {
157			if (test_bit(CACHE_NEGATIVE, &new->flags))
158				set_bit(CACHE_NEGATIVE, &old->flags);
159			else
160				detail->update(old, new);
161			cache_fresh_locked(old, new->expiry_time);
162			write_unlock(&detail->hash_lock);
163			cache_fresh_unlocked(old, detail);
164			return old;
165		}
166		write_unlock(&detail->hash_lock);
167	}
168	/* We need to insert a new entry */
169	tmp = detail->alloc();
170	if (!tmp) {
171		cache_put(old, detail);
172		return NULL;
173	}
174	cache_init(tmp);
175	detail->init(tmp, old);
176	head = &detail->hash_table[hash];
177
178	write_lock(&detail->hash_lock);
179	if (test_bit(CACHE_NEGATIVE, &new->flags))
180		set_bit(CACHE_NEGATIVE, &tmp->flags);
181	else
182		detail->update(tmp, new);
183	tmp->next = *head;
184	*head = tmp;
185	detail->entries++;
186	cache_get(tmp);
187	cache_fresh_locked(tmp, new->expiry_time);
188	cache_fresh_locked(old, 0);
189	write_unlock(&detail->hash_lock);
190	cache_fresh_unlocked(tmp, detail);
191	cache_fresh_unlocked(old, detail);
192	cache_put(old, detail);
193	return tmp;
194}
195EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198{
199	if (!cd->cache_upcall)
200		return -EINVAL;
201	return cd->cache_upcall(cd, h);
202}
203
204static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205{
206	if (!test_bit(CACHE_VALID, &h->flags))
207		return -EAGAIN;
208	else {
209		/* entry is valid */
210		if (test_bit(CACHE_NEGATIVE, &h->flags))
211			return -ENOENT;
212		else
213			return 0;
214	}
215}
216
217/*
218 * This is the generic cache management routine for all
219 * the authentication caches.
220 * It checks the currency of a cache item and will (later)
221 * initiate an upcall to fill it if needed.
222 *
223 *
224 * Returns 0 if the cache_head can be used, or cache_puts it and returns
225 * -EAGAIN if upcall is pending and request has been queued
226 * -ETIMEDOUT if upcall failed or request could not be queue or
227 *           upcall completed but item is still invalid (implying that
228 *           the cache item has been replaced with a newer one).
229 * -ENOENT if cache entry was negative
230 */
231int cache_check(struct cache_detail *detail,
232		    struct cache_head *h, struct cache_req *rqstp)
233{
234	int rv;
235	long refresh_age, age;
236
237	/* First decide return status as best we can */
238	rv = cache_is_valid(detail, h);
239
240	/* now see if we want to start an upcall */
241	refresh_age = (h->expiry_time - h->last_refresh);
242	age = get_seconds() - h->last_refresh;
243
244	if (rqstp == NULL) {
245		if (rv == -EAGAIN)
246			rv = -ENOENT;
247	} else if (rv == -EAGAIN || age > refresh_age/2) {
248		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
249				refresh_age, age);
250		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
251			switch (cache_make_upcall(detail, h)) {
252			case -EINVAL:
253				clear_bit(CACHE_PENDING, &h->flags);
254				cache_revisit_request(h);
255				if (rv == -EAGAIN) {
256					set_bit(CACHE_NEGATIVE, &h->flags);
257					cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY);
258					cache_fresh_unlocked(h, detail);
259					rv = -ENOENT;
260				}
261				break;
262
263			case -EAGAIN:
264				clear_bit(CACHE_PENDING, &h->flags);
265				cache_revisit_request(h);
266				break;
267			}
268		}
269	}
270
271	if (rv == -EAGAIN) {
272		if (cache_defer_req(rqstp, h) < 0) {
273			/* Request is not deferred */
274			rv = cache_is_valid(detail, h);
275			if (rv == -EAGAIN)
276				rv = -ETIMEDOUT;
277		}
278	}
279	if (rv)
280		cache_put(h, detail);
281	return rv;
282}
283EXPORT_SYMBOL_GPL(cache_check);
284
285/*
286 * caches need to be periodically cleaned.
287 * For this we maintain a list of cache_detail and
288 * a current pointer into that list and into the table
289 * for that entry.
290 *
291 * Each time clean_cache is called it finds the next non-empty entry
292 * in the current table and walks the list in that entry
293 * looking for entries that can be removed.
294 *
295 * An entry gets removed if:
296 * - The expiry is before current time
297 * - The last_refresh time is before the flush_time for that cache
298 *
299 * later we might drop old entries with non-NEVER expiry if that table
300 * is getting 'full' for some definition of 'full'
301 *
302 * The question of "how often to scan a table" is an interesting one
303 * and is answered in part by the use of the "nextcheck" field in the
304 * cache_detail.
305 * When a scan of a table begins, the nextcheck field is set to a time
306 * that is well into the future.
307 * While scanning, if an expiry time is found that is earlier than the
308 * current nextcheck time, nextcheck is set to that expiry time.
309 * If the flush_time is ever set to a time earlier than the nextcheck
310 * time, the nextcheck time is then set to that flush_time.
311 *
312 * A table is then only scanned if the current time is at least
313 * the nextcheck time.
314 *
315 */
316
317static LIST_HEAD(cache_list);
318static DEFINE_SPINLOCK(cache_list_lock);
319static struct cache_detail *current_detail;
320static int current_index;
321
322static void do_cache_clean(struct work_struct *work);
323static struct delayed_work cache_cleaner;
324
325static void sunrpc_init_cache_detail(struct cache_detail *cd)
326{
327	rwlock_init(&cd->hash_lock);
328	INIT_LIST_HEAD(&cd->queue);
329	spin_lock(&cache_list_lock);
330	cd->nextcheck = 0;
331	cd->entries = 0;
332	atomic_set(&cd->readers, 0);
333	cd->last_close = 0;
334	cd->last_warn = -1;
335	list_add(&cd->others, &cache_list);
336	spin_unlock(&cache_list_lock);
337
338	/* start the cleaning process */
339	schedule_delayed_work(&cache_cleaner, 0);
340}
341
342static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
343{
344	cache_purge(cd);
345	spin_lock(&cache_list_lock);
346	write_lock(&cd->hash_lock);
347	if (cd->entries || atomic_read(&cd->inuse)) {
348		write_unlock(&cd->hash_lock);
349		spin_unlock(&cache_list_lock);
350		goto out;
351	}
352	if (current_detail == cd)
353		current_detail = NULL;
354	list_del_init(&cd->others);
355	write_unlock(&cd->hash_lock);
356	spin_unlock(&cache_list_lock);
357	if (list_empty(&cache_list)) {
358		/* module must be being unloaded so its safe to kill the worker */
359		cancel_delayed_work_sync(&cache_cleaner);
360	}
361	return;
362out:
363	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
364}
365
366/* clean cache tries to find something to clean
367 * and cleans it.
368 * It returns 1 if it cleaned something,
369 *            0 if it didn't find anything this time
370 *           -1 if it fell off the end of the list.
371 */
372static int cache_clean(void)
373{
374	int rv = 0;
375	struct list_head *next;
376
377	spin_lock(&cache_list_lock);
378
379	/* find a suitable table if we don't already have one */
380	while (current_detail == NULL ||
381	    current_index >= current_detail->hash_size) {
382		if (current_detail)
383			next = current_detail->others.next;
384		else
385			next = cache_list.next;
386		if (next == &cache_list) {
387			current_detail = NULL;
388			spin_unlock(&cache_list_lock);
389			return -1;
390		}
391		current_detail = list_entry(next, struct cache_detail, others);
392		if (current_detail->nextcheck > get_seconds())
393			current_index = current_detail->hash_size;
394		else {
395			current_index = 0;
396			current_detail->nextcheck = get_seconds()+30*60;
397		}
398	}
399
400	/* find a non-empty bucket in the table */
401	while (current_detail &&
402	       current_index < current_detail->hash_size &&
403	       current_detail->hash_table[current_index] == NULL)
404		current_index++;
405
406	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
407
408	if (current_detail && current_index < current_detail->hash_size) {
409		struct cache_head *ch, **cp;
410		struct cache_detail *d;
411
412		write_lock(&current_detail->hash_lock);
413
414		/* Ok, now to clean this strand */
415
416		cp = & current_detail->hash_table[current_index];
417		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
418			if (current_detail->nextcheck > ch->expiry_time)
419				current_detail->nextcheck = ch->expiry_time+1;
420			if (!cache_is_expired(current_detail, ch))
421				continue;
422
423			*cp = ch->next;
424			ch->next = NULL;
425			current_detail->entries--;
426			rv = 1;
427			break;
428		}
429
430		write_unlock(&current_detail->hash_lock);
431		d = current_detail;
432		if (!ch)
433			current_index ++;
434		spin_unlock(&cache_list_lock);
435		if (ch) {
436			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
437				cache_dequeue(current_detail, ch);
438			cache_revisit_request(ch);
439			cache_put(ch, d);
440		}
441	} else
442		spin_unlock(&cache_list_lock);
443
444	return rv;
445}
446
447/*
448 * We want to regularly clean the cache, so we need to schedule some work ...
449 */
450static void do_cache_clean(struct work_struct *work)
451{
452	int delay = 5;
453	if (cache_clean() == -1)
454		delay = round_jiffies_relative(30*HZ);
455
456	if (list_empty(&cache_list))
457		delay = 0;
458
459	if (delay)
460		schedule_delayed_work(&cache_cleaner, delay);
461}
462
463
464/*
465 * Clean all caches promptly.  This just calls cache_clean
466 * repeatedly until we are sure that every cache has had a chance to
467 * be fully cleaned
468 */
469void cache_flush(void)
470{
471	while (cache_clean() != -1)
472		cond_resched();
473	while (cache_clean() != -1)
474		cond_resched();
475}
476EXPORT_SYMBOL_GPL(cache_flush);
477
478void cache_purge(struct cache_detail *detail)
479{
480	detail->flush_time = LONG_MAX;
481	detail->nextcheck = get_seconds();
482	cache_flush();
483	detail->flush_time = 1;
484}
485EXPORT_SYMBOL_GPL(cache_purge);
486
487
488/*
489 * Deferral and Revisiting of Requests.
490 *
491 * If a cache lookup finds a pending entry, we
492 * need to defer the request and revisit it later.
493 * All deferred requests are stored in a hash table,
494 * indexed by "struct cache_head *".
495 * As it may be wasteful to store a whole request
496 * structure, we allow the request to provide a
497 * deferred form, which must contain a
498 * 'struct cache_deferred_req'
499 * This cache_deferred_req contains a method to allow
500 * it to be revisited when cache info is available
501 */
502
503#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
504#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
505
506#define	DFR_MAX	300	/* ??? */
507
508static DEFINE_SPINLOCK(cache_defer_lock);
509static LIST_HEAD(cache_defer_list);
510static struct list_head cache_defer_hash[DFR_HASHSIZE];
511static int cache_defer_cnt;
512
513static int cache_defer_req(struct cache_req *req, struct cache_head *item)
514{
515	struct cache_deferred_req *dreq, *discard;
516	int hash = DFR_HASH(item);
517
518	if (cache_defer_cnt >= DFR_MAX) {
519		/* too much in the cache, randomly drop this one,
520		 * or continue and drop the oldest below
521		 */
522		if (net_random()&1)
523			return -ENOMEM;
524	}
525	dreq = req->defer(req);
526	if (dreq == NULL)
527		return -ENOMEM;
528
529	dreq->item = item;
530
531	spin_lock(&cache_defer_lock);
532
533	list_add(&dreq->recent, &cache_defer_list);
534
535	if (cache_defer_hash[hash].next == NULL)
536		INIT_LIST_HEAD(&cache_defer_hash[hash]);
537	list_add(&dreq->hash, &cache_defer_hash[hash]);
538
539	/* it is in, now maybe clean up */
540	discard = NULL;
541	if (++cache_defer_cnt > DFR_MAX) {
542		discard = list_entry(cache_defer_list.prev,
543				     struct cache_deferred_req, recent);
544		list_del_init(&discard->recent);
545		list_del_init(&discard->hash);
546		cache_defer_cnt--;
547	}
548	spin_unlock(&cache_defer_lock);
549
550	if (discard)
551		/* there was one too many */
552		discard->revisit(discard, 1);
553
554	if (!test_bit(CACHE_PENDING, &item->flags)) {
555		/* must have just been validated... */
556		cache_revisit_request(item);
557		return -EAGAIN;
558	}
559	return 0;
560}
561
562static void cache_revisit_request(struct cache_head *item)
563{
564	struct cache_deferred_req *dreq;
565	struct list_head pending;
566
567	struct list_head *lp;
568	int hash = DFR_HASH(item);
569
570	INIT_LIST_HEAD(&pending);
571	spin_lock(&cache_defer_lock);
572
573	lp = cache_defer_hash[hash].next;
574	if (lp) {
575		while (lp != &cache_defer_hash[hash]) {
576			dreq = list_entry(lp, struct cache_deferred_req, hash);
577			lp = lp->next;
578			if (dreq->item == item) {
579				list_del_init(&dreq->hash);
580				list_move(&dreq->recent, &pending);
581				cache_defer_cnt--;
582			}
583		}
584	}
585	spin_unlock(&cache_defer_lock);
586
587	while (!list_empty(&pending)) {
588		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
589		list_del_init(&dreq->recent);
590		dreq->revisit(dreq, 0);
591	}
592}
593
594void cache_clean_deferred(void *owner)
595{
596	struct cache_deferred_req *dreq, *tmp;
597	struct list_head pending;
598
599
600	INIT_LIST_HEAD(&pending);
601	spin_lock(&cache_defer_lock);
602
603	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
604		if (dreq->owner == owner) {
605			list_del_init(&dreq->hash);
606			list_move(&dreq->recent, &pending);
607			cache_defer_cnt--;
608		}
609	}
610	spin_unlock(&cache_defer_lock);
611
612	while (!list_empty(&pending)) {
613		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
614		list_del_init(&dreq->recent);
615		dreq->revisit(dreq, 1);
616	}
617}
618
619/*
620 * communicate with user-space
621 *
622 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
623 * On read, you get a full request, or block.
624 * On write, an update request is processed.
625 * Poll works if anything to read, and always allows write.
626 *
627 * Implemented by linked list of requests.  Each open file has
628 * a ->private that also exists in this list.  New requests are added
629 * to the end and may wakeup and preceding readers.
630 * New readers are added to the head.  If, on read, an item is found with
631 * CACHE_UPCALLING clear, we free it from the list.
632 *
633 */
634
635static DEFINE_SPINLOCK(queue_lock);
636static DEFINE_MUTEX(queue_io_mutex);
637
638struct cache_queue {
639	struct list_head	list;
640	int			reader;	/* if 0, then request */
641};
642struct cache_request {
643	struct cache_queue	q;
644	struct cache_head	*item;
645	char			* buf;
646	int			len;
647	int			readers;
648};
649struct cache_reader {
650	struct cache_queue	q;
651	int			offset;	/* if non-0, we have a refcnt on next request */
652};
653
654static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
655			  loff_t *ppos, struct cache_detail *cd)
656{
657	struct cache_reader *rp = filp->private_data;
658	struct cache_request *rq;
659	struct inode *inode = filp->f_path.dentry->d_inode;
660	int err;
661
662	if (count == 0)
663		return 0;
664
665	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
666			      * readers on this file */
667 again:
668	spin_lock(&queue_lock);
669	/* need to find next request */
670	while (rp->q.list.next != &cd->queue &&
671	       list_entry(rp->q.list.next, struct cache_queue, list)
672	       ->reader) {
673		struct list_head *next = rp->q.list.next;
674		list_move(&rp->q.list, next);
675	}
676	if (rp->q.list.next == &cd->queue) {
677		spin_unlock(&queue_lock);
678		mutex_unlock(&inode->i_mutex);
679		BUG_ON(rp->offset);
680		return 0;
681	}
682	rq = container_of(rp->q.list.next, struct cache_request, q.list);
683	BUG_ON(rq->q.reader);
684	if (rp->offset == 0)
685		rq->readers++;
686	spin_unlock(&queue_lock);
687
688	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
689		err = -EAGAIN;
690		spin_lock(&queue_lock);
691		list_move(&rp->q.list, &rq->q.list);
692		spin_unlock(&queue_lock);
693	} else {
694		if (rp->offset + count > rq->len)
695			count = rq->len - rp->offset;
696		err = -EFAULT;
697		if (copy_to_user(buf, rq->buf + rp->offset, count))
698			goto out;
699		rp->offset += count;
700		if (rp->offset >= rq->len) {
701			rp->offset = 0;
702			spin_lock(&queue_lock);
703			list_move(&rp->q.list, &rq->q.list);
704			spin_unlock(&queue_lock);
705		}
706		err = 0;
707	}
708 out:
709	if (rp->offset == 0) {
710		/* need to release rq */
711		spin_lock(&queue_lock);
712		rq->readers--;
713		if (rq->readers == 0 &&
714		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
715			list_del(&rq->q.list);
716			spin_unlock(&queue_lock);
717			cache_put(rq->item, cd);
718			kfree(rq->buf);
719			kfree(rq);
720		} else
721			spin_unlock(&queue_lock);
722	}
723	if (err == -EAGAIN)
724		goto again;
725	mutex_unlock(&inode->i_mutex);
726	return err ? err :  count;
727}
728
729static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
730				 size_t count, struct cache_detail *cd)
731{
732	ssize_t ret;
733
734	if (copy_from_user(kaddr, buf, count))
735		return -EFAULT;
736	kaddr[count] = '\0';
737	ret = cd->cache_parse(cd, kaddr, count);
738	if (!ret)
739		ret = count;
740	return ret;
741}
742
743static ssize_t cache_slow_downcall(const char __user *buf,
744				   size_t count, struct cache_detail *cd)
745{
746	static char write_buf[8192]; /* protected by queue_io_mutex */
747	ssize_t ret = -EINVAL;
748
749	if (count >= sizeof(write_buf))
750		goto out;
751	mutex_lock(&queue_io_mutex);
752	ret = cache_do_downcall(write_buf, buf, count, cd);
753	mutex_unlock(&queue_io_mutex);
754out:
755	return ret;
756}
757
758static ssize_t cache_downcall(struct address_space *mapping,
759			      const char __user *buf,
760			      size_t count, struct cache_detail *cd)
761{
762	struct page *page;
763	char *kaddr;
764	ssize_t ret = -ENOMEM;
765
766	if (count >= PAGE_CACHE_SIZE)
767		goto out_slow;
768
769	page = find_or_create_page(mapping, 0, GFP_KERNEL);
770	if (!page)
771		goto out_slow;
772
773	kaddr = kmap(page);
774	ret = cache_do_downcall(kaddr, buf, count, cd);
775	kunmap(page);
776	unlock_page(page);
777	page_cache_release(page);
778	return ret;
779out_slow:
780	return cache_slow_downcall(buf, count, cd);
781}
782
783static ssize_t cache_write(struct file *filp, const char __user *buf,
784			   size_t count, loff_t *ppos,
785			   struct cache_detail *cd)
786{
787	struct address_space *mapping = filp->f_mapping;
788	struct inode *inode = filp->f_path.dentry->d_inode;
789	ssize_t ret = -EINVAL;
790
791	if (!cd->cache_parse)
792		goto out;
793
794	mutex_lock(&inode->i_mutex);
795	ret = cache_downcall(mapping, buf, count, cd);
796	mutex_unlock(&inode->i_mutex);
797out:
798	return ret;
799}
800
801static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
802
803static unsigned int cache_poll(struct file *filp, poll_table *wait,
804			       struct cache_detail *cd)
805{
806	unsigned int mask;
807	struct cache_reader *rp = filp->private_data;
808	struct cache_queue *cq;
809
810	poll_wait(filp, &queue_wait, wait);
811
812	/* alway allow write */
813	mask = POLL_OUT | POLLWRNORM;
814
815	if (!rp)
816		return mask;
817
818	spin_lock(&queue_lock);
819
820	for (cq= &rp->q; &cq->list != &cd->queue;
821	     cq = list_entry(cq->list.next, struct cache_queue, list))
822		if (!cq->reader) {
823			mask |= POLLIN | POLLRDNORM;
824			break;
825		}
826	spin_unlock(&queue_lock);
827	return mask;
828}
829
830static int cache_ioctl(struct inode *ino, struct file *filp,
831		       unsigned int cmd, unsigned long arg,
832		       struct cache_detail *cd)
833{
834	int len = 0;
835	struct cache_reader *rp = filp->private_data;
836	struct cache_queue *cq;
837
838	if (cmd != FIONREAD || !rp)
839		return -EINVAL;
840
841	spin_lock(&queue_lock);
842
843	/* only find the length remaining in current request,
844	 * or the length of the next request
845	 */
846	for (cq= &rp->q; &cq->list != &cd->queue;
847	     cq = list_entry(cq->list.next, struct cache_queue, list))
848		if (!cq->reader) {
849			struct cache_request *cr =
850				container_of(cq, struct cache_request, q);
851			len = cr->len - rp->offset;
852			break;
853		}
854	spin_unlock(&queue_lock);
855
856	return put_user(len, (int __user *)arg);
857}
858
859static int cache_open(struct inode *inode, struct file *filp,
860		      struct cache_detail *cd)
861{
862	struct cache_reader *rp = NULL;
863
864	if (!cd || !try_module_get(cd->owner))
865		return -EACCES;
866	nonseekable_open(inode, filp);
867	if (filp->f_mode & FMODE_READ) {
868		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
869		if (!rp)
870			return -ENOMEM;
871		rp->offset = 0;
872		rp->q.reader = 1;
873		atomic_inc(&cd->readers);
874		spin_lock(&queue_lock);
875		list_add(&rp->q.list, &cd->queue);
876		spin_unlock(&queue_lock);
877	}
878	filp->private_data = rp;
879	return 0;
880}
881
882static int cache_release(struct inode *inode, struct file *filp,
883			 struct cache_detail *cd)
884{
885	struct cache_reader *rp = filp->private_data;
886
887	if (rp) {
888		spin_lock(&queue_lock);
889		if (rp->offset) {
890			struct cache_queue *cq;
891			for (cq= &rp->q; &cq->list != &cd->queue;
892			     cq = list_entry(cq->list.next, struct cache_queue, list))
893				if (!cq->reader) {
894					container_of(cq, struct cache_request, q)
895						->readers--;
896					break;
897				}
898			rp->offset = 0;
899		}
900		list_del(&rp->q.list);
901		spin_unlock(&queue_lock);
902
903		filp->private_data = NULL;
904		kfree(rp);
905
906		cd->last_close = get_seconds();
907		atomic_dec(&cd->readers);
908	}
909	module_put(cd->owner);
910	return 0;
911}
912
913
914
915static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
916{
917	struct cache_queue *cq;
918	spin_lock(&queue_lock);
919	list_for_each_entry(cq, &detail->queue, list)
920		if (!cq->reader) {
921			struct cache_request *cr = container_of(cq, struct cache_request, q);
922			if (cr->item != ch)
923				continue;
924			if (cr->readers != 0)
925				continue;
926			list_del(&cr->q.list);
927			spin_unlock(&queue_lock);
928			cache_put(cr->item, detail);
929			kfree(cr->buf);
930			kfree(cr);
931			return;
932		}
933	spin_unlock(&queue_lock);
934}
935
936/*
937 * Support routines for text-based upcalls.
938 * Fields are separated by spaces.
939 * Fields are either mangled to quote space tab newline slosh with slosh
940 * or a hexified with a leading \x
941 * Record is terminated with newline.
942 *
943 */
944
945void qword_add(char **bpp, int *lp, char *str)
946{
947	char *bp = *bpp;
948	int len = *lp;
949	char c;
950
951	if (len < 0) return;
952
953	while ((c=*str++) && len)
954		switch(c) {
955		case ' ':
956		case '\t':
957		case '\n':
958		case '\\':
959			if (len >= 4) {
960				*bp++ = '\\';
961				*bp++ = '0' + ((c & 0300)>>6);
962				*bp++ = '0' + ((c & 0070)>>3);
963				*bp++ = '0' + ((c & 0007)>>0);
964			}
965			len -= 4;
966			break;
967		default:
968			*bp++ = c;
969			len--;
970		}
971	if (c || len <1) len = -1;
972	else {
973		*bp++ = ' ';
974		len--;
975	}
976	*bpp = bp;
977	*lp = len;
978}
979EXPORT_SYMBOL_GPL(qword_add);
980
981void qword_addhex(char **bpp, int *lp, char *buf, int blen)
982{
983	char *bp = *bpp;
984	int len = *lp;
985
986	if (len < 0) return;
987
988	if (len > 2) {
989		*bp++ = '\\';
990		*bp++ = 'x';
991		len -= 2;
992		while (blen && len >= 2) {
993			unsigned char c = *buf++;
994			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
995			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
996			len -= 2;
997			blen--;
998		}
999	}
1000	if (blen || len<1) len = -1;
1001	else {
1002		*bp++ = ' ';
1003		len--;
1004	}
1005	*bpp = bp;
1006	*lp = len;
1007}
1008EXPORT_SYMBOL_GPL(qword_addhex);
1009
1010static void warn_no_listener(struct cache_detail *detail)
1011{
1012	if (detail->last_warn != detail->last_close) {
1013		detail->last_warn = detail->last_close;
1014		if (detail->warn_no_listener)
1015			detail->warn_no_listener(detail, detail->last_close != 0);
1016	}
1017}
1018
1019/*
1020 * register an upcall request to user-space and queue it up for read() by the
1021 * upcall daemon.
1022 *
1023 * Each request is at most one page long.
1024 */
1025int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1026		void (*cache_request)(struct cache_detail *,
1027				      struct cache_head *,
1028				      char **,
1029				      int *))
1030{
1031
1032	char *buf;
1033	struct cache_request *crq;
1034	char *bp;
1035	int len;
1036
1037	if (atomic_read(&detail->readers) == 0 &&
1038	    detail->last_close < get_seconds() - 30) {
1039			warn_no_listener(detail);
1040			return -EINVAL;
1041	}
1042
1043	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1044	if (!buf)
1045		return -EAGAIN;
1046
1047	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1048	if (!crq) {
1049		kfree(buf);
1050		return -EAGAIN;
1051	}
1052
1053	bp = buf; len = PAGE_SIZE;
1054
1055	cache_request(detail, h, &bp, &len);
1056
1057	if (len < 0) {
1058		kfree(buf);
1059		kfree(crq);
1060		return -EAGAIN;
1061	}
1062	crq->q.reader = 0;
1063	crq->item = cache_get(h);
1064	crq->buf = buf;
1065	crq->len = PAGE_SIZE - len;
1066	crq->readers = 0;
1067	spin_lock(&queue_lock);
1068	list_add_tail(&crq->q.list, &detail->queue);
1069	spin_unlock(&queue_lock);
1070	wake_up(&queue_wait);
1071	return 0;
1072}
1073EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1074
1075/*
1076 * parse a message from user-space and pass it
1077 * to an appropriate cache
1078 * Messages are, like requests, separated into fields by
1079 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1080 *
1081 * Message is
1082 *   reply cachename expiry key ... content....
1083 *
1084 * key and content are both parsed by cache
1085 */
1086
1087#define isodigit(c) (isdigit(c) && c <= '7')
1088int qword_get(char **bpp, char *dest, int bufsize)
1089{
1090	/* return bytes copied, or -1 on error */
1091	char *bp = *bpp;
1092	int len = 0;
1093
1094	while (*bp == ' ') bp++;
1095
1096	if (bp[0] == '\\' && bp[1] == 'x') {
1097		/* HEX STRING */
1098		bp += 2;
1099		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1100			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1101			bp++;
1102			byte <<= 4;
1103			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1104			*dest++ = byte;
1105			bp++;
1106			len++;
1107		}
1108	} else {
1109		/* text with \nnn octal quoting */
1110		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1111			if (*bp == '\\' &&
1112			    isodigit(bp[1]) && (bp[1] <= '3') &&
1113			    isodigit(bp[2]) &&
1114			    isodigit(bp[3])) {
1115				int byte = (*++bp -'0');
1116				bp++;
1117				byte = (byte << 3) | (*bp++ - '0');
1118				byte = (byte << 3) | (*bp++ - '0');
1119				*dest++ = byte;
1120				len++;
1121			} else {
1122				*dest++ = *bp++;
1123				len++;
1124			}
1125		}
1126	}
1127
1128	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1129		return -1;
1130	while (*bp == ' ') bp++;
1131	*bpp = bp;
1132	*dest = '\0';
1133	return len;
1134}
1135EXPORT_SYMBOL_GPL(qword_get);
1136
1137
1138/*
1139 * support /proc/sunrpc/cache/$CACHENAME/content
1140 * as a seqfile.
1141 * We call ->cache_show passing NULL for the item to
1142 * get a header, then pass each real item in the cache
1143 */
1144
1145struct handle {
1146	struct cache_detail *cd;
1147};
1148
1149static void *c_start(struct seq_file *m, loff_t *pos)
1150	__acquires(cd->hash_lock)
1151{
1152	loff_t n = *pos;
1153	unsigned hash, entry;
1154	struct cache_head *ch;
1155	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1156
1157
1158	read_lock(&cd->hash_lock);
1159	if (!n--)
1160		return SEQ_START_TOKEN;
1161	hash = n >> 32;
1162	entry = n & ((1LL<<32) - 1);
1163
1164	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1165		if (!entry--)
1166			return ch;
1167	n &= ~((1LL<<32) - 1);
1168	do {
1169		hash++;
1170		n += 1LL<<32;
1171	} while(hash < cd->hash_size &&
1172		cd->hash_table[hash]==NULL);
1173	if (hash >= cd->hash_size)
1174		return NULL;
1175	*pos = n+1;
1176	return cd->hash_table[hash];
1177}
1178
1179static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1180{
1181	struct cache_head *ch = p;
1182	int hash = (*pos >> 32);
1183	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1184
1185	if (p == SEQ_START_TOKEN)
1186		hash = 0;
1187	else if (ch->next == NULL) {
1188		hash++;
1189		*pos += 1LL<<32;
1190	} else {
1191		++*pos;
1192		return ch->next;
1193	}
1194	*pos &= ~((1LL<<32) - 1);
1195	while (hash < cd->hash_size &&
1196	       cd->hash_table[hash] == NULL) {
1197		hash++;
1198		*pos += 1LL<<32;
1199	}
1200	if (hash >= cd->hash_size)
1201		return NULL;
1202	++*pos;
1203	return cd->hash_table[hash];
1204}
1205
1206static void c_stop(struct seq_file *m, void *p)
1207	__releases(cd->hash_lock)
1208{
1209	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1210	read_unlock(&cd->hash_lock);
1211}
1212
1213static int c_show(struct seq_file *m, void *p)
1214{
1215	struct cache_head *cp = p;
1216	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1217
1218	if (p == SEQ_START_TOKEN)
1219		return cd->cache_show(m, cd, NULL);
1220
1221	ifdebug(CACHE)
1222		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1223			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1224	cache_get(cp);
1225	if (cache_check(cd, cp, NULL))
1226		/* cache_check does a cache_put on failure */
1227		seq_printf(m, "# ");
1228	else
1229		cache_put(cp, cd);
1230
1231	return cd->cache_show(m, cd, cp);
1232}
1233
1234static const struct seq_operations cache_content_op = {
1235	.start	= c_start,
1236	.next	= c_next,
1237	.stop	= c_stop,
1238	.show	= c_show,
1239};
1240
1241static int content_open(struct inode *inode, struct file *file,
1242			struct cache_detail *cd)
1243{
1244	struct handle *han;
1245
1246	if (!cd || !try_module_get(cd->owner))
1247		return -EACCES;
1248	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1249	if (han == NULL) {
1250		module_put(cd->owner);
1251		return -ENOMEM;
1252	}
1253
1254	han->cd = cd;
1255	return 0;
1256}
1257
1258static int content_release(struct inode *inode, struct file *file,
1259		struct cache_detail *cd)
1260{
1261	int ret = seq_release_private(inode, file);
1262	module_put(cd->owner);
1263	return ret;
1264}
1265
1266static int open_flush(struct inode *inode, struct file *file,
1267			struct cache_detail *cd)
1268{
1269	if (!cd || !try_module_get(cd->owner))
1270		return -EACCES;
1271	return nonseekable_open(inode, file);
1272}
1273
1274static int release_flush(struct inode *inode, struct file *file,
1275			struct cache_detail *cd)
1276{
1277	module_put(cd->owner);
1278	return 0;
1279}
1280
1281static ssize_t read_flush(struct file *file, char __user *buf,
1282			  size_t count, loff_t *ppos,
1283			  struct cache_detail *cd)
1284{
1285	char tbuf[20];
1286	unsigned long p = *ppos;
1287	size_t len;
1288
1289	sprintf(tbuf, "%lu\n", cd->flush_time);
1290	len = strlen(tbuf);
1291	if (p >= len)
1292		return 0;
1293	len -= p;
1294	if (len > count)
1295		len = count;
1296	if (copy_to_user(buf, (void*)(tbuf+p), len))
1297		return -EFAULT;
1298	*ppos += len;
1299	return len;
1300}
1301
1302static ssize_t write_flush(struct file *file, const char __user *buf,
1303			   size_t count, loff_t *ppos,
1304			   struct cache_detail *cd)
1305{
1306	char tbuf[20];
1307	char *ep;
1308	long flushtime;
1309	if (*ppos || count > sizeof(tbuf)-1)
1310		return -EINVAL;
1311	if (copy_from_user(tbuf, buf, count))
1312		return -EFAULT;
1313	tbuf[count] = 0;
1314	flushtime = simple_strtoul(tbuf, &ep, 0);
1315	if (*ep && *ep != '\n')
1316		return -EINVAL;
1317
1318	cd->flush_time = flushtime;
1319	cd->nextcheck = get_seconds();
1320	cache_flush();
1321
1322	*ppos += count;
1323	return count;
1324}
1325
1326static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1327				 size_t count, loff_t *ppos)
1328{
1329	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1330
1331	return cache_read(filp, buf, count, ppos, cd);
1332}
1333
1334static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1335				  size_t count, loff_t *ppos)
1336{
1337	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1338
1339	return cache_write(filp, buf, count, ppos, cd);
1340}
1341
1342static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1343{
1344	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1345
1346	return cache_poll(filp, wait, cd);
1347}
1348
1349static long cache_ioctl_procfs(struct file *filp,
1350			       unsigned int cmd, unsigned long arg)
1351{
1352	long ret;
1353	struct inode *inode = filp->f_path.dentry->d_inode;
1354	struct cache_detail *cd = PDE(inode)->data;
1355
1356	lock_kernel();
1357	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1358	unlock_kernel();
1359
1360	return ret;
1361}
1362
1363static int cache_open_procfs(struct inode *inode, struct file *filp)
1364{
1365	struct cache_detail *cd = PDE(inode)->data;
1366
1367	return cache_open(inode, filp, cd);
1368}
1369
1370static int cache_release_procfs(struct inode *inode, struct file *filp)
1371{
1372	struct cache_detail *cd = PDE(inode)->data;
1373
1374	return cache_release(inode, filp, cd);
1375}
1376
1377static const struct file_operations cache_file_operations_procfs = {
1378	.owner		= THIS_MODULE,
1379	.llseek		= no_llseek,
1380	.read		= cache_read_procfs,
1381	.write		= cache_write_procfs,
1382	.poll		= cache_poll_procfs,
1383	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1384	.open		= cache_open_procfs,
1385	.release	= cache_release_procfs,
1386};
1387
1388static int content_open_procfs(struct inode *inode, struct file *filp)
1389{
1390	struct cache_detail *cd = PDE(inode)->data;
1391
1392	return content_open(inode, filp, cd);
1393}
1394
1395static int content_release_procfs(struct inode *inode, struct file *filp)
1396{
1397	struct cache_detail *cd = PDE(inode)->data;
1398
1399	return content_release(inode, filp, cd);
1400}
1401
1402static const struct file_operations content_file_operations_procfs = {
1403	.open		= content_open_procfs,
1404	.read		= seq_read,
1405	.llseek		= seq_lseek,
1406	.release	= content_release_procfs,
1407};
1408
1409static int open_flush_procfs(struct inode *inode, struct file *filp)
1410{
1411	struct cache_detail *cd = PDE(inode)->data;
1412
1413	return open_flush(inode, filp, cd);
1414}
1415
1416static int release_flush_procfs(struct inode *inode, struct file *filp)
1417{
1418	struct cache_detail *cd = PDE(inode)->data;
1419
1420	return release_flush(inode, filp, cd);
1421}
1422
1423static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1424			    size_t count, loff_t *ppos)
1425{
1426	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1427
1428	return read_flush(filp, buf, count, ppos, cd);
1429}
1430
1431static ssize_t write_flush_procfs(struct file *filp,
1432				  const char __user *buf,
1433				  size_t count, loff_t *ppos)
1434{
1435	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1436
1437	return write_flush(filp, buf, count, ppos, cd);
1438}
1439
1440static const struct file_operations cache_flush_operations_procfs = {
1441	.open		= open_flush_procfs,
1442	.read		= read_flush_procfs,
1443	.write		= write_flush_procfs,
1444	.release	= release_flush_procfs,
1445};
1446
1447static void remove_cache_proc_entries(struct cache_detail *cd)
1448{
1449	if (cd->u.procfs.proc_ent == NULL)
1450		return;
1451	if (cd->u.procfs.flush_ent)
1452		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1453	if (cd->u.procfs.channel_ent)
1454		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1455	if (cd->u.procfs.content_ent)
1456		remove_proc_entry("content", cd->u.procfs.proc_ent);
1457	cd->u.procfs.proc_ent = NULL;
1458	remove_proc_entry(cd->name, proc_net_rpc);
1459}
1460
1461#ifdef CONFIG_PROC_FS
1462static int create_cache_proc_entries(struct cache_detail *cd)
1463{
1464	struct proc_dir_entry *p;
1465
1466	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1467	if (cd->u.procfs.proc_ent == NULL)
1468		goto out_nomem;
1469	cd->u.procfs.channel_ent = NULL;
1470	cd->u.procfs.content_ent = NULL;
1471
1472	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1473			     cd->u.procfs.proc_ent,
1474			     &cache_flush_operations_procfs, cd);
1475	cd->u.procfs.flush_ent = p;
1476	if (p == NULL)
1477		goto out_nomem;
1478
1479	if (cd->cache_upcall || cd->cache_parse) {
1480		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1481				     cd->u.procfs.proc_ent,
1482				     &cache_file_operations_procfs, cd);
1483		cd->u.procfs.channel_ent = p;
1484		if (p == NULL)
1485			goto out_nomem;
1486	}
1487	if (cd->cache_show) {
1488		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1489				cd->u.procfs.proc_ent,
1490				&content_file_operations_procfs, cd);
1491		cd->u.procfs.content_ent = p;
1492		if (p == NULL)
1493			goto out_nomem;
1494	}
1495	return 0;
1496out_nomem:
1497	remove_cache_proc_entries(cd);
1498	return -ENOMEM;
1499}
1500#else /* CONFIG_PROC_FS */
1501static int create_cache_proc_entries(struct cache_detail *cd)
1502{
1503	return 0;
1504}
1505#endif
1506
1507void __init cache_initialize(void)
1508{
1509	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1510}
1511
1512int cache_register(struct cache_detail *cd)
1513{
1514	int ret;
1515
1516	sunrpc_init_cache_detail(cd);
1517	ret = create_cache_proc_entries(cd);
1518	if (ret)
1519		sunrpc_destroy_cache_detail(cd);
1520	return ret;
1521}
1522EXPORT_SYMBOL_GPL(cache_register);
1523
1524void cache_unregister(struct cache_detail *cd)
1525{
1526	remove_cache_proc_entries(cd);
1527	sunrpc_destroy_cache_detail(cd);
1528}
1529EXPORT_SYMBOL_GPL(cache_unregister);
1530
1531static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1532				 size_t count, loff_t *ppos)
1533{
1534	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1535
1536	return cache_read(filp, buf, count, ppos, cd);
1537}
1538
1539static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1540				  size_t count, loff_t *ppos)
1541{
1542	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1543
1544	return cache_write(filp, buf, count, ppos, cd);
1545}
1546
1547static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1548{
1549	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1550
1551	return cache_poll(filp, wait, cd);
1552}
1553
1554static long cache_ioctl_pipefs(struct file *filp,
1555			      unsigned int cmd, unsigned long arg)
1556{
1557	struct inode *inode = filp->f_dentry->d_inode;
1558	struct cache_detail *cd = RPC_I(inode)->private;
1559	long ret;
1560
1561	lock_kernel();
1562	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1563	unlock_kernel();
1564
1565	return ret;
1566}
1567
1568static int cache_open_pipefs(struct inode *inode, struct file *filp)
1569{
1570	struct cache_detail *cd = RPC_I(inode)->private;
1571
1572	return cache_open(inode, filp, cd);
1573}
1574
1575static int cache_release_pipefs(struct inode *inode, struct file *filp)
1576{
1577	struct cache_detail *cd = RPC_I(inode)->private;
1578
1579	return cache_release(inode, filp, cd);
1580}
1581
1582const struct file_operations cache_file_operations_pipefs = {
1583	.owner		= THIS_MODULE,
1584	.llseek		= no_llseek,
1585	.read		= cache_read_pipefs,
1586	.write		= cache_write_pipefs,
1587	.poll		= cache_poll_pipefs,
1588	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1589	.open		= cache_open_pipefs,
1590	.release	= cache_release_pipefs,
1591};
1592
1593static int content_open_pipefs(struct inode *inode, struct file *filp)
1594{
1595	struct cache_detail *cd = RPC_I(inode)->private;
1596
1597	return content_open(inode, filp, cd);
1598}
1599
1600static int content_release_pipefs(struct inode *inode, struct file *filp)
1601{
1602	struct cache_detail *cd = RPC_I(inode)->private;
1603
1604	return content_release(inode, filp, cd);
1605}
1606
1607const struct file_operations content_file_operations_pipefs = {
1608	.open		= content_open_pipefs,
1609	.read		= seq_read,
1610	.llseek		= seq_lseek,
1611	.release	= content_release_pipefs,
1612};
1613
1614static int open_flush_pipefs(struct inode *inode, struct file *filp)
1615{
1616	struct cache_detail *cd = RPC_I(inode)->private;
1617
1618	return open_flush(inode, filp, cd);
1619}
1620
1621static int release_flush_pipefs(struct inode *inode, struct file *filp)
1622{
1623	struct cache_detail *cd = RPC_I(inode)->private;
1624
1625	return release_flush(inode, filp, cd);
1626}
1627
1628static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1629			    size_t count, loff_t *ppos)
1630{
1631	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1632
1633	return read_flush(filp, buf, count, ppos, cd);
1634}
1635
1636static ssize_t write_flush_pipefs(struct file *filp,
1637				  const char __user *buf,
1638				  size_t count, loff_t *ppos)
1639{
1640	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1641
1642	return write_flush(filp, buf, count, ppos, cd);
1643}
1644
1645const struct file_operations cache_flush_operations_pipefs = {
1646	.open		= open_flush_pipefs,
1647	.read		= read_flush_pipefs,
1648	.write		= write_flush_pipefs,
1649	.release	= release_flush_pipefs,
1650};
1651
1652int sunrpc_cache_register_pipefs(struct dentry *parent,
1653				 const char *name, mode_t umode,
1654				 struct cache_detail *cd)
1655{
1656	struct qstr q;
1657	struct dentry *dir;
1658	int ret = 0;
1659
1660	sunrpc_init_cache_detail(cd);
1661	q.name = name;
1662	q.len = strlen(name);
1663	q.hash = full_name_hash(q.name, q.len);
1664	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1665	if (!IS_ERR(dir))
1666		cd->u.pipefs.dir = dir;
1667	else {
1668		sunrpc_destroy_cache_detail(cd);
1669		ret = PTR_ERR(dir);
1670	}
1671	return ret;
1672}
1673EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1674
1675void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1676{
1677	rpc_remove_cache_dir(cd->u.pipefs.dir);
1678	cd->u.pipefs.dir = NULL;
1679	sunrpc_destroy_cache_detail(cd);
1680}
1681EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1682
1683