cache.c revision 99b76233803beab302123d243eea9e41149804f3
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <asm/ioctls.h>
31#include <linux/sunrpc/types.h>
32#include <linux/sunrpc/cache.h>
33#include <linux/sunrpc/stats.h>
34
35#define	 RPCDBG_FACILITY RPCDBG_CACHE
36
37static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38static void cache_revisit_request(struct cache_head *item);
39
40static void cache_init(struct cache_head *h)
41{
42	time_t now = get_seconds();
43	h->next = NULL;
44	h->flags = 0;
45	kref_init(&h->ref);
46	h->expiry_time = now + CACHE_NEW_EXPIRY;
47	h->last_refresh = now;
48}
49
50struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51				       struct cache_head *key, int hash)
52{
53	struct cache_head **head,  **hp;
54	struct cache_head *new = NULL;
55
56	head = &detail->hash_table[hash];
57
58	read_lock(&detail->hash_lock);
59
60	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61		struct cache_head *tmp = *hp;
62		if (detail->match(tmp, key)) {
63			cache_get(tmp);
64			read_unlock(&detail->hash_lock);
65			return tmp;
66		}
67	}
68	read_unlock(&detail->hash_lock);
69	/* Didn't find anything, insert an empty entry */
70
71	new = detail->alloc();
72	if (!new)
73		return NULL;
74	/* must fully initialise 'new', else
75	 * we might get lose if we need to
76	 * cache_put it soon.
77	 */
78	cache_init(new);
79	detail->init(new, key);
80
81	write_lock(&detail->hash_lock);
82
83	/* check if entry appeared while we slept */
84	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85		struct cache_head *tmp = *hp;
86		if (detail->match(tmp, key)) {
87			cache_get(tmp);
88			write_unlock(&detail->hash_lock);
89			cache_put(new, detail);
90			return tmp;
91		}
92	}
93	new->next = *head;
94	*head = new;
95	detail->entries++;
96	cache_get(new);
97	write_unlock(&detail->hash_lock);
98
99	return new;
100}
101EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
102
103
104static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105
106static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107{
108	head->expiry_time = expiry;
109	head->last_refresh = get_seconds();
110	return !test_and_set_bit(CACHE_VALID, &head->flags);
111}
112
113static void cache_fresh_unlocked(struct cache_head *head,
114			struct cache_detail *detail, int new)
115{
116	if (new)
117		cache_revisit_request(head);
118	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119		cache_revisit_request(head);
120		queue_loose(detail, head);
121	}
122}
123
124struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125				       struct cache_head *new, struct cache_head *old, int hash)
126{
127	/* The 'old' entry is to be replaced by 'new'.
128	 * If 'old' is not VALID, we update it directly,
129	 * otherwise we need to replace it
130	 */
131	struct cache_head **head;
132	struct cache_head *tmp;
133	int is_new;
134
135	if (!test_bit(CACHE_VALID, &old->flags)) {
136		write_lock(&detail->hash_lock);
137		if (!test_bit(CACHE_VALID, &old->flags)) {
138			if (test_bit(CACHE_NEGATIVE, &new->flags))
139				set_bit(CACHE_NEGATIVE, &old->flags);
140			else
141				detail->update(old, new);
142			is_new = cache_fresh_locked(old, new->expiry_time);
143			write_unlock(&detail->hash_lock);
144			cache_fresh_unlocked(old, detail, is_new);
145			return old;
146		}
147		write_unlock(&detail->hash_lock);
148	}
149	/* We need to insert a new entry */
150	tmp = detail->alloc();
151	if (!tmp) {
152		cache_put(old, detail);
153		return NULL;
154	}
155	cache_init(tmp);
156	detail->init(tmp, old);
157	head = &detail->hash_table[hash];
158
159	write_lock(&detail->hash_lock);
160	if (test_bit(CACHE_NEGATIVE, &new->flags))
161		set_bit(CACHE_NEGATIVE, &tmp->flags);
162	else
163		detail->update(tmp, new);
164	tmp->next = *head;
165	*head = tmp;
166	detail->entries++;
167	cache_get(tmp);
168	is_new = cache_fresh_locked(tmp, new->expiry_time);
169	cache_fresh_locked(old, 0);
170	write_unlock(&detail->hash_lock);
171	cache_fresh_unlocked(tmp, detail, is_new);
172	cache_fresh_unlocked(old, detail, 0);
173	cache_put(old, detail);
174	return tmp;
175}
176EXPORT_SYMBOL_GPL(sunrpc_cache_update);
177
178static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179/*
180 * This is the generic cache management routine for all
181 * the authentication caches.
182 * It checks the currency of a cache item and will (later)
183 * initiate an upcall to fill it if needed.
184 *
185 *
186 * Returns 0 if the cache_head can be used, or cache_puts it and returns
187 * -EAGAIN if upcall is pending,
188 * -ETIMEDOUT if upcall failed and should be retried,
189 * -ENOENT if cache entry was negative
190 */
191int cache_check(struct cache_detail *detail,
192		    struct cache_head *h, struct cache_req *rqstp)
193{
194	int rv;
195	long refresh_age, age;
196
197	/* First decide return status as best we can */
198	if (!test_bit(CACHE_VALID, &h->flags) ||
199	    h->expiry_time < get_seconds())
200		rv = -EAGAIN;
201	else if (detail->flush_time > h->last_refresh)
202		rv = -EAGAIN;
203	else {
204		/* entry is valid */
205		if (test_bit(CACHE_NEGATIVE, &h->flags))
206			rv = -ENOENT;
207		else rv = 0;
208	}
209
210	/* now see if we want to start an upcall */
211	refresh_age = (h->expiry_time - h->last_refresh);
212	age = get_seconds() - h->last_refresh;
213
214	if (rqstp == NULL) {
215		if (rv == -EAGAIN)
216			rv = -ENOENT;
217	} else if (rv == -EAGAIN || age > refresh_age/2) {
218		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219				refresh_age, age);
220		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221			switch (cache_make_upcall(detail, h)) {
222			case -EINVAL:
223				clear_bit(CACHE_PENDING, &h->flags);
224				if (rv == -EAGAIN) {
225					set_bit(CACHE_NEGATIVE, &h->flags);
226					cache_fresh_unlocked(h, detail,
227					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228					rv = -ENOENT;
229				}
230				break;
231
232			case -EAGAIN:
233				clear_bit(CACHE_PENDING, &h->flags);
234				cache_revisit_request(h);
235				break;
236			}
237		}
238	}
239
240	if (rv == -EAGAIN)
241		if (cache_defer_req(rqstp, h) != 0)
242			rv = -ETIMEDOUT;
243
244	if (rv)
245		cache_put(h, detail);
246	return rv;
247}
248EXPORT_SYMBOL_GPL(cache_check);
249
250/*
251 * caches need to be periodically cleaned.
252 * For this we maintain a list of cache_detail and
253 * a current pointer into that list and into the table
254 * for that entry.
255 *
256 * Each time clean_cache is called it finds the next non-empty entry
257 * in the current table and walks the list in that entry
258 * looking for entries that can be removed.
259 *
260 * An entry gets removed if:
261 * - The expiry is before current time
262 * - The last_refresh time is before the flush_time for that cache
263 *
264 * later we might drop old entries with non-NEVER expiry if that table
265 * is getting 'full' for some definition of 'full'
266 *
267 * The question of "how often to scan a table" is an interesting one
268 * and is answered in part by the use of the "nextcheck" field in the
269 * cache_detail.
270 * When a scan of a table begins, the nextcheck field is set to a time
271 * that is well into the future.
272 * While scanning, if an expiry time is found that is earlier than the
273 * current nextcheck time, nextcheck is set to that expiry time.
274 * If the flush_time is ever set to a time earlier than the nextcheck
275 * time, the nextcheck time is then set to that flush_time.
276 *
277 * A table is then only scanned if the current time is at least
278 * the nextcheck time.
279 *
280 */
281
282static LIST_HEAD(cache_list);
283static DEFINE_SPINLOCK(cache_list_lock);
284static struct cache_detail *current_detail;
285static int current_index;
286
287static const struct file_operations cache_file_operations;
288static const struct file_operations content_file_operations;
289static const struct file_operations cache_flush_operations;
290
291static void do_cache_clean(struct work_struct *work);
292static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
293
294static void remove_cache_proc_entries(struct cache_detail *cd)
295{
296	if (cd->proc_ent == NULL)
297		return;
298	if (cd->flush_ent)
299		remove_proc_entry("flush", cd->proc_ent);
300	if (cd->channel_ent)
301		remove_proc_entry("channel", cd->proc_ent);
302	if (cd->content_ent)
303		remove_proc_entry("content", cd->proc_ent);
304	cd->proc_ent = NULL;
305	remove_proc_entry(cd->name, proc_net_rpc);
306}
307
308#ifdef CONFIG_PROC_FS
309static int create_cache_proc_entries(struct cache_detail *cd)
310{
311	struct proc_dir_entry *p;
312
313	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
314	if (cd->proc_ent == NULL)
315		goto out_nomem;
316	cd->channel_ent = cd->content_ent = NULL;
317
318	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
319			     cd->proc_ent, &cache_flush_operations, cd);
320	cd->flush_ent = p;
321	if (p == NULL)
322		goto out_nomem;
323
324	if (cd->cache_request || cd->cache_parse) {
325		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
326				     cd->proc_ent, &cache_file_operations, cd);
327		cd->channel_ent = p;
328		if (p == NULL)
329			goto out_nomem;
330	}
331	if (cd->cache_show) {
332		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
333				cd->proc_ent, &content_file_operations, cd);
334		cd->content_ent = p;
335		if (p == NULL)
336			goto out_nomem;
337	}
338	return 0;
339out_nomem:
340	remove_cache_proc_entries(cd);
341	return -ENOMEM;
342}
343#else /* CONFIG_PROC_FS */
344static int create_cache_proc_entries(struct cache_detail *cd)
345{
346	return 0;
347}
348#endif
349
350int cache_register(struct cache_detail *cd)
351{
352	int ret;
353
354	ret = create_cache_proc_entries(cd);
355	if (ret)
356		return ret;
357	rwlock_init(&cd->hash_lock);
358	INIT_LIST_HEAD(&cd->queue);
359	spin_lock(&cache_list_lock);
360	cd->nextcheck = 0;
361	cd->entries = 0;
362	atomic_set(&cd->readers, 0);
363	cd->last_close = 0;
364	cd->last_warn = -1;
365	list_add(&cd->others, &cache_list);
366	spin_unlock(&cache_list_lock);
367
368	/* start the cleaning process */
369	schedule_delayed_work(&cache_cleaner, 0);
370	return 0;
371}
372EXPORT_SYMBOL_GPL(cache_register);
373
374void cache_unregister(struct cache_detail *cd)
375{
376	cache_purge(cd);
377	spin_lock(&cache_list_lock);
378	write_lock(&cd->hash_lock);
379	if (cd->entries || atomic_read(&cd->inuse)) {
380		write_unlock(&cd->hash_lock);
381		spin_unlock(&cache_list_lock);
382		goto out;
383	}
384	if (current_detail == cd)
385		current_detail = NULL;
386	list_del_init(&cd->others);
387	write_unlock(&cd->hash_lock);
388	spin_unlock(&cache_list_lock);
389	remove_cache_proc_entries(cd);
390	if (list_empty(&cache_list)) {
391		/* module must be being unloaded so its safe to kill the worker */
392		cancel_delayed_work_sync(&cache_cleaner);
393	}
394	return;
395out:
396	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
397}
398EXPORT_SYMBOL_GPL(cache_unregister);
399
400/* clean cache tries to find something to clean
401 * and cleans it.
402 * It returns 1 if it cleaned something,
403 *            0 if it didn't find anything this time
404 *           -1 if it fell off the end of the list.
405 */
406static int cache_clean(void)
407{
408	int rv = 0;
409	struct list_head *next;
410
411	spin_lock(&cache_list_lock);
412
413	/* find a suitable table if we don't already have one */
414	while (current_detail == NULL ||
415	    current_index >= current_detail->hash_size) {
416		if (current_detail)
417			next = current_detail->others.next;
418		else
419			next = cache_list.next;
420		if (next == &cache_list) {
421			current_detail = NULL;
422			spin_unlock(&cache_list_lock);
423			return -1;
424		}
425		current_detail = list_entry(next, struct cache_detail, others);
426		if (current_detail->nextcheck > get_seconds())
427			current_index = current_detail->hash_size;
428		else {
429			current_index = 0;
430			current_detail->nextcheck = get_seconds()+30*60;
431		}
432	}
433
434	/* find a non-empty bucket in the table */
435	while (current_detail &&
436	       current_index < current_detail->hash_size &&
437	       current_detail->hash_table[current_index] == NULL)
438		current_index++;
439
440	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
441
442	if (current_detail && current_index < current_detail->hash_size) {
443		struct cache_head *ch, **cp;
444		struct cache_detail *d;
445
446		write_lock(&current_detail->hash_lock);
447
448		/* Ok, now to clean this strand */
449
450		cp = & current_detail->hash_table[current_index];
451		ch = *cp;
452		for (; ch; cp= & ch->next, ch= *cp) {
453			if (current_detail->nextcheck > ch->expiry_time)
454				current_detail->nextcheck = ch->expiry_time+1;
455			if (ch->expiry_time >= get_seconds()
456			    && ch->last_refresh >= current_detail->flush_time
457				)
458				continue;
459			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
460				queue_loose(current_detail, ch);
461
462			if (atomic_read(&ch->ref.refcount) == 1)
463				break;
464		}
465		if (ch) {
466			*cp = ch->next;
467			ch->next = NULL;
468			current_detail->entries--;
469			rv = 1;
470		}
471		write_unlock(&current_detail->hash_lock);
472		d = current_detail;
473		if (!ch)
474			current_index ++;
475		spin_unlock(&cache_list_lock);
476		if (ch)
477			cache_put(ch, d);
478	} else
479		spin_unlock(&cache_list_lock);
480
481	return rv;
482}
483
484/*
485 * We want to regularly clean the cache, so we need to schedule some work ...
486 */
487static void do_cache_clean(struct work_struct *work)
488{
489	int delay = 5;
490	if (cache_clean() == -1)
491		delay = 30*HZ;
492
493	if (list_empty(&cache_list))
494		delay = 0;
495
496	if (delay)
497		schedule_delayed_work(&cache_cleaner, delay);
498}
499
500
501/*
502 * Clean all caches promptly.  This just calls cache_clean
503 * repeatedly until we are sure that every cache has had a chance to
504 * be fully cleaned
505 */
506void cache_flush(void)
507{
508	while (cache_clean() != -1)
509		cond_resched();
510	while (cache_clean() != -1)
511		cond_resched();
512}
513EXPORT_SYMBOL_GPL(cache_flush);
514
515void cache_purge(struct cache_detail *detail)
516{
517	detail->flush_time = LONG_MAX;
518	detail->nextcheck = get_seconds();
519	cache_flush();
520	detail->flush_time = 1;
521}
522EXPORT_SYMBOL_GPL(cache_purge);
523
524
525/*
526 * Deferral and Revisiting of Requests.
527 *
528 * If a cache lookup finds a pending entry, we
529 * need to defer the request and revisit it later.
530 * All deferred requests are stored in a hash table,
531 * indexed by "struct cache_head *".
532 * As it may be wasteful to store a whole request
533 * structure, we allow the request to provide a
534 * deferred form, which must contain a
535 * 'struct cache_deferred_req'
536 * This cache_deferred_req contains a method to allow
537 * it to be revisited when cache info is available
538 */
539
540#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
541#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
542
543#define	DFR_MAX	300	/* ??? */
544
545static DEFINE_SPINLOCK(cache_defer_lock);
546static LIST_HEAD(cache_defer_list);
547static struct list_head cache_defer_hash[DFR_HASHSIZE];
548static int cache_defer_cnt;
549
550static int cache_defer_req(struct cache_req *req, struct cache_head *item)
551{
552	struct cache_deferred_req *dreq;
553	int hash = DFR_HASH(item);
554
555	if (cache_defer_cnt >= DFR_MAX) {
556		/* too much in the cache, randomly drop this one,
557		 * or continue and drop the oldest below
558		 */
559		if (net_random()&1)
560			return -ETIMEDOUT;
561	}
562	dreq = req->defer(req);
563	if (dreq == NULL)
564		return -ETIMEDOUT;
565
566	dreq->item = item;
567
568	spin_lock(&cache_defer_lock);
569
570	list_add(&dreq->recent, &cache_defer_list);
571
572	if (cache_defer_hash[hash].next == NULL)
573		INIT_LIST_HEAD(&cache_defer_hash[hash]);
574	list_add(&dreq->hash, &cache_defer_hash[hash]);
575
576	/* it is in, now maybe clean up */
577	dreq = NULL;
578	if (++cache_defer_cnt > DFR_MAX) {
579		dreq = list_entry(cache_defer_list.prev,
580				  struct cache_deferred_req, recent);
581		list_del(&dreq->recent);
582		list_del(&dreq->hash);
583		cache_defer_cnt--;
584	}
585	spin_unlock(&cache_defer_lock);
586
587	if (dreq) {
588		/* there was one too many */
589		dreq->revisit(dreq, 1);
590	}
591	if (!test_bit(CACHE_PENDING, &item->flags)) {
592		/* must have just been validated... */
593		cache_revisit_request(item);
594	}
595	return 0;
596}
597
598static void cache_revisit_request(struct cache_head *item)
599{
600	struct cache_deferred_req *dreq;
601	struct list_head pending;
602
603	struct list_head *lp;
604	int hash = DFR_HASH(item);
605
606	INIT_LIST_HEAD(&pending);
607	spin_lock(&cache_defer_lock);
608
609	lp = cache_defer_hash[hash].next;
610	if (lp) {
611		while (lp != &cache_defer_hash[hash]) {
612			dreq = list_entry(lp, struct cache_deferred_req, hash);
613			lp = lp->next;
614			if (dreq->item == item) {
615				list_del(&dreq->hash);
616				list_move(&dreq->recent, &pending);
617				cache_defer_cnt--;
618			}
619		}
620	}
621	spin_unlock(&cache_defer_lock);
622
623	while (!list_empty(&pending)) {
624		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
625		list_del_init(&dreq->recent);
626		dreq->revisit(dreq, 0);
627	}
628}
629
630void cache_clean_deferred(void *owner)
631{
632	struct cache_deferred_req *dreq, *tmp;
633	struct list_head pending;
634
635
636	INIT_LIST_HEAD(&pending);
637	spin_lock(&cache_defer_lock);
638
639	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
640		if (dreq->owner == owner) {
641			list_del(&dreq->hash);
642			list_move(&dreq->recent, &pending);
643			cache_defer_cnt--;
644		}
645	}
646	spin_unlock(&cache_defer_lock);
647
648	while (!list_empty(&pending)) {
649		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
650		list_del_init(&dreq->recent);
651		dreq->revisit(dreq, 1);
652	}
653}
654
655/*
656 * communicate with user-space
657 *
658 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
659 * On read, you get a full request, or block.
660 * On write, an update request is processed.
661 * Poll works if anything to read, and always allows write.
662 *
663 * Implemented by linked list of requests.  Each open file has
664 * a ->private that also exists in this list.  New requests are added
665 * to the end and may wakeup and preceding readers.
666 * New readers are added to the head.  If, on read, an item is found with
667 * CACHE_UPCALLING clear, we free it from the list.
668 *
669 */
670
671static DEFINE_SPINLOCK(queue_lock);
672static DEFINE_MUTEX(queue_io_mutex);
673
674struct cache_queue {
675	struct list_head	list;
676	int			reader;	/* if 0, then request */
677};
678struct cache_request {
679	struct cache_queue	q;
680	struct cache_head	*item;
681	char			* buf;
682	int			len;
683	int			readers;
684};
685struct cache_reader {
686	struct cache_queue	q;
687	int			offset;	/* if non-0, we have a refcnt on next request */
688};
689
690static ssize_t
691cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
692{
693	struct cache_reader *rp = filp->private_data;
694	struct cache_request *rq;
695	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
696	int err;
697
698	if (count == 0)
699		return 0;
700
701	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
702			      * readers on this file */
703 again:
704	spin_lock(&queue_lock);
705	/* need to find next request */
706	while (rp->q.list.next != &cd->queue &&
707	       list_entry(rp->q.list.next, struct cache_queue, list)
708	       ->reader) {
709		struct list_head *next = rp->q.list.next;
710		list_move(&rp->q.list, next);
711	}
712	if (rp->q.list.next == &cd->queue) {
713		spin_unlock(&queue_lock);
714		mutex_unlock(&queue_io_mutex);
715		BUG_ON(rp->offset);
716		return 0;
717	}
718	rq = container_of(rp->q.list.next, struct cache_request, q.list);
719	BUG_ON(rq->q.reader);
720	if (rp->offset == 0)
721		rq->readers++;
722	spin_unlock(&queue_lock);
723
724	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
725		err = -EAGAIN;
726		spin_lock(&queue_lock);
727		list_move(&rp->q.list, &rq->q.list);
728		spin_unlock(&queue_lock);
729	} else {
730		if (rp->offset + count > rq->len)
731			count = rq->len - rp->offset;
732		err = -EFAULT;
733		if (copy_to_user(buf, rq->buf + rp->offset, count))
734			goto out;
735		rp->offset += count;
736		if (rp->offset >= rq->len) {
737			rp->offset = 0;
738			spin_lock(&queue_lock);
739			list_move(&rp->q.list, &rq->q.list);
740			spin_unlock(&queue_lock);
741		}
742		err = 0;
743	}
744 out:
745	if (rp->offset == 0) {
746		/* need to release rq */
747		spin_lock(&queue_lock);
748		rq->readers--;
749		if (rq->readers == 0 &&
750		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
751			list_del(&rq->q.list);
752			spin_unlock(&queue_lock);
753			cache_put(rq->item, cd);
754			kfree(rq->buf);
755			kfree(rq);
756		} else
757			spin_unlock(&queue_lock);
758	}
759	if (err == -EAGAIN)
760		goto again;
761	mutex_unlock(&queue_io_mutex);
762	return err ? err :  count;
763}
764
765static char write_buf[8192]; /* protected by queue_io_mutex */
766
767static ssize_t
768cache_write(struct file *filp, const char __user *buf, size_t count,
769	    loff_t *ppos)
770{
771	int err;
772	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
773
774	if (count == 0)
775		return 0;
776	if (count >= sizeof(write_buf))
777		return -EINVAL;
778
779	mutex_lock(&queue_io_mutex);
780
781	if (copy_from_user(write_buf, buf, count)) {
782		mutex_unlock(&queue_io_mutex);
783		return -EFAULT;
784	}
785	write_buf[count] = '\0';
786	if (cd->cache_parse)
787		err = cd->cache_parse(cd, write_buf, count);
788	else
789		err = -EINVAL;
790
791	mutex_unlock(&queue_io_mutex);
792	return err ? err : count;
793}
794
795static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
796
797static unsigned int
798cache_poll(struct file *filp, poll_table *wait)
799{
800	unsigned int mask;
801	struct cache_reader *rp = filp->private_data;
802	struct cache_queue *cq;
803	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
804
805	poll_wait(filp, &queue_wait, wait);
806
807	/* alway allow write */
808	mask = POLL_OUT | POLLWRNORM;
809
810	if (!rp)
811		return mask;
812
813	spin_lock(&queue_lock);
814
815	for (cq= &rp->q; &cq->list != &cd->queue;
816	     cq = list_entry(cq->list.next, struct cache_queue, list))
817		if (!cq->reader) {
818			mask |= POLLIN | POLLRDNORM;
819			break;
820		}
821	spin_unlock(&queue_lock);
822	return mask;
823}
824
825static int
826cache_ioctl(struct inode *ino, struct file *filp,
827	    unsigned int cmd, unsigned long arg)
828{
829	int len = 0;
830	struct cache_reader *rp = filp->private_data;
831	struct cache_queue *cq;
832	struct cache_detail *cd = PDE(ino)->data;
833
834	if (cmd != FIONREAD || !rp)
835		return -EINVAL;
836
837	spin_lock(&queue_lock);
838
839	/* only find the length remaining in current request,
840	 * or the length of the next request
841	 */
842	for (cq= &rp->q; &cq->list != &cd->queue;
843	     cq = list_entry(cq->list.next, struct cache_queue, list))
844		if (!cq->reader) {
845			struct cache_request *cr =
846				container_of(cq, struct cache_request, q);
847			len = cr->len - rp->offset;
848			break;
849		}
850	spin_unlock(&queue_lock);
851
852	return put_user(len, (int __user *)arg);
853}
854
855static int
856cache_open(struct inode *inode, struct file *filp)
857{
858	struct cache_reader *rp = NULL;
859
860	nonseekable_open(inode, filp);
861	if (filp->f_mode & FMODE_READ) {
862		struct cache_detail *cd = PDE(inode)->data;
863
864		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
865		if (!rp)
866			return -ENOMEM;
867		rp->offset = 0;
868		rp->q.reader = 1;
869		atomic_inc(&cd->readers);
870		spin_lock(&queue_lock);
871		list_add(&rp->q.list, &cd->queue);
872		spin_unlock(&queue_lock);
873	}
874	filp->private_data = rp;
875	return 0;
876}
877
878static int
879cache_release(struct inode *inode, struct file *filp)
880{
881	struct cache_reader *rp = filp->private_data;
882	struct cache_detail *cd = PDE(inode)->data;
883
884	if (rp) {
885		spin_lock(&queue_lock);
886		if (rp->offset) {
887			struct cache_queue *cq;
888			for (cq= &rp->q; &cq->list != &cd->queue;
889			     cq = list_entry(cq->list.next, struct cache_queue, list))
890				if (!cq->reader) {
891					container_of(cq, struct cache_request, q)
892						->readers--;
893					break;
894				}
895			rp->offset = 0;
896		}
897		list_del(&rp->q.list);
898		spin_unlock(&queue_lock);
899
900		filp->private_data = NULL;
901		kfree(rp);
902
903		cd->last_close = get_seconds();
904		atomic_dec(&cd->readers);
905	}
906	return 0;
907}
908
909
910
911static const struct file_operations cache_file_operations = {
912	.owner		= THIS_MODULE,
913	.llseek		= no_llseek,
914	.read		= cache_read,
915	.write		= cache_write,
916	.poll		= cache_poll,
917	.ioctl		= cache_ioctl, /* for FIONREAD */
918	.open		= cache_open,
919	.release	= cache_release,
920};
921
922
923static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
924{
925	struct cache_queue *cq;
926	spin_lock(&queue_lock);
927	list_for_each_entry(cq, &detail->queue, list)
928		if (!cq->reader) {
929			struct cache_request *cr = container_of(cq, struct cache_request, q);
930			if (cr->item != ch)
931				continue;
932			if (cr->readers != 0)
933				continue;
934			list_del(&cr->q.list);
935			spin_unlock(&queue_lock);
936			cache_put(cr->item, detail);
937			kfree(cr->buf);
938			kfree(cr);
939			return;
940		}
941	spin_unlock(&queue_lock);
942}
943
944/*
945 * Support routines for text-based upcalls.
946 * Fields are separated by spaces.
947 * Fields are either mangled to quote space tab newline slosh with slosh
948 * or a hexified with a leading \x
949 * Record is terminated with newline.
950 *
951 */
952
953void qword_add(char **bpp, int *lp, char *str)
954{
955	char *bp = *bpp;
956	int len = *lp;
957	char c;
958
959	if (len < 0) return;
960
961	while ((c=*str++) && len)
962		switch(c) {
963		case ' ':
964		case '\t':
965		case '\n':
966		case '\\':
967			if (len >= 4) {
968				*bp++ = '\\';
969				*bp++ = '0' + ((c & 0300)>>6);
970				*bp++ = '0' + ((c & 0070)>>3);
971				*bp++ = '0' + ((c & 0007)>>0);
972			}
973			len -= 4;
974			break;
975		default:
976			*bp++ = c;
977			len--;
978		}
979	if (c || len <1) len = -1;
980	else {
981		*bp++ = ' ';
982		len--;
983	}
984	*bpp = bp;
985	*lp = len;
986}
987EXPORT_SYMBOL_GPL(qword_add);
988
989void qword_addhex(char **bpp, int *lp, char *buf, int blen)
990{
991	char *bp = *bpp;
992	int len = *lp;
993
994	if (len < 0) return;
995
996	if (len > 2) {
997		*bp++ = '\\';
998		*bp++ = 'x';
999		len -= 2;
1000		while (blen && len >= 2) {
1001			unsigned char c = *buf++;
1002			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1003			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1004			len -= 2;
1005			blen--;
1006		}
1007	}
1008	if (blen || len<1) len = -1;
1009	else {
1010		*bp++ = ' ';
1011		len--;
1012	}
1013	*bpp = bp;
1014	*lp = len;
1015}
1016EXPORT_SYMBOL_GPL(qword_addhex);
1017
1018static void warn_no_listener(struct cache_detail *detail)
1019{
1020	if (detail->last_warn != detail->last_close) {
1021		detail->last_warn = detail->last_close;
1022		if (detail->warn_no_listener)
1023			detail->warn_no_listener(detail);
1024	}
1025}
1026
1027/*
1028 * register an upcall request to user-space.
1029 * Each request is at most one page long.
1030 */
1031static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1032{
1033
1034	char *buf;
1035	struct cache_request *crq;
1036	char *bp;
1037	int len;
1038
1039	if (detail->cache_request == NULL)
1040		return -EINVAL;
1041
1042	if (atomic_read(&detail->readers) == 0 &&
1043	    detail->last_close < get_seconds() - 30) {
1044			warn_no_listener(detail);
1045			return -EINVAL;
1046	}
1047
1048	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1049	if (!buf)
1050		return -EAGAIN;
1051
1052	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1053	if (!crq) {
1054		kfree(buf);
1055		return -EAGAIN;
1056	}
1057
1058	bp = buf; len = PAGE_SIZE;
1059
1060	detail->cache_request(detail, h, &bp, &len);
1061
1062	if (len < 0) {
1063		kfree(buf);
1064		kfree(crq);
1065		return -EAGAIN;
1066	}
1067	crq->q.reader = 0;
1068	crq->item = cache_get(h);
1069	crq->buf = buf;
1070	crq->len = PAGE_SIZE - len;
1071	crq->readers = 0;
1072	spin_lock(&queue_lock);
1073	list_add_tail(&crq->q.list, &detail->queue);
1074	spin_unlock(&queue_lock);
1075	wake_up(&queue_wait);
1076	return 0;
1077}
1078
1079/*
1080 * parse a message from user-space and pass it
1081 * to an appropriate cache
1082 * Messages are, like requests, separated into fields by
1083 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1084 *
1085 * Message is
1086 *   reply cachename expiry key ... content....
1087 *
1088 * key and content are both parsed by cache
1089 */
1090
1091#define isodigit(c) (isdigit(c) && c <= '7')
1092int qword_get(char **bpp, char *dest, int bufsize)
1093{
1094	/* return bytes copied, or -1 on error */
1095	char *bp = *bpp;
1096	int len = 0;
1097
1098	while (*bp == ' ') bp++;
1099
1100	if (bp[0] == '\\' && bp[1] == 'x') {
1101		/* HEX STRING */
1102		bp += 2;
1103		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1104			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1105			bp++;
1106			byte <<= 4;
1107			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1108			*dest++ = byte;
1109			bp++;
1110			len++;
1111		}
1112	} else {
1113		/* text with \nnn octal quoting */
1114		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1115			if (*bp == '\\' &&
1116			    isodigit(bp[1]) && (bp[1] <= '3') &&
1117			    isodigit(bp[2]) &&
1118			    isodigit(bp[3])) {
1119				int byte = (*++bp -'0');
1120				bp++;
1121				byte = (byte << 3) | (*bp++ - '0');
1122				byte = (byte << 3) | (*bp++ - '0');
1123				*dest++ = byte;
1124				len++;
1125			} else {
1126				*dest++ = *bp++;
1127				len++;
1128			}
1129		}
1130	}
1131
1132	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1133		return -1;
1134	while (*bp == ' ') bp++;
1135	*bpp = bp;
1136	*dest = '\0';
1137	return len;
1138}
1139EXPORT_SYMBOL_GPL(qword_get);
1140
1141
1142/*
1143 * support /proc/sunrpc/cache/$CACHENAME/content
1144 * as a seqfile.
1145 * We call ->cache_show passing NULL for the item to
1146 * get a header, then pass each real item in the cache
1147 */
1148
1149struct handle {
1150	struct cache_detail *cd;
1151};
1152
1153static void *c_start(struct seq_file *m, loff_t *pos)
1154	__acquires(cd->hash_lock)
1155{
1156	loff_t n = *pos;
1157	unsigned hash, entry;
1158	struct cache_head *ch;
1159	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1160
1161
1162	read_lock(&cd->hash_lock);
1163	if (!n--)
1164		return SEQ_START_TOKEN;
1165	hash = n >> 32;
1166	entry = n & ((1LL<<32) - 1);
1167
1168	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1169		if (!entry--)
1170			return ch;
1171	n &= ~((1LL<<32) - 1);
1172	do {
1173		hash++;
1174		n += 1LL<<32;
1175	} while(hash < cd->hash_size &&
1176		cd->hash_table[hash]==NULL);
1177	if (hash >= cd->hash_size)
1178		return NULL;
1179	*pos = n+1;
1180	return cd->hash_table[hash];
1181}
1182
1183static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1184{
1185	struct cache_head *ch = p;
1186	int hash = (*pos >> 32);
1187	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1188
1189	if (p == SEQ_START_TOKEN)
1190		hash = 0;
1191	else if (ch->next == NULL) {
1192		hash++;
1193		*pos += 1LL<<32;
1194	} else {
1195		++*pos;
1196		return ch->next;
1197	}
1198	*pos &= ~((1LL<<32) - 1);
1199	while (hash < cd->hash_size &&
1200	       cd->hash_table[hash] == NULL) {
1201		hash++;
1202		*pos += 1LL<<32;
1203	}
1204	if (hash >= cd->hash_size)
1205		return NULL;
1206	++*pos;
1207	return cd->hash_table[hash];
1208}
1209
1210static void c_stop(struct seq_file *m, void *p)
1211	__releases(cd->hash_lock)
1212{
1213	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1214	read_unlock(&cd->hash_lock);
1215}
1216
1217static int c_show(struct seq_file *m, void *p)
1218{
1219	struct cache_head *cp = p;
1220	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1221
1222	if (p == SEQ_START_TOKEN)
1223		return cd->cache_show(m, cd, NULL);
1224
1225	ifdebug(CACHE)
1226		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1227			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1228	cache_get(cp);
1229	if (cache_check(cd, cp, NULL))
1230		/* cache_check does a cache_put on failure */
1231		seq_printf(m, "# ");
1232	else
1233		cache_put(cp, cd);
1234
1235	return cd->cache_show(m, cd, cp);
1236}
1237
1238static const struct seq_operations cache_content_op = {
1239	.start	= c_start,
1240	.next	= c_next,
1241	.stop	= c_stop,
1242	.show	= c_show,
1243};
1244
1245static int content_open(struct inode *inode, struct file *file)
1246{
1247	struct handle *han;
1248	struct cache_detail *cd = PDE(inode)->data;
1249
1250	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1251	if (han == NULL)
1252		return -ENOMEM;
1253
1254	han->cd = cd;
1255	return 0;
1256}
1257
1258static const struct file_operations content_file_operations = {
1259	.open		= content_open,
1260	.read		= seq_read,
1261	.llseek		= seq_lseek,
1262	.release	= seq_release_private,
1263};
1264
1265static ssize_t read_flush(struct file *file, char __user *buf,
1266			    size_t count, loff_t *ppos)
1267{
1268	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1269	char tbuf[20];
1270	unsigned long p = *ppos;
1271	size_t len;
1272
1273	sprintf(tbuf, "%lu\n", cd->flush_time);
1274	len = strlen(tbuf);
1275	if (p >= len)
1276		return 0;
1277	len -= p;
1278	if (len > count)
1279		len = count;
1280	if (copy_to_user(buf, (void*)(tbuf+p), len))
1281		return -EFAULT;
1282	*ppos += len;
1283	return len;
1284}
1285
1286static ssize_t write_flush(struct file * file, const char __user * buf,
1287			     size_t count, loff_t *ppos)
1288{
1289	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1290	char tbuf[20];
1291	char *ep;
1292	long flushtime;
1293	if (*ppos || count > sizeof(tbuf)-1)
1294		return -EINVAL;
1295	if (copy_from_user(tbuf, buf, count))
1296		return -EFAULT;
1297	tbuf[count] = 0;
1298	flushtime = simple_strtoul(tbuf, &ep, 0);
1299	if (*ep && *ep != '\n')
1300		return -EINVAL;
1301
1302	cd->flush_time = flushtime;
1303	cd->nextcheck = get_seconds();
1304	cache_flush();
1305
1306	*ppos += count;
1307	return count;
1308}
1309
1310static const struct file_operations cache_flush_operations = {
1311	.open		= nonseekable_open,
1312	.read		= read_flush,
1313	.write		= write_flush,
1314};
1315