cache.c revision 9e4c6379a62d94d3362b12c7a00f2105df6d7eeb
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <asm/ioctls.h>
32#include <linux/sunrpc/types.h>
33#include <linux/sunrpc/cache.h>
34#include <linux/sunrpc/stats.h>
35#include <linux/sunrpc/rpc_pipe_fs.h>
36
37#define	 RPCDBG_FACILITY RPCDBG_CACHE
38
39static int cache_defer_req(struct cache_req *req, struct cache_head *item);
40static void cache_revisit_request(struct cache_head *item);
41
42static void cache_init(struct cache_head *h)
43{
44	time_t now = get_seconds();
45	h->next = NULL;
46	h->flags = 0;
47	kref_init(&h->ref);
48	h->expiry_time = now + CACHE_NEW_EXPIRY;
49	h->last_refresh = now;
50}
51
52struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
53				       struct cache_head *key, int hash)
54{
55	struct cache_head **head,  **hp;
56	struct cache_head *new = NULL;
57
58	head = &detail->hash_table[hash];
59
60	read_lock(&detail->hash_lock);
61
62	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
63		struct cache_head *tmp = *hp;
64		if (detail->match(tmp, key)) {
65			cache_get(tmp);
66			read_unlock(&detail->hash_lock);
67			return tmp;
68		}
69	}
70	read_unlock(&detail->hash_lock);
71	/* Didn't find anything, insert an empty entry */
72
73	new = detail->alloc();
74	if (!new)
75		return NULL;
76	/* must fully initialise 'new', else
77	 * we might get lose if we need to
78	 * cache_put it soon.
79	 */
80	cache_init(new);
81	detail->init(new, key);
82
83	write_lock(&detail->hash_lock);
84
85	/* check if entry appeared while we slept */
86	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
87		struct cache_head *tmp = *hp;
88		if (detail->match(tmp, key)) {
89			cache_get(tmp);
90			write_unlock(&detail->hash_lock);
91			cache_put(new, detail);
92			return tmp;
93		}
94	}
95	new->next = *head;
96	*head = new;
97	detail->entries++;
98	cache_get(new);
99	write_unlock(&detail->hash_lock);
100
101	return new;
102}
103EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
104
105
106static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
107
108static int cache_fresh_locked(struct cache_head *head, time_t expiry)
109{
110	head->expiry_time = expiry;
111	head->last_refresh = get_seconds();
112	return !test_and_set_bit(CACHE_VALID, &head->flags);
113}
114
115static void cache_fresh_unlocked(struct cache_head *head,
116			struct cache_detail *detail, int new)
117{
118	if (new)
119		cache_revisit_request(head);
120	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
121		cache_revisit_request(head);
122		cache_dequeue(detail, head);
123	}
124}
125
126struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
127				       struct cache_head *new, struct cache_head *old, int hash)
128{
129	/* The 'old' entry is to be replaced by 'new'.
130	 * If 'old' is not VALID, we update it directly,
131	 * otherwise we need to replace it
132	 */
133	struct cache_head **head;
134	struct cache_head *tmp;
135	int is_new;
136
137	if (!test_bit(CACHE_VALID, &old->flags)) {
138		write_lock(&detail->hash_lock);
139		if (!test_bit(CACHE_VALID, &old->flags)) {
140			if (test_bit(CACHE_NEGATIVE, &new->flags))
141				set_bit(CACHE_NEGATIVE, &old->flags);
142			else
143				detail->update(old, new);
144			is_new = cache_fresh_locked(old, new->expiry_time);
145			write_unlock(&detail->hash_lock);
146			cache_fresh_unlocked(old, detail, is_new);
147			return old;
148		}
149		write_unlock(&detail->hash_lock);
150	}
151	/* We need to insert a new entry */
152	tmp = detail->alloc();
153	if (!tmp) {
154		cache_put(old, detail);
155		return NULL;
156	}
157	cache_init(tmp);
158	detail->init(tmp, old);
159	head = &detail->hash_table[hash];
160
161	write_lock(&detail->hash_lock);
162	if (test_bit(CACHE_NEGATIVE, &new->flags))
163		set_bit(CACHE_NEGATIVE, &tmp->flags);
164	else
165		detail->update(tmp, new);
166	tmp->next = *head;
167	*head = tmp;
168	detail->entries++;
169	cache_get(tmp);
170	is_new = cache_fresh_locked(tmp, new->expiry_time);
171	cache_fresh_locked(old, 0);
172	write_unlock(&detail->hash_lock);
173	cache_fresh_unlocked(tmp, detail, is_new);
174	cache_fresh_unlocked(old, detail, 0);
175	cache_put(old, detail);
176	return tmp;
177}
178EXPORT_SYMBOL_GPL(sunrpc_cache_update);
179
180static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
181{
182	if (!cd->cache_upcall)
183		return -EINVAL;
184	return cd->cache_upcall(cd, h);
185}
186
187static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
188{
189	if (!test_bit(CACHE_VALID, &h->flags) ||
190	    h->expiry_time < get_seconds())
191		return -EAGAIN;
192	else if (detail->flush_time > h->last_refresh)
193		return -EAGAIN;
194	else {
195		/* entry is valid */
196		if (test_bit(CACHE_NEGATIVE, &h->flags))
197			return -ENOENT;
198		else
199			return 0;
200	}
201}
202
203/*
204 * This is the generic cache management routine for all
205 * the authentication caches.
206 * It checks the currency of a cache item and will (later)
207 * initiate an upcall to fill it if needed.
208 *
209 *
210 * Returns 0 if the cache_head can be used, or cache_puts it and returns
211 * -EAGAIN if upcall is pending and request has been queued
212 * -ETIMEDOUT if upcall failed or request could not be queue or
213 *           upcall completed but item is still invalid (implying that
214 *           the cache item has been replaced with a newer one).
215 * -ENOENT if cache entry was negative
216 */
217int cache_check(struct cache_detail *detail,
218		    struct cache_head *h, struct cache_req *rqstp)
219{
220	int rv;
221	long refresh_age, age;
222
223	/* First decide return status as best we can */
224	rv = cache_is_valid(detail, h);
225
226	/* now see if we want to start an upcall */
227	refresh_age = (h->expiry_time - h->last_refresh);
228	age = get_seconds() - h->last_refresh;
229
230	if (rqstp == NULL) {
231		if (rv == -EAGAIN)
232			rv = -ENOENT;
233	} else if (rv == -EAGAIN || age > refresh_age/2) {
234		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
235				refresh_age, age);
236		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
237			switch (cache_make_upcall(detail, h)) {
238			case -EINVAL:
239				clear_bit(CACHE_PENDING, &h->flags);
240				cache_revisit_request(h);
241				if (rv == -EAGAIN) {
242					set_bit(CACHE_NEGATIVE, &h->flags);
243					cache_fresh_unlocked(h, detail,
244					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
245					rv = -ENOENT;
246				}
247				break;
248
249			case -EAGAIN:
250				clear_bit(CACHE_PENDING, &h->flags);
251				cache_revisit_request(h);
252				break;
253			}
254		}
255	}
256
257	if (rv == -EAGAIN) {
258		if (cache_defer_req(rqstp, h) < 0) {
259			/* Request is not deferred */
260			rv = cache_is_valid(detail, h);
261			if (rv == -EAGAIN)
262				rv = -ETIMEDOUT;
263		}
264	}
265	if (rv)
266		cache_put(h, detail);
267	return rv;
268}
269EXPORT_SYMBOL_GPL(cache_check);
270
271/*
272 * caches need to be periodically cleaned.
273 * For this we maintain a list of cache_detail and
274 * a current pointer into that list and into the table
275 * for that entry.
276 *
277 * Each time clean_cache is called it finds the next non-empty entry
278 * in the current table and walks the list in that entry
279 * looking for entries that can be removed.
280 *
281 * An entry gets removed if:
282 * - The expiry is before current time
283 * - The last_refresh time is before the flush_time for that cache
284 *
285 * later we might drop old entries with non-NEVER expiry if that table
286 * is getting 'full' for some definition of 'full'
287 *
288 * The question of "how often to scan a table" is an interesting one
289 * and is answered in part by the use of the "nextcheck" field in the
290 * cache_detail.
291 * When a scan of a table begins, the nextcheck field is set to a time
292 * that is well into the future.
293 * While scanning, if an expiry time is found that is earlier than the
294 * current nextcheck time, nextcheck is set to that expiry time.
295 * If the flush_time is ever set to a time earlier than the nextcheck
296 * time, the nextcheck time is then set to that flush_time.
297 *
298 * A table is then only scanned if the current time is at least
299 * the nextcheck time.
300 *
301 */
302
303static LIST_HEAD(cache_list);
304static DEFINE_SPINLOCK(cache_list_lock);
305static struct cache_detail *current_detail;
306static int current_index;
307
308static void do_cache_clean(struct work_struct *work);
309static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
310
311static void sunrpc_init_cache_detail(struct cache_detail *cd)
312{
313	rwlock_init(&cd->hash_lock);
314	INIT_LIST_HEAD(&cd->queue);
315	spin_lock(&cache_list_lock);
316	cd->nextcheck = 0;
317	cd->entries = 0;
318	atomic_set(&cd->readers, 0);
319	cd->last_close = 0;
320	cd->last_warn = -1;
321	list_add(&cd->others, &cache_list);
322	spin_unlock(&cache_list_lock);
323
324	/* start the cleaning process */
325	schedule_delayed_work(&cache_cleaner, 0);
326}
327
328static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
329{
330	cache_purge(cd);
331	spin_lock(&cache_list_lock);
332	write_lock(&cd->hash_lock);
333	if (cd->entries || atomic_read(&cd->inuse)) {
334		write_unlock(&cd->hash_lock);
335		spin_unlock(&cache_list_lock);
336		goto out;
337	}
338	if (current_detail == cd)
339		current_detail = NULL;
340	list_del_init(&cd->others);
341	write_unlock(&cd->hash_lock);
342	spin_unlock(&cache_list_lock);
343	if (list_empty(&cache_list)) {
344		/* module must be being unloaded so its safe to kill the worker */
345		cancel_delayed_work_sync(&cache_cleaner);
346	}
347	return;
348out:
349	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
350}
351
352/* clean cache tries to find something to clean
353 * and cleans it.
354 * It returns 1 if it cleaned something,
355 *            0 if it didn't find anything this time
356 *           -1 if it fell off the end of the list.
357 */
358static int cache_clean(void)
359{
360	int rv = 0;
361	struct list_head *next;
362
363	spin_lock(&cache_list_lock);
364
365	/* find a suitable table if we don't already have one */
366	while (current_detail == NULL ||
367	    current_index >= current_detail->hash_size) {
368		if (current_detail)
369			next = current_detail->others.next;
370		else
371			next = cache_list.next;
372		if (next == &cache_list) {
373			current_detail = NULL;
374			spin_unlock(&cache_list_lock);
375			return -1;
376		}
377		current_detail = list_entry(next, struct cache_detail, others);
378		if (current_detail->nextcheck > get_seconds())
379			current_index = current_detail->hash_size;
380		else {
381			current_index = 0;
382			current_detail->nextcheck = get_seconds()+30*60;
383		}
384	}
385
386	/* find a non-empty bucket in the table */
387	while (current_detail &&
388	       current_index < current_detail->hash_size &&
389	       current_detail->hash_table[current_index] == NULL)
390		current_index++;
391
392	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
393
394	if (current_detail && current_index < current_detail->hash_size) {
395		struct cache_head *ch, **cp;
396		struct cache_detail *d;
397
398		write_lock(&current_detail->hash_lock);
399
400		/* Ok, now to clean this strand */
401
402		cp = & current_detail->hash_table[current_index];
403		ch = *cp;
404		for (; ch; cp= & ch->next, ch= *cp) {
405			if (current_detail->nextcheck > ch->expiry_time)
406				current_detail->nextcheck = ch->expiry_time+1;
407			if (ch->expiry_time >= get_seconds()
408			    && ch->last_refresh >= current_detail->flush_time
409				)
410				continue;
411			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
412				cache_dequeue(current_detail, ch);
413
414			if (atomic_read(&ch->ref.refcount) == 1)
415				break;
416		}
417		if (ch) {
418			*cp = ch->next;
419			ch->next = NULL;
420			current_detail->entries--;
421			rv = 1;
422		}
423		write_unlock(&current_detail->hash_lock);
424		d = current_detail;
425		if (!ch)
426			current_index ++;
427		spin_unlock(&cache_list_lock);
428		if (ch) {
429			cache_revisit_request(ch);
430			cache_put(ch, d);
431		}
432	} else
433		spin_unlock(&cache_list_lock);
434
435	return rv;
436}
437
438/*
439 * We want to regularly clean the cache, so we need to schedule some work ...
440 */
441static void do_cache_clean(struct work_struct *work)
442{
443	int delay = 5;
444	if (cache_clean() == -1)
445		delay = round_jiffies_relative(30*HZ);
446
447	if (list_empty(&cache_list))
448		delay = 0;
449
450	if (delay)
451		schedule_delayed_work(&cache_cleaner, delay);
452}
453
454
455/*
456 * Clean all caches promptly.  This just calls cache_clean
457 * repeatedly until we are sure that every cache has had a chance to
458 * be fully cleaned
459 */
460void cache_flush(void)
461{
462	while (cache_clean() != -1)
463		cond_resched();
464	while (cache_clean() != -1)
465		cond_resched();
466}
467EXPORT_SYMBOL_GPL(cache_flush);
468
469void cache_purge(struct cache_detail *detail)
470{
471	detail->flush_time = LONG_MAX;
472	detail->nextcheck = get_seconds();
473	cache_flush();
474	detail->flush_time = 1;
475}
476EXPORT_SYMBOL_GPL(cache_purge);
477
478
479/*
480 * Deferral and Revisiting of Requests.
481 *
482 * If a cache lookup finds a pending entry, we
483 * need to defer the request and revisit it later.
484 * All deferred requests are stored in a hash table,
485 * indexed by "struct cache_head *".
486 * As it may be wasteful to store a whole request
487 * structure, we allow the request to provide a
488 * deferred form, which must contain a
489 * 'struct cache_deferred_req'
490 * This cache_deferred_req contains a method to allow
491 * it to be revisited when cache info is available
492 */
493
494#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
495#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
496
497#define	DFR_MAX	300	/* ??? */
498
499static DEFINE_SPINLOCK(cache_defer_lock);
500static LIST_HEAD(cache_defer_list);
501static struct list_head cache_defer_hash[DFR_HASHSIZE];
502static int cache_defer_cnt;
503
504static int cache_defer_req(struct cache_req *req, struct cache_head *item)
505{
506	struct cache_deferred_req *dreq;
507	int hash = DFR_HASH(item);
508
509	if (cache_defer_cnt >= DFR_MAX) {
510		/* too much in the cache, randomly drop this one,
511		 * or continue and drop the oldest below
512		 */
513		if (net_random()&1)
514			return -ENOMEM;
515	}
516	dreq = req->defer(req);
517	if (dreq == NULL)
518		return -ENOMEM;
519
520	dreq->item = item;
521
522	spin_lock(&cache_defer_lock);
523
524	list_add(&dreq->recent, &cache_defer_list);
525
526	if (cache_defer_hash[hash].next == NULL)
527		INIT_LIST_HEAD(&cache_defer_hash[hash]);
528	list_add(&dreq->hash, &cache_defer_hash[hash]);
529
530	/* it is in, now maybe clean up */
531	dreq = NULL;
532	if (++cache_defer_cnt > DFR_MAX) {
533		dreq = list_entry(cache_defer_list.prev,
534				  struct cache_deferred_req, recent);
535		list_del(&dreq->recent);
536		list_del(&dreq->hash);
537		cache_defer_cnt--;
538	}
539	spin_unlock(&cache_defer_lock);
540
541	if (dreq) {
542		/* there was one too many */
543		dreq->revisit(dreq, 1);
544	}
545	if (!test_bit(CACHE_PENDING, &item->flags)) {
546		/* must have just been validated... */
547		cache_revisit_request(item);
548		return -EAGAIN;
549	}
550	return 0;
551}
552
553static void cache_revisit_request(struct cache_head *item)
554{
555	struct cache_deferred_req *dreq;
556	struct list_head pending;
557
558	struct list_head *lp;
559	int hash = DFR_HASH(item);
560
561	INIT_LIST_HEAD(&pending);
562	spin_lock(&cache_defer_lock);
563
564	lp = cache_defer_hash[hash].next;
565	if (lp) {
566		while (lp != &cache_defer_hash[hash]) {
567			dreq = list_entry(lp, struct cache_deferred_req, hash);
568			lp = lp->next;
569			if (dreq->item == item) {
570				list_del(&dreq->hash);
571				list_move(&dreq->recent, &pending);
572				cache_defer_cnt--;
573			}
574		}
575	}
576	spin_unlock(&cache_defer_lock);
577
578	while (!list_empty(&pending)) {
579		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
580		list_del_init(&dreq->recent);
581		dreq->revisit(dreq, 0);
582	}
583}
584
585void cache_clean_deferred(void *owner)
586{
587	struct cache_deferred_req *dreq, *tmp;
588	struct list_head pending;
589
590
591	INIT_LIST_HEAD(&pending);
592	spin_lock(&cache_defer_lock);
593
594	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
595		if (dreq->owner == owner) {
596			list_del(&dreq->hash);
597			list_move(&dreq->recent, &pending);
598			cache_defer_cnt--;
599		}
600	}
601	spin_unlock(&cache_defer_lock);
602
603	while (!list_empty(&pending)) {
604		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
605		list_del_init(&dreq->recent);
606		dreq->revisit(dreq, 1);
607	}
608}
609
610/*
611 * communicate with user-space
612 *
613 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
614 * On read, you get a full request, or block.
615 * On write, an update request is processed.
616 * Poll works if anything to read, and always allows write.
617 *
618 * Implemented by linked list of requests.  Each open file has
619 * a ->private that also exists in this list.  New requests are added
620 * to the end and may wakeup and preceding readers.
621 * New readers are added to the head.  If, on read, an item is found with
622 * CACHE_UPCALLING clear, we free it from the list.
623 *
624 */
625
626static DEFINE_SPINLOCK(queue_lock);
627static DEFINE_MUTEX(queue_io_mutex);
628
629struct cache_queue {
630	struct list_head	list;
631	int			reader;	/* if 0, then request */
632};
633struct cache_request {
634	struct cache_queue	q;
635	struct cache_head	*item;
636	char			* buf;
637	int			len;
638	int			readers;
639};
640struct cache_reader {
641	struct cache_queue	q;
642	int			offset;	/* if non-0, we have a refcnt on next request */
643};
644
645static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
646			  loff_t *ppos, struct cache_detail *cd)
647{
648	struct cache_reader *rp = filp->private_data;
649	struct cache_request *rq;
650	struct inode *inode = filp->f_path.dentry->d_inode;
651	int err;
652
653	if (count == 0)
654		return 0;
655
656	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
657			      * readers on this file */
658 again:
659	spin_lock(&queue_lock);
660	/* need to find next request */
661	while (rp->q.list.next != &cd->queue &&
662	       list_entry(rp->q.list.next, struct cache_queue, list)
663	       ->reader) {
664		struct list_head *next = rp->q.list.next;
665		list_move(&rp->q.list, next);
666	}
667	if (rp->q.list.next == &cd->queue) {
668		spin_unlock(&queue_lock);
669		mutex_unlock(&inode->i_mutex);
670		BUG_ON(rp->offset);
671		return 0;
672	}
673	rq = container_of(rp->q.list.next, struct cache_request, q.list);
674	BUG_ON(rq->q.reader);
675	if (rp->offset == 0)
676		rq->readers++;
677	spin_unlock(&queue_lock);
678
679	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
680		err = -EAGAIN;
681		spin_lock(&queue_lock);
682		list_move(&rp->q.list, &rq->q.list);
683		spin_unlock(&queue_lock);
684	} else {
685		if (rp->offset + count > rq->len)
686			count = rq->len - rp->offset;
687		err = -EFAULT;
688		if (copy_to_user(buf, rq->buf + rp->offset, count))
689			goto out;
690		rp->offset += count;
691		if (rp->offset >= rq->len) {
692			rp->offset = 0;
693			spin_lock(&queue_lock);
694			list_move(&rp->q.list, &rq->q.list);
695			spin_unlock(&queue_lock);
696		}
697		err = 0;
698	}
699 out:
700	if (rp->offset == 0) {
701		/* need to release rq */
702		spin_lock(&queue_lock);
703		rq->readers--;
704		if (rq->readers == 0 &&
705		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
706			list_del(&rq->q.list);
707			spin_unlock(&queue_lock);
708			cache_put(rq->item, cd);
709			kfree(rq->buf);
710			kfree(rq);
711		} else
712			spin_unlock(&queue_lock);
713	}
714	if (err == -EAGAIN)
715		goto again;
716	mutex_unlock(&inode->i_mutex);
717	return err ? err :  count;
718}
719
720static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
721				 size_t count, struct cache_detail *cd)
722{
723	ssize_t ret;
724
725	if (copy_from_user(kaddr, buf, count))
726		return -EFAULT;
727	kaddr[count] = '\0';
728	ret = cd->cache_parse(cd, kaddr, count);
729	if (!ret)
730		ret = count;
731	return ret;
732}
733
734static ssize_t cache_slow_downcall(const char __user *buf,
735				   size_t count, struct cache_detail *cd)
736{
737	static char write_buf[8192]; /* protected by queue_io_mutex */
738	ssize_t ret = -EINVAL;
739
740	if (count >= sizeof(write_buf))
741		goto out;
742	mutex_lock(&queue_io_mutex);
743	ret = cache_do_downcall(write_buf, buf, count, cd);
744	mutex_unlock(&queue_io_mutex);
745out:
746	return ret;
747}
748
749static ssize_t cache_downcall(struct address_space *mapping,
750			      const char __user *buf,
751			      size_t count, struct cache_detail *cd)
752{
753	struct page *page;
754	char *kaddr;
755	ssize_t ret = -ENOMEM;
756
757	if (count >= PAGE_CACHE_SIZE)
758		goto out_slow;
759
760	page = find_or_create_page(mapping, 0, GFP_KERNEL);
761	if (!page)
762		goto out_slow;
763
764	kaddr = kmap(page);
765	ret = cache_do_downcall(kaddr, buf, count, cd);
766	kunmap(page);
767	unlock_page(page);
768	page_cache_release(page);
769	return ret;
770out_slow:
771	return cache_slow_downcall(buf, count, cd);
772}
773
774static ssize_t cache_write(struct file *filp, const char __user *buf,
775			   size_t count, loff_t *ppos,
776			   struct cache_detail *cd)
777{
778	struct address_space *mapping = filp->f_mapping;
779	struct inode *inode = filp->f_path.dentry->d_inode;
780	ssize_t ret = -EINVAL;
781
782	if (!cd->cache_parse)
783		goto out;
784
785	mutex_lock(&inode->i_mutex);
786	ret = cache_downcall(mapping, buf, count, cd);
787	mutex_unlock(&inode->i_mutex);
788out:
789	return ret;
790}
791
792static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
793
794static unsigned int cache_poll(struct file *filp, poll_table *wait,
795			       struct cache_detail *cd)
796{
797	unsigned int mask;
798	struct cache_reader *rp = filp->private_data;
799	struct cache_queue *cq;
800
801	poll_wait(filp, &queue_wait, wait);
802
803	/* alway allow write */
804	mask = POLL_OUT | POLLWRNORM;
805
806	if (!rp)
807		return mask;
808
809	spin_lock(&queue_lock);
810
811	for (cq= &rp->q; &cq->list != &cd->queue;
812	     cq = list_entry(cq->list.next, struct cache_queue, list))
813		if (!cq->reader) {
814			mask |= POLLIN | POLLRDNORM;
815			break;
816		}
817	spin_unlock(&queue_lock);
818	return mask;
819}
820
821static int cache_ioctl(struct inode *ino, struct file *filp,
822		       unsigned int cmd, unsigned long arg,
823		       struct cache_detail *cd)
824{
825	int len = 0;
826	struct cache_reader *rp = filp->private_data;
827	struct cache_queue *cq;
828
829	if (cmd != FIONREAD || !rp)
830		return -EINVAL;
831
832	spin_lock(&queue_lock);
833
834	/* only find the length remaining in current request,
835	 * or the length of the next request
836	 */
837	for (cq= &rp->q; &cq->list != &cd->queue;
838	     cq = list_entry(cq->list.next, struct cache_queue, list))
839		if (!cq->reader) {
840			struct cache_request *cr =
841				container_of(cq, struct cache_request, q);
842			len = cr->len - rp->offset;
843			break;
844		}
845	spin_unlock(&queue_lock);
846
847	return put_user(len, (int __user *)arg);
848}
849
850static int cache_open(struct inode *inode, struct file *filp,
851		      struct cache_detail *cd)
852{
853	struct cache_reader *rp = NULL;
854
855	if (!cd || !try_module_get(cd->owner))
856		return -EACCES;
857	nonseekable_open(inode, filp);
858	if (filp->f_mode & FMODE_READ) {
859		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
860		if (!rp)
861			return -ENOMEM;
862		rp->offset = 0;
863		rp->q.reader = 1;
864		atomic_inc(&cd->readers);
865		spin_lock(&queue_lock);
866		list_add(&rp->q.list, &cd->queue);
867		spin_unlock(&queue_lock);
868	}
869	filp->private_data = rp;
870	return 0;
871}
872
873static int cache_release(struct inode *inode, struct file *filp,
874			 struct cache_detail *cd)
875{
876	struct cache_reader *rp = filp->private_data;
877
878	if (rp) {
879		spin_lock(&queue_lock);
880		if (rp->offset) {
881			struct cache_queue *cq;
882			for (cq= &rp->q; &cq->list != &cd->queue;
883			     cq = list_entry(cq->list.next, struct cache_queue, list))
884				if (!cq->reader) {
885					container_of(cq, struct cache_request, q)
886						->readers--;
887					break;
888				}
889			rp->offset = 0;
890		}
891		list_del(&rp->q.list);
892		spin_unlock(&queue_lock);
893
894		filp->private_data = NULL;
895		kfree(rp);
896
897		cd->last_close = get_seconds();
898		atomic_dec(&cd->readers);
899	}
900	module_put(cd->owner);
901	return 0;
902}
903
904
905
906static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
907{
908	struct cache_queue *cq;
909	spin_lock(&queue_lock);
910	list_for_each_entry(cq, &detail->queue, list)
911		if (!cq->reader) {
912			struct cache_request *cr = container_of(cq, struct cache_request, q);
913			if (cr->item != ch)
914				continue;
915			if (cr->readers != 0)
916				continue;
917			list_del(&cr->q.list);
918			spin_unlock(&queue_lock);
919			cache_put(cr->item, detail);
920			kfree(cr->buf);
921			kfree(cr);
922			return;
923		}
924	spin_unlock(&queue_lock);
925}
926
927/*
928 * Support routines for text-based upcalls.
929 * Fields are separated by spaces.
930 * Fields are either mangled to quote space tab newline slosh with slosh
931 * or a hexified with a leading \x
932 * Record is terminated with newline.
933 *
934 */
935
936void qword_add(char **bpp, int *lp, char *str)
937{
938	char *bp = *bpp;
939	int len = *lp;
940	char c;
941
942	if (len < 0) return;
943
944	while ((c=*str++) && len)
945		switch(c) {
946		case ' ':
947		case '\t':
948		case '\n':
949		case '\\':
950			if (len >= 4) {
951				*bp++ = '\\';
952				*bp++ = '0' + ((c & 0300)>>6);
953				*bp++ = '0' + ((c & 0070)>>3);
954				*bp++ = '0' + ((c & 0007)>>0);
955			}
956			len -= 4;
957			break;
958		default:
959			*bp++ = c;
960			len--;
961		}
962	if (c || len <1) len = -1;
963	else {
964		*bp++ = ' ';
965		len--;
966	}
967	*bpp = bp;
968	*lp = len;
969}
970EXPORT_SYMBOL_GPL(qword_add);
971
972void qword_addhex(char **bpp, int *lp, char *buf, int blen)
973{
974	char *bp = *bpp;
975	int len = *lp;
976
977	if (len < 0) return;
978
979	if (len > 2) {
980		*bp++ = '\\';
981		*bp++ = 'x';
982		len -= 2;
983		while (blen && len >= 2) {
984			unsigned char c = *buf++;
985			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
986			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
987			len -= 2;
988			blen--;
989		}
990	}
991	if (blen || len<1) len = -1;
992	else {
993		*bp++ = ' ';
994		len--;
995	}
996	*bpp = bp;
997	*lp = len;
998}
999EXPORT_SYMBOL_GPL(qword_addhex);
1000
1001static void warn_no_listener(struct cache_detail *detail)
1002{
1003	if (detail->last_warn != detail->last_close) {
1004		detail->last_warn = detail->last_close;
1005		if (detail->warn_no_listener)
1006			detail->warn_no_listener(detail, detail->last_close != 0);
1007	}
1008}
1009
1010/*
1011 * register an upcall request to user-space and queue it up for read() by the
1012 * upcall daemon.
1013 *
1014 * Each request is at most one page long.
1015 */
1016int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1017		void (*cache_request)(struct cache_detail *,
1018				      struct cache_head *,
1019				      char **,
1020				      int *))
1021{
1022
1023	char *buf;
1024	struct cache_request *crq;
1025	char *bp;
1026	int len;
1027
1028	if (atomic_read(&detail->readers) == 0 &&
1029	    detail->last_close < get_seconds() - 30) {
1030			warn_no_listener(detail);
1031			return -EINVAL;
1032	}
1033
1034	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1035	if (!buf)
1036		return -EAGAIN;
1037
1038	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1039	if (!crq) {
1040		kfree(buf);
1041		return -EAGAIN;
1042	}
1043
1044	bp = buf; len = PAGE_SIZE;
1045
1046	cache_request(detail, h, &bp, &len);
1047
1048	if (len < 0) {
1049		kfree(buf);
1050		kfree(crq);
1051		return -EAGAIN;
1052	}
1053	crq->q.reader = 0;
1054	crq->item = cache_get(h);
1055	crq->buf = buf;
1056	crq->len = PAGE_SIZE - len;
1057	crq->readers = 0;
1058	spin_lock(&queue_lock);
1059	list_add_tail(&crq->q.list, &detail->queue);
1060	spin_unlock(&queue_lock);
1061	wake_up(&queue_wait);
1062	return 0;
1063}
1064EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1065
1066/*
1067 * parse a message from user-space and pass it
1068 * to an appropriate cache
1069 * Messages are, like requests, separated into fields by
1070 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1071 *
1072 * Message is
1073 *   reply cachename expiry key ... content....
1074 *
1075 * key and content are both parsed by cache
1076 */
1077
1078#define isodigit(c) (isdigit(c) && c <= '7')
1079int qword_get(char **bpp, char *dest, int bufsize)
1080{
1081	/* return bytes copied, or -1 on error */
1082	char *bp = *bpp;
1083	int len = 0;
1084
1085	while (*bp == ' ') bp++;
1086
1087	if (bp[0] == '\\' && bp[1] == 'x') {
1088		/* HEX STRING */
1089		bp += 2;
1090		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1091			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1092			bp++;
1093			byte <<= 4;
1094			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1095			*dest++ = byte;
1096			bp++;
1097			len++;
1098		}
1099	} else {
1100		/* text with \nnn octal quoting */
1101		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1102			if (*bp == '\\' &&
1103			    isodigit(bp[1]) && (bp[1] <= '3') &&
1104			    isodigit(bp[2]) &&
1105			    isodigit(bp[3])) {
1106				int byte = (*++bp -'0');
1107				bp++;
1108				byte = (byte << 3) | (*bp++ - '0');
1109				byte = (byte << 3) | (*bp++ - '0');
1110				*dest++ = byte;
1111				len++;
1112			} else {
1113				*dest++ = *bp++;
1114				len++;
1115			}
1116		}
1117	}
1118
1119	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1120		return -1;
1121	while (*bp == ' ') bp++;
1122	*bpp = bp;
1123	*dest = '\0';
1124	return len;
1125}
1126EXPORT_SYMBOL_GPL(qword_get);
1127
1128
1129/*
1130 * support /proc/sunrpc/cache/$CACHENAME/content
1131 * as a seqfile.
1132 * We call ->cache_show passing NULL for the item to
1133 * get a header, then pass each real item in the cache
1134 */
1135
1136struct handle {
1137	struct cache_detail *cd;
1138};
1139
1140static void *c_start(struct seq_file *m, loff_t *pos)
1141	__acquires(cd->hash_lock)
1142{
1143	loff_t n = *pos;
1144	unsigned hash, entry;
1145	struct cache_head *ch;
1146	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1147
1148
1149	read_lock(&cd->hash_lock);
1150	if (!n--)
1151		return SEQ_START_TOKEN;
1152	hash = n >> 32;
1153	entry = n & ((1LL<<32) - 1);
1154
1155	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1156		if (!entry--)
1157			return ch;
1158	n &= ~((1LL<<32) - 1);
1159	do {
1160		hash++;
1161		n += 1LL<<32;
1162	} while(hash < cd->hash_size &&
1163		cd->hash_table[hash]==NULL);
1164	if (hash >= cd->hash_size)
1165		return NULL;
1166	*pos = n+1;
1167	return cd->hash_table[hash];
1168}
1169
1170static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1171{
1172	struct cache_head *ch = p;
1173	int hash = (*pos >> 32);
1174	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1175
1176	if (p == SEQ_START_TOKEN)
1177		hash = 0;
1178	else if (ch->next == NULL) {
1179		hash++;
1180		*pos += 1LL<<32;
1181	} else {
1182		++*pos;
1183		return ch->next;
1184	}
1185	*pos &= ~((1LL<<32) - 1);
1186	while (hash < cd->hash_size &&
1187	       cd->hash_table[hash] == NULL) {
1188		hash++;
1189		*pos += 1LL<<32;
1190	}
1191	if (hash >= cd->hash_size)
1192		return NULL;
1193	++*pos;
1194	return cd->hash_table[hash];
1195}
1196
1197static void c_stop(struct seq_file *m, void *p)
1198	__releases(cd->hash_lock)
1199{
1200	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1201	read_unlock(&cd->hash_lock);
1202}
1203
1204static int c_show(struct seq_file *m, void *p)
1205{
1206	struct cache_head *cp = p;
1207	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1208
1209	if (p == SEQ_START_TOKEN)
1210		return cd->cache_show(m, cd, NULL);
1211
1212	ifdebug(CACHE)
1213		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1214			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1215	cache_get(cp);
1216	if (cache_check(cd, cp, NULL))
1217		/* cache_check does a cache_put on failure */
1218		seq_printf(m, "# ");
1219	else
1220		cache_put(cp, cd);
1221
1222	return cd->cache_show(m, cd, cp);
1223}
1224
1225static const struct seq_operations cache_content_op = {
1226	.start	= c_start,
1227	.next	= c_next,
1228	.stop	= c_stop,
1229	.show	= c_show,
1230};
1231
1232static int content_open(struct inode *inode, struct file *file,
1233			struct cache_detail *cd)
1234{
1235	struct handle *han;
1236
1237	if (!cd || !try_module_get(cd->owner))
1238		return -EACCES;
1239	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1240	if (han == NULL)
1241		return -ENOMEM;
1242
1243	han->cd = cd;
1244	return 0;
1245}
1246
1247static int content_release(struct inode *inode, struct file *file,
1248		struct cache_detail *cd)
1249{
1250	int ret = seq_release_private(inode, file);
1251	module_put(cd->owner);
1252	return ret;
1253}
1254
1255static int open_flush(struct inode *inode, struct file *file,
1256			struct cache_detail *cd)
1257{
1258	if (!cd || !try_module_get(cd->owner))
1259		return -EACCES;
1260	return nonseekable_open(inode, file);
1261}
1262
1263static int release_flush(struct inode *inode, struct file *file,
1264			struct cache_detail *cd)
1265{
1266	module_put(cd->owner);
1267	return 0;
1268}
1269
1270static ssize_t read_flush(struct file *file, char __user *buf,
1271			  size_t count, loff_t *ppos,
1272			  struct cache_detail *cd)
1273{
1274	char tbuf[20];
1275	unsigned long p = *ppos;
1276	size_t len;
1277
1278	sprintf(tbuf, "%lu\n", cd->flush_time);
1279	len = strlen(tbuf);
1280	if (p >= len)
1281		return 0;
1282	len -= p;
1283	if (len > count)
1284		len = count;
1285	if (copy_to_user(buf, (void*)(tbuf+p), len))
1286		return -EFAULT;
1287	*ppos += len;
1288	return len;
1289}
1290
1291static ssize_t write_flush(struct file *file, const char __user *buf,
1292			   size_t count, loff_t *ppos,
1293			   struct cache_detail *cd)
1294{
1295	char tbuf[20];
1296	char *ep;
1297	long flushtime;
1298	if (*ppos || count > sizeof(tbuf)-1)
1299		return -EINVAL;
1300	if (copy_from_user(tbuf, buf, count))
1301		return -EFAULT;
1302	tbuf[count] = 0;
1303	flushtime = simple_strtoul(tbuf, &ep, 0);
1304	if (*ep && *ep != '\n')
1305		return -EINVAL;
1306
1307	cd->flush_time = flushtime;
1308	cd->nextcheck = get_seconds();
1309	cache_flush();
1310
1311	*ppos += count;
1312	return count;
1313}
1314
1315static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1316				 size_t count, loff_t *ppos)
1317{
1318	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1319
1320	return cache_read(filp, buf, count, ppos, cd);
1321}
1322
1323static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1324				  size_t count, loff_t *ppos)
1325{
1326	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1327
1328	return cache_write(filp, buf, count, ppos, cd);
1329}
1330
1331static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1332{
1333	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1334
1335	return cache_poll(filp, wait, cd);
1336}
1337
1338static int cache_ioctl_procfs(struct inode *inode, struct file *filp,
1339			      unsigned int cmd, unsigned long arg)
1340{
1341	struct cache_detail *cd = PDE(inode)->data;
1342
1343	return cache_ioctl(inode, filp, cmd, arg, cd);
1344}
1345
1346static int cache_open_procfs(struct inode *inode, struct file *filp)
1347{
1348	struct cache_detail *cd = PDE(inode)->data;
1349
1350	return cache_open(inode, filp, cd);
1351}
1352
1353static int cache_release_procfs(struct inode *inode, struct file *filp)
1354{
1355	struct cache_detail *cd = PDE(inode)->data;
1356
1357	return cache_release(inode, filp, cd);
1358}
1359
1360static const struct file_operations cache_file_operations_procfs = {
1361	.owner		= THIS_MODULE,
1362	.llseek		= no_llseek,
1363	.read		= cache_read_procfs,
1364	.write		= cache_write_procfs,
1365	.poll		= cache_poll_procfs,
1366	.ioctl		= cache_ioctl_procfs, /* for FIONREAD */
1367	.open		= cache_open_procfs,
1368	.release	= cache_release_procfs,
1369};
1370
1371static int content_open_procfs(struct inode *inode, struct file *filp)
1372{
1373	struct cache_detail *cd = PDE(inode)->data;
1374
1375	return content_open(inode, filp, cd);
1376}
1377
1378static int content_release_procfs(struct inode *inode, struct file *filp)
1379{
1380	struct cache_detail *cd = PDE(inode)->data;
1381
1382	return content_release(inode, filp, cd);
1383}
1384
1385static const struct file_operations content_file_operations_procfs = {
1386	.open		= content_open_procfs,
1387	.read		= seq_read,
1388	.llseek		= seq_lseek,
1389	.release	= content_release_procfs,
1390};
1391
1392static int open_flush_procfs(struct inode *inode, struct file *filp)
1393{
1394	struct cache_detail *cd = PDE(inode)->data;
1395
1396	return open_flush(inode, filp, cd);
1397}
1398
1399static int release_flush_procfs(struct inode *inode, struct file *filp)
1400{
1401	struct cache_detail *cd = PDE(inode)->data;
1402
1403	return release_flush(inode, filp, cd);
1404}
1405
1406static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1407			    size_t count, loff_t *ppos)
1408{
1409	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1410
1411	return read_flush(filp, buf, count, ppos, cd);
1412}
1413
1414static ssize_t write_flush_procfs(struct file *filp,
1415				  const char __user *buf,
1416				  size_t count, loff_t *ppos)
1417{
1418	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1419
1420	return write_flush(filp, buf, count, ppos, cd);
1421}
1422
1423static const struct file_operations cache_flush_operations_procfs = {
1424	.open		= open_flush_procfs,
1425	.read		= read_flush_procfs,
1426	.write		= write_flush_procfs,
1427	.release	= release_flush_procfs,
1428};
1429
1430static void remove_cache_proc_entries(struct cache_detail *cd)
1431{
1432	if (cd->u.procfs.proc_ent == NULL)
1433		return;
1434	if (cd->u.procfs.flush_ent)
1435		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1436	if (cd->u.procfs.channel_ent)
1437		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1438	if (cd->u.procfs.content_ent)
1439		remove_proc_entry("content", cd->u.procfs.proc_ent);
1440	cd->u.procfs.proc_ent = NULL;
1441	remove_proc_entry(cd->name, proc_net_rpc);
1442}
1443
1444#ifdef CONFIG_PROC_FS
1445static int create_cache_proc_entries(struct cache_detail *cd)
1446{
1447	struct proc_dir_entry *p;
1448
1449	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1450	if (cd->u.procfs.proc_ent == NULL)
1451		goto out_nomem;
1452	cd->u.procfs.channel_ent = NULL;
1453	cd->u.procfs.content_ent = NULL;
1454
1455	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1456			     cd->u.procfs.proc_ent,
1457			     &cache_flush_operations_procfs, cd);
1458	cd->u.procfs.flush_ent = p;
1459	if (p == NULL)
1460		goto out_nomem;
1461
1462	if (cd->cache_upcall || cd->cache_parse) {
1463		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1464				     cd->u.procfs.proc_ent,
1465				     &cache_file_operations_procfs, cd);
1466		cd->u.procfs.channel_ent = p;
1467		if (p == NULL)
1468			goto out_nomem;
1469	}
1470	if (cd->cache_show) {
1471		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1472				cd->u.procfs.proc_ent,
1473				&content_file_operations_procfs, cd);
1474		cd->u.procfs.content_ent = p;
1475		if (p == NULL)
1476			goto out_nomem;
1477	}
1478	return 0;
1479out_nomem:
1480	remove_cache_proc_entries(cd);
1481	return -ENOMEM;
1482}
1483#else /* CONFIG_PROC_FS */
1484static int create_cache_proc_entries(struct cache_detail *cd)
1485{
1486	return 0;
1487}
1488#endif
1489
1490int cache_register(struct cache_detail *cd)
1491{
1492	int ret;
1493
1494	sunrpc_init_cache_detail(cd);
1495	ret = create_cache_proc_entries(cd);
1496	if (ret)
1497		sunrpc_destroy_cache_detail(cd);
1498	return ret;
1499}
1500EXPORT_SYMBOL_GPL(cache_register);
1501
1502void cache_unregister(struct cache_detail *cd)
1503{
1504	remove_cache_proc_entries(cd);
1505	sunrpc_destroy_cache_detail(cd);
1506}
1507EXPORT_SYMBOL_GPL(cache_unregister);
1508
1509static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1510				 size_t count, loff_t *ppos)
1511{
1512	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1513
1514	return cache_read(filp, buf, count, ppos, cd);
1515}
1516
1517static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1518				  size_t count, loff_t *ppos)
1519{
1520	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1521
1522	return cache_write(filp, buf, count, ppos, cd);
1523}
1524
1525static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1526{
1527	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1528
1529	return cache_poll(filp, wait, cd);
1530}
1531
1532static int cache_ioctl_pipefs(struct inode *inode, struct file *filp,
1533			      unsigned int cmd, unsigned long arg)
1534{
1535	struct cache_detail *cd = RPC_I(inode)->private;
1536
1537	return cache_ioctl(inode, filp, cmd, arg, cd);
1538}
1539
1540static int cache_open_pipefs(struct inode *inode, struct file *filp)
1541{
1542	struct cache_detail *cd = RPC_I(inode)->private;
1543
1544	return cache_open(inode, filp, cd);
1545}
1546
1547static int cache_release_pipefs(struct inode *inode, struct file *filp)
1548{
1549	struct cache_detail *cd = RPC_I(inode)->private;
1550
1551	return cache_release(inode, filp, cd);
1552}
1553
1554const struct file_operations cache_file_operations_pipefs = {
1555	.owner		= THIS_MODULE,
1556	.llseek		= no_llseek,
1557	.read		= cache_read_pipefs,
1558	.write		= cache_write_pipefs,
1559	.poll		= cache_poll_pipefs,
1560	.ioctl		= cache_ioctl_pipefs, /* for FIONREAD */
1561	.open		= cache_open_pipefs,
1562	.release	= cache_release_pipefs,
1563};
1564
1565static int content_open_pipefs(struct inode *inode, struct file *filp)
1566{
1567	struct cache_detail *cd = RPC_I(inode)->private;
1568
1569	return content_open(inode, filp, cd);
1570}
1571
1572static int content_release_pipefs(struct inode *inode, struct file *filp)
1573{
1574	struct cache_detail *cd = RPC_I(inode)->private;
1575
1576	return content_release(inode, filp, cd);
1577}
1578
1579const struct file_operations content_file_operations_pipefs = {
1580	.open		= content_open_pipefs,
1581	.read		= seq_read,
1582	.llseek		= seq_lseek,
1583	.release	= content_release_pipefs,
1584};
1585
1586static int open_flush_pipefs(struct inode *inode, struct file *filp)
1587{
1588	struct cache_detail *cd = RPC_I(inode)->private;
1589
1590	return open_flush(inode, filp, cd);
1591}
1592
1593static int release_flush_pipefs(struct inode *inode, struct file *filp)
1594{
1595	struct cache_detail *cd = RPC_I(inode)->private;
1596
1597	return release_flush(inode, filp, cd);
1598}
1599
1600static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1601			    size_t count, loff_t *ppos)
1602{
1603	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1604
1605	return read_flush(filp, buf, count, ppos, cd);
1606}
1607
1608static ssize_t write_flush_pipefs(struct file *filp,
1609				  const char __user *buf,
1610				  size_t count, loff_t *ppos)
1611{
1612	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1613
1614	return write_flush(filp, buf, count, ppos, cd);
1615}
1616
1617const struct file_operations cache_flush_operations_pipefs = {
1618	.open		= open_flush_pipefs,
1619	.read		= read_flush_pipefs,
1620	.write		= write_flush_pipefs,
1621	.release	= release_flush_pipefs,
1622};
1623
1624int sunrpc_cache_register_pipefs(struct dentry *parent,
1625				 const char *name, mode_t umode,
1626				 struct cache_detail *cd)
1627{
1628	struct qstr q;
1629	struct dentry *dir;
1630	int ret = 0;
1631
1632	sunrpc_init_cache_detail(cd);
1633	q.name = name;
1634	q.len = strlen(name);
1635	q.hash = full_name_hash(q.name, q.len);
1636	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1637	if (!IS_ERR(dir))
1638		cd->u.pipefs.dir = dir;
1639	else {
1640		sunrpc_destroy_cache_detail(cd);
1641		ret = PTR_ERR(dir);
1642	}
1643	return ret;
1644}
1645EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1646
1647void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1648{
1649	rpc_remove_cache_dir(cd->u.pipefs.dir);
1650	cd->u.pipefs.dir = NULL;
1651	sunrpc_destroy_cache_detail(cd);
1652}
1653EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1654
1655