cache.c revision a95e691f9c4a6e24fdeab6d7feae6d5411fe8a69
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <asm/ioctls.h>
32#include <linux/sunrpc/types.h>
33#include <linux/sunrpc/cache.h>
34#include <linux/sunrpc/stats.h>
35#include <linux/sunrpc/rpc_pipe_fs.h>
36#include "netns.h"
37
38#define	 RPCDBG_FACILITY RPCDBG_CACHE
39
40static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41static void cache_revisit_request(struct cache_head *item);
42
43static void cache_init(struct cache_head *h)
44{
45	time_t now = seconds_since_boot();
46	h->next = NULL;
47	h->flags = 0;
48	kref_init(&h->ref);
49	h->expiry_time = now + CACHE_NEW_EXPIRY;
50	h->last_refresh = now;
51}
52
53static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54{
55	return  (h->expiry_time < seconds_since_boot()) ||
56		(detail->flush_time > h->last_refresh);
57}
58
59struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60				       struct cache_head *key, int hash)
61{
62	struct cache_head **head,  **hp;
63	struct cache_head *new = NULL, *freeme = NULL;
64
65	head = &detail->hash_table[hash];
66
67	read_lock(&detail->hash_lock);
68
69	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70		struct cache_head *tmp = *hp;
71		if (detail->match(tmp, key)) {
72			if (cache_is_expired(detail, tmp))
73				/* This entry is expired, we will discard it. */
74				break;
75			cache_get(tmp);
76			read_unlock(&detail->hash_lock);
77			return tmp;
78		}
79	}
80	read_unlock(&detail->hash_lock);
81	/* Didn't find anything, insert an empty entry */
82
83	new = detail->alloc();
84	if (!new)
85		return NULL;
86	/* must fully initialise 'new', else
87	 * we might get lose if we need to
88	 * cache_put it soon.
89	 */
90	cache_init(new);
91	detail->init(new, key);
92
93	write_lock(&detail->hash_lock);
94
95	/* check if entry appeared while we slept */
96	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97		struct cache_head *tmp = *hp;
98		if (detail->match(tmp, key)) {
99			if (cache_is_expired(detail, tmp)) {
100				*hp = tmp->next;
101				tmp->next = NULL;
102				detail->entries --;
103				freeme = tmp;
104				break;
105			}
106			cache_get(tmp);
107			write_unlock(&detail->hash_lock);
108			cache_put(new, detail);
109			return tmp;
110		}
111	}
112	new->next = *head;
113	*head = new;
114	detail->entries++;
115	cache_get(new);
116	write_unlock(&detail->hash_lock);
117
118	if (freeme)
119		cache_put(freeme, detail);
120	return new;
121}
122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128{
129	head->expiry_time = expiry;
130	head->last_refresh = seconds_since_boot();
131	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132	set_bit(CACHE_VALID, &head->flags);
133}
134
135static void cache_fresh_unlocked(struct cache_head *head,
136				 struct cache_detail *detail)
137{
138	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139		cache_revisit_request(head);
140		cache_dequeue(detail, head);
141	}
142}
143
144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145				       struct cache_head *new, struct cache_head *old, int hash)
146{
147	/* The 'old' entry is to be replaced by 'new'.
148	 * If 'old' is not VALID, we update it directly,
149	 * otherwise we need to replace it
150	 */
151	struct cache_head **head;
152	struct cache_head *tmp;
153
154	if (!test_bit(CACHE_VALID, &old->flags)) {
155		write_lock(&detail->hash_lock);
156		if (!test_bit(CACHE_VALID, &old->flags)) {
157			if (test_bit(CACHE_NEGATIVE, &new->flags))
158				set_bit(CACHE_NEGATIVE, &old->flags);
159			else
160				detail->update(old, new);
161			cache_fresh_locked(old, new->expiry_time);
162			write_unlock(&detail->hash_lock);
163			cache_fresh_unlocked(old, detail);
164			return old;
165		}
166		write_unlock(&detail->hash_lock);
167	}
168	/* We need to insert a new entry */
169	tmp = detail->alloc();
170	if (!tmp) {
171		cache_put(old, detail);
172		return NULL;
173	}
174	cache_init(tmp);
175	detail->init(tmp, old);
176	head = &detail->hash_table[hash];
177
178	write_lock(&detail->hash_lock);
179	if (test_bit(CACHE_NEGATIVE, &new->flags))
180		set_bit(CACHE_NEGATIVE, &tmp->flags);
181	else
182		detail->update(tmp, new);
183	tmp->next = *head;
184	*head = tmp;
185	detail->entries++;
186	cache_get(tmp);
187	cache_fresh_locked(tmp, new->expiry_time);
188	cache_fresh_locked(old, 0);
189	write_unlock(&detail->hash_lock);
190	cache_fresh_unlocked(tmp, detail);
191	cache_fresh_unlocked(old, detail);
192	cache_put(old, detail);
193	return tmp;
194}
195EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198{
199	if (cd->cache_upcall)
200		return cd->cache_upcall(cd, h);
201	return sunrpc_cache_pipe_upcall(cd, h);
202}
203
204static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205{
206	if (!test_bit(CACHE_VALID, &h->flags))
207		return -EAGAIN;
208	else {
209		/* entry is valid */
210		if (test_bit(CACHE_NEGATIVE, &h->flags))
211			return -ENOENT;
212		else {
213			/*
214			 * In combination with write barrier in
215			 * sunrpc_cache_update, ensures that anyone
216			 * using the cache entry after this sees the
217			 * updated contents:
218			 */
219			smp_rmb();
220			return 0;
221		}
222	}
223}
224
225static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226{
227	int rv;
228
229	write_lock(&detail->hash_lock);
230	rv = cache_is_valid(detail, h);
231	if (rv != -EAGAIN) {
232		write_unlock(&detail->hash_lock);
233		return rv;
234	}
235	set_bit(CACHE_NEGATIVE, &h->flags);
236	cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237	write_unlock(&detail->hash_lock);
238	cache_fresh_unlocked(h, detail);
239	return -ENOENT;
240}
241
242/*
243 * This is the generic cache management routine for all
244 * the authentication caches.
245 * It checks the currency of a cache item and will (later)
246 * initiate an upcall to fill it if needed.
247 *
248 *
249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
250 * -EAGAIN if upcall is pending and request has been queued
251 * -ETIMEDOUT if upcall failed or request could not be queue or
252 *           upcall completed but item is still invalid (implying that
253 *           the cache item has been replaced with a newer one).
254 * -ENOENT if cache entry was negative
255 */
256int cache_check(struct cache_detail *detail,
257		    struct cache_head *h, struct cache_req *rqstp)
258{
259	int rv;
260	long refresh_age, age;
261
262	/* First decide return status as best we can */
263	rv = cache_is_valid(detail, h);
264
265	/* now see if we want to start an upcall */
266	refresh_age = (h->expiry_time - h->last_refresh);
267	age = seconds_since_boot() - h->last_refresh;
268
269	if (rqstp == NULL) {
270		if (rv == -EAGAIN)
271			rv = -ENOENT;
272	} else if (rv == -EAGAIN || age > refresh_age/2) {
273		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
274				refresh_age, age);
275		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276			switch (cache_make_upcall(detail, h)) {
277			case -EINVAL:
278				clear_bit(CACHE_PENDING, &h->flags);
279				cache_revisit_request(h);
280				rv = try_to_negate_entry(detail, h);
281				break;
282			case -EAGAIN:
283				clear_bit(CACHE_PENDING, &h->flags);
284				cache_revisit_request(h);
285				break;
286			}
287		}
288	}
289
290	if (rv == -EAGAIN) {
291		if (!cache_defer_req(rqstp, h)) {
292			/*
293			 * Request was not deferred; handle it as best
294			 * we can ourselves:
295			 */
296			rv = cache_is_valid(detail, h);
297			if (rv == -EAGAIN)
298				rv = -ETIMEDOUT;
299		}
300	}
301	if (rv)
302		cache_put(h, detail);
303	return rv;
304}
305EXPORT_SYMBOL_GPL(cache_check);
306
307/*
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
311 * for that entry.
312 *
313 * Each time clean_cache is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
316 *
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
320 *
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
323 *
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
326 * cache_detail.
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
333 *
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
336 *
337 */
338
339static LIST_HEAD(cache_list);
340static DEFINE_SPINLOCK(cache_list_lock);
341static struct cache_detail *current_detail;
342static int current_index;
343
344static void do_cache_clean(struct work_struct *work);
345static struct delayed_work cache_cleaner;
346
347void sunrpc_init_cache_detail(struct cache_detail *cd)
348{
349	rwlock_init(&cd->hash_lock);
350	INIT_LIST_HEAD(&cd->queue);
351	spin_lock(&cache_list_lock);
352	cd->nextcheck = 0;
353	cd->entries = 0;
354	atomic_set(&cd->readers, 0);
355	cd->last_close = 0;
356	cd->last_warn = -1;
357	list_add(&cd->others, &cache_list);
358	spin_unlock(&cache_list_lock);
359
360	/* start the cleaning process */
361	schedule_delayed_work(&cache_cleaner, 0);
362}
363EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364
365void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366{
367	cache_purge(cd);
368	spin_lock(&cache_list_lock);
369	write_lock(&cd->hash_lock);
370	if (cd->entries || atomic_read(&cd->inuse)) {
371		write_unlock(&cd->hash_lock);
372		spin_unlock(&cache_list_lock);
373		goto out;
374	}
375	if (current_detail == cd)
376		current_detail = NULL;
377	list_del_init(&cd->others);
378	write_unlock(&cd->hash_lock);
379	spin_unlock(&cache_list_lock);
380	if (list_empty(&cache_list)) {
381		/* module must be being unloaded so its safe to kill the worker */
382		cancel_delayed_work_sync(&cache_cleaner);
383	}
384	return;
385out:
386	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
387}
388EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
389
390/* clean cache tries to find something to clean
391 * and cleans it.
392 * It returns 1 if it cleaned something,
393 *            0 if it didn't find anything this time
394 *           -1 if it fell off the end of the list.
395 */
396static int cache_clean(void)
397{
398	int rv = 0;
399	struct list_head *next;
400
401	spin_lock(&cache_list_lock);
402
403	/* find a suitable table if we don't already have one */
404	while (current_detail == NULL ||
405	    current_index >= current_detail->hash_size) {
406		if (current_detail)
407			next = current_detail->others.next;
408		else
409			next = cache_list.next;
410		if (next == &cache_list) {
411			current_detail = NULL;
412			spin_unlock(&cache_list_lock);
413			return -1;
414		}
415		current_detail = list_entry(next, struct cache_detail, others);
416		if (current_detail->nextcheck > seconds_since_boot())
417			current_index = current_detail->hash_size;
418		else {
419			current_index = 0;
420			current_detail->nextcheck = seconds_since_boot()+30*60;
421		}
422	}
423
424	/* find a non-empty bucket in the table */
425	while (current_detail &&
426	       current_index < current_detail->hash_size &&
427	       current_detail->hash_table[current_index] == NULL)
428		current_index++;
429
430	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
431
432	if (current_detail && current_index < current_detail->hash_size) {
433		struct cache_head *ch, **cp;
434		struct cache_detail *d;
435
436		write_lock(&current_detail->hash_lock);
437
438		/* Ok, now to clean this strand */
439
440		cp = & current_detail->hash_table[current_index];
441		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
442			if (current_detail->nextcheck > ch->expiry_time)
443				current_detail->nextcheck = ch->expiry_time+1;
444			if (!cache_is_expired(current_detail, ch))
445				continue;
446
447			*cp = ch->next;
448			ch->next = NULL;
449			current_detail->entries--;
450			rv = 1;
451			break;
452		}
453
454		write_unlock(&current_detail->hash_lock);
455		d = current_detail;
456		if (!ch)
457			current_index ++;
458		spin_unlock(&cache_list_lock);
459		if (ch) {
460			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
461				cache_dequeue(current_detail, ch);
462			cache_revisit_request(ch);
463			cache_put(ch, d);
464		}
465	} else
466		spin_unlock(&cache_list_lock);
467
468	return rv;
469}
470
471/*
472 * We want to regularly clean the cache, so we need to schedule some work ...
473 */
474static void do_cache_clean(struct work_struct *work)
475{
476	int delay = 5;
477	if (cache_clean() == -1)
478		delay = round_jiffies_relative(30*HZ);
479
480	if (list_empty(&cache_list))
481		delay = 0;
482
483	if (delay)
484		schedule_delayed_work(&cache_cleaner, delay);
485}
486
487
488/*
489 * Clean all caches promptly.  This just calls cache_clean
490 * repeatedly until we are sure that every cache has had a chance to
491 * be fully cleaned
492 */
493void cache_flush(void)
494{
495	while (cache_clean() != -1)
496		cond_resched();
497	while (cache_clean() != -1)
498		cond_resched();
499}
500EXPORT_SYMBOL_GPL(cache_flush);
501
502void cache_purge(struct cache_detail *detail)
503{
504	detail->flush_time = LONG_MAX;
505	detail->nextcheck = seconds_since_boot();
506	cache_flush();
507	detail->flush_time = 1;
508}
509EXPORT_SYMBOL_GPL(cache_purge);
510
511
512/*
513 * Deferral and Revisiting of Requests.
514 *
515 * If a cache lookup finds a pending entry, we
516 * need to defer the request and revisit it later.
517 * All deferred requests are stored in a hash table,
518 * indexed by "struct cache_head *".
519 * As it may be wasteful to store a whole request
520 * structure, we allow the request to provide a
521 * deferred form, which must contain a
522 * 'struct cache_deferred_req'
523 * This cache_deferred_req contains a method to allow
524 * it to be revisited when cache info is available
525 */
526
527#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
528#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529
530#define	DFR_MAX	300	/* ??? */
531
532static DEFINE_SPINLOCK(cache_defer_lock);
533static LIST_HEAD(cache_defer_list);
534static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
535static int cache_defer_cnt;
536
537static void __unhash_deferred_req(struct cache_deferred_req *dreq)
538{
539	hlist_del_init(&dreq->hash);
540	if (!list_empty(&dreq->recent)) {
541		list_del_init(&dreq->recent);
542		cache_defer_cnt--;
543	}
544}
545
546static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
547{
548	int hash = DFR_HASH(item);
549
550	INIT_LIST_HEAD(&dreq->recent);
551	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
552}
553
554static void setup_deferral(struct cache_deferred_req *dreq,
555			   struct cache_head *item,
556			   int count_me)
557{
558
559	dreq->item = item;
560
561	spin_lock(&cache_defer_lock);
562
563	__hash_deferred_req(dreq, item);
564
565	if (count_me) {
566		cache_defer_cnt++;
567		list_add(&dreq->recent, &cache_defer_list);
568	}
569
570	spin_unlock(&cache_defer_lock);
571
572}
573
574struct thread_deferred_req {
575	struct cache_deferred_req handle;
576	struct completion completion;
577};
578
579static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
580{
581	struct thread_deferred_req *dr =
582		container_of(dreq, struct thread_deferred_req, handle);
583	complete(&dr->completion);
584}
585
586static void cache_wait_req(struct cache_req *req, struct cache_head *item)
587{
588	struct thread_deferred_req sleeper;
589	struct cache_deferred_req *dreq = &sleeper.handle;
590
591	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
592	dreq->revisit = cache_restart_thread;
593
594	setup_deferral(dreq, item, 0);
595
596	if (!test_bit(CACHE_PENDING, &item->flags) ||
597	    wait_for_completion_interruptible_timeout(
598		    &sleeper.completion, req->thread_wait) <= 0) {
599		/* The completion wasn't completed, so we need
600		 * to clean up
601		 */
602		spin_lock(&cache_defer_lock);
603		if (!hlist_unhashed(&sleeper.handle.hash)) {
604			__unhash_deferred_req(&sleeper.handle);
605			spin_unlock(&cache_defer_lock);
606		} else {
607			/* cache_revisit_request already removed
608			 * this from the hash table, but hasn't
609			 * called ->revisit yet.  It will very soon
610			 * and we need to wait for it.
611			 */
612			spin_unlock(&cache_defer_lock);
613			wait_for_completion(&sleeper.completion);
614		}
615	}
616}
617
618static void cache_limit_defers(void)
619{
620	/* Make sure we haven't exceed the limit of allowed deferred
621	 * requests.
622	 */
623	struct cache_deferred_req *discard = NULL;
624
625	if (cache_defer_cnt <= DFR_MAX)
626		return;
627
628	spin_lock(&cache_defer_lock);
629
630	/* Consider removing either the first or the last */
631	if (cache_defer_cnt > DFR_MAX) {
632		if (net_random() & 1)
633			discard = list_entry(cache_defer_list.next,
634					     struct cache_deferred_req, recent);
635		else
636			discard = list_entry(cache_defer_list.prev,
637					     struct cache_deferred_req, recent);
638		__unhash_deferred_req(discard);
639	}
640	spin_unlock(&cache_defer_lock);
641	if (discard)
642		discard->revisit(discard, 1);
643}
644
645/* Return true if and only if a deferred request is queued. */
646static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
647{
648	struct cache_deferred_req *dreq;
649
650	if (req->thread_wait) {
651		cache_wait_req(req, item);
652		if (!test_bit(CACHE_PENDING, &item->flags))
653			return false;
654	}
655	dreq = req->defer(req);
656	if (dreq == NULL)
657		return false;
658	setup_deferral(dreq, item, 1);
659	if (!test_bit(CACHE_PENDING, &item->flags))
660		/* Bit could have been cleared before we managed to
661		 * set up the deferral, so need to revisit just in case
662		 */
663		cache_revisit_request(item);
664
665	cache_limit_defers();
666	return true;
667}
668
669static void cache_revisit_request(struct cache_head *item)
670{
671	struct cache_deferred_req *dreq;
672	struct list_head pending;
673	struct hlist_node *tmp;
674	int hash = DFR_HASH(item);
675
676	INIT_LIST_HEAD(&pending);
677	spin_lock(&cache_defer_lock);
678
679	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
680		if (dreq->item == item) {
681			__unhash_deferred_req(dreq);
682			list_add(&dreq->recent, &pending);
683		}
684
685	spin_unlock(&cache_defer_lock);
686
687	while (!list_empty(&pending)) {
688		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689		list_del_init(&dreq->recent);
690		dreq->revisit(dreq, 0);
691	}
692}
693
694void cache_clean_deferred(void *owner)
695{
696	struct cache_deferred_req *dreq, *tmp;
697	struct list_head pending;
698
699
700	INIT_LIST_HEAD(&pending);
701	spin_lock(&cache_defer_lock);
702
703	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
704		if (dreq->owner == owner) {
705			__unhash_deferred_req(dreq);
706			list_add(&dreq->recent, &pending);
707		}
708	}
709	spin_unlock(&cache_defer_lock);
710
711	while (!list_empty(&pending)) {
712		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
713		list_del_init(&dreq->recent);
714		dreq->revisit(dreq, 1);
715	}
716}
717
718/*
719 * communicate with user-space
720 *
721 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
722 * On read, you get a full request, or block.
723 * On write, an update request is processed.
724 * Poll works if anything to read, and always allows write.
725 *
726 * Implemented by linked list of requests.  Each open file has
727 * a ->private that also exists in this list.  New requests are added
728 * to the end and may wakeup and preceding readers.
729 * New readers are added to the head.  If, on read, an item is found with
730 * CACHE_UPCALLING clear, we free it from the list.
731 *
732 */
733
734static DEFINE_SPINLOCK(queue_lock);
735static DEFINE_MUTEX(queue_io_mutex);
736
737struct cache_queue {
738	struct list_head	list;
739	int			reader;	/* if 0, then request */
740};
741struct cache_request {
742	struct cache_queue	q;
743	struct cache_head	*item;
744	char			* buf;
745	int			len;
746	int			readers;
747};
748struct cache_reader {
749	struct cache_queue	q;
750	int			offset;	/* if non-0, we have a refcnt on next request */
751};
752
753static int cache_request(struct cache_detail *detail,
754			       struct cache_request *crq)
755{
756	char *bp = crq->buf;
757	int len = PAGE_SIZE;
758
759	detail->cache_request(detail, crq->item, &bp, &len);
760	if (len < 0)
761		return -EAGAIN;
762	return PAGE_SIZE - len;
763}
764
765static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
766			  loff_t *ppos, struct cache_detail *cd)
767{
768	struct cache_reader *rp = filp->private_data;
769	struct cache_request *rq;
770	struct inode *inode = file_inode(filp);
771	int err;
772
773	if (count == 0)
774		return 0;
775
776	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
777			      * readers on this file */
778 again:
779	spin_lock(&queue_lock);
780	/* need to find next request */
781	while (rp->q.list.next != &cd->queue &&
782	       list_entry(rp->q.list.next, struct cache_queue, list)
783	       ->reader) {
784		struct list_head *next = rp->q.list.next;
785		list_move(&rp->q.list, next);
786	}
787	if (rp->q.list.next == &cd->queue) {
788		spin_unlock(&queue_lock);
789		mutex_unlock(&inode->i_mutex);
790		WARN_ON_ONCE(rp->offset);
791		return 0;
792	}
793	rq = container_of(rp->q.list.next, struct cache_request, q.list);
794	WARN_ON_ONCE(rq->q.reader);
795	if (rp->offset == 0)
796		rq->readers++;
797	spin_unlock(&queue_lock);
798
799	if (rq->len == 0) {
800		err = cache_request(cd, rq);
801		if (err < 0)
802			goto out;
803		rq->len = err;
804	}
805
806	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
807		err = -EAGAIN;
808		spin_lock(&queue_lock);
809		list_move(&rp->q.list, &rq->q.list);
810		spin_unlock(&queue_lock);
811	} else {
812		if (rp->offset + count > rq->len)
813			count = rq->len - rp->offset;
814		err = -EFAULT;
815		if (copy_to_user(buf, rq->buf + rp->offset, count))
816			goto out;
817		rp->offset += count;
818		if (rp->offset >= rq->len) {
819			rp->offset = 0;
820			spin_lock(&queue_lock);
821			list_move(&rp->q.list, &rq->q.list);
822			spin_unlock(&queue_lock);
823		}
824		err = 0;
825	}
826 out:
827	if (rp->offset == 0) {
828		/* need to release rq */
829		spin_lock(&queue_lock);
830		rq->readers--;
831		if (rq->readers == 0 &&
832		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
833			list_del(&rq->q.list);
834			spin_unlock(&queue_lock);
835			cache_put(rq->item, cd);
836			kfree(rq->buf);
837			kfree(rq);
838		} else
839			spin_unlock(&queue_lock);
840	}
841	if (err == -EAGAIN)
842		goto again;
843	mutex_unlock(&inode->i_mutex);
844	return err ? err :  count;
845}
846
847static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
848				 size_t count, struct cache_detail *cd)
849{
850	ssize_t ret;
851
852	if (count == 0)
853		return -EINVAL;
854	if (copy_from_user(kaddr, buf, count))
855		return -EFAULT;
856	kaddr[count] = '\0';
857	ret = cd->cache_parse(cd, kaddr, count);
858	if (!ret)
859		ret = count;
860	return ret;
861}
862
863static ssize_t cache_slow_downcall(const char __user *buf,
864				   size_t count, struct cache_detail *cd)
865{
866	static char write_buf[8192]; /* protected by queue_io_mutex */
867	ssize_t ret = -EINVAL;
868
869	if (count >= sizeof(write_buf))
870		goto out;
871	mutex_lock(&queue_io_mutex);
872	ret = cache_do_downcall(write_buf, buf, count, cd);
873	mutex_unlock(&queue_io_mutex);
874out:
875	return ret;
876}
877
878static ssize_t cache_downcall(struct address_space *mapping,
879			      const char __user *buf,
880			      size_t count, struct cache_detail *cd)
881{
882	struct page *page;
883	char *kaddr;
884	ssize_t ret = -ENOMEM;
885
886	if (count >= PAGE_CACHE_SIZE)
887		goto out_slow;
888
889	page = find_or_create_page(mapping, 0, GFP_KERNEL);
890	if (!page)
891		goto out_slow;
892
893	kaddr = kmap(page);
894	ret = cache_do_downcall(kaddr, buf, count, cd);
895	kunmap(page);
896	unlock_page(page);
897	page_cache_release(page);
898	return ret;
899out_slow:
900	return cache_slow_downcall(buf, count, cd);
901}
902
903static ssize_t cache_write(struct file *filp, const char __user *buf,
904			   size_t count, loff_t *ppos,
905			   struct cache_detail *cd)
906{
907	struct address_space *mapping = filp->f_mapping;
908	struct inode *inode = file_inode(filp);
909	ssize_t ret = -EINVAL;
910
911	if (!cd->cache_parse)
912		goto out;
913
914	mutex_lock(&inode->i_mutex);
915	ret = cache_downcall(mapping, buf, count, cd);
916	mutex_unlock(&inode->i_mutex);
917out:
918	return ret;
919}
920
921static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
922
923static unsigned int cache_poll(struct file *filp, poll_table *wait,
924			       struct cache_detail *cd)
925{
926	unsigned int mask;
927	struct cache_reader *rp = filp->private_data;
928	struct cache_queue *cq;
929
930	poll_wait(filp, &queue_wait, wait);
931
932	/* alway allow write */
933	mask = POLL_OUT | POLLWRNORM;
934
935	if (!rp)
936		return mask;
937
938	spin_lock(&queue_lock);
939
940	for (cq= &rp->q; &cq->list != &cd->queue;
941	     cq = list_entry(cq->list.next, struct cache_queue, list))
942		if (!cq->reader) {
943			mask |= POLLIN | POLLRDNORM;
944			break;
945		}
946	spin_unlock(&queue_lock);
947	return mask;
948}
949
950static int cache_ioctl(struct inode *ino, struct file *filp,
951		       unsigned int cmd, unsigned long arg,
952		       struct cache_detail *cd)
953{
954	int len = 0;
955	struct cache_reader *rp = filp->private_data;
956	struct cache_queue *cq;
957
958	if (cmd != FIONREAD || !rp)
959		return -EINVAL;
960
961	spin_lock(&queue_lock);
962
963	/* only find the length remaining in current request,
964	 * or the length of the next request
965	 */
966	for (cq= &rp->q; &cq->list != &cd->queue;
967	     cq = list_entry(cq->list.next, struct cache_queue, list))
968		if (!cq->reader) {
969			struct cache_request *cr =
970				container_of(cq, struct cache_request, q);
971			len = cr->len - rp->offset;
972			break;
973		}
974	spin_unlock(&queue_lock);
975
976	return put_user(len, (int __user *)arg);
977}
978
979static int cache_open(struct inode *inode, struct file *filp,
980		      struct cache_detail *cd)
981{
982	struct cache_reader *rp = NULL;
983
984	if (!cd || !try_module_get(cd->owner))
985		return -EACCES;
986	nonseekable_open(inode, filp);
987	if (filp->f_mode & FMODE_READ) {
988		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
989		if (!rp) {
990			module_put(cd->owner);
991			return -ENOMEM;
992		}
993		rp->offset = 0;
994		rp->q.reader = 1;
995		atomic_inc(&cd->readers);
996		spin_lock(&queue_lock);
997		list_add(&rp->q.list, &cd->queue);
998		spin_unlock(&queue_lock);
999	}
1000	filp->private_data = rp;
1001	return 0;
1002}
1003
1004static int cache_release(struct inode *inode, struct file *filp,
1005			 struct cache_detail *cd)
1006{
1007	struct cache_reader *rp = filp->private_data;
1008
1009	if (rp) {
1010		spin_lock(&queue_lock);
1011		if (rp->offset) {
1012			struct cache_queue *cq;
1013			for (cq= &rp->q; &cq->list != &cd->queue;
1014			     cq = list_entry(cq->list.next, struct cache_queue, list))
1015				if (!cq->reader) {
1016					container_of(cq, struct cache_request, q)
1017						->readers--;
1018					break;
1019				}
1020			rp->offset = 0;
1021		}
1022		list_del(&rp->q.list);
1023		spin_unlock(&queue_lock);
1024
1025		filp->private_data = NULL;
1026		kfree(rp);
1027
1028		cd->last_close = seconds_since_boot();
1029		atomic_dec(&cd->readers);
1030	}
1031	module_put(cd->owner);
1032	return 0;
1033}
1034
1035
1036
1037static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1038{
1039	struct cache_queue *cq;
1040	spin_lock(&queue_lock);
1041	list_for_each_entry(cq, &detail->queue, list)
1042		if (!cq->reader) {
1043			struct cache_request *cr = container_of(cq, struct cache_request, q);
1044			if (cr->item != ch)
1045				continue;
1046			if (cr->readers != 0)
1047				continue;
1048			list_del(&cr->q.list);
1049			spin_unlock(&queue_lock);
1050			cache_put(cr->item, detail);
1051			kfree(cr->buf);
1052			kfree(cr);
1053			return;
1054		}
1055	spin_unlock(&queue_lock);
1056}
1057
1058/*
1059 * Support routines for text-based upcalls.
1060 * Fields are separated by spaces.
1061 * Fields are either mangled to quote space tab newline slosh with slosh
1062 * or a hexified with a leading \x
1063 * Record is terminated with newline.
1064 *
1065 */
1066
1067void qword_add(char **bpp, int *lp, char *str)
1068{
1069	char *bp = *bpp;
1070	int len = *lp;
1071	char c;
1072
1073	if (len < 0) return;
1074
1075	while ((c=*str++) && len)
1076		switch(c) {
1077		case ' ':
1078		case '\t':
1079		case '\n':
1080		case '\\':
1081			if (len >= 4) {
1082				*bp++ = '\\';
1083				*bp++ = '0' + ((c & 0300)>>6);
1084				*bp++ = '0' + ((c & 0070)>>3);
1085				*bp++ = '0' + ((c & 0007)>>0);
1086			}
1087			len -= 4;
1088			break;
1089		default:
1090			*bp++ = c;
1091			len--;
1092		}
1093	if (c || len <1) len = -1;
1094	else {
1095		*bp++ = ' ';
1096		len--;
1097	}
1098	*bpp = bp;
1099	*lp = len;
1100}
1101EXPORT_SYMBOL_GPL(qword_add);
1102
1103void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1104{
1105	char *bp = *bpp;
1106	int len = *lp;
1107
1108	if (len < 0) return;
1109
1110	if (len > 2) {
1111		*bp++ = '\\';
1112		*bp++ = 'x';
1113		len -= 2;
1114		while (blen && len >= 2) {
1115			unsigned char c = *buf++;
1116			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1117			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1118			len -= 2;
1119			blen--;
1120		}
1121	}
1122	if (blen || len<1) len = -1;
1123	else {
1124		*bp++ = ' ';
1125		len--;
1126	}
1127	*bpp = bp;
1128	*lp = len;
1129}
1130EXPORT_SYMBOL_GPL(qword_addhex);
1131
1132static void warn_no_listener(struct cache_detail *detail)
1133{
1134	if (detail->last_warn != detail->last_close) {
1135		detail->last_warn = detail->last_close;
1136		if (detail->warn_no_listener)
1137			detail->warn_no_listener(detail, detail->last_close != 0);
1138	}
1139}
1140
1141static bool cache_listeners_exist(struct cache_detail *detail)
1142{
1143	if (atomic_read(&detail->readers))
1144		return true;
1145	if (detail->last_close == 0)
1146		/* This cache was never opened */
1147		return false;
1148	if (detail->last_close < seconds_since_boot() - 30)
1149		/*
1150		 * We allow for the possibility that someone might
1151		 * restart a userspace daemon without restarting the
1152		 * server; but after 30 seconds, we give up.
1153		 */
1154		 return false;
1155	return true;
1156}
1157
1158/*
1159 * register an upcall request to user-space and queue it up for read() by the
1160 * upcall daemon.
1161 *
1162 * Each request is at most one page long.
1163 */
1164int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1165{
1166
1167	char *buf;
1168	struct cache_request *crq;
1169
1170	if (!detail->cache_request)
1171		return -EINVAL;
1172
1173	if (!cache_listeners_exist(detail)) {
1174		warn_no_listener(detail);
1175		return -EINVAL;
1176	}
1177
1178	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1179	if (!buf)
1180		return -EAGAIN;
1181
1182	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1183	if (!crq) {
1184		kfree(buf);
1185		return -EAGAIN;
1186	}
1187
1188	crq->q.reader = 0;
1189	crq->item = cache_get(h);
1190	crq->buf = buf;
1191	crq->len = 0;
1192	crq->readers = 0;
1193	spin_lock(&queue_lock);
1194	list_add_tail(&crq->q.list, &detail->queue);
1195	spin_unlock(&queue_lock);
1196	wake_up(&queue_wait);
1197	return 0;
1198}
1199EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1200
1201/*
1202 * parse a message from user-space and pass it
1203 * to an appropriate cache
1204 * Messages are, like requests, separated into fields by
1205 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1206 *
1207 * Message is
1208 *   reply cachename expiry key ... content....
1209 *
1210 * key and content are both parsed by cache
1211 */
1212
1213int qword_get(char **bpp, char *dest, int bufsize)
1214{
1215	/* return bytes copied, or -1 on error */
1216	char *bp = *bpp;
1217	int len = 0;
1218
1219	while (*bp == ' ') bp++;
1220
1221	if (bp[0] == '\\' && bp[1] == 'x') {
1222		/* HEX STRING */
1223		bp += 2;
1224		while (len < bufsize) {
1225			int h, l;
1226
1227			h = hex_to_bin(bp[0]);
1228			if (h < 0)
1229				break;
1230
1231			l = hex_to_bin(bp[1]);
1232			if (l < 0)
1233				break;
1234
1235			*dest++ = (h << 4) | l;
1236			bp += 2;
1237			len++;
1238		}
1239	} else {
1240		/* text with \nnn octal quoting */
1241		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1242			if (*bp == '\\' &&
1243			    isodigit(bp[1]) && (bp[1] <= '3') &&
1244			    isodigit(bp[2]) &&
1245			    isodigit(bp[3])) {
1246				int byte = (*++bp -'0');
1247				bp++;
1248				byte = (byte << 3) | (*bp++ - '0');
1249				byte = (byte << 3) | (*bp++ - '0');
1250				*dest++ = byte;
1251				len++;
1252			} else {
1253				*dest++ = *bp++;
1254				len++;
1255			}
1256		}
1257	}
1258
1259	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1260		return -1;
1261	while (*bp == ' ') bp++;
1262	*bpp = bp;
1263	*dest = '\0';
1264	return len;
1265}
1266EXPORT_SYMBOL_GPL(qword_get);
1267
1268
1269/*
1270 * support /proc/sunrpc/cache/$CACHENAME/content
1271 * as a seqfile.
1272 * We call ->cache_show passing NULL for the item to
1273 * get a header, then pass each real item in the cache
1274 */
1275
1276struct handle {
1277	struct cache_detail *cd;
1278};
1279
1280static void *c_start(struct seq_file *m, loff_t *pos)
1281	__acquires(cd->hash_lock)
1282{
1283	loff_t n = *pos;
1284	unsigned int hash, entry;
1285	struct cache_head *ch;
1286	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1287
1288
1289	read_lock(&cd->hash_lock);
1290	if (!n--)
1291		return SEQ_START_TOKEN;
1292	hash = n >> 32;
1293	entry = n & ((1LL<<32) - 1);
1294
1295	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1296		if (!entry--)
1297			return ch;
1298	n &= ~((1LL<<32) - 1);
1299	do {
1300		hash++;
1301		n += 1LL<<32;
1302	} while(hash < cd->hash_size &&
1303		cd->hash_table[hash]==NULL);
1304	if (hash >= cd->hash_size)
1305		return NULL;
1306	*pos = n+1;
1307	return cd->hash_table[hash];
1308}
1309
1310static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1311{
1312	struct cache_head *ch = p;
1313	int hash = (*pos >> 32);
1314	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1315
1316	if (p == SEQ_START_TOKEN)
1317		hash = 0;
1318	else if (ch->next == NULL) {
1319		hash++;
1320		*pos += 1LL<<32;
1321	} else {
1322		++*pos;
1323		return ch->next;
1324	}
1325	*pos &= ~((1LL<<32) - 1);
1326	while (hash < cd->hash_size &&
1327	       cd->hash_table[hash] == NULL) {
1328		hash++;
1329		*pos += 1LL<<32;
1330	}
1331	if (hash >= cd->hash_size)
1332		return NULL;
1333	++*pos;
1334	return cd->hash_table[hash];
1335}
1336
1337static void c_stop(struct seq_file *m, void *p)
1338	__releases(cd->hash_lock)
1339{
1340	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1341	read_unlock(&cd->hash_lock);
1342}
1343
1344static int c_show(struct seq_file *m, void *p)
1345{
1346	struct cache_head *cp = p;
1347	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1348
1349	if (p == SEQ_START_TOKEN)
1350		return cd->cache_show(m, cd, NULL);
1351
1352	ifdebug(CACHE)
1353		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1354			   convert_to_wallclock(cp->expiry_time),
1355			   atomic_read(&cp->ref.refcount), cp->flags);
1356	cache_get(cp);
1357	if (cache_check(cd, cp, NULL))
1358		/* cache_check does a cache_put on failure */
1359		seq_printf(m, "# ");
1360	else {
1361		if (cache_is_expired(cd, cp))
1362			seq_printf(m, "# ");
1363		cache_put(cp, cd);
1364	}
1365
1366	return cd->cache_show(m, cd, cp);
1367}
1368
1369static const struct seq_operations cache_content_op = {
1370	.start	= c_start,
1371	.next	= c_next,
1372	.stop	= c_stop,
1373	.show	= c_show,
1374};
1375
1376static int content_open(struct inode *inode, struct file *file,
1377			struct cache_detail *cd)
1378{
1379	struct handle *han;
1380
1381	if (!cd || !try_module_get(cd->owner))
1382		return -EACCES;
1383	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1384	if (han == NULL) {
1385		module_put(cd->owner);
1386		return -ENOMEM;
1387	}
1388
1389	han->cd = cd;
1390	return 0;
1391}
1392
1393static int content_release(struct inode *inode, struct file *file,
1394		struct cache_detail *cd)
1395{
1396	int ret = seq_release_private(inode, file);
1397	module_put(cd->owner);
1398	return ret;
1399}
1400
1401static int open_flush(struct inode *inode, struct file *file,
1402			struct cache_detail *cd)
1403{
1404	if (!cd || !try_module_get(cd->owner))
1405		return -EACCES;
1406	return nonseekable_open(inode, file);
1407}
1408
1409static int release_flush(struct inode *inode, struct file *file,
1410			struct cache_detail *cd)
1411{
1412	module_put(cd->owner);
1413	return 0;
1414}
1415
1416static ssize_t read_flush(struct file *file, char __user *buf,
1417			  size_t count, loff_t *ppos,
1418			  struct cache_detail *cd)
1419{
1420	char tbuf[22];
1421	unsigned long p = *ppos;
1422	size_t len;
1423
1424	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1425	len = strlen(tbuf);
1426	if (p >= len)
1427		return 0;
1428	len -= p;
1429	if (len > count)
1430		len = count;
1431	if (copy_to_user(buf, (void*)(tbuf+p), len))
1432		return -EFAULT;
1433	*ppos += len;
1434	return len;
1435}
1436
1437static ssize_t write_flush(struct file *file, const char __user *buf,
1438			   size_t count, loff_t *ppos,
1439			   struct cache_detail *cd)
1440{
1441	char tbuf[20];
1442	char *bp, *ep;
1443
1444	if (*ppos || count > sizeof(tbuf)-1)
1445		return -EINVAL;
1446	if (copy_from_user(tbuf, buf, count))
1447		return -EFAULT;
1448	tbuf[count] = 0;
1449	simple_strtoul(tbuf, &ep, 0);
1450	if (*ep && *ep != '\n')
1451		return -EINVAL;
1452
1453	bp = tbuf;
1454	cd->flush_time = get_expiry(&bp);
1455	cd->nextcheck = seconds_since_boot();
1456	cache_flush();
1457
1458	*ppos += count;
1459	return count;
1460}
1461
1462static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1463				 size_t count, loff_t *ppos)
1464{
1465	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1466
1467	return cache_read(filp, buf, count, ppos, cd);
1468}
1469
1470static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1471				  size_t count, loff_t *ppos)
1472{
1473	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1474
1475	return cache_write(filp, buf, count, ppos, cd);
1476}
1477
1478static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1479{
1480	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1481
1482	return cache_poll(filp, wait, cd);
1483}
1484
1485static long cache_ioctl_procfs(struct file *filp,
1486			       unsigned int cmd, unsigned long arg)
1487{
1488	struct inode *inode = file_inode(filp);
1489	struct cache_detail *cd = PDE_DATA(inode);
1490
1491	return cache_ioctl(inode, filp, cmd, arg, cd);
1492}
1493
1494static int cache_open_procfs(struct inode *inode, struct file *filp)
1495{
1496	struct cache_detail *cd = PDE_DATA(inode);
1497
1498	return cache_open(inode, filp, cd);
1499}
1500
1501static int cache_release_procfs(struct inode *inode, struct file *filp)
1502{
1503	struct cache_detail *cd = PDE_DATA(inode);
1504
1505	return cache_release(inode, filp, cd);
1506}
1507
1508static const struct file_operations cache_file_operations_procfs = {
1509	.owner		= THIS_MODULE,
1510	.llseek		= no_llseek,
1511	.read		= cache_read_procfs,
1512	.write		= cache_write_procfs,
1513	.poll		= cache_poll_procfs,
1514	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1515	.open		= cache_open_procfs,
1516	.release	= cache_release_procfs,
1517};
1518
1519static int content_open_procfs(struct inode *inode, struct file *filp)
1520{
1521	struct cache_detail *cd = PDE_DATA(inode);
1522
1523	return content_open(inode, filp, cd);
1524}
1525
1526static int content_release_procfs(struct inode *inode, struct file *filp)
1527{
1528	struct cache_detail *cd = PDE_DATA(inode);
1529
1530	return content_release(inode, filp, cd);
1531}
1532
1533static const struct file_operations content_file_operations_procfs = {
1534	.open		= content_open_procfs,
1535	.read		= seq_read,
1536	.llseek		= seq_lseek,
1537	.release	= content_release_procfs,
1538};
1539
1540static int open_flush_procfs(struct inode *inode, struct file *filp)
1541{
1542	struct cache_detail *cd = PDE_DATA(inode);
1543
1544	return open_flush(inode, filp, cd);
1545}
1546
1547static int release_flush_procfs(struct inode *inode, struct file *filp)
1548{
1549	struct cache_detail *cd = PDE_DATA(inode);
1550
1551	return release_flush(inode, filp, cd);
1552}
1553
1554static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1555			    size_t count, loff_t *ppos)
1556{
1557	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1558
1559	return read_flush(filp, buf, count, ppos, cd);
1560}
1561
1562static ssize_t write_flush_procfs(struct file *filp,
1563				  const char __user *buf,
1564				  size_t count, loff_t *ppos)
1565{
1566	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567
1568	return write_flush(filp, buf, count, ppos, cd);
1569}
1570
1571static const struct file_operations cache_flush_operations_procfs = {
1572	.open		= open_flush_procfs,
1573	.read		= read_flush_procfs,
1574	.write		= write_flush_procfs,
1575	.release	= release_flush_procfs,
1576	.llseek		= no_llseek,
1577};
1578
1579static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1580{
1581	struct sunrpc_net *sn;
1582
1583	if (cd->u.procfs.proc_ent == NULL)
1584		return;
1585	if (cd->u.procfs.flush_ent)
1586		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1587	if (cd->u.procfs.channel_ent)
1588		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1589	if (cd->u.procfs.content_ent)
1590		remove_proc_entry("content", cd->u.procfs.proc_ent);
1591	cd->u.procfs.proc_ent = NULL;
1592	sn = net_generic(net, sunrpc_net_id);
1593	remove_proc_entry(cd->name, sn->proc_net_rpc);
1594}
1595
1596#ifdef CONFIG_PROC_FS
1597static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1598{
1599	struct proc_dir_entry *p;
1600	struct sunrpc_net *sn;
1601
1602	sn = net_generic(net, sunrpc_net_id);
1603	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1604	if (cd->u.procfs.proc_ent == NULL)
1605		goto out_nomem;
1606	cd->u.procfs.channel_ent = NULL;
1607	cd->u.procfs.content_ent = NULL;
1608
1609	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1610			     cd->u.procfs.proc_ent,
1611			     &cache_flush_operations_procfs, cd);
1612	cd->u.procfs.flush_ent = p;
1613	if (p == NULL)
1614		goto out_nomem;
1615
1616	if (cd->cache_request || cd->cache_parse) {
1617		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1618				     cd->u.procfs.proc_ent,
1619				     &cache_file_operations_procfs, cd);
1620		cd->u.procfs.channel_ent = p;
1621		if (p == NULL)
1622			goto out_nomem;
1623	}
1624	if (cd->cache_show) {
1625		p = proc_create_data("content", S_IFREG|S_IRUSR,
1626				cd->u.procfs.proc_ent,
1627				&content_file_operations_procfs, cd);
1628		cd->u.procfs.content_ent = p;
1629		if (p == NULL)
1630			goto out_nomem;
1631	}
1632	return 0;
1633out_nomem:
1634	remove_cache_proc_entries(cd, net);
1635	return -ENOMEM;
1636}
1637#else /* CONFIG_PROC_FS */
1638static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1639{
1640	return 0;
1641}
1642#endif
1643
1644void __init cache_initialize(void)
1645{
1646	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1647}
1648
1649int cache_register_net(struct cache_detail *cd, struct net *net)
1650{
1651	int ret;
1652
1653	sunrpc_init_cache_detail(cd);
1654	ret = create_cache_proc_entries(cd, net);
1655	if (ret)
1656		sunrpc_destroy_cache_detail(cd);
1657	return ret;
1658}
1659EXPORT_SYMBOL_GPL(cache_register_net);
1660
1661void cache_unregister_net(struct cache_detail *cd, struct net *net)
1662{
1663	remove_cache_proc_entries(cd, net);
1664	sunrpc_destroy_cache_detail(cd);
1665}
1666EXPORT_SYMBOL_GPL(cache_unregister_net);
1667
1668struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1669{
1670	struct cache_detail *cd;
1671
1672	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1673	if (cd == NULL)
1674		return ERR_PTR(-ENOMEM);
1675
1676	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1677				 GFP_KERNEL);
1678	if (cd->hash_table == NULL) {
1679		kfree(cd);
1680		return ERR_PTR(-ENOMEM);
1681	}
1682	cd->net = net;
1683	return cd;
1684}
1685EXPORT_SYMBOL_GPL(cache_create_net);
1686
1687void cache_destroy_net(struct cache_detail *cd, struct net *net)
1688{
1689	kfree(cd->hash_table);
1690	kfree(cd);
1691}
1692EXPORT_SYMBOL_GPL(cache_destroy_net);
1693
1694static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1695				 size_t count, loff_t *ppos)
1696{
1697	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1698
1699	return cache_read(filp, buf, count, ppos, cd);
1700}
1701
1702static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1703				  size_t count, loff_t *ppos)
1704{
1705	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1706
1707	return cache_write(filp, buf, count, ppos, cd);
1708}
1709
1710static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1711{
1712	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1713
1714	return cache_poll(filp, wait, cd);
1715}
1716
1717static long cache_ioctl_pipefs(struct file *filp,
1718			      unsigned int cmd, unsigned long arg)
1719{
1720	struct inode *inode = file_inode(filp);
1721	struct cache_detail *cd = RPC_I(inode)->private;
1722
1723	return cache_ioctl(inode, filp, cmd, arg, cd);
1724}
1725
1726static int cache_open_pipefs(struct inode *inode, struct file *filp)
1727{
1728	struct cache_detail *cd = RPC_I(inode)->private;
1729
1730	return cache_open(inode, filp, cd);
1731}
1732
1733static int cache_release_pipefs(struct inode *inode, struct file *filp)
1734{
1735	struct cache_detail *cd = RPC_I(inode)->private;
1736
1737	return cache_release(inode, filp, cd);
1738}
1739
1740const struct file_operations cache_file_operations_pipefs = {
1741	.owner		= THIS_MODULE,
1742	.llseek		= no_llseek,
1743	.read		= cache_read_pipefs,
1744	.write		= cache_write_pipefs,
1745	.poll		= cache_poll_pipefs,
1746	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1747	.open		= cache_open_pipefs,
1748	.release	= cache_release_pipefs,
1749};
1750
1751static int content_open_pipefs(struct inode *inode, struct file *filp)
1752{
1753	struct cache_detail *cd = RPC_I(inode)->private;
1754
1755	return content_open(inode, filp, cd);
1756}
1757
1758static int content_release_pipefs(struct inode *inode, struct file *filp)
1759{
1760	struct cache_detail *cd = RPC_I(inode)->private;
1761
1762	return content_release(inode, filp, cd);
1763}
1764
1765const struct file_operations content_file_operations_pipefs = {
1766	.open		= content_open_pipefs,
1767	.read		= seq_read,
1768	.llseek		= seq_lseek,
1769	.release	= content_release_pipefs,
1770};
1771
1772static int open_flush_pipefs(struct inode *inode, struct file *filp)
1773{
1774	struct cache_detail *cd = RPC_I(inode)->private;
1775
1776	return open_flush(inode, filp, cd);
1777}
1778
1779static int release_flush_pipefs(struct inode *inode, struct file *filp)
1780{
1781	struct cache_detail *cd = RPC_I(inode)->private;
1782
1783	return release_flush(inode, filp, cd);
1784}
1785
1786static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1787			    size_t count, loff_t *ppos)
1788{
1789	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1790
1791	return read_flush(filp, buf, count, ppos, cd);
1792}
1793
1794static ssize_t write_flush_pipefs(struct file *filp,
1795				  const char __user *buf,
1796				  size_t count, loff_t *ppos)
1797{
1798	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1799
1800	return write_flush(filp, buf, count, ppos, cd);
1801}
1802
1803const struct file_operations cache_flush_operations_pipefs = {
1804	.open		= open_flush_pipefs,
1805	.read		= read_flush_pipefs,
1806	.write		= write_flush_pipefs,
1807	.release	= release_flush_pipefs,
1808	.llseek		= no_llseek,
1809};
1810
1811int sunrpc_cache_register_pipefs(struct dentry *parent,
1812				 const char *name, umode_t umode,
1813				 struct cache_detail *cd)
1814{
1815	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1816	if (IS_ERR(dir))
1817		return PTR_ERR(dir);
1818	cd->u.pipefs.dir = dir;
1819	return 0;
1820}
1821EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1822
1823void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1824{
1825	rpc_remove_cache_dir(cd->u.pipefs.dir);
1826	cd->u.pipefs.dir = NULL;
1827}
1828EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1829
1830