cache.c revision cd68c374ea9ce202ae7c6346777d10078e243d49
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <asm/ioctls.h>
32#include <linux/sunrpc/types.h>
33#include <linux/sunrpc/cache.h>
34#include <linux/sunrpc/stats.h>
35#include <linux/sunrpc/rpc_pipe_fs.h>
36
37#define	 RPCDBG_FACILITY RPCDBG_CACHE
38
39static int cache_defer_req(struct cache_req *req, struct cache_head *item);
40static void cache_revisit_request(struct cache_head *item);
41
42static void cache_init(struct cache_head *h)
43{
44	time_t now = get_seconds();
45	h->next = NULL;
46	h->flags = 0;
47	kref_init(&h->ref);
48	h->expiry_time = now + CACHE_NEW_EXPIRY;
49	h->last_refresh = now;
50}
51
52struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
53				       struct cache_head *key, int hash)
54{
55	struct cache_head **head,  **hp;
56	struct cache_head *new = NULL;
57
58	head = &detail->hash_table[hash];
59
60	read_lock(&detail->hash_lock);
61
62	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
63		struct cache_head *tmp = *hp;
64		if (detail->match(tmp, key)) {
65			cache_get(tmp);
66			read_unlock(&detail->hash_lock);
67			return tmp;
68		}
69	}
70	read_unlock(&detail->hash_lock);
71	/* Didn't find anything, insert an empty entry */
72
73	new = detail->alloc();
74	if (!new)
75		return NULL;
76	/* must fully initialise 'new', else
77	 * we might get lose if we need to
78	 * cache_put it soon.
79	 */
80	cache_init(new);
81	detail->init(new, key);
82
83	write_lock(&detail->hash_lock);
84
85	/* check if entry appeared while we slept */
86	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
87		struct cache_head *tmp = *hp;
88		if (detail->match(tmp, key)) {
89			cache_get(tmp);
90			write_unlock(&detail->hash_lock);
91			cache_put(new, detail);
92			return tmp;
93		}
94	}
95	new->next = *head;
96	*head = new;
97	detail->entries++;
98	cache_get(new);
99	write_unlock(&detail->hash_lock);
100
101	return new;
102}
103EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
104
105
106static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
107
108static void cache_fresh_locked(struct cache_head *head, time_t expiry)
109{
110	head->expiry_time = expiry;
111	head->last_refresh = get_seconds();
112	set_bit(CACHE_VALID, &head->flags);
113}
114
115static void cache_fresh_unlocked(struct cache_head *head,
116				 struct cache_detail *detail)
117{
118	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119		cache_revisit_request(head);
120		cache_dequeue(detail, head);
121	}
122}
123
124struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125				       struct cache_head *new, struct cache_head *old, int hash)
126{
127	/* The 'old' entry is to be replaced by 'new'.
128	 * If 'old' is not VALID, we update it directly,
129	 * otherwise we need to replace it
130	 */
131	struct cache_head **head;
132	struct cache_head *tmp;
133
134	if (!test_bit(CACHE_VALID, &old->flags)) {
135		write_lock(&detail->hash_lock);
136		if (!test_bit(CACHE_VALID, &old->flags)) {
137			if (test_bit(CACHE_NEGATIVE, &new->flags))
138				set_bit(CACHE_NEGATIVE, &old->flags);
139			else
140				detail->update(old, new);
141			cache_fresh_locked(old, new->expiry_time);
142			write_unlock(&detail->hash_lock);
143			cache_fresh_unlocked(old, detail);
144			return old;
145		}
146		write_unlock(&detail->hash_lock);
147	}
148	/* We need to insert a new entry */
149	tmp = detail->alloc();
150	if (!tmp) {
151		cache_put(old, detail);
152		return NULL;
153	}
154	cache_init(tmp);
155	detail->init(tmp, old);
156	head = &detail->hash_table[hash];
157
158	write_lock(&detail->hash_lock);
159	if (test_bit(CACHE_NEGATIVE, &new->flags))
160		set_bit(CACHE_NEGATIVE, &tmp->flags);
161	else
162		detail->update(tmp, new);
163	tmp->next = *head;
164	*head = tmp;
165	detail->entries++;
166	cache_get(tmp);
167	cache_fresh_locked(tmp, new->expiry_time);
168	cache_fresh_locked(old, 0);
169	write_unlock(&detail->hash_lock);
170	cache_fresh_unlocked(tmp, detail);
171	cache_fresh_unlocked(old, detail);
172	cache_put(old, detail);
173	return tmp;
174}
175EXPORT_SYMBOL_GPL(sunrpc_cache_update);
176
177static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
178{
179	if (!cd->cache_upcall)
180		return -EINVAL;
181	return cd->cache_upcall(cd, h);
182}
183
184static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
185{
186	if (!test_bit(CACHE_VALID, &h->flags) ||
187	    h->expiry_time < get_seconds())
188		return -EAGAIN;
189	else if (detail->flush_time > h->last_refresh)
190		return -EAGAIN;
191	else {
192		/* entry is valid */
193		if (test_bit(CACHE_NEGATIVE, &h->flags))
194			return -ENOENT;
195		else
196			return 0;
197	}
198}
199
200/*
201 * This is the generic cache management routine for all
202 * the authentication caches.
203 * It checks the currency of a cache item and will (later)
204 * initiate an upcall to fill it if needed.
205 *
206 *
207 * Returns 0 if the cache_head can be used, or cache_puts it and returns
208 * -EAGAIN if upcall is pending and request has been queued
209 * -ETIMEDOUT if upcall failed or request could not be queue or
210 *           upcall completed but item is still invalid (implying that
211 *           the cache item has been replaced with a newer one).
212 * -ENOENT if cache entry was negative
213 */
214int cache_check(struct cache_detail *detail,
215		    struct cache_head *h, struct cache_req *rqstp)
216{
217	int rv;
218	long refresh_age, age;
219
220	/* First decide return status as best we can */
221	rv = cache_is_valid(detail, h);
222
223	/* now see if we want to start an upcall */
224	refresh_age = (h->expiry_time - h->last_refresh);
225	age = get_seconds() - h->last_refresh;
226
227	if (rqstp == NULL) {
228		if (rv == -EAGAIN)
229			rv = -ENOENT;
230	} else if (rv == -EAGAIN || age > refresh_age/2) {
231		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
232				refresh_age, age);
233		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
234			switch (cache_make_upcall(detail, h)) {
235			case -EINVAL:
236				clear_bit(CACHE_PENDING, &h->flags);
237				cache_revisit_request(h);
238				if (rv == -EAGAIN) {
239					set_bit(CACHE_NEGATIVE, &h->flags);
240					cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY);
241					cache_fresh_unlocked(h, detail);
242					rv = -ENOENT;
243				}
244				break;
245
246			case -EAGAIN:
247				clear_bit(CACHE_PENDING, &h->flags);
248				cache_revisit_request(h);
249				break;
250			}
251		}
252	}
253
254	if (rv == -EAGAIN) {
255		if (cache_defer_req(rqstp, h) < 0) {
256			/* Request is not deferred */
257			rv = cache_is_valid(detail, h);
258			if (rv == -EAGAIN)
259				rv = -ETIMEDOUT;
260		}
261	}
262	if (rv)
263		cache_put(h, detail);
264	return rv;
265}
266EXPORT_SYMBOL_GPL(cache_check);
267
268/*
269 * caches need to be periodically cleaned.
270 * For this we maintain a list of cache_detail and
271 * a current pointer into that list and into the table
272 * for that entry.
273 *
274 * Each time clean_cache is called it finds the next non-empty entry
275 * in the current table and walks the list in that entry
276 * looking for entries that can be removed.
277 *
278 * An entry gets removed if:
279 * - The expiry is before current time
280 * - The last_refresh time is before the flush_time for that cache
281 *
282 * later we might drop old entries with non-NEVER expiry if that table
283 * is getting 'full' for some definition of 'full'
284 *
285 * The question of "how often to scan a table" is an interesting one
286 * and is answered in part by the use of the "nextcheck" field in the
287 * cache_detail.
288 * When a scan of a table begins, the nextcheck field is set to a time
289 * that is well into the future.
290 * While scanning, if an expiry time is found that is earlier than the
291 * current nextcheck time, nextcheck is set to that expiry time.
292 * If the flush_time is ever set to a time earlier than the nextcheck
293 * time, the nextcheck time is then set to that flush_time.
294 *
295 * A table is then only scanned if the current time is at least
296 * the nextcheck time.
297 *
298 */
299
300static LIST_HEAD(cache_list);
301static DEFINE_SPINLOCK(cache_list_lock);
302static struct cache_detail *current_detail;
303static int current_index;
304
305static void do_cache_clean(struct work_struct *work);
306static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
307
308static void sunrpc_init_cache_detail(struct cache_detail *cd)
309{
310	rwlock_init(&cd->hash_lock);
311	INIT_LIST_HEAD(&cd->queue);
312	spin_lock(&cache_list_lock);
313	cd->nextcheck = 0;
314	cd->entries = 0;
315	atomic_set(&cd->readers, 0);
316	cd->last_close = 0;
317	cd->last_warn = -1;
318	list_add(&cd->others, &cache_list);
319	spin_unlock(&cache_list_lock);
320
321	/* start the cleaning process */
322	schedule_delayed_work(&cache_cleaner, 0);
323}
324
325static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
326{
327	cache_purge(cd);
328	spin_lock(&cache_list_lock);
329	write_lock(&cd->hash_lock);
330	if (cd->entries || atomic_read(&cd->inuse)) {
331		write_unlock(&cd->hash_lock);
332		spin_unlock(&cache_list_lock);
333		goto out;
334	}
335	if (current_detail == cd)
336		current_detail = NULL;
337	list_del_init(&cd->others);
338	write_unlock(&cd->hash_lock);
339	spin_unlock(&cache_list_lock);
340	if (list_empty(&cache_list)) {
341		/* module must be being unloaded so its safe to kill the worker */
342		cancel_delayed_work_sync(&cache_cleaner);
343	}
344	return;
345out:
346	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
347}
348
349/* clean cache tries to find something to clean
350 * and cleans it.
351 * It returns 1 if it cleaned something,
352 *            0 if it didn't find anything this time
353 *           -1 if it fell off the end of the list.
354 */
355static int cache_clean(void)
356{
357	int rv = 0;
358	struct list_head *next;
359
360	spin_lock(&cache_list_lock);
361
362	/* find a suitable table if we don't already have one */
363	while (current_detail == NULL ||
364	    current_index >= current_detail->hash_size) {
365		if (current_detail)
366			next = current_detail->others.next;
367		else
368			next = cache_list.next;
369		if (next == &cache_list) {
370			current_detail = NULL;
371			spin_unlock(&cache_list_lock);
372			return -1;
373		}
374		current_detail = list_entry(next, struct cache_detail, others);
375		if (current_detail->nextcheck > get_seconds())
376			current_index = current_detail->hash_size;
377		else {
378			current_index = 0;
379			current_detail->nextcheck = get_seconds()+30*60;
380		}
381	}
382
383	/* find a non-empty bucket in the table */
384	while (current_detail &&
385	       current_index < current_detail->hash_size &&
386	       current_detail->hash_table[current_index] == NULL)
387		current_index++;
388
389	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
390
391	if (current_detail && current_index < current_detail->hash_size) {
392		struct cache_head *ch, **cp;
393		struct cache_detail *d;
394
395		write_lock(&current_detail->hash_lock);
396
397		/* Ok, now to clean this strand */
398
399		cp = & current_detail->hash_table[current_index];
400		ch = *cp;
401		for (; ch; cp= & ch->next, ch= *cp) {
402			if (current_detail->nextcheck > ch->expiry_time)
403				current_detail->nextcheck = ch->expiry_time+1;
404			if (ch->expiry_time >= get_seconds()
405			    && ch->last_refresh >= current_detail->flush_time
406				)
407				continue;
408			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
409				cache_dequeue(current_detail, ch);
410
411			if (atomic_read(&ch->ref.refcount) == 1)
412				break;
413		}
414		if (ch) {
415			*cp = ch->next;
416			ch->next = NULL;
417			current_detail->entries--;
418			rv = 1;
419		}
420		write_unlock(&current_detail->hash_lock);
421		d = current_detail;
422		if (!ch)
423			current_index ++;
424		spin_unlock(&cache_list_lock);
425		if (ch) {
426			cache_revisit_request(ch);
427			cache_put(ch, d);
428		}
429	} else
430		spin_unlock(&cache_list_lock);
431
432	return rv;
433}
434
435/*
436 * We want to regularly clean the cache, so we need to schedule some work ...
437 */
438static void do_cache_clean(struct work_struct *work)
439{
440	int delay = 5;
441	if (cache_clean() == -1)
442		delay = round_jiffies_relative(30*HZ);
443
444	if (list_empty(&cache_list))
445		delay = 0;
446
447	if (delay)
448		schedule_delayed_work(&cache_cleaner, delay);
449}
450
451
452/*
453 * Clean all caches promptly.  This just calls cache_clean
454 * repeatedly until we are sure that every cache has had a chance to
455 * be fully cleaned
456 */
457void cache_flush(void)
458{
459	while (cache_clean() != -1)
460		cond_resched();
461	while (cache_clean() != -1)
462		cond_resched();
463}
464EXPORT_SYMBOL_GPL(cache_flush);
465
466void cache_purge(struct cache_detail *detail)
467{
468	detail->flush_time = LONG_MAX;
469	detail->nextcheck = get_seconds();
470	cache_flush();
471	detail->flush_time = 1;
472}
473EXPORT_SYMBOL_GPL(cache_purge);
474
475
476/*
477 * Deferral and Revisiting of Requests.
478 *
479 * If a cache lookup finds a pending entry, we
480 * need to defer the request and revisit it later.
481 * All deferred requests are stored in a hash table,
482 * indexed by "struct cache_head *".
483 * As it may be wasteful to store a whole request
484 * structure, we allow the request to provide a
485 * deferred form, which must contain a
486 * 'struct cache_deferred_req'
487 * This cache_deferred_req contains a method to allow
488 * it to be revisited when cache info is available
489 */
490
491#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
492#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
493
494#define	DFR_MAX	300	/* ??? */
495
496static DEFINE_SPINLOCK(cache_defer_lock);
497static LIST_HEAD(cache_defer_list);
498static struct list_head cache_defer_hash[DFR_HASHSIZE];
499static int cache_defer_cnt;
500
501static int cache_defer_req(struct cache_req *req, struct cache_head *item)
502{
503	struct cache_deferred_req *dreq, *discard;
504	int hash = DFR_HASH(item);
505
506	if (cache_defer_cnt >= DFR_MAX) {
507		/* too much in the cache, randomly drop this one,
508		 * or continue and drop the oldest below
509		 */
510		if (net_random()&1)
511			return -ENOMEM;
512	}
513	dreq = req->defer(req);
514	if (dreq == NULL)
515		return -ENOMEM;
516
517	dreq->item = item;
518
519	spin_lock(&cache_defer_lock);
520
521	list_add(&dreq->recent, &cache_defer_list);
522
523	if (cache_defer_hash[hash].next == NULL)
524		INIT_LIST_HEAD(&cache_defer_hash[hash]);
525	list_add(&dreq->hash, &cache_defer_hash[hash]);
526
527	/* it is in, now maybe clean up */
528	discard = NULL;
529	if (++cache_defer_cnt > DFR_MAX) {
530		discard = list_entry(cache_defer_list.prev,
531				     struct cache_deferred_req, recent);
532		list_del_init(&discard->recent);
533		list_del_init(&discard->hash);
534		cache_defer_cnt--;
535	}
536	spin_unlock(&cache_defer_lock);
537
538	if (discard)
539		/* there was one too many */
540		discard->revisit(discard, 1);
541
542	if (!test_bit(CACHE_PENDING, &item->flags)) {
543		/* must have just been validated... */
544		cache_revisit_request(item);
545		return -EAGAIN;
546	}
547	return 0;
548}
549
550static void cache_revisit_request(struct cache_head *item)
551{
552	struct cache_deferred_req *dreq;
553	struct list_head pending;
554
555	struct list_head *lp;
556	int hash = DFR_HASH(item);
557
558	INIT_LIST_HEAD(&pending);
559	spin_lock(&cache_defer_lock);
560
561	lp = cache_defer_hash[hash].next;
562	if (lp) {
563		while (lp != &cache_defer_hash[hash]) {
564			dreq = list_entry(lp, struct cache_deferred_req, hash);
565			lp = lp->next;
566			if (dreq->item == item) {
567				list_del_init(&dreq->hash);
568				list_move(&dreq->recent, &pending);
569				cache_defer_cnt--;
570			}
571		}
572	}
573	spin_unlock(&cache_defer_lock);
574
575	while (!list_empty(&pending)) {
576		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
577		list_del_init(&dreq->recent);
578		dreq->revisit(dreq, 0);
579	}
580}
581
582void cache_clean_deferred(void *owner)
583{
584	struct cache_deferred_req *dreq, *tmp;
585	struct list_head pending;
586
587
588	INIT_LIST_HEAD(&pending);
589	spin_lock(&cache_defer_lock);
590
591	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
592		if (dreq->owner == owner) {
593			list_del_init(&dreq->hash);
594			list_move(&dreq->recent, &pending);
595			cache_defer_cnt--;
596		}
597	}
598	spin_unlock(&cache_defer_lock);
599
600	while (!list_empty(&pending)) {
601		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
602		list_del_init(&dreq->recent);
603		dreq->revisit(dreq, 1);
604	}
605}
606
607/*
608 * communicate with user-space
609 *
610 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
611 * On read, you get a full request, or block.
612 * On write, an update request is processed.
613 * Poll works if anything to read, and always allows write.
614 *
615 * Implemented by linked list of requests.  Each open file has
616 * a ->private that also exists in this list.  New requests are added
617 * to the end and may wakeup and preceding readers.
618 * New readers are added to the head.  If, on read, an item is found with
619 * CACHE_UPCALLING clear, we free it from the list.
620 *
621 */
622
623static DEFINE_SPINLOCK(queue_lock);
624static DEFINE_MUTEX(queue_io_mutex);
625
626struct cache_queue {
627	struct list_head	list;
628	int			reader;	/* if 0, then request */
629};
630struct cache_request {
631	struct cache_queue	q;
632	struct cache_head	*item;
633	char			* buf;
634	int			len;
635	int			readers;
636};
637struct cache_reader {
638	struct cache_queue	q;
639	int			offset;	/* if non-0, we have a refcnt on next request */
640};
641
642static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
643			  loff_t *ppos, struct cache_detail *cd)
644{
645	struct cache_reader *rp = filp->private_data;
646	struct cache_request *rq;
647	struct inode *inode = filp->f_path.dentry->d_inode;
648	int err;
649
650	if (count == 0)
651		return 0;
652
653	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
654			      * readers on this file */
655 again:
656	spin_lock(&queue_lock);
657	/* need to find next request */
658	while (rp->q.list.next != &cd->queue &&
659	       list_entry(rp->q.list.next, struct cache_queue, list)
660	       ->reader) {
661		struct list_head *next = rp->q.list.next;
662		list_move(&rp->q.list, next);
663	}
664	if (rp->q.list.next == &cd->queue) {
665		spin_unlock(&queue_lock);
666		mutex_unlock(&inode->i_mutex);
667		BUG_ON(rp->offset);
668		return 0;
669	}
670	rq = container_of(rp->q.list.next, struct cache_request, q.list);
671	BUG_ON(rq->q.reader);
672	if (rp->offset == 0)
673		rq->readers++;
674	spin_unlock(&queue_lock);
675
676	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
677		err = -EAGAIN;
678		spin_lock(&queue_lock);
679		list_move(&rp->q.list, &rq->q.list);
680		spin_unlock(&queue_lock);
681	} else {
682		if (rp->offset + count > rq->len)
683			count = rq->len - rp->offset;
684		err = -EFAULT;
685		if (copy_to_user(buf, rq->buf + rp->offset, count))
686			goto out;
687		rp->offset += count;
688		if (rp->offset >= rq->len) {
689			rp->offset = 0;
690			spin_lock(&queue_lock);
691			list_move(&rp->q.list, &rq->q.list);
692			spin_unlock(&queue_lock);
693		}
694		err = 0;
695	}
696 out:
697	if (rp->offset == 0) {
698		/* need to release rq */
699		spin_lock(&queue_lock);
700		rq->readers--;
701		if (rq->readers == 0 &&
702		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
703			list_del(&rq->q.list);
704			spin_unlock(&queue_lock);
705			cache_put(rq->item, cd);
706			kfree(rq->buf);
707			kfree(rq);
708		} else
709			spin_unlock(&queue_lock);
710	}
711	if (err == -EAGAIN)
712		goto again;
713	mutex_unlock(&inode->i_mutex);
714	return err ? err :  count;
715}
716
717static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
718				 size_t count, struct cache_detail *cd)
719{
720	ssize_t ret;
721
722	if (copy_from_user(kaddr, buf, count))
723		return -EFAULT;
724	kaddr[count] = '\0';
725	ret = cd->cache_parse(cd, kaddr, count);
726	if (!ret)
727		ret = count;
728	return ret;
729}
730
731static ssize_t cache_slow_downcall(const char __user *buf,
732				   size_t count, struct cache_detail *cd)
733{
734	static char write_buf[8192]; /* protected by queue_io_mutex */
735	ssize_t ret = -EINVAL;
736
737	if (count >= sizeof(write_buf))
738		goto out;
739	mutex_lock(&queue_io_mutex);
740	ret = cache_do_downcall(write_buf, buf, count, cd);
741	mutex_unlock(&queue_io_mutex);
742out:
743	return ret;
744}
745
746static ssize_t cache_downcall(struct address_space *mapping,
747			      const char __user *buf,
748			      size_t count, struct cache_detail *cd)
749{
750	struct page *page;
751	char *kaddr;
752	ssize_t ret = -ENOMEM;
753
754	if (count >= PAGE_CACHE_SIZE)
755		goto out_slow;
756
757	page = find_or_create_page(mapping, 0, GFP_KERNEL);
758	if (!page)
759		goto out_slow;
760
761	kaddr = kmap(page);
762	ret = cache_do_downcall(kaddr, buf, count, cd);
763	kunmap(page);
764	unlock_page(page);
765	page_cache_release(page);
766	return ret;
767out_slow:
768	return cache_slow_downcall(buf, count, cd);
769}
770
771static ssize_t cache_write(struct file *filp, const char __user *buf,
772			   size_t count, loff_t *ppos,
773			   struct cache_detail *cd)
774{
775	struct address_space *mapping = filp->f_mapping;
776	struct inode *inode = filp->f_path.dentry->d_inode;
777	ssize_t ret = -EINVAL;
778
779	if (!cd->cache_parse)
780		goto out;
781
782	mutex_lock(&inode->i_mutex);
783	ret = cache_downcall(mapping, buf, count, cd);
784	mutex_unlock(&inode->i_mutex);
785out:
786	return ret;
787}
788
789static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
790
791static unsigned int cache_poll(struct file *filp, poll_table *wait,
792			       struct cache_detail *cd)
793{
794	unsigned int mask;
795	struct cache_reader *rp = filp->private_data;
796	struct cache_queue *cq;
797
798	poll_wait(filp, &queue_wait, wait);
799
800	/* alway allow write */
801	mask = POLL_OUT | POLLWRNORM;
802
803	if (!rp)
804		return mask;
805
806	spin_lock(&queue_lock);
807
808	for (cq= &rp->q; &cq->list != &cd->queue;
809	     cq = list_entry(cq->list.next, struct cache_queue, list))
810		if (!cq->reader) {
811			mask |= POLLIN | POLLRDNORM;
812			break;
813		}
814	spin_unlock(&queue_lock);
815	return mask;
816}
817
818static int cache_ioctl(struct inode *ino, struct file *filp,
819		       unsigned int cmd, unsigned long arg,
820		       struct cache_detail *cd)
821{
822	int len = 0;
823	struct cache_reader *rp = filp->private_data;
824	struct cache_queue *cq;
825
826	if (cmd != FIONREAD || !rp)
827		return -EINVAL;
828
829	spin_lock(&queue_lock);
830
831	/* only find the length remaining in current request,
832	 * or the length of the next request
833	 */
834	for (cq= &rp->q; &cq->list != &cd->queue;
835	     cq = list_entry(cq->list.next, struct cache_queue, list))
836		if (!cq->reader) {
837			struct cache_request *cr =
838				container_of(cq, struct cache_request, q);
839			len = cr->len - rp->offset;
840			break;
841		}
842	spin_unlock(&queue_lock);
843
844	return put_user(len, (int __user *)arg);
845}
846
847static int cache_open(struct inode *inode, struct file *filp,
848		      struct cache_detail *cd)
849{
850	struct cache_reader *rp = NULL;
851
852	if (!cd || !try_module_get(cd->owner))
853		return -EACCES;
854	nonseekable_open(inode, filp);
855	if (filp->f_mode & FMODE_READ) {
856		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
857		if (!rp)
858			return -ENOMEM;
859		rp->offset = 0;
860		rp->q.reader = 1;
861		atomic_inc(&cd->readers);
862		spin_lock(&queue_lock);
863		list_add(&rp->q.list, &cd->queue);
864		spin_unlock(&queue_lock);
865	}
866	filp->private_data = rp;
867	return 0;
868}
869
870static int cache_release(struct inode *inode, struct file *filp,
871			 struct cache_detail *cd)
872{
873	struct cache_reader *rp = filp->private_data;
874
875	if (rp) {
876		spin_lock(&queue_lock);
877		if (rp->offset) {
878			struct cache_queue *cq;
879			for (cq= &rp->q; &cq->list != &cd->queue;
880			     cq = list_entry(cq->list.next, struct cache_queue, list))
881				if (!cq->reader) {
882					container_of(cq, struct cache_request, q)
883						->readers--;
884					break;
885				}
886			rp->offset = 0;
887		}
888		list_del(&rp->q.list);
889		spin_unlock(&queue_lock);
890
891		filp->private_data = NULL;
892		kfree(rp);
893
894		cd->last_close = get_seconds();
895		atomic_dec(&cd->readers);
896	}
897	module_put(cd->owner);
898	return 0;
899}
900
901
902
903static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
904{
905	struct cache_queue *cq;
906	spin_lock(&queue_lock);
907	list_for_each_entry(cq, &detail->queue, list)
908		if (!cq->reader) {
909			struct cache_request *cr = container_of(cq, struct cache_request, q);
910			if (cr->item != ch)
911				continue;
912			if (cr->readers != 0)
913				continue;
914			list_del(&cr->q.list);
915			spin_unlock(&queue_lock);
916			cache_put(cr->item, detail);
917			kfree(cr->buf);
918			kfree(cr);
919			return;
920		}
921	spin_unlock(&queue_lock);
922}
923
924/*
925 * Support routines for text-based upcalls.
926 * Fields are separated by spaces.
927 * Fields are either mangled to quote space tab newline slosh with slosh
928 * or a hexified with a leading \x
929 * Record is terminated with newline.
930 *
931 */
932
933void qword_add(char **bpp, int *lp, char *str)
934{
935	char *bp = *bpp;
936	int len = *lp;
937	char c;
938
939	if (len < 0) return;
940
941	while ((c=*str++) && len)
942		switch(c) {
943		case ' ':
944		case '\t':
945		case '\n':
946		case '\\':
947			if (len >= 4) {
948				*bp++ = '\\';
949				*bp++ = '0' + ((c & 0300)>>6);
950				*bp++ = '0' + ((c & 0070)>>3);
951				*bp++ = '0' + ((c & 0007)>>0);
952			}
953			len -= 4;
954			break;
955		default:
956			*bp++ = c;
957			len--;
958		}
959	if (c || len <1) len = -1;
960	else {
961		*bp++ = ' ';
962		len--;
963	}
964	*bpp = bp;
965	*lp = len;
966}
967EXPORT_SYMBOL_GPL(qword_add);
968
969void qword_addhex(char **bpp, int *lp, char *buf, int blen)
970{
971	char *bp = *bpp;
972	int len = *lp;
973
974	if (len < 0) return;
975
976	if (len > 2) {
977		*bp++ = '\\';
978		*bp++ = 'x';
979		len -= 2;
980		while (blen && len >= 2) {
981			unsigned char c = *buf++;
982			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
983			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
984			len -= 2;
985			blen--;
986		}
987	}
988	if (blen || len<1) len = -1;
989	else {
990		*bp++ = ' ';
991		len--;
992	}
993	*bpp = bp;
994	*lp = len;
995}
996EXPORT_SYMBOL_GPL(qword_addhex);
997
998static void warn_no_listener(struct cache_detail *detail)
999{
1000	if (detail->last_warn != detail->last_close) {
1001		detail->last_warn = detail->last_close;
1002		if (detail->warn_no_listener)
1003			detail->warn_no_listener(detail, detail->last_close != 0);
1004	}
1005}
1006
1007/*
1008 * register an upcall request to user-space and queue it up for read() by the
1009 * upcall daemon.
1010 *
1011 * Each request is at most one page long.
1012 */
1013int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1014		void (*cache_request)(struct cache_detail *,
1015				      struct cache_head *,
1016				      char **,
1017				      int *))
1018{
1019
1020	char *buf;
1021	struct cache_request *crq;
1022	char *bp;
1023	int len;
1024
1025	if (atomic_read(&detail->readers) == 0 &&
1026	    detail->last_close < get_seconds() - 30) {
1027			warn_no_listener(detail);
1028			return -EINVAL;
1029	}
1030
1031	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1032	if (!buf)
1033		return -EAGAIN;
1034
1035	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1036	if (!crq) {
1037		kfree(buf);
1038		return -EAGAIN;
1039	}
1040
1041	bp = buf; len = PAGE_SIZE;
1042
1043	cache_request(detail, h, &bp, &len);
1044
1045	if (len < 0) {
1046		kfree(buf);
1047		kfree(crq);
1048		return -EAGAIN;
1049	}
1050	crq->q.reader = 0;
1051	crq->item = cache_get(h);
1052	crq->buf = buf;
1053	crq->len = PAGE_SIZE - len;
1054	crq->readers = 0;
1055	spin_lock(&queue_lock);
1056	list_add_tail(&crq->q.list, &detail->queue);
1057	spin_unlock(&queue_lock);
1058	wake_up(&queue_wait);
1059	return 0;
1060}
1061EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1062
1063/*
1064 * parse a message from user-space and pass it
1065 * to an appropriate cache
1066 * Messages are, like requests, separated into fields by
1067 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1068 *
1069 * Message is
1070 *   reply cachename expiry key ... content....
1071 *
1072 * key and content are both parsed by cache
1073 */
1074
1075#define isodigit(c) (isdigit(c) && c <= '7')
1076int qword_get(char **bpp, char *dest, int bufsize)
1077{
1078	/* return bytes copied, or -1 on error */
1079	char *bp = *bpp;
1080	int len = 0;
1081
1082	while (*bp == ' ') bp++;
1083
1084	if (bp[0] == '\\' && bp[1] == 'x') {
1085		/* HEX STRING */
1086		bp += 2;
1087		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1088			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1089			bp++;
1090			byte <<= 4;
1091			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1092			*dest++ = byte;
1093			bp++;
1094			len++;
1095		}
1096	} else {
1097		/* text with \nnn octal quoting */
1098		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1099			if (*bp == '\\' &&
1100			    isodigit(bp[1]) && (bp[1] <= '3') &&
1101			    isodigit(bp[2]) &&
1102			    isodigit(bp[3])) {
1103				int byte = (*++bp -'0');
1104				bp++;
1105				byte = (byte << 3) | (*bp++ - '0');
1106				byte = (byte << 3) | (*bp++ - '0');
1107				*dest++ = byte;
1108				len++;
1109			} else {
1110				*dest++ = *bp++;
1111				len++;
1112			}
1113		}
1114	}
1115
1116	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1117		return -1;
1118	while (*bp == ' ') bp++;
1119	*bpp = bp;
1120	*dest = '\0';
1121	return len;
1122}
1123EXPORT_SYMBOL_GPL(qword_get);
1124
1125
1126/*
1127 * support /proc/sunrpc/cache/$CACHENAME/content
1128 * as a seqfile.
1129 * We call ->cache_show passing NULL for the item to
1130 * get a header, then pass each real item in the cache
1131 */
1132
1133struct handle {
1134	struct cache_detail *cd;
1135};
1136
1137static void *c_start(struct seq_file *m, loff_t *pos)
1138	__acquires(cd->hash_lock)
1139{
1140	loff_t n = *pos;
1141	unsigned hash, entry;
1142	struct cache_head *ch;
1143	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1144
1145
1146	read_lock(&cd->hash_lock);
1147	if (!n--)
1148		return SEQ_START_TOKEN;
1149	hash = n >> 32;
1150	entry = n & ((1LL<<32) - 1);
1151
1152	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1153		if (!entry--)
1154			return ch;
1155	n &= ~((1LL<<32) - 1);
1156	do {
1157		hash++;
1158		n += 1LL<<32;
1159	} while(hash < cd->hash_size &&
1160		cd->hash_table[hash]==NULL);
1161	if (hash >= cd->hash_size)
1162		return NULL;
1163	*pos = n+1;
1164	return cd->hash_table[hash];
1165}
1166
1167static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1168{
1169	struct cache_head *ch = p;
1170	int hash = (*pos >> 32);
1171	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1172
1173	if (p == SEQ_START_TOKEN)
1174		hash = 0;
1175	else if (ch->next == NULL) {
1176		hash++;
1177		*pos += 1LL<<32;
1178	} else {
1179		++*pos;
1180		return ch->next;
1181	}
1182	*pos &= ~((1LL<<32) - 1);
1183	while (hash < cd->hash_size &&
1184	       cd->hash_table[hash] == NULL) {
1185		hash++;
1186		*pos += 1LL<<32;
1187	}
1188	if (hash >= cd->hash_size)
1189		return NULL;
1190	++*pos;
1191	return cd->hash_table[hash];
1192}
1193
1194static void c_stop(struct seq_file *m, void *p)
1195	__releases(cd->hash_lock)
1196{
1197	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1198	read_unlock(&cd->hash_lock);
1199}
1200
1201static int c_show(struct seq_file *m, void *p)
1202{
1203	struct cache_head *cp = p;
1204	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1205
1206	if (p == SEQ_START_TOKEN)
1207		return cd->cache_show(m, cd, NULL);
1208
1209	ifdebug(CACHE)
1210		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1211			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1212	cache_get(cp);
1213	if (cache_check(cd, cp, NULL))
1214		/* cache_check does a cache_put on failure */
1215		seq_printf(m, "# ");
1216	else
1217		cache_put(cp, cd);
1218
1219	return cd->cache_show(m, cd, cp);
1220}
1221
1222static const struct seq_operations cache_content_op = {
1223	.start	= c_start,
1224	.next	= c_next,
1225	.stop	= c_stop,
1226	.show	= c_show,
1227};
1228
1229static int content_open(struct inode *inode, struct file *file,
1230			struct cache_detail *cd)
1231{
1232	struct handle *han;
1233
1234	if (!cd || !try_module_get(cd->owner))
1235		return -EACCES;
1236	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1237	if (han == NULL)
1238		return -ENOMEM;
1239
1240	han->cd = cd;
1241	return 0;
1242}
1243
1244static int content_release(struct inode *inode, struct file *file,
1245		struct cache_detail *cd)
1246{
1247	int ret = seq_release_private(inode, file);
1248	module_put(cd->owner);
1249	return ret;
1250}
1251
1252static int open_flush(struct inode *inode, struct file *file,
1253			struct cache_detail *cd)
1254{
1255	if (!cd || !try_module_get(cd->owner))
1256		return -EACCES;
1257	return nonseekable_open(inode, file);
1258}
1259
1260static int release_flush(struct inode *inode, struct file *file,
1261			struct cache_detail *cd)
1262{
1263	module_put(cd->owner);
1264	return 0;
1265}
1266
1267static ssize_t read_flush(struct file *file, char __user *buf,
1268			  size_t count, loff_t *ppos,
1269			  struct cache_detail *cd)
1270{
1271	char tbuf[20];
1272	unsigned long p = *ppos;
1273	size_t len;
1274
1275	sprintf(tbuf, "%lu\n", cd->flush_time);
1276	len = strlen(tbuf);
1277	if (p >= len)
1278		return 0;
1279	len -= p;
1280	if (len > count)
1281		len = count;
1282	if (copy_to_user(buf, (void*)(tbuf+p), len))
1283		return -EFAULT;
1284	*ppos += len;
1285	return len;
1286}
1287
1288static ssize_t write_flush(struct file *file, const char __user *buf,
1289			   size_t count, loff_t *ppos,
1290			   struct cache_detail *cd)
1291{
1292	char tbuf[20];
1293	char *ep;
1294	long flushtime;
1295	if (*ppos || count > sizeof(tbuf)-1)
1296		return -EINVAL;
1297	if (copy_from_user(tbuf, buf, count))
1298		return -EFAULT;
1299	tbuf[count] = 0;
1300	flushtime = simple_strtoul(tbuf, &ep, 0);
1301	if (*ep && *ep != '\n')
1302		return -EINVAL;
1303
1304	cd->flush_time = flushtime;
1305	cd->nextcheck = get_seconds();
1306	cache_flush();
1307
1308	*ppos += count;
1309	return count;
1310}
1311
1312static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1313				 size_t count, loff_t *ppos)
1314{
1315	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1316
1317	return cache_read(filp, buf, count, ppos, cd);
1318}
1319
1320static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1321				  size_t count, loff_t *ppos)
1322{
1323	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1324
1325	return cache_write(filp, buf, count, ppos, cd);
1326}
1327
1328static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1329{
1330	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1331
1332	return cache_poll(filp, wait, cd);
1333}
1334
1335static int cache_ioctl_procfs(struct inode *inode, struct file *filp,
1336			      unsigned int cmd, unsigned long arg)
1337{
1338	struct cache_detail *cd = PDE(inode)->data;
1339
1340	return cache_ioctl(inode, filp, cmd, arg, cd);
1341}
1342
1343static int cache_open_procfs(struct inode *inode, struct file *filp)
1344{
1345	struct cache_detail *cd = PDE(inode)->data;
1346
1347	return cache_open(inode, filp, cd);
1348}
1349
1350static int cache_release_procfs(struct inode *inode, struct file *filp)
1351{
1352	struct cache_detail *cd = PDE(inode)->data;
1353
1354	return cache_release(inode, filp, cd);
1355}
1356
1357static const struct file_operations cache_file_operations_procfs = {
1358	.owner		= THIS_MODULE,
1359	.llseek		= no_llseek,
1360	.read		= cache_read_procfs,
1361	.write		= cache_write_procfs,
1362	.poll		= cache_poll_procfs,
1363	.ioctl		= cache_ioctl_procfs, /* for FIONREAD */
1364	.open		= cache_open_procfs,
1365	.release	= cache_release_procfs,
1366};
1367
1368static int content_open_procfs(struct inode *inode, struct file *filp)
1369{
1370	struct cache_detail *cd = PDE(inode)->data;
1371
1372	return content_open(inode, filp, cd);
1373}
1374
1375static int content_release_procfs(struct inode *inode, struct file *filp)
1376{
1377	struct cache_detail *cd = PDE(inode)->data;
1378
1379	return content_release(inode, filp, cd);
1380}
1381
1382static const struct file_operations content_file_operations_procfs = {
1383	.open		= content_open_procfs,
1384	.read		= seq_read,
1385	.llseek		= seq_lseek,
1386	.release	= content_release_procfs,
1387};
1388
1389static int open_flush_procfs(struct inode *inode, struct file *filp)
1390{
1391	struct cache_detail *cd = PDE(inode)->data;
1392
1393	return open_flush(inode, filp, cd);
1394}
1395
1396static int release_flush_procfs(struct inode *inode, struct file *filp)
1397{
1398	struct cache_detail *cd = PDE(inode)->data;
1399
1400	return release_flush(inode, filp, cd);
1401}
1402
1403static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1404			    size_t count, loff_t *ppos)
1405{
1406	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1407
1408	return read_flush(filp, buf, count, ppos, cd);
1409}
1410
1411static ssize_t write_flush_procfs(struct file *filp,
1412				  const char __user *buf,
1413				  size_t count, loff_t *ppos)
1414{
1415	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1416
1417	return write_flush(filp, buf, count, ppos, cd);
1418}
1419
1420static const struct file_operations cache_flush_operations_procfs = {
1421	.open		= open_flush_procfs,
1422	.read		= read_flush_procfs,
1423	.write		= write_flush_procfs,
1424	.release	= release_flush_procfs,
1425};
1426
1427static void remove_cache_proc_entries(struct cache_detail *cd)
1428{
1429	if (cd->u.procfs.proc_ent == NULL)
1430		return;
1431	if (cd->u.procfs.flush_ent)
1432		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1433	if (cd->u.procfs.channel_ent)
1434		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1435	if (cd->u.procfs.content_ent)
1436		remove_proc_entry("content", cd->u.procfs.proc_ent);
1437	cd->u.procfs.proc_ent = NULL;
1438	remove_proc_entry(cd->name, proc_net_rpc);
1439}
1440
1441#ifdef CONFIG_PROC_FS
1442static int create_cache_proc_entries(struct cache_detail *cd)
1443{
1444	struct proc_dir_entry *p;
1445
1446	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1447	if (cd->u.procfs.proc_ent == NULL)
1448		goto out_nomem;
1449	cd->u.procfs.channel_ent = NULL;
1450	cd->u.procfs.content_ent = NULL;
1451
1452	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1453			     cd->u.procfs.proc_ent,
1454			     &cache_flush_operations_procfs, cd);
1455	cd->u.procfs.flush_ent = p;
1456	if (p == NULL)
1457		goto out_nomem;
1458
1459	if (cd->cache_upcall || cd->cache_parse) {
1460		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1461				     cd->u.procfs.proc_ent,
1462				     &cache_file_operations_procfs, cd);
1463		cd->u.procfs.channel_ent = p;
1464		if (p == NULL)
1465			goto out_nomem;
1466	}
1467	if (cd->cache_show) {
1468		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1469				cd->u.procfs.proc_ent,
1470				&content_file_operations_procfs, cd);
1471		cd->u.procfs.content_ent = p;
1472		if (p == NULL)
1473			goto out_nomem;
1474	}
1475	return 0;
1476out_nomem:
1477	remove_cache_proc_entries(cd);
1478	return -ENOMEM;
1479}
1480#else /* CONFIG_PROC_FS */
1481static int create_cache_proc_entries(struct cache_detail *cd)
1482{
1483	return 0;
1484}
1485#endif
1486
1487int cache_register(struct cache_detail *cd)
1488{
1489	int ret;
1490
1491	sunrpc_init_cache_detail(cd);
1492	ret = create_cache_proc_entries(cd);
1493	if (ret)
1494		sunrpc_destroy_cache_detail(cd);
1495	return ret;
1496}
1497EXPORT_SYMBOL_GPL(cache_register);
1498
1499void cache_unregister(struct cache_detail *cd)
1500{
1501	remove_cache_proc_entries(cd);
1502	sunrpc_destroy_cache_detail(cd);
1503}
1504EXPORT_SYMBOL_GPL(cache_unregister);
1505
1506static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1507				 size_t count, loff_t *ppos)
1508{
1509	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1510
1511	return cache_read(filp, buf, count, ppos, cd);
1512}
1513
1514static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1515				  size_t count, loff_t *ppos)
1516{
1517	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1518
1519	return cache_write(filp, buf, count, ppos, cd);
1520}
1521
1522static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1523{
1524	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1525
1526	return cache_poll(filp, wait, cd);
1527}
1528
1529static int cache_ioctl_pipefs(struct inode *inode, struct file *filp,
1530			      unsigned int cmd, unsigned long arg)
1531{
1532	struct cache_detail *cd = RPC_I(inode)->private;
1533
1534	return cache_ioctl(inode, filp, cmd, arg, cd);
1535}
1536
1537static int cache_open_pipefs(struct inode *inode, struct file *filp)
1538{
1539	struct cache_detail *cd = RPC_I(inode)->private;
1540
1541	return cache_open(inode, filp, cd);
1542}
1543
1544static int cache_release_pipefs(struct inode *inode, struct file *filp)
1545{
1546	struct cache_detail *cd = RPC_I(inode)->private;
1547
1548	return cache_release(inode, filp, cd);
1549}
1550
1551const struct file_operations cache_file_operations_pipefs = {
1552	.owner		= THIS_MODULE,
1553	.llseek		= no_llseek,
1554	.read		= cache_read_pipefs,
1555	.write		= cache_write_pipefs,
1556	.poll		= cache_poll_pipefs,
1557	.ioctl		= cache_ioctl_pipefs, /* for FIONREAD */
1558	.open		= cache_open_pipefs,
1559	.release	= cache_release_pipefs,
1560};
1561
1562static int content_open_pipefs(struct inode *inode, struct file *filp)
1563{
1564	struct cache_detail *cd = RPC_I(inode)->private;
1565
1566	return content_open(inode, filp, cd);
1567}
1568
1569static int content_release_pipefs(struct inode *inode, struct file *filp)
1570{
1571	struct cache_detail *cd = RPC_I(inode)->private;
1572
1573	return content_release(inode, filp, cd);
1574}
1575
1576const struct file_operations content_file_operations_pipefs = {
1577	.open		= content_open_pipefs,
1578	.read		= seq_read,
1579	.llseek		= seq_lseek,
1580	.release	= content_release_pipefs,
1581};
1582
1583static int open_flush_pipefs(struct inode *inode, struct file *filp)
1584{
1585	struct cache_detail *cd = RPC_I(inode)->private;
1586
1587	return open_flush(inode, filp, cd);
1588}
1589
1590static int release_flush_pipefs(struct inode *inode, struct file *filp)
1591{
1592	struct cache_detail *cd = RPC_I(inode)->private;
1593
1594	return release_flush(inode, filp, cd);
1595}
1596
1597static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1598			    size_t count, loff_t *ppos)
1599{
1600	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1601
1602	return read_flush(filp, buf, count, ppos, cd);
1603}
1604
1605static ssize_t write_flush_pipefs(struct file *filp,
1606				  const char __user *buf,
1607				  size_t count, loff_t *ppos)
1608{
1609	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1610
1611	return write_flush(filp, buf, count, ppos, cd);
1612}
1613
1614const struct file_operations cache_flush_operations_pipefs = {
1615	.open		= open_flush_pipefs,
1616	.read		= read_flush_pipefs,
1617	.write		= write_flush_pipefs,
1618	.release	= release_flush_pipefs,
1619};
1620
1621int sunrpc_cache_register_pipefs(struct dentry *parent,
1622				 const char *name, mode_t umode,
1623				 struct cache_detail *cd)
1624{
1625	struct qstr q;
1626	struct dentry *dir;
1627	int ret = 0;
1628
1629	sunrpc_init_cache_detail(cd);
1630	q.name = name;
1631	q.len = strlen(name);
1632	q.hash = full_name_hash(q.name, q.len);
1633	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1634	if (!IS_ERR(dir))
1635		cd->u.pipefs.dir = dir;
1636	else {
1637		sunrpc_destroy_cache_detail(cd);
1638		ret = PTR_ERR(dir);
1639	}
1640	return ret;
1641}
1642EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1643
1644void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1645{
1646	rpc_remove_cache_dir(cd->u.pipefs.dir);
1647	cd->u.pipefs.dir = NULL;
1648	sunrpc_destroy_cache_detail(cd);
1649}
1650EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1651
1652