cache.c revision d29068c431599fa96729556846562eb18429092d
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <linux/smp_lock.h>
32#include <asm/ioctls.h>
33#include <linux/sunrpc/types.h>
34#include <linux/sunrpc/cache.h>
35#include <linux/sunrpc/stats.h>
36#include <linux/sunrpc/rpc_pipe_fs.h>
37#include "netns.h"
38
39#define	 RPCDBG_FACILITY RPCDBG_CACHE
40
41static void cache_defer_req(struct cache_req *req, struct cache_head *item);
42static void cache_revisit_request(struct cache_head *item);
43
44static void cache_init(struct cache_head *h)
45{
46	time_t now = seconds_since_boot();
47	h->next = NULL;
48	h->flags = 0;
49	kref_init(&h->ref);
50	h->expiry_time = now + CACHE_NEW_EXPIRY;
51	h->last_refresh = now;
52}
53
54static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
55{
56	return  (h->expiry_time < seconds_since_boot()) ||
57		(detail->flush_time > h->last_refresh);
58}
59
60struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
61				       struct cache_head *key, int hash)
62{
63	struct cache_head **head,  **hp;
64	struct cache_head *new = NULL, *freeme = NULL;
65
66	head = &detail->hash_table[hash];
67
68	read_lock(&detail->hash_lock);
69
70	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
71		struct cache_head *tmp = *hp;
72		if (detail->match(tmp, key)) {
73			if (cache_is_expired(detail, tmp))
74				/* This entry is expired, we will discard it. */
75				break;
76			cache_get(tmp);
77			read_unlock(&detail->hash_lock);
78			return tmp;
79		}
80	}
81	read_unlock(&detail->hash_lock);
82	/* Didn't find anything, insert an empty entry */
83
84	new = detail->alloc();
85	if (!new)
86		return NULL;
87	/* must fully initialise 'new', else
88	 * we might get lose if we need to
89	 * cache_put it soon.
90	 */
91	cache_init(new);
92	detail->init(new, key);
93
94	write_lock(&detail->hash_lock);
95
96	/* check if entry appeared while we slept */
97	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
98		struct cache_head *tmp = *hp;
99		if (detail->match(tmp, key)) {
100			if (cache_is_expired(detail, tmp)) {
101				*hp = tmp->next;
102				tmp->next = NULL;
103				detail->entries --;
104				freeme = tmp;
105				break;
106			}
107			cache_get(tmp);
108			write_unlock(&detail->hash_lock);
109			cache_put(new, detail);
110			return tmp;
111		}
112	}
113	new->next = *head;
114	*head = new;
115	detail->entries++;
116	cache_get(new);
117	write_unlock(&detail->hash_lock);
118
119	if (freeme)
120		cache_put(freeme, detail);
121	return new;
122}
123EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
124
125
126static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
127
128static void cache_fresh_locked(struct cache_head *head, time_t expiry)
129{
130	head->expiry_time = expiry;
131	head->last_refresh = seconds_since_boot();
132	set_bit(CACHE_VALID, &head->flags);
133}
134
135static void cache_fresh_unlocked(struct cache_head *head,
136				 struct cache_detail *detail)
137{
138	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139		cache_revisit_request(head);
140		cache_dequeue(detail, head);
141	}
142}
143
144struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145				       struct cache_head *new, struct cache_head *old, int hash)
146{
147	/* The 'old' entry is to be replaced by 'new'.
148	 * If 'old' is not VALID, we update it directly,
149	 * otherwise we need to replace it
150	 */
151	struct cache_head **head;
152	struct cache_head *tmp;
153
154	if (!test_bit(CACHE_VALID, &old->flags)) {
155		write_lock(&detail->hash_lock);
156		if (!test_bit(CACHE_VALID, &old->flags)) {
157			if (test_bit(CACHE_NEGATIVE, &new->flags))
158				set_bit(CACHE_NEGATIVE, &old->flags);
159			else
160				detail->update(old, new);
161			cache_fresh_locked(old, new->expiry_time);
162			write_unlock(&detail->hash_lock);
163			cache_fresh_unlocked(old, detail);
164			return old;
165		}
166		write_unlock(&detail->hash_lock);
167	}
168	/* We need to insert a new entry */
169	tmp = detail->alloc();
170	if (!tmp) {
171		cache_put(old, detail);
172		return NULL;
173	}
174	cache_init(tmp);
175	detail->init(tmp, old);
176	head = &detail->hash_table[hash];
177
178	write_lock(&detail->hash_lock);
179	if (test_bit(CACHE_NEGATIVE, &new->flags))
180		set_bit(CACHE_NEGATIVE, &tmp->flags);
181	else
182		detail->update(tmp, new);
183	tmp->next = *head;
184	*head = tmp;
185	detail->entries++;
186	cache_get(tmp);
187	cache_fresh_locked(tmp, new->expiry_time);
188	cache_fresh_locked(old, 0);
189	write_unlock(&detail->hash_lock);
190	cache_fresh_unlocked(tmp, detail);
191	cache_fresh_unlocked(old, detail);
192	cache_put(old, detail);
193	return tmp;
194}
195EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198{
199	if (!cd->cache_upcall)
200		return -EINVAL;
201	return cd->cache_upcall(cd, h);
202}
203
204static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205{
206	if (!test_bit(CACHE_VALID, &h->flags))
207		return -EAGAIN;
208	else {
209		/* entry is valid */
210		if (test_bit(CACHE_NEGATIVE, &h->flags))
211			return -ENOENT;
212		else
213			return 0;
214	}
215}
216
217/*
218 * This is the generic cache management routine for all
219 * the authentication caches.
220 * It checks the currency of a cache item and will (later)
221 * initiate an upcall to fill it if needed.
222 *
223 *
224 * Returns 0 if the cache_head can be used, or cache_puts it and returns
225 * -EAGAIN if upcall is pending and request has been queued
226 * -ETIMEDOUT if upcall failed or request could not be queue or
227 *           upcall completed but item is still invalid (implying that
228 *           the cache item has been replaced with a newer one).
229 * -ENOENT if cache entry was negative
230 */
231int cache_check(struct cache_detail *detail,
232		    struct cache_head *h, struct cache_req *rqstp)
233{
234	int rv;
235	long refresh_age, age;
236
237	/* First decide return status as best we can */
238	rv = cache_is_valid(detail, h);
239
240	/* now see if we want to start an upcall */
241	refresh_age = (h->expiry_time - h->last_refresh);
242	age = seconds_since_boot() - h->last_refresh;
243
244	if (rqstp == NULL) {
245		if (rv == -EAGAIN)
246			rv = -ENOENT;
247	} else if (rv == -EAGAIN || age > refresh_age/2) {
248		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
249				refresh_age, age);
250		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
251			switch (cache_make_upcall(detail, h)) {
252			case -EINVAL:
253				clear_bit(CACHE_PENDING, &h->flags);
254				cache_revisit_request(h);
255				if (rv == -EAGAIN) {
256					set_bit(CACHE_NEGATIVE, &h->flags);
257					cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
258					cache_fresh_unlocked(h, detail);
259					rv = -ENOENT;
260				}
261				break;
262
263			case -EAGAIN:
264				clear_bit(CACHE_PENDING, &h->flags);
265				cache_revisit_request(h);
266				break;
267			}
268		}
269	}
270
271	if (rv == -EAGAIN) {
272		cache_defer_req(rqstp, h);
273		if (!test_bit(CACHE_PENDING, &h->flags)) {
274			/* Request is not deferred */
275			rv = cache_is_valid(detail, h);
276			if (rv == -EAGAIN)
277				rv = -ETIMEDOUT;
278		}
279	}
280	if (rv)
281		cache_put(h, detail);
282	return rv;
283}
284EXPORT_SYMBOL_GPL(cache_check);
285
286/*
287 * caches need to be periodically cleaned.
288 * For this we maintain a list of cache_detail and
289 * a current pointer into that list and into the table
290 * for that entry.
291 *
292 * Each time clean_cache is called it finds the next non-empty entry
293 * in the current table and walks the list in that entry
294 * looking for entries that can be removed.
295 *
296 * An entry gets removed if:
297 * - The expiry is before current time
298 * - The last_refresh time is before the flush_time for that cache
299 *
300 * later we might drop old entries with non-NEVER expiry if that table
301 * is getting 'full' for some definition of 'full'
302 *
303 * The question of "how often to scan a table" is an interesting one
304 * and is answered in part by the use of the "nextcheck" field in the
305 * cache_detail.
306 * When a scan of a table begins, the nextcheck field is set to a time
307 * that is well into the future.
308 * While scanning, if an expiry time is found that is earlier than the
309 * current nextcheck time, nextcheck is set to that expiry time.
310 * If the flush_time is ever set to a time earlier than the nextcheck
311 * time, the nextcheck time is then set to that flush_time.
312 *
313 * A table is then only scanned if the current time is at least
314 * the nextcheck time.
315 *
316 */
317
318static LIST_HEAD(cache_list);
319static DEFINE_SPINLOCK(cache_list_lock);
320static struct cache_detail *current_detail;
321static int current_index;
322
323static void do_cache_clean(struct work_struct *work);
324static struct delayed_work cache_cleaner;
325
326static void sunrpc_init_cache_detail(struct cache_detail *cd)
327{
328	rwlock_init(&cd->hash_lock);
329	INIT_LIST_HEAD(&cd->queue);
330	spin_lock(&cache_list_lock);
331	cd->nextcheck = 0;
332	cd->entries = 0;
333	atomic_set(&cd->readers, 0);
334	cd->last_close = 0;
335	cd->last_warn = -1;
336	list_add(&cd->others, &cache_list);
337	spin_unlock(&cache_list_lock);
338
339	/* start the cleaning process */
340	schedule_delayed_work(&cache_cleaner, 0);
341}
342
343static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
344{
345	cache_purge(cd);
346	spin_lock(&cache_list_lock);
347	write_lock(&cd->hash_lock);
348	if (cd->entries || atomic_read(&cd->inuse)) {
349		write_unlock(&cd->hash_lock);
350		spin_unlock(&cache_list_lock);
351		goto out;
352	}
353	if (current_detail == cd)
354		current_detail = NULL;
355	list_del_init(&cd->others);
356	write_unlock(&cd->hash_lock);
357	spin_unlock(&cache_list_lock);
358	if (list_empty(&cache_list)) {
359		/* module must be being unloaded so its safe to kill the worker */
360		cancel_delayed_work_sync(&cache_cleaner);
361	}
362	return;
363out:
364	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
365}
366
367/* clean cache tries to find something to clean
368 * and cleans it.
369 * It returns 1 if it cleaned something,
370 *            0 if it didn't find anything this time
371 *           -1 if it fell off the end of the list.
372 */
373static int cache_clean(void)
374{
375	int rv = 0;
376	struct list_head *next;
377
378	spin_lock(&cache_list_lock);
379
380	/* find a suitable table if we don't already have one */
381	while (current_detail == NULL ||
382	    current_index >= current_detail->hash_size) {
383		if (current_detail)
384			next = current_detail->others.next;
385		else
386			next = cache_list.next;
387		if (next == &cache_list) {
388			current_detail = NULL;
389			spin_unlock(&cache_list_lock);
390			return -1;
391		}
392		current_detail = list_entry(next, struct cache_detail, others);
393		if (current_detail->nextcheck > seconds_since_boot())
394			current_index = current_detail->hash_size;
395		else {
396			current_index = 0;
397			current_detail->nextcheck = seconds_since_boot()+30*60;
398		}
399	}
400
401	/* find a non-empty bucket in the table */
402	while (current_detail &&
403	       current_index < current_detail->hash_size &&
404	       current_detail->hash_table[current_index] == NULL)
405		current_index++;
406
407	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
408
409	if (current_detail && current_index < current_detail->hash_size) {
410		struct cache_head *ch, **cp;
411		struct cache_detail *d;
412
413		write_lock(&current_detail->hash_lock);
414
415		/* Ok, now to clean this strand */
416
417		cp = & current_detail->hash_table[current_index];
418		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
419			if (current_detail->nextcheck > ch->expiry_time)
420				current_detail->nextcheck = ch->expiry_time+1;
421			if (!cache_is_expired(current_detail, ch))
422				continue;
423
424			*cp = ch->next;
425			ch->next = NULL;
426			current_detail->entries--;
427			rv = 1;
428			break;
429		}
430
431		write_unlock(&current_detail->hash_lock);
432		d = current_detail;
433		if (!ch)
434			current_index ++;
435		spin_unlock(&cache_list_lock);
436		if (ch) {
437			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
438				cache_dequeue(current_detail, ch);
439			cache_revisit_request(ch);
440			cache_put(ch, d);
441		}
442	} else
443		spin_unlock(&cache_list_lock);
444
445	return rv;
446}
447
448/*
449 * We want to regularly clean the cache, so we need to schedule some work ...
450 */
451static void do_cache_clean(struct work_struct *work)
452{
453	int delay = 5;
454	if (cache_clean() == -1)
455		delay = round_jiffies_relative(30*HZ);
456
457	if (list_empty(&cache_list))
458		delay = 0;
459
460	if (delay)
461		schedule_delayed_work(&cache_cleaner, delay);
462}
463
464
465/*
466 * Clean all caches promptly.  This just calls cache_clean
467 * repeatedly until we are sure that every cache has had a chance to
468 * be fully cleaned
469 */
470void cache_flush(void)
471{
472	while (cache_clean() != -1)
473		cond_resched();
474	while (cache_clean() != -1)
475		cond_resched();
476}
477EXPORT_SYMBOL_GPL(cache_flush);
478
479void cache_purge(struct cache_detail *detail)
480{
481	detail->flush_time = LONG_MAX;
482	detail->nextcheck = seconds_since_boot();
483	cache_flush();
484	detail->flush_time = 1;
485}
486EXPORT_SYMBOL_GPL(cache_purge);
487
488
489/*
490 * Deferral and Revisiting of Requests.
491 *
492 * If a cache lookup finds a pending entry, we
493 * need to defer the request and revisit it later.
494 * All deferred requests are stored in a hash table,
495 * indexed by "struct cache_head *".
496 * As it may be wasteful to store a whole request
497 * structure, we allow the request to provide a
498 * deferred form, which must contain a
499 * 'struct cache_deferred_req'
500 * This cache_deferred_req contains a method to allow
501 * it to be revisited when cache info is available
502 */
503
504#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
505#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
506
507#define	DFR_MAX	300	/* ??? */
508
509static DEFINE_SPINLOCK(cache_defer_lock);
510static LIST_HEAD(cache_defer_list);
511static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
512static int cache_defer_cnt;
513
514static void __unhash_deferred_req(struct cache_deferred_req *dreq)
515{
516	list_del_init(&dreq->recent);
517	hlist_del_init(&dreq->hash);
518	cache_defer_cnt--;
519}
520
521static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
522{
523	int hash = DFR_HASH(item);
524
525	list_add(&dreq->recent, &cache_defer_list);
526	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
527}
528
529static void setup_deferral(struct cache_deferred_req *dreq, struct cache_head *item)
530{
531	struct cache_deferred_req *discard;
532
533	dreq->item = item;
534
535	spin_lock(&cache_defer_lock);
536
537	__hash_deferred_req(dreq, item);
538
539	/* it is in, now maybe clean up */
540	discard = NULL;
541	if (++cache_defer_cnt > DFR_MAX) {
542		discard = list_entry(cache_defer_list.prev,
543				     struct cache_deferred_req, recent);
544		__unhash_deferred_req(discard);
545	}
546	spin_unlock(&cache_defer_lock);
547
548	if (discard)
549		/* there was one too many */
550		discard->revisit(discard, 1);
551}
552
553struct thread_deferred_req {
554	struct cache_deferred_req handle;
555	struct completion completion;
556};
557
558static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
559{
560	struct thread_deferred_req *dr =
561		container_of(dreq, struct thread_deferred_req, handle);
562	complete(&dr->completion);
563}
564
565static void cache_wait_req(struct cache_req *req, struct cache_head *item)
566{
567	struct thread_deferred_req sleeper;
568	struct cache_deferred_req *dreq = &sleeper.handle;
569
570	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
571	dreq->revisit = cache_restart_thread;
572
573	setup_deferral(dreq, item);
574
575	if (!test_bit(CACHE_PENDING, &item->flags) ||
576	    wait_for_completion_interruptible_timeout(
577		    &sleeper.completion, req->thread_wait) <= 0) {
578		/* The completion wasn't completed, so we need
579		 * to clean up
580		 */
581		spin_lock(&cache_defer_lock);
582		if (!hlist_unhashed(&sleeper.handle.hash)) {
583			__unhash_deferred_req(&sleeper.handle);
584			spin_unlock(&cache_defer_lock);
585		} else {
586			/* cache_revisit_request already removed
587			 * this from the hash table, but hasn't
588			 * called ->revisit yet.  It will very soon
589			 * and we need to wait for it.
590			 */
591			spin_unlock(&cache_defer_lock);
592			wait_for_completion(&sleeper.completion);
593		}
594	}
595}
596
597static void cache_defer_req(struct cache_req *req, struct cache_head *item)
598{
599	struct cache_deferred_req *dreq;
600
601	if (cache_defer_cnt >= DFR_MAX)
602		/* too much in the cache, randomly drop this one,
603		 * or continue and drop the oldest
604		 */
605		if (net_random()&1)
606			return;
607
608
609	if (req->thread_wait) {
610		cache_wait_req(req, item);
611		if (!test_bit(CACHE_PENDING, &item->flags))
612			return;
613	}
614	dreq = req->defer(req);
615	if (dreq == NULL)
616		return;
617	setup_deferral(dreq, item);
618	if (!test_bit(CACHE_PENDING, &item->flags))
619		/* Bit could have been cleared before we managed to
620		 * set up the deferral, so need to revisit just in case
621		 */
622		cache_revisit_request(item);
623}
624
625static void cache_revisit_request(struct cache_head *item)
626{
627	struct cache_deferred_req *dreq;
628	struct list_head pending;
629	struct hlist_node *lp, *tmp;
630	int hash = DFR_HASH(item);
631
632	INIT_LIST_HEAD(&pending);
633	spin_lock(&cache_defer_lock);
634
635	hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
636		if (dreq->item == item) {
637			__unhash_deferred_req(dreq);
638			list_add(&dreq->recent, &pending);
639		}
640
641	spin_unlock(&cache_defer_lock);
642
643	while (!list_empty(&pending)) {
644		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
645		list_del_init(&dreq->recent);
646		dreq->revisit(dreq, 0);
647	}
648}
649
650void cache_clean_deferred(void *owner)
651{
652	struct cache_deferred_req *dreq, *tmp;
653	struct list_head pending;
654
655
656	INIT_LIST_HEAD(&pending);
657	spin_lock(&cache_defer_lock);
658
659	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
660		if (dreq->owner == owner) {
661			__unhash_deferred_req(dreq);
662			list_add(&dreq->recent, &pending);
663		}
664	}
665	spin_unlock(&cache_defer_lock);
666
667	while (!list_empty(&pending)) {
668		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
669		list_del_init(&dreq->recent);
670		dreq->revisit(dreq, 1);
671	}
672}
673
674/*
675 * communicate with user-space
676 *
677 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
678 * On read, you get a full request, or block.
679 * On write, an update request is processed.
680 * Poll works if anything to read, and always allows write.
681 *
682 * Implemented by linked list of requests.  Each open file has
683 * a ->private that also exists in this list.  New requests are added
684 * to the end and may wakeup and preceding readers.
685 * New readers are added to the head.  If, on read, an item is found with
686 * CACHE_UPCALLING clear, we free it from the list.
687 *
688 */
689
690static DEFINE_SPINLOCK(queue_lock);
691static DEFINE_MUTEX(queue_io_mutex);
692
693struct cache_queue {
694	struct list_head	list;
695	int			reader;	/* if 0, then request */
696};
697struct cache_request {
698	struct cache_queue	q;
699	struct cache_head	*item;
700	char			* buf;
701	int			len;
702	int			readers;
703};
704struct cache_reader {
705	struct cache_queue	q;
706	int			offset;	/* if non-0, we have a refcnt on next request */
707};
708
709static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
710			  loff_t *ppos, struct cache_detail *cd)
711{
712	struct cache_reader *rp = filp->private_data;
713	struct cache_request *rq;
714	struct inode *inode = filp->f_path.dentry->d_inode;
715	int err;
716
717	if (count == 0)
718		return 0;
719
720	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
721			      * readers on this file */
722 again:
723	spin_lock(&queue_lock);
724	/* need to find next request */
725	while (rp->q.list.next != &cd->queue &&
726	       list_entry(rp->q.list.next, struct cache_queue, list)
727	       ->reader) {
728		struct list_head *next = rp->q.list.next;
729		list_move(&rp->q.list, next);
730	}
731	if (rp->q.list.next == &cd->queue) {
732		spin_unlock(&queue_lock);
733		mutex_unlock(&inode->i_mutex);
734		BUG_ON(rp->offset);
735		return 0;
736	}
737	rq = container_of(rp->q.list.next, struct cache_request, q.list);
738	BUG_ON(rq->q.reader);
739	if (rp->offset == 0)
740		rq->readers++;
741	spin_unlock(&queue_lock);
742
743	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
744		err = -EAGAIN;
745		spin_lock(&queue_lock);
746		list_move(&rp->q.list, &rq->q.list);
747		spin_unlock(&queue_lock);
748	} else {
749		if (rp->offset + count > rq->len)
750			count = rq->len - rp->offset;
751		err = -EFAULT;
752		if (copy_to_user(buf, rq->buf + rp->offset, count))
753			goto out;
754		rp->offset += count;
755		if (rp->offset >= rq->len) {
756			rp->offset = 0;
757			spin_lock(&queue_lock);
758			list_move(&rp->q.list, &rq->q.list);
759			spin_unlock(&queue_lock);
760		}
761		err = 0;
762	}
763 out:
764	if (rp->offset == 0) {
765		/* need to release rq */
766		spin_lock(&queue_lock);
767		rq->readers--;
768		if (rq->readers == 0 &&
769		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
770			list_del(&rq->q.list);
771			spin_unlock(&queue_lock);
772			cache_put(rq->item, cd);
773			kfree(rq->buf);
774			kfree(rq);
775		} else
776			spin_unlock(&queue_lock);
777	}
778	if (err == -EAGAIN)
779		goto again;
780	mutex_unlock(&inode->i_mutex);
781	return err ? err :  count;
782}
783
784static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
785				 size_t count, struct cache_detail *cd)
786{
787	ssize_t ret;
788
789	if (copy_from_user(kaddr, buf, count))
790		return -EFAULT;
791	kaddr[count] = '\0';
792	ret = cd->cache_parse(cd, kaddr, count);
793	if (!ret)
794		ret = count;
795	return ret;
796}
797
798static ssize_t cache_slow_downcall(const char __user *buf,
799				   size_t count, struct cache_detail *cd)
800{
801	static char write_buf[8192]; /* protected by queue_io_mutex */
802	ssize_t ret = -EINVAL;
803
804	if (count >= sizeof(write_buf))
805		goto out;
806	mutex_lock(&queue_io_mutex);
807	ret = cache_do_downcall(write_buf, buf, count, cd);
808	mutex_unlock(&queue_io_mutex);
809out:
810	return ret;
811}
812
813static ssize_t cache_downcall(struct address_space *mapping,
814			      const char __user *buf,
815			      size_t count, struct cache_detail *cd)
816{
817	struct page *page;
818	char *kaddr;
819	ssize_t ret = -ENOMEM;
820
821	if (count >= PAGE_CACHE_SIZE)
822		goto out_slow;
823
824	page = find_or_create_page(mapping, 0, GFP_KERNEL);
825	if (!page)
826		goto out_slow;
827
828	kaddr = kmap(page);
829	ret = cache_do_downcall(kaddr, buf, count, cd);
830	kunmap(page);
831	unlock_page(page);
832	page_cache_release(page);
833	return ret;
834out_slow:
835	return cache_slow_downcall(buf, count, cd);
836}
837
838static ssize_t cache_write(struct file *filp, const char __user *buf,
839			   size_t count, loff_t *ppos,
840			   struct cache_detail *cd)
841{
842	struct address_space *mapping = filp->f_mapping;
843	struct inode *inode = filp->f_path.dentry->d_inode;
844	ssize_t ret = -EINVAL;
845
846	if (!cd->cache_parse)
847		goto out;
848
849	mutex_lock(&inode->i_mutex);
850	ret = cache_downcall(mapping, buf, count, cd);
851	mutex_unlock(&inode->i_mutex);
852out:
853	return ret;
854}
855
856static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
857
858static unsigned int cache_poll(struct file *filp, poll_table *wait,
859			       struct cache_detail *cd)
860{
861	unsigned int mask;
862	struct cache_reader *rp = filp->private_data;
863	struct cache_queue *cq;
864
865	poll_wait(filp, &queue_wait, wait);
866
867	/* alway allow write */
868	mask = POLL_OUT | POLLWRNORM;
869
870	if (!rp)
871		return mask;
872
873	spin_lock(&queue_lock);
874
875	for (cq= &rp->q; &cq->list != &cd->queue;
876	     cq = list_entry(cq->list.next, struct cache_queue, list))
877		if (!cq->reader) {
878			mask |= POLLIN | POLLRDNORM;
879			break;
880		}
881	spin_unlock(&queue_lock);
882	return mask;
883}
884
885static int cache_ioctl(struct inode *ino, struct file *filp,
886		       unsigned int cmd, unsigned long arg,
887		       struct cache_detail *cd)
888{
889	int len = 0;
890	struct cache_reader *rp = filp->private_data;
891	struct cache_queue *cq;
892
893	if (cmd != FIONREAD || !rp)
894		return -EINVAL;
895
896	spin_lock(&queue_lock);
897
898	/* only find the length remaining in current request,
899	 * or the length of the next request
900	 */
901	for (cq= &rp->q; &cq->list != &cd->queue;
902	     cq = list_entry(cq->list.next, struct cache_queue, list))
903		if (!cq->reader) {
904			struct cache_request *cr =
905				container_of(cq, struct cache_request, q);
906			len = cr->len - rp->offset;
907			break;
908		}
909	spin_unlock(&queue_lock);
910
911	return put_user(len, (int __user *)arg);
912}
913
914static int cache_open(struct inode *inode, struct file *filp,
915		      struct cache_detail *cd)
916{
917	struct cache_reader *rp = NULL;
918
919	if (!cd || !try_module_get(cd->owner))
920		return -EACCES;
921	nonseekable_open(inode, filp);
922	if (filp->f_mode & FMODE_READ) {
923		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
924		if (!rp)
925			return -ENOMEM;
926		rp->offset = 0;
927		rp->q.reader = 1;
928		atomic_inc(&cd->readers);
929		spin_lock(&queue_lock);
930		list_add(&rp->q.list, &cd->queue);
931		spin_unlock(&queue_lock);
932	}
933	filp->private_data = rp;
934	return 0;
935}
936
937static int cache_release(struct inode *inode, struct file *filp,
938			 struct cache_detail *cd)
939{
940	struct cache_reader *rp = filp->private_data;
941
942	if (rp) {
943		spin_lock(&queue_lock);
944		if (rp->offset) {
945			struct cache_queue *cq;
946			for (cq= &rp->q; &cq->list != &cd->queue;
947			     cq = list_entry(cq->list.next, struct cache_queue, list))
948				if (!cq->reader) {
949					container_of(cq, struct cache_request, q)
950						->readers--;
951					break;
952				}
953			rp->offset = 0;
954		}
955		list_del(&rp->q.list);
956		spin_unlock(&queue_lock);
957
958		filp->private_data = NULL;
959		kfree(rp);
960
961		cd->last_close = seconds_since_boot();
962		atomic_dec(&cd->readers);
963	}
964	module_put(cd->owner);
965	return 0;
966}
967
968
969
970static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
971{
972	struct cache_queue *cq;
973	spin_lock(&queue_lock);
974	list_for_each_entry(cq, &detail->queue, list)
975		if (!cq->reader) {
976			struct cache_request *cr = container_of(cq, struct cache_request, q);
977			if (cr->item != ch)
978				continue;
979			if (cr->readers != 0)
980				continue;
981			list_del(&cr->q.list);
982			spin_unlock(&queue_lock);
983			cache_put(cr->item, detail);
984			kfree(cr->buf);
985			kfree(cr);
986			return;
987		}
988	spin_unlock(&queue_lock);
989}
990
991/*
992 * Support routines for text-based upcalls.
993 * Fields are separated by spaces.
994 * Fields are either mangled to quote space tab newline slosh with slosh
995 * or a hexified with a leading \x
996 * Record is terminated with newline.
997 *
998 */
999
1000void qword_add(char **bpp, int *lp, char *str)
1001{
1002	char *bp = *bpp;
1003	int len = *lp;
1004	char c;
1005
1006	if (len < 0) return;
1007
1008	while ((c=*str++) && len)
1009		switch(c) {
1010		case ' ':
1011		case '\t':
1012		case '\n':
1013		case '\\':
1014			if (len >= 4) {
1015				*bp++ = '\\';
1016				*bp++ = '0' + ((c & 0300)>>6);
1017				*bp++ = '0' + ((c & 0070)>>3);
1018				*bp++ = '0' + ((c & 0007)>>0);
1019			}
1020			len -= 4;
1021			break;
1022		default:
1023			*bp++ = c;
1024			len--;
1025		}
1026	if (c || len <1) len = -1;
1027	else {
1028		*bp++ = ' ';
1029		len--;
1030	}
1031	*bpp = bp;
1032	*lp = len;
1033}
1034EXPORT_SYMBOL_GPL(qword_add);
1035
1036void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1037{
1038	char *bp = *bpp;
1039	int len = *lp;
1040
1041	if (len < 0) return;
1042
1043	if (len > 2) {
1044		*bp++ = '\\';
1045		*bp++ = 'x';
1046		len -= 2;
1047		while (blen && len >= 2) {
1048			unsigned char c = *buf++;
1049			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1050			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1051			len -= 2;
1052			blen--;
1053		}
1054	}
1055	if (blen || len<1) len = -1;
1056	else {
1057		*bp++ = ' ';
1058		len--;
1059	}
1060	*bpp = bp;
1061	*lp = len;
1062}
1063EXPORT_SYMBOL_GPL(qword_addhex);
1064
1065static void warn_no_listener(struct cache_detail *detail)
1066{
1067	if (detail->last_warn != detail->last_close) {
1068		detail->last_warn = detail->last_close;
1069		if (detail->warn_no_listener)
1070			detail->warn_no_listener(detail, detail->last_close != 0);
1071	}
1072}
1073
1074static bool cache_listeners_exist(struct cache_detail *detail)
1075{
1076	if (atomic_read(&detail->readers))
1077		return true;
1078	if (detail->last_close == 0)
1079		/* This cache was never opened */
1080		return false;
1081	if (detail->last_close < seconds_since_boot() - 30)
1082		/*
1083		 * We allow for the possibility that someone might
1084		 * restart a userspace daemon without restarting the
1085		 * server; but after 30 seconds, we give up.
1086		 */
1087		 return false;
1088	return true;
1089}
1090
1091/*
1092 * register an upcall request to user-space and queue it up for read() by the
1093 * upcall daemon.
1094 *
1095 * Each request is at most one page long.
1096 */
1097int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1098		void (*cache_request)(struct cache_detail *,
1099				      struct cache_head *,
1100				      char **,
1101				      int *))
1102{
1103
1104	char *buf;
1105	struct cache_request *crq;
1106	char *bp;
1107	int len;
1108
1109	if (!cache_listeners_exist(detail)) {
1110		warn_no_listener(detail);
1111		return -EINVAL;
1112	}
1113
1114	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1115	if (!buf)
1116		return -EAGAIN;
1117
1118	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1119	if (!crq) {
1120		kfree(buf);
1121		return -EAGAIN;
1122	}
1123
1124	bp = buf; len = PAGE_SIZE;
1125
1126	cache_request(detail, h, &bp, &len);
1127
1128	if (len < 0) {
1129		kfree(buf);
1130		kfree(crq);
1131		return -EAGAIN;
1132	}
1133	crq->q.reader = 0;
1134	crq->item = cache_get(h);
1135	crq->buf = buf;
1136	crq->len = PAGE_SIZE - len;
1137	crq->readers = 0;
1138	spin_lock(&queue_lock);
1139	list_add_tail(&crq->q.list, &detail->queue);
1140	spin_unlock(&queue_lock);
1141	wake_up(&queue_wait);
1142	return 0;
1143}
1144EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1145
1146/*
1147 * parse a message from user-space and pass it
1148 * to an appropriate cache
1149 * Messages are, like requests, separated into fields by
1150 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1151 *
1152 * Message is
1153 *   reply cachename expiry key ... content....
1154 *
1155 * key and content are both parsed by cache
1156 */
1157
1158#define isodigit(c) (isdigit(c) && c <= '7')
1159int qword_get(char **bpp, char *dest, int bufsize)
1160{
1161	/* return bytes copied, or -1 on error */
1162	char *bp = *bpp;
1163	int len = 0;
1164
1165	while (*bp == ' ') bp++;
1166
1167	if (bp[0] == '\\' && bp[1] == 'x') {
1168		/* HEX STRING */
1169		bp += 2;
1170		while (len < bufsize) {
1171			int h, l;
1172
1173			h = hex_to_bin(bp[0]);
1174			if (h < 0)
1175				break;
1176
1177			l = hex_to_bin(bp[1]);
1178			if (l < 0)
1179				break;
1180
1181			*dest++ = (h << 4) | l;
1182			bp += 2;
1183			len++;
1184		}
1185	} else {
1186		/* text with \nnn octal quoting */
1187		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1188			if (*bp == '\\' &&
1189			    isodigit(bp[1]) && (bp[1] <= '3') &&
1190			    isodigit(bp[2]) &&
1191			    isodigit(bp[3])) {
1192				int byte = (*++bp -'0');
1193				bp++;
1194				byte = (byte << 3) | (*bp++ - '0');
1195				byte = (byte << 3) | (*bp++ - '0');
1196				*dest++ = byte;
1197				len++;
1198			} else {
1199				*dest++ = *bp++;
1200				len++;
1201			}
1202		}
1203	}
1204
1205	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1206		return -1;
1207	while (*bp == ' ') bp++;
1208	*bpp = bp;
1209	*dest = '\0';
1210	return len;
1211}
1212EXPORT_SYMBOL_GPL(qword_get);
1213
1214
1215/*
1216 * support /proc/sunrpc/cache/$CACHENAME/content
1217 * as a seqfile.
1218 * We call ->cache_show passing NULL for the item to
1219 * get a header, then pass each real item in the cache
1220 */
1221
1222struct handle {
1223	struct cache_detail *cd;
1224};
1225
1226static void *c_start(struct seq_file *m, loff_t *pos)
1227	__acquires(cd->hash_lock)
1228{
1229	loff_t n = *pos;
1230	unsigned hash, entry;
1231	struct cache_head *ch;
1232	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1233
1234
1235	read_lock(&cd->hash_lock);
1236	if (!n--)
1237		return SEQ_START_TOKEN;
1238	hash = n >> 32;
1239	entry = n & ((1LL<<32) - 1);
1240
1241	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1242		if (!entry--)
1243			return ch;
1244	n &= ~((1LL<<32) - 1);
1245	do {
1246		hash++;
1247		n += 1LL<<32;
1248	} while(hash < cd->hash_size &&
1249		cd->hash_table[hash]==NULL);
1250	if (hash >= cd->hash_size)
1251		return NULL;
1252	*pos = n+1;
1253	return cd->hash_table[hash];
1254}
1255
1256static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1257{
1258	struct cache_head *ch = p;
1259	int hash = (*pos >> 32);
1260	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1261
1262	if (p == SEQ_START_TOKEN)
1263		hash = 0;
1264	else if (ch->next == NULL) {
1265		hash++;
1266		*pos += 1LL<<32;
1267	} else {
1268		++*pos;
1269		return ch->next;
1270	}
1271	*pos &= ~((1LL<<32) - 1);
1272	while (hash < cd->hash_size &&
1273	       cd->hash_table[hash] == NULL) {
1274		hash++;
1275		*pos += 1LL<<32;
1276	}
1277	if (hash >= cd->hash_size)
1278		return NULL;
1279	++*pos;
1280	return cd->hash_table[hash];
1281}
1282
1283static void c_stop(struct seq_file *m, void *p)
1284	__releases(cd->hash_lock)
1285{
1286	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1287	read_unlock(&cd->hash_lock);
1288}
1289
1290static int c_show(struct seq_file *m, void *p)
1291{
1292	struct cache_head *cp = p;
1293	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1294
1295	if (p == SEQ_START_TOKEN)
1296		return cd->cache_show(m, cd, NULL);
1297
1298	ifdebug(CACHE)
1299		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1300			   convert_to_wallclock(cp->expiry_time),
1301			   atomic_read(&cp->ref.refcount), cp->flags);
1302	cache_get(cp);
1303	if (cache_check(cd, cp, NULL))
1304		/* cache_check does a cache_put on failure */
1305		seq_printf(m, "# ");
1306	else
1307		cache_put(cp, cd);
1308
1309	return cd->cache_show(m, cd, cp);
1310}
1311
1312static const struct seq_operations cache_content_op = {
1313	.start	= c_start,
1314	.next	= c_next,
1315	.stop	= c_stop,
1316	.show	= c_show,
1317};
1318
1319static int content_open(struct inode *inode, struct file *file,
1320			struct cache_detail *cd)
1321{
1322	struct handle *han;
1323
1324	if (!cd || !try_module_get(cd->owner))
1325		return -EACCES;
1326	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1327	if (han == NULL) {
1328		module_put(cd->owner);
1329		return -ENOMEM;
1330	}
1331
1332	han->cd = cd;
1333	return 0;
1334}
1335
1336static int content_release(struct inode *inode, struct file *file,
1337		struct cache_detail *cd)
1338{
1339	int ret = seq_release_private(inode, file);
1340	module_put(cd->owner);
1341	return ret;
1342}
1343
1344static int open_flush(struct inode *inode, struct file *file,
1345			struct cache_detail *cd)
1346{
1347	if (!cd || !try_module_get(cd->owner))
1348		return -EACCES;
1349	return nonseekable_open(inode, file);
1350}
1351
1352static int release_flush(struct inode *inode, struct file *file,
1353			struct cache_detail *cd)
1354{
1355	module_put(cd->owner);
1356	return 0;
1357}
1358
1359static ssize_t read_flush(struct file *file, char __user *buf,
1360			  size_t count, loff_t *ppos,
1361			  struct cache_detail *cd)
1362{
1363	char tbuf[20];
1364	unsigned long p = *ppos;
1365	size_t len;
1366
1367	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1368	len = strlen(tbuf);
1369	if (p >= len)
1370		return 0;
1371	len -= p;
1372	if (len > count)
1373		len = count;
1374	if (copy_to_user(buf, (void*)(tbuf+p), len))
1375		return -EFAULT;
1376	*ppos += len;
1377	return len;
1378}
1379
1380static ssize_t write_flush(struct file *file, const char __user *buf,
1381			   size_t count, loff_t *ppos,
1382			   struct cache_detail *cd)
1383{
1384	char tbuf[20];
1385	char *bp, *ep;
1386
1387	if (*ppos || count > sizeof(tbuf)-1)
1388		return -EINVAL;
1389	if (copy_from_user(tbuf, buf, count))
1390		return -EFAULT;
1391	tbuf[count] = 0;
1392	simple_strtoul(tbuf, &ep, 0);
1393	if (*ep && *ep != '\n')
1394		return -EINVAL;
1395
1396	bp = tbuf;
1397	cd->flush_time = get_expiry(&bp);
1398	cd->nextcheck = seconds_since_boot();
1399	cache_flush();
1400
1401	*ppos += count;
1402	return count;
1403}
1404
1405static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1406				 size_t count, loff_t *ppos)
1407{
1408	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1409
1410	return cache_read(filp, buf, count, ppos, cd);
1411}
1412
1413static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1414				  size_t count, loff_t *ppos)
1415{
1416	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1417
1418	return cache_write(filp, buf, count, ppos, cd);
1419}
1420
1421static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1422{
1423	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1424
1425	return cache_poll(filp, wait, cd);
1426}
1427
1428static long cache_ioctl_procfs(struct file *filp,
1429			       unsigned int cmd, unsigned long arg)
1430{
1431	long ret;
1432	struct inode *inode = filp->f_path.dentry->d_inode;
1433	struct cache_detail *cd = PDE(inode)->data;
1434
1435	lock_kernel();
1436	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1437	unlock_kernel();
1438
1439	return ret;
1440}
1441
1442static int cache_open_procfs(struct inode *inode, struct file *filp)
1443{
1444	struct cache_detail *cd = PDE(inode)->data;
1445
1446	return cache_open(inode, filp, cd);
1447}
1448
1449static int cache_release_procfs(struct inode *inode, struct file *filp)
1450{
1451	struct cache_detail *cd = PDE(inode)->data;
1452
1453	return cache_release(inode, filp, cd);
1454}
1455
1456static const struct file_operations cache_file_operations_procfs = {
1457	.owner		= THIS_MODULE,
1458	.llseek		= no_llseek,
1459	.read		= cache_read_procfs,
1460	.write		= cache_write_procfs,
1461	.poll		= cache_poll_procfs,
1462	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1463	.open		= cache_open_procfs,
1464	.release	= cache_release_procfs,
1465};
1466
1467static int content_open_procfs(struct inode *inode, struct file *filp)
1468{
1469	struct cache_detail *cd = PDE(inode)->data;
1470
1471	return content_open(inode, filp, cd);
1472}
1473
1474static int content_release_procfs(struct inode *inode, struct file *filp)
1475{
1476	struct cache_detail *cd = PDE(inode)->data;
1477
1478	return content_release(inode, filp, cd);
1479}
1480
1481static const struct file_operations content_file_operations_procfs = {
1482	.open		= content_open_procfs,
1483	.read		= seq_read,
1484	.llseek		= seq_lseek,
1485	.release	= content_release_procfs,
1486};
1487
1488static int open_flush_procfs(struct inode *inode, struct file *filp)
1489{
1490	struct cache_detail *cd = PDE(inode)->data;
1491
1492	return open_flush(inode, filp, cd);
1493}
1494
1495static int release_flush_procfs(struct inode *inode, struct file *filp)
1496{
1497	struct cache_detail *cd = PDE(inode)->data;
1498
1499	return release_flush(inode, filp, cd);
1500}
1501
1502static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1503			    size_t count, loff_t *ppos)
1504{
1505	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1506
1507	return read_flush(filp, buf, count, ppos, cd);
1508}
1509
1510static ssize_t write_flush_procfs(struct file *filp,
1511				  const char __user *buf,
1512				  size_t count, loff_t *ppos)
1513{
1514	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1515
1516	return write_flush(filp, buf, count, ppos, cd);
1517}
1518
1519static const struct file_operations cache_flush_operations_procfs = {
1520	.open		= open_flush_procfs,
1521	.read		= read_flush_procfs,
1522	.write		= write_flush_procfs,
1523	.release	= release_flush_procfs,
1524};
1525
1526static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1527{
1528	struct sunrpc_net *sn;
1529
1530	if (cd->u.procfs.proc_ent == NULL)
1531		return;
1532	if (cd->u.procfs.flush_ent)
1533		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1534	if (cd->u.procfs.channel_ent)
1535		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1536	if (cd->u.procfs.content_ent)
1537		remove_proc_entry("content", cd->u.procfs.proc_ent);
1538	cd->u.procfs.proc_ent = NULL;
1539	sn = net_generic(net, sunrpc_net_id);
1540	remove_proc_entry(cd->name, sn->proc_net_rpc);
1541}
1542
1543#ifdef CONFIG_PROC_FS
1544static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1545{
1546	struct proc_dir_entry *p;
1547	struct sunrpc_net *sn;
1548
1549	sn = net_generic(net, sunrpc_net_id);
1550	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1551	if (cd->u.procfs.proc_ent == NULL)
1552		goto out_nomem;
1553	cd->u.procfs.channel_ent = NULL;
1554	cd->u.procfs.content_ent = NULL;
1555
1556	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1557			     cd->u.procfs.proc_ent,
1558			     &cache_flush_operations_procfs, cd);
1559	cd->u.procfs.flush_ent = p;
1560	if (p == NULL)
1561		goto out_nomem;
1562
1563	if (cd->cache_upcall || cd->cache_parse) {
1564		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1565				     cd->u.procfs.proc_ent,
1566				     &cache_file_operations_procfs, cd);
1567		cd->u.procfs.channel_ent = p;
1568		if (p == NULL)
1569			goto out_nomem;
1570	}
1571	if (cd->cache_show) {
1572		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1573				cd->u.procfs.proc_ent,
1574				&content_file_operations_procfs, cd);
1575		cd->u.procfs.content_ent = p;
1576		if (p == NULL)
1577			goto out_nomem;
1578	}
1579	return 0;
1580out_nomem:
1581	remove_cache_proc_entries(cd, net);
1582	return -ENOMEM;
1583}
1584#else /* CONFIG_PROC_FS */
1585static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1586{
1587	return 0;
1588}
1589#endif
1590
1591void __init cache_initialize(void)
1592{
1593	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1594}
1595
1596int cache_register_net(struct cache_detail *cd, struct net *net)
1597{
1598	int ret;
1599
1600	sunrpc_init_cache_detail(cd);
1601	ret = create_cache_proc_entries(cd, net);
1602	if (ret)
1603		sunrpc_destroy_cache_detail(cd);
1604	return ret;
1605}
1606
1607int cache_register(struct cache_detail *cd)
1608{
1609	return cache_register_net(cd, &init_net);
1610}
1611EXPORT_SYMBOL_GPL(cache_register);
1612
1613void cache_unregister_net(struct cache_detail *cd, struct net *net)
1614{
1615	remove_cache_proc_entries(cd, net);
1616	sunrpc_destroy_cache_detail(cd);
1617}
1618
1619void cache_unregister(struct cache_detail *cd)
1620{
1621	cache_unregister_net(cd, &init_net);
1622}
1623EXPORT_SYMBOL_GPL(cache_unregister);
1624
1625static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1626				 size_t count, loff_t *ppos)
1627{
1628	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1629
1630	return cache_read(filp, buf, count, ppos, cd);
1631}
1632
1633static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1634				  size_t count, loff_t *ppos)
1635{
1636	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1637
1638	return cache_write(filp, buf, count, ppos, cd);
1639}
1640
1641static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1642{
1643	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1644
1645	return cache_poll(filp, wait, cd);
1646}
1647
1648static long cache_ioctl_pipefs(struct file *filp,
1649			      unsigned int cmd, unsigned long arg)
1650{
1651	struct inode *inode = filp->f_dentry->d_inode;
1652	struct cache_detail *cd = RPC_I(inode)->private;
1653	long ret;
1654
1655	lock_kernel();
1656	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1657	unlock_kernel();
1658
1659	return ret;
1660}
1661
1662static int cache_open_pipefs(struct inode *inode, struct file *filp)
1663{
1664	struct cache_detail *cd = RPC_I(inode)->private;
1665
1666	return cache_open(inode, filp, cd);
1667}
1668
1669static int cache_release_pipefs(struct inode *inode, struct file *filp)
1670{
1671	struct cache_detail *cd = RPC_I(inode)->private;
1672
1673	return cache_release(inode, filp, cd);
1674}
1675
1676const struct file_operations cache_file_operations_pipefs = {
1677	.owner		= THIS_MODULE,
1678	.llseek		= no_llseek,
1679	.read		= cache_read_pipefs,
1680	.write		= cache_write_pipefs,
1681	.poll		= cache_poll_pipefs,
1682	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1683	.open		= cache_open_pipefs,
1684	.release	= cache_release_pipefs,
1685};
1686
1687static int content_open_pipefs(struct inode *inode, struct file *filp)
1688{
1689	struct cache_detail *cd = RPC_I(inode)->private;
1690
1691	return content_open(inode, filp, cd);
1692}
1693
1694static int content_release_pipefs(struct inode *inode, struct file *filp)
1695{
1696	struct cache_detail *cd = RPC_I(inode)->private;
1697
1698	return content_release(inode, filp, cd);
1699}
1700
1701const struct file_operations content_file_operations_pipefs = {
1702	.open		= content_open_pipefs,
1703	.read		= seq_read,
1704	.llseek		= seq_lseek,
1705	.release	= content_release_pipefs,
1706};
1707
1708static int open_flush_pipefs(struct inode *inode, struct file *filp)
1709{
1710	struct cache_detail *cd = RPC_I(inode)->private;
1711
1712	return open_flush(inode, filp, cd);
1713}
1714
1715static int release_flush_pipefs(struct inode *inode, struct file *filp)
1716{
1717	struct cache_detail *cd = RPC_I(inode)->private;
1718
1719	return release_flush(inode, filp, cd);
1720}
1721
1722static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1723			    size_t count, loff_t *ppos)
1724{
1725	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1726
1727	return read_flush(filp, buf, count, ppos, cd);
1728}
1729
1730static ssize_t write_flush_pipefs(struct file *filp,
1731				  const char __user *buf,
1732				  size_t count, loff_t *ppos)
1733{
1734	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1735
1736	return write_flush(filp, buf, count, ppos, cd);
1737}
1738
1739const struct file_operations cache_flush_operations_pipefs = {
1740	.open		= open_flush_pipefs,
1741	.read		= read_flush_pipefs,
1742	.write		= write_flush_pipefs,
1743	.release	= release_flush_pipefs,
1744};
1745
1746int sunrpc_cache_register_pipefs(struct dentry *parent,
1747				 const char *name, mode_t umode,
1748				 struct cache_detail *cd)
1749{
1750	struct qstr q;
1751	struct dentry *dir;
1752	int ret = 0;
1753
1754	sunrpc_init_cache_detail(cd);
1755	q.name = name;
1756	q.len = strlen(name);
1757	q.hash = full_name_hash(q.name, q.len);
1758	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1759	if (!IS_ERR(dir))
1760		cd->u.pipefs.dir = dir;
1761	else {
1762		sunrpc_destroy_cache_detail(cd);
1763		ret = PTR_ERR(dir);
1764	}
1765	return ret;
1766}
1767EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1768
1769void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1770{
1771	rpc_remove_cache_dir(cd->u.pipefs.dir);
1772	cd->u.pipefs.dir = NULL;
1773	sunrpc_destroy_cache_detail(cd);
1774}
1775EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1776
1777