cache.c revision dbf847ecb6318d3a22c6758fe39696d00f39063a
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <asm/ioctls.h>
31#include <linux/sunrpc/types.h>
32#include <linux/sunrpc/cache.h>
33#include <linux/sunrpc/stats.h>
34
35#define	 RPCDBG_FACILITY RPCDBG_CACHE
36
37static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38static void cache_revisit_request(struct cache_head *item);
39
40static void cache_init(struct cache_head *h)
41{
42	time_t now = get_seconds();
43	h->next = NULL;
44	h->flags = 0;
45	kref_init(&h->ref);
46	h->expiry_time = now + CACHE_NEW_EXPIRY;
47	h->last_refresh = now;
48}
49
50struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51				       struct cache_head *key, int hash)
52{
53	struct cache_head **head,  **hp;
54	struct cache_head *new = NULL;
55
56	head = &detail->hash_table[hash];
57
58	read_lock(&detail->hash_lock);
59
60	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61		struct cache_head *tmp = *hp;
62		if (detail->match(tmp, key)) {
63			cache_get(tmp);
64			read_unlock(&detail->hash_lock);
65			return tmp;
66		}
67	}
68	read_unlock(&detail->hash_lock);
69	/* Didn't find anything, insert an empty entry */
70
71	new = detail->alloc();
72	if (!new)
73		return NULL;
74	/* must fully initialise 'new', else
75	 * we might get lose if we need to
76	 * cache_put it soon.
77	 */
78	cache_init(new);
79	detail->init(new, key);
80
81	write_lock(&detail->hash_lock);
82
83	/* check if entry appeared while we slept */
84	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85		struct cache_head *tmp = *hp;
86		if (detail->match(tmp, key)) {
87			cache_get(tmp);
88			write_unlock(&detail->hash_lock);
89			cache_put(new, detail);
90			return tmp;
91		}
92	}
93	new->next = *head;
94	*head = new;
95	detail->entries++;
96	cache_get(new);
97	write_unlock(&detail->hash_lock);
98
99	return new;
100}
101EXPORT_SYMBOL(sunrpc_cache_lookup);
102
103
104static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105
106static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107{
108	head->expiry_time = expiry;
109	head->last_refresh = get_seconds();
110	return !test_and_set_bit(CACHE_VALID, &head->flags);
111}
112
113static void cache_fresh_unlocked(struct cache_head *head,
114			struct cache_detail *detail, int new)
115{
116	if (new)
117		cache_revisit_request(head);
118	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119		cache_revisit_request(head);
120		queue_loose(detail, head);
121	}
122}
123
124struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125				       struct cache_head *new, struct cache_head *old, int hash)
126{
127	/* The 'old' entry is to be replaced by 'new'.
128	 * If 'old' is not VALID, we update it directly,
129	 * otherwise we need to replace it
130	 */
131	struct cache_head **head;
132	struct cache_head *tmp;
133	int is_new;
134
135	if (!test_bit(CACHE_VALID, &old->flags)) {
136		write_lock(&detail->hash_lock);
137		if (!test_bit(CACHE_VALID, &old->flags)) {
138			if (test_bit(CACHE_NEGATIVE, &new->flags))
139				set_bit(CACHE_NEGATIVE, &old->flags);
140			else
141				detail->update(old, new);
142			is_new = cache_fresh_locked(old, new->expiry_time);
143			write_unlock(&detail->hash_lock);
144			cache_fresh_unlocked(old, detail, is_new);
145			return old;
146		}
147		write_unlock(&detail->hash_lock);
148	}
149	/* We need to insert a new entry */
150	tmp = detail->alloc();
151	if (!tmp) {
152		cache_put(old, detail);
153		return NULL;
154	}
155	cache_init(tmp);
156	detail->init(tmp, old);
157	head = &detail->hash_table[hash];
158
159	write_lock(&detail->hash_lock);
160	if (test_bit(CACHE_NEGATIVE, &new->flags))
161		set_bit(CACHE_NEGATIVE, &tmp->flags);
162	else
163		detail->update(tmp, new);
164	tmp->next = *head;
165	*head = tmp;
166	detail->entries++;
167	cache_get(tmp);
168	is_new = cache_fresh_locked(tmp, new->expiry_time);
169	cache_fresh_locked(old, 0);
170	write_unlock(&detail->hash_lock);
171	cache_fresh_unlocked(tmp, detail, is_new);
172	cache_fresh_unlocked(old, detail, 0);
173	cache_put(old, detail);
174	return tmp;
175}
176EXPORT_SYMBOL(sunrpc_cache_update);
177
178static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179/*
180 * This is the generic cache management routine for all
181 * the authentication caches.
182 * It checks the currency of a cache item and will (later)
183 * initiate an upcall to fill it if needed.
184 *
185 *
186 * Returns 0 if the cache_head can be used, or cache_puts it and returns
187 * -EAGAIN if upcall is pending,
188 * -ETIMEDOUT if upcall failed and should be retried,
189 * -ENOENT if cache entry was negative
190 */
191int cache_check(struct cache_detail *detail,
192		    struct cache_head *h, struct cache_req *rqstp)
193{
194	int rv;
195	long refresh_age, age;
196
197	/* First decide return status as best we can */
198	if (!test_bit(CACHE_VALID, &h->flags) ||
199	    h->expiry_time < get_seconds())
200		rv = -EAGAIN;
201	else if (detail->flush_time > h->last_refresh)
202		rv = -EAGAIN;
203	else {
204		/* entry is valid */
205		if (test_bit(CACHE_NEGATIVE, &h->flags))
206			rv = -ENOENT;
207		else rv = 0;
208	}
209
210	/* now see if we want to start an upcall */
211	refresh_age = (h->expiry_time - h->last_refresh);
212	age = get_seconds() - h->last_refresh;
213
214	if (rqstp == NULL) {
215		if (rv == -EAGAIN)
216			rv = -ENOENT;
217	} else if (rv == -EAGAIN || age > refresh_age/2) {
218		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219				refresh_age, age);
220		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221			switch (cache_make_upcall(detail, h)) {
222			case -EINVAL:
223				clear_bit(CACHE_PENDING, &h->flags);
224				if (rv == -EAGAIN) {
225					set_bit(CACHE_NEGATIVE, &h->flags);
226					cache_fresh_unlocked(h, detail,
227					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228					rv = -ENOENT;
229				}
230				break;
231
232			case -EAGAIN:
233				clear_bit(CACHE_PENDING, &h->flags);
234				cache_revisit_request(h);
235				break;
236			}
237		}
238	}
239
240	if (rv == -EAGAIN)
241		if (cache_defer_req(rqstp, h) != 0)
242			rv = -ETIMEDOUT;
243
244	if (rv)
245		cache_put(h, detail);
246	return rv;
247}
248
249/*
250 * caches need to be periodically cleaned.
251 * For this we maintain a list of cache_detail and
252 * a current pointer into that list and into the table
253 * for that entry.
254 *
255 * Each time clean_cache is called it finds the next non-empty entry
256 * in the current table and walks the list in that entry
257 * looking for entries that can be removed.
258 *
259 * An entry gets removed if:
260 * - The expiry is before current time
261 * - The last_refresh time is before the flush_time for that cache
262 *
263 * later we might drop old entries with non-NEVER expiry if that table
264 * is getting 'full' for some definition of 'full'
265 *
266 * The question of "how often to scan a table" is an interesting one
267 * and is answered in part by the use of the "nextcheck" field in the
268 * cache_detail.
269 * When a scan of a table begins, the nextcheck field is set to a time
270 * that is well into the future.
271 * While scanning, if an expiry time is found that is earlier than the
272 * current nextcheck time, nextcheck is set to that expiry time.
273 * If the flush_time is ever set to a time earlier than the nextcheck
274 * time, the nextcheck time is then set to that flush_time.
275 *
276 * A table is then only scanned if the current time is at least
277 * the nextcheck time.
278 *
279 */
280
281static LIST_HEAD(cache_list);
282static DEFINE_SPINLOCK(cache_list_lock);
283static struct cache_detail *current_detail;
284static int current_index;
285
286static const struct file_operations cache_file_operations;
287static const struct file_operations content_file_operations;
288static const struct file_operations cache_flush_operations;
289
290static void do_cache_clean(struct work_struct *work);
291static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
292
293static void remove_cache_proc_entries(struct cache_detail *cd)
294{
295	if (cd->proc_ent == NULL)
296		return;
297	if (cd->flush_ent)
298		remove_proc_entry("flush", cd->proc_ent);
299	if (cd->channel_ent)
300		remove_proc_entry("channel", cd->proc_ent);
301	if (cd->content_ent)
302		remove_proc_entry("content", cd->proc_ent);
303	cd->proc_ent = NULL;
304	remove_proc_entry(cd->name, proc_net_rpc);
305}
306
307#ifdef CONFIG_PROC_FS
308static int create_cache_proc_entries(struct cache_detail *cd)
309{
310	struct proc_dir_entry *p;
311
312	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
313	if (cd->proc_ent == NULL)
314		goto out_nomem;
315	cd->proc_ent->owner = cd->owner;
316	cd->channel_ent = cd->content_ent = NULL;
317
318	p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR, cd->proc_ent);
319	cd->flush_ent = p;
320	if (p == NULL)
321		goto out_nomem;
322	p->proc_fops = &cache_flush_operations;
323	p->owner = cd->owner;
324	p->data = cd;
325
326	if (cd->cache_request || cd->cache_parse) {
327		p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
328				      cd->proc_ent);
329		cd->channel_ent = p;
330		if (p == NULL)
331			goto out_nomem;
332		p->proc_fops = &cache_file_operations;
333		p->owner = cd->owner;
334		p->data = cd;
335	}
336	if (cd->cache_show) {
337		p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
338				      cd->proc_ent);
339		cd->content_ent = p;
340		if (p == NULL)
341			goto out_nomem;
342		p->proc_fops = &content_file_operations;
343		p->owner = cd->owner;
344		p->data = cd;
345	}
346	return 0;
347out_nomem:
348	remove_cache_proc_entries(cd);
349	return -ENOMEM;
350}
351#else /* CONFIG_PROC_FS */
352static int create_cache_proc_entries(struct cache_detail *cd)
353{
354	return 0;
355}
356#endif
357
358int cache_register(struct cache_detail *cd)
359{
360	int ret;
361
362	ret = create_cache_proc_entries(cd);
363	if (ret)
364		return ret;
365	rwlock_init(&cd->hash_lock);
366	INIT_LIST_HEAD(&cd->queue);
367	spin_lock(&cache_list_lock);
368	cd->nextcheck = 0;
369	cd->entries = 0;
370	atomic_set(&cd->readers, 0);
371	cd->last_close = 0;
372	cd->last_warn = -1;
373	list_add(&cd->others, &cache_list);
374	spin_unlock(&cache_list_lock);
375
376	/* start the cleaning process */
377	schedule_delayed_work(&cache_cleaner, 0);
378	return 0;
379}
380
381void cache_unregister(struct cache_detail *cd)
382{
383	cache_purge(cd);
384	spin_lock(&cache_list_lock);
385	write_lock(&cd->hash_lock);
386	if (cd->entries || atomic_read(&cd->inuse)) {
387		write_unlock(&cd->hash_lock);
388		spin_unlock(&cache_list_lock);
389		goto out;
390	}
391	if (current_detail == cd)
392		current_detail = NULL;
393	list_del_init(&cd->others);
394	write_unlock(&cd->hash_lock);
395	spin_unlock(&cache_list_lock);
396	remove_cache_proc_entries(cd);
397	if (list_empty(&cache_list)) {
398		/* module must be being unloaded so its safe to kill the worker */
399		cancel_delayed_work_sync(&cache_cleaner);
400	}
401	return;
402out:
403	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
404}
405
406/* clean cache tries to find something to clean
407 * and cleans it.
408 * It returns 1 if it cleaned something,
409 *            0 if it didn't find anything this time
410 *           -1 if it fell off the end of the list.
411 */
412static int cache_clean(void)
413{
414	int rv = 0;
415	struct list_head *next;
416
417	spin_lock(&cache_list_lock);
418
419	/* find a suitable table if we don't already have one */
420	while (current_detail == NULL ||
421	    current_index >= current_detail->hash_size) {
422		if (current_detail)
423			next = current_detail->others.next;
424		else
425			next = cache_list.next;
426		if (next == &cache_list) {
427			current_detail = NULL;
428			spin_unlock(&cache_list_lock);
429			return -1;
430		}
431		current_detail = list_entry(next, struct cache_detail, others);
432		if (current_detail->nextcheck > get_seconds())
433			current_index = current_detail->hash_size;
434		else {
435			current_index = 0;
436			current_detail->nextcheck = get_seconds()+30*60;
437		}
438	}
439
440	/* find a non-empty bucket in the table */
441	while (current_detail &&
442	       current_index < current_detail->hash_size &&
443	       current_detail->hash_table[current_index] == NULL)
444		current_index++;
445
446	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
447
448	if (current_detail && current_index < current_detail->hash_size) {
449		struct cache_head *ch, **cp;
450		struct cache_detail *d;
451
452		write_lock(&current_detail->hash_lock);
453
454		/* Ok, now to clean this strand */
455
456		cp = & current_detail->hash_table[current_index];
457		ch = *cp;
458		for (; ch; cp= & ch->next, ch= *cp) {
459			if (current_detail->nextcheck > ch->expiry_time)
460				current_detail->nextcheck = ch->expiry_time+1;
461			if (ch->expiry_time >= get_seconds()
462			    && ch->last_refresh >= current_detail->flush_time
463				)
464				continue;
465			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
466				queue_loose(current_detail, ch);
467
468			if (atomic_read(&ch->ref.refcount) == 1)
469				break;
470		}
471		if (ch) {
472			*cp = ch->next;
473			ch->next = NULL;
474			current_detail->entries--;
475			rv = 1;
476		}
477		write_unlock(&current_detail->hash_lock);
478		d = current_detail;
479		if (!ch)
480			current_index ++;
481		spin_unlock(&cache_list_lock);
482		if (ch)
483			cache_put(ch, d);
484	} else
485		spin_unlock(&cache_list_lock);
486
487	return rv;
488}
489
490/*
491 * We want to regularly clean the cache, so we need to schedule some work ...
492 */
493static void do_cache_clean(struct work_struct *work)
494{
495	int delay = 5;
496	if (cache_clean() == -1)
497		delay = 30*HZ;
498
499	if (list_empty(&cache_list))
500		delay = 0;
501
502	if (delay)
503		schedule_delayed_work(&cache_cleaner, delay);
504}
505
506
507/*
508 * Clean all caches promptly.  This just calls cache_clean
509 * repeatedly until we are sure that every cache has had a chance to
510 * be fully cleaned
511 */
512void cache_flush(void)
513{
514	while (cache_clean() != -1)
515		cond_resched();
516	while (cache_clean() != -1)
517		cond_resched();
518}
519
520void cache_purge(struct cache_detail *detail)
521{
522	detail->flush_time = LONG_MAX;
523	detail->nextcheck = get_seconds();
524	cache_flush();
525	detail->flush_time = 1;
526}
527
528
529
530/*
531 * Deferral and Revisiting of Requests.
532 *
533 * If a cache lookup finds a pending entry, we
534 * need to defer the request and revisit it later.
535 * All deferred requests are stored in a hash table,
536 * indexed by "struct cache_head *".
537 * As it may be wasteful to store a whole request
538 * structure, we allow the request to provide a
539 * deferred form, which must contain a
540 * 'struct cache_deferred_req'
541 * This cache_deferred_req contains a method to allow
542 * it to be revisited when cache info is available
543 */
544
545#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
546#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
547
548#define	DFR_MAX	300	/* ??? */
549
550static DEFINE_SPINLOCK(cache_defer_lock);
551static LIST_HEAD(cache_defer_list);
552static struct list_head cache_defer_hash[DFR_HASHSIZE];
553static int cache_defer_cnt;
554
555static int cache_defer_req(struct cache_req *req, struct cache_head *item)
556{
557	struct cache_deferred_req *dreq;
558	int hash = DFR_HASH(item);
559
560	if (cache_defer_cnt >= DFR_MAX) {
561		/* too much in the cache, randomly drop this one,
562		 * or continue and drop the oldest below
563		 */
564		if (net_random()&1)
565			return -ETIMEDOUT;
566	}
567	dreq = req->defer(req);
568	if (dreq == NULL)
569		return -ETIMEDOUT;
570
571	dreq->item = item;
572	dreq->recv_time = get_seconds();
573
574	spin_lock(&cache_defer_lock);
575
576	list_add(&dreq->recent, &cache_defer_list);
577
578	if (cache_defer_hash[hash].next == NULL)
579		INIT_LIST_HEAD(&cache_defer_hash[hash]);
580	list_add(&dreq->hash, &cache_defer_hash[hash]);
581
582	/* it is in, now maybe clean up */
583	dreq = NULL;
584	if (++cache_defer_cnt > DFR_MAX) {
585		dreq = list_entry(cache_defer_list.prev,
586				  struct cache_deferred_req, recent);
587		list_del(&dreq->recent);
588		list_del(&dreq->hash);
589		cache_defer_cnt--;
590	}
591	spin_unlock(&cache_defer_lock);
592
593	if (dreq) {
594		/* there was one too many */
595		dreq->revisit(dreq, 1);
596	}
597	if (!test_bit(CACHE_PENDING, &item->flags)) {
598		/* must have just been validated... */
599		cache_revisit_request(item);
600	}
601	return 0;
602}
603
604static void cache_revisit_request(struct cache_head *item)
605{
606	struct cache_deferred_req *dreq;
607	struct list_head pending;
608
609	struct list_head *lp;
610	int hash = DFR_HASH(item);
611
612	INIT_LIST_HEAD(&pending);
613	spin_lock(&cache_defer_lock);
614
615	lp = cache_defer_hash[hash].next;
616	if (lp) {
617		while (lp != &cache_defer_hash[hash]) {
618			dreq = list_entry(lp, struct cache_deferred_req, hash);
619			lp = lp->next;
620			if (dreq->item == item) {
621				list_del(&dreq->hash);
622				list_move(&dreq->recent, &pending);
623				cache_defer_cnt--;
624			}
625		}
626	}
627	spin_unlock(&cache_defer_lock);
628
629	while (!list_empty(&pending)) {
630		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
631		list_del_init(&dreq->recent);
632		dreq->revisit(dreq, 0);
633	}
634}
635
636void cache_clean_deferred(void *owner)
637{
638	struct cache_deferred_req *dreq, *tmp;
639	struct list_head pending;
640
641
642	INIT_LIST_HEAD(&pending);
643	spin_lock(&cache_defer_lock);
644
645	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
646		if (dreq->owner == owner) {
647			list_del(&dreq->hash);
648			list_move(&dreq->recent, &pending);
649			cache_defer_cnt--;
650		}
651	}
652	spin_unlock(&cache_defer_lock);
653
654	while (!list_empty(&pending)) {
655		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
656		list_del_init(&dreq->recent);
657		dreq->revisit(dreq, 1);
658	}
659}
660
661/*
662 * communicate with user-space
663 *
664 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
665 * On read, you get a full request, or block.
666 * On write, an update request is processed.
667 * Poll works if anything to read, and always allows write.
668 *
669 * Implemented by linked list of requests.  Each open file has
670 * a ->private that also exists in this list.  New requests are added
671 * to the end and may wakeup and preceding readers.
672 * New readers are added to the head.  If, on read, an item is found with
673 * CACHE_UPCALLING clear, we free it from the list.
674 *
675 */
676
677static DEFINE_SPINLOCK(queue_lock);
678static DEFINE_MUTEX(queue_io_mutex);
679
680struct cache_queue {
681	struct list_head	list;
682	int			reader;	/* if 0, then request */
683};
684struct cache_request {
685	struct cache_queue	q;
686	struct cache_head	*item;
687	char			* buf;
688	int			len;
689	int			readers;
690};
691struct cache_reader {
692	struct cache_queue	q;
693	int			offset;	/* if non-0, we have a refcnt on next request */
694};
695
696static ssize_t
697cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
698{
699	struct cache_reader *rp = filp->private_data;
700	struct cache_request *rq;
701	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
702	int err;
703
704	if (count == 0)
705		return 0;
706
707	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
708			      * readers on this file */
709 again:
710	spin_lock(&queue_lock);
711	/* need to find next request */
712	while (rp->q.list.next != &cd->queue &&
713	       list_entry(rp->q.list.next, struct cache_queue, list)
714	       ->reader) {
715		struct list_head *next = rp->q.list.next;
716		list_move(&rp->q.list, next);
717	}
718	if (rp->q.list.next == &cd->queue) {
719		spin_unlock(&queue_lock);
720		mutex_unlock(&queue_io_mutex);
721		BUG_ON(rp->offset);
722		return 0;
723	}
724	rq = container_of(rp->q.list.next, struct cache_request, q.list);
725	BUG_ON(rq->q.reader);
726	if (rp->offset == 0)
727		rq->readers++;
728	spin_unlock(&queue_lock);
729
730	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
731		err = -EAGAIN;
732		spin_lock(&queue_lock);
733		list_move(&rp->q.list, &rq->q.list);
734		spin_unlock(&queue_lock);
735	} else {
736		if (rp->offset + count > rq->len)
737			count = rq->len - rp->offset;
738		err = -EFAULT;
739		if (copy_to_user(buf, rq->buf + rp->offset, count))
740			goto out;
741		rp->offset += count;
742		if (rp->offset >= rq->len) {
743			rp->offset = 0;
744			spin_lock(&queue_lock);
745			list_move(&rp->q.list, &rq->q.list);
746			spin_unlock(&queue_lock);
747		}
748		err = 0;
749	}
750 out:
751	if (rp->offset == 0) {
752		/* need to release rq */
753		spin_lock(&queue_lock);
754		rq->readers--;
755		if (rq->readers == 0 &&
756		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
757			list_del(&rq->q.list);
758			spin_unlock(&queue_lock);
759			cache_put(rq->item, cd);
760			kfree(rq->buf);
761			kfree(rq);
762		} else
763			spin_unlock(&queue_lock);
764	}
765	if (err == -EAGAIN)
766		goto again;
767	mutex_unlock(&queue_io_mutex);
768	return err ? err :  count;
769}
770
771static char write_buf[8192]; /* protected by queue_io_mutex */
772
773static ssize_t
774cache_write(struct file *filp, const char __user *buf, size_t count,
775	    loff_t *ppos)
776{
777	int err;
778	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
779
780	if (count == 0)
781		return 0;
782	if (count >= sizeof(write_buf))
783		return -EINVAL;
784
785	mutex_lock(&queue_io_mutex);
786
787	if (copy_from_user(write_buf, buf, count)) {
788		mutex_unlock(&queue_io_mutex);
789		return -EFAULT;
790	}
791	write_buf[count] = '\0';
792	if (cd->cache_parse)
793		err = cd->cache_parse(cd, write_buf, count);
794	else
795		err = -EINVAL;
796
797	mutex_unlock(&queue_io_mutex);
798	return err ? err : count;
799}
800
801static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
802
803static unsigned int
804cache_poll(struct file *filp, poll_table *wait)
805{
806	unsigned int mask;
807	struct cache_reader *rp = filp->private_data;
808	struct cache_queue *cq;
809	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
810
811	poll_wait(filp, &queue_wait, wait);
812
813	/* alway allow write */
814	mask = POLL_OUT | POLLWRNORM;
815
816	if (!rp)
817		return mask;
818
819	spin_lock(&queue_lock);
820
821	for (cq= &rp->q; &cq->list != &cd->queue;
822	     cq = list_entry(cq->list.next, struct cache_queue, list))
823		if (!cq->reader) {
824			mask |= POLLIN | POLLRDNORM;
825			break;
826		}
827	spin_unlock(&queue_lock);
828	return mask;
829}
830
831static int
832cache_ioctl(struct inode *ino, struct file *filp,
833	    unsigned int cmd, unsigned long arg)
834{
835	int len = 0;
836	struct cache_reader *rp = filp->private_data;
837	struct cache_queue *cq;
838	struct cache_detail *cd = PDE(ino)->data;
839
840	if (cmd != FIONREAD || !rp)
841		return -EINVAL;
842
843	spin_lock(&queue_lock);
844
845	/* only find the length remaining in current request,
846	 * or the length of the next request
847	 */
848	for (cq= &rp->q; &cq->list != &cd->queue;
849	     cq = list_entry(cq->list.next, struct cache_queue, list))
850		if (!cq->reader) {
851			struct cache_request *cr =
852				container_of(cq, struct cache_request, q);
853			len = cr->len - rp->offset;
854			break;
855		}
856	spin_unlock(&queue_lock);
857
858	return put_user(len, (int __user *)arg);
859}
860
861static int
862cache_open(struct inode *inode, struct file *filp)
863{
864	struct cache_reader *rp = NULL;
865
866	nonseekable_open(inode, filp);
867	if (filp->f_mode & FMODE_READ) {
868		struct cache_detail *cd = PDE(inode)->data;
869
870		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
871		if (!rp)
872			return -ENOMEM;
873		rp->offset = 0;
874		rp->q.reader = 1;
875		atomic_inc(&cd->readers);
876		spin_lock(&queue_lock);
877		list_add(&rp->q.list, &cd->queue);
878		spin_unlock(&queue_lock);
879	}
880	filp->private_data = rp;
881	return 0;
882}
883
884static int
885cache_release(struct inode *inode, struct file *filp)
886{
887	struct cache_reader *rp = filp->private_data;
888	struct cache_detail *cd = PDE(inode)->data;
889
890	if (rp) {
891		spin_lock(&queue_lock);
892		if (rp->offset) {
893			struct cache_queue *cq;
894			for (cq= &rp->q; &cq->list != &cd->queue;
895			     cq = list_entry(cq->list.next, struct cache_queue, list))
896				if (!cq->reader) {
897					container_of(cq, struct cache_request, q)
898						->readers--;
899					break;
900				}
901			rp->offset = 0;
902		}
903		list_del(&rp->q.list);
904		spin_unlock(&queue_lock);
905
906		filp->private_data = NULL;
907		kfree(rp);
908
909		cd->last_close = get_seconds();
910		atomic_dec(&cd->readers);
911	}
912	return 0;
913}
914
915
916
917static const struct file_operations cache_file_operations = {
918	.owner		= THIS_MODULE,
919	.llseek		= no_llseek,
920	.read		= cache_read,
921	.write		= cache_write,
922	.poll		= cache_poll,
923	.ioctl		= cache_ioctl, /* for FIONREAD */
924	.open		= cache_open,
925	.release	= cache_release,
926};
927
928
929static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
930{
931	struct cache_queue *cq;
932	spin_lock(&queue_lock);
933	list_for_each_entry(cq, &detail->queue, list)
934		if (!cq->reader) {
935			struct cache_request *cr = container_of(cq, struct cache_request, q);
936			if (cr->item != ch)
937				continue;
938			if (cr->readers != 0)
939				continue;
940			list_del(&cr->q.list);
941			spin_unlock(&queue_lock);
942			cache_put(cr->item, detail);
943			kfree(cr->buf);
944			kfree(cr);
945			return;
946		}
947	spin_unlock(&queue_lock);
948}
949
950/*
951 * Support routines for text-based upcalls.
952 * Fields are separated by spaces.
953 * Fields are either mangled to quote space tab newline slosh with slosh
954 * or a hexified with a leading \x
955 * Record is terminated with newline.
956 *
957 */
958
959void qword_add(char **bpp, int *lp, char *str)
960{
961	char *bp = *bpp;
962	int len = *lp;
963	char c;
964
965	if (len < 0) return;
966
967	while ((c=*str++) && len)
968		switch(c) {
969		case ' ':
970		case '\t':
971		case '\n':
972		case '\\':
973			if (len >= 4) {
974				*bp++ = '\\';
975				*bp++ = '0' + ((c & 0300)>>6);
976				*bp++ = '0' + ((c & 0070)>>3);
977				*bp++ = '0' + ((c & 0007)>>0);
978			}
979			len -= 4;
980			break;
981		default:
982			*bp++ = c;
983			len--;
984		}
985	if (c || len <1) len = -1;
986	else {
987		*bp++ = ' ';
988		len--;
989	}
990	*bpp = bp;
991	*lp = len;
992}
993
994void qword_addhex(char **bpp, int *lp, char *buf, int blen)
995{
996	char *bp = *bpp;
997	int len = *lp;
998
999	if (len < 0) return;
1000
1001	if (len > 2) {
1002		*bp++ = '\\';
1003		*bp++ = 'x';
1004		len -= 2;
1005		while (blen && len >= 2) {
1006			unsigned char c = *buf++;
1007			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1008			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1009			len -= 2;
1010			blen--;
1011		}
1012	}
1013	if (blen || len<1) len = -1;
1014	else {
1015		*bp++ = ' ';
1016		len--;
1017	}
1018	*bpp = bp;
1019	*lp = len;
1020}
1021
1022static void warn_no_listener(struct cache_detail *detail)
1023{
1024	if (detail->last_warn != detail->last_close) {
1025		detail->last_warn = detail->last_close;
1026		if (detail->warn_no_listener)
1027			detail->warn_no_listener(detail);
1028	}
1029}
1030
1031/*
1032 * register an upcall request to user-space.
1033 * Each request is at most one page long.
1034 */
1035static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1036{
1037
1038	char *buf;
1039	struct cache_request *crq;
1040	char *bp;
1041	int len;
1042
1043	if (detail->cache_request == NULL)
1044		return -EINVAL;
1045
1046	if (atomic_read(&detail->readers) == 0 &&
1047	    detail->last_close < get_seconds() - 30) {
1048			warn_no_listener(detail);
1049			return -EINVAL;
1050	}
1051
1052	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1053	if (!buf)
1054		return -EAGAIN;
1055
1056	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1057	if (!crq) {
1058		kfree(buf);
1059		return -EAGAIN;
1060	}
1061
1062	bp = buf; len = PAGE_SIZE;
1063
1064	detail->cache_request(detail, h, &bp, &len);
1065
1066	if (len < 0) {
1067		kfree(buf);
1068		kfree(crq);
1069		return -EAGAIN;
1070	}
1071	crq->q.reader = 0;
1072	crq->item = cache_get(h);
1073	crq->buf = buf;
1074	crq->len = PAGE_SIZE - len;
1075	crq->readers = 0;
1076	spin_lock(&queue_lock);
1077	list_add_tail(&crq->q.list, &detail->queue);
1078	spin_unlock(&queue_lock);
1079	wake_up(&queue_wait);
1080	return 0;
1081}
1082
1083/*
1084 * parse a message from user-space and pass it
1085 * to an appropriate cache
1086 * Messages are, like requests, separated into fields by
1087 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1088 *
1089 * Message is
1090 *   reply cachename expiry key ... content....
1091 *
1092 * key and content are both parsed by cache
1093 */
1094
1095#define isodigit(c) (isdigit(c) && c <= '7')
1096int qword_get(char **bpp, char *dest, int bufsize)
1097{
1098	/* return bytes copied, or -1 on error */
1099	char *bp = *bpp;
1100	int len = 0;
1101
1102	while (*bp == ' ') bp++;
1103
1104	if (bp[0] == '\\' && bp[1] == 'x') {
1105		/* HEX STRING */
1106		bp += 2;
1107		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1108			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1109			bp++;
1110			byte <<= 4;
1111			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1112			*dest++ = byte;
1113			bp++;
1114			len++;
1115		}
1116	} else {
1117		/* text with \nnn octal quoting */
1118		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1119			if (*bp == '\\' &&
1120			    isodigit(bp[1]) && (bp[1] <= '3') &&
1121			    isodigit(bp[2]) &&
1122			    isodigit(bp[3])) {
1123				int byte = (*++bp -'0');
1124				bp++;
1125				byte = (byte << 3) | (*bp++ - '0');
1126				byte = (byte << 3) | (*bp++ - '0');
1127				*dest++ = byte;
1128				len++;
1129			} else {
1130				*dest++ = *bp++;
1131				len++;
1132			}
1133		}
1134	}
1135
1136	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1137		return -1;
1138	while (*bp == ' ') bp++;
1139	*bpp = bp;
1140	*dest = '\0';
1141	return len;
1142}
1143
1144
1145/*
1146 * support /proc/sunrpc/cache/$CACHENAME/content
1147 * as a seqfile.
1148 * We call ->cache_show passing NULL for the item to
1149 * get a header, then pass each real item in the cache
1150 */
1151
1152struct handle {
1153	struct cache_detail *cd;
1154};
1155
1156static void *c_start(struct seq_file *m, loff_t *pos)
1157	__acquires(cd->hash_lock)
1158{
1159	loff_t n = *pos;
1160	unsigned hash, entry;
1161	struct cache_head *ch;
1162	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1163
1164
1165	read_lock(&cd->hash_lock);
1166	if (!n--)
1167		return SEQ_START_TOKEN;
1168	hash = n >> 32;
1169	entry = n & ((1LL<<32) - 1);
1170
1171	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1172		if (!entry--)
1173			return ch;
1174	n &= ~((1LL<<32) - 1);
1175	do {
1176		hash++;
1177		n += 1LL<<32;
1178	} while(hash < cd->hash_size &&
1179		cd->hash_table[hash]==NULL);
1180	if (hash >= cd->hash_size)
1181		return NULL;
1182	*pos = n+1;
1183	return cd->hash_table[hash];
1184}
1185
1186static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1187{
1188	struct cache_head *ch = p;
1189	int hash = (*pos >> 32);
1190	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1191
1192	if (p == SEQ_START_TOKEN)
1193		hash = 0;
1194	else if (ch->next == NULL) {
1195		hash++;
1196		*pos += 1LL<<32;
1197	} else {
1198		++*pos;
1199		return ch->next;
1200	}
1201	*pos &= ~((1LL<<32) - 1);
1202	while (hash < cd->hash_size &&
1203	       cd->hash_table[hash] == NULL) {
1204		hash++;
1205		*pos += 1LL<<32;
1206	}
1207	if (hash >= cd->hash_size)
1208		return NULL;
1209	++*pos;
1210	return cd->hash_table[hash];
1211}
1212
1213static void c_stop(struct seq_file *m, void *p)
1214	__releases(cd->hash_lock)
1215{
1216	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1217	read_unlock(&cd->hash_lock);
1218}
1219
1220static int c_show(struct seq_file *m, void *p)
1221{
1222	struct cache_head *cp = p;
1223	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1224
1225	if (p == SEQ_START_TOKEN)
1226		return cd->cache_show(m, cd, NULL);
1227
1228	ifdebug(CACHE)
1229		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1230			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1231	cache_get(cp);
1232	if (cache_check(cd, cp, NULL))
1233		/* cache_check does a cache_put on failure */
1234		seq_printf(m, "# ");
1235	else
1236		cache_put(cp, cd);
1237
1238	return cd->cache_show(m, cd, cp);
1239}
1240
1241static const struct seq_operations cache_content_op = {
1242	.start	= c_start,
1243	.next	= c_next,
1244	.stop	= c_stop,
1245	.show	= c_show,
1246};
1247
1248static int content_open(struct inode *inode, struct file *file)
1249{
1250	struct handle *han;
1251	struct cache_detail *cd = PDE(inode)->data;
1252
1253	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1254	if (han == NULL)
1255		return -ENOMEM;
1256
1257	han->cd = cd;
1258	return 0;
1259}
1260
1261static const struct file_operations content_file_operations = {
1262	.open		= content_open,
1263	.read		= seq_read,
1264	.llseek		= seq_lseek,
1265	.release	= seq_release_private,
1266};
1267
1268static ssize_t read_flush(struct file *file, char __user *buf,
1269			    size_t count, loff_t *ppos)
1270{
1271	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1272	char tbuf[20];
1273	unsigned long p = *ppos;
1274	size_t len;
1275
1276	sprintf(tbuf, "%lu\n", cd->flush_time);
1277	len = strlen(tbuf);
1278	if (p >= len)
1279		return 0;
1280	len -= p;
1281	if (len > count)
1282		len = count;
1283	if (copy_to_user(buf, (void*)(tbuf+p), len))
1284		return -EFAULT;
1285	*ppos += len;
1286	return len;
1287}
1288
1289static ssize_t write_flush(struct file * file, const char __user * buf,
1290			     size_t count, loff_t *ppos)
1291{
1292	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1293	char tbuf[20];
1294	char *ep;
1295	long flushtime;
1296	if (*ppos || count > sizeof(tbuf)-1)
1297		return -EINVAL;
1298	if (copy_from_user(tbuf, buf, count))
1299		return -EFAULT;
1300	tbuf[count] = 0;
1301	flushtime = simple_strtoul(tbuf, &ep, 0);
1302	if (*ep && *ep != '\n')
1303		return -EINVAL;
1304
1305	cd->flush_time = flushtime;
1306	cd->nextcheck = get_seconds();
1307	cache_flush();
1308
1309	*ppos += count;
1310	return count;
1311}
1312
1313static const struct file_operations cache_flush_operations = {
1314	.open		= nonseekable_open,
1315	.read		= read_flush,
1316	.write		= write_flush,
1317};
1318