cache.c revision e2aa7f8304b3b5656ded8699216cc65138d03b64
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <linux/smp_lock.h>
32#include <asm/ioctls.h>
33#include <linux/sunrpc/types.h>
34#include <linux/sunrpc/cache.h>
35#include <linux/sunrpc/stats.h>
36#include <linux/sunrpc/rpc_pipe_fs.h>
37
38#define	 RPCDBG_FACILITY RPCDBG_CACHE
39
40static int cache_defer_req(struct cache_req *req, struct cache_head *item);
41static void cache_revisit_request(struct cache_head *item);
42
43static void cache_init(struct cache_head *h)
44{
45	time_t now = get_seconds();
46	h->next = NULL;
47	h->flags = 0;
48	kref_init(&h->ref);
49	h->expiry_time = now + CACHE_NEW_EXPIRY;
50	h->last_refresh = now;
51}
52
53static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54{
55	return  (h->expiry_time < get_seconds()) ||
56		(detail->flush_time > h->last_refresh);
57}
58
59struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60				       struct cache_head *key, int hash)
61{
62	struct cache_head **head,  **hp;
63	struct cache_head *new = NULL, *freeme = NULL;
64
65	head = &detail->hash_table[hash];
66
67	read_lock(&detail->hash_lock);
68
69	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70		struct cache_head *tmp = *hp;
71		if (detail->match(tmp, key)) {
72			if (cache_is_expired(detail, tmp))
73				/* This entry is expired, we will discard it. */
74				break;
75			cache_get(tmp);
76			read_unlock(&detail->hash_lock);
77			return tmp;
78		}
79	}
80	read_unlock(&detail->hash_lock);
81	/* Didn't find anything, insert an empty entry */
82
83	new = detail->alloc();
84	if (!new)
85		return NULL;
86	/* must fully initialise 'new', else
87	 * we might get lose if we need to
88	 * cache_put it soon.
89	 */
90	cache_init(new);
91	detail->init(new, key);
92
93	write_lock(&detail->hash_lock);
94
95	/* check if entry appeared while we slept */
96	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97		struct cache_head *tmp = *hp;
98		if (detail->match(tmp, key)) {
99			if (cache_is_expired(detail, tmp)) {
100				*hp = tmp->next;
101				tmp->next = NULL;
102				detail->entries --;
103				freeme = tmp;
104				break;
105			}
106			cache_get(tmp);
107			write_unlock(&detail->hash_lock);
108			cache_put(new, detail);
109			return tmp;
110		}
111	}
112	new->next = *head;
113	*head = new;
114	detail->entries++;
115	cache_get(new);
116	write_unlock(&detail->hash_lock);
117
118	if (freeme)
119		cache_put(freeme, detail);
120	return new;
121}
122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128{
129	head->expiry_time = expiry;
130	head->last_refresh = get_seconds();
131	set_bit(CACHE_VALID, &head->flags);
132}
133
134static void cache_fresh_unlocked(struct cache_head *head,
135				 struct cache_detail *detail)
136{
137	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
138		cache_revisit_request(head);
139		cache_dequeue(detail, head);
140	}
141}
142
143struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
144				       struct cache_head *new, struct cache_head *old, int hash)
145{
146	/* The 'old' entry is to be replaced by 'new'.
147	 * If 'old' is not VALID, we update it directly,
148	 * otherwise we need to replace it
149	 */
150	struct cache_head **head;
151	struct cache_head *tmp;
152
153	if (!test_bit(CACHE_VALID, &old->flags)) {
154		write_lock(&detail->hash_lock);
155		if (!test_bit(CACHE_VALID, &old->flags)) {
156			if (test_bit(CACHE_NEGATIVE, &new->flags))
157				set_bit(CACHE_NEGATIVE, &old->flags);
158			else
159				detail->update(old, new);
160			cache_fresh_locked(old, new->expiry_time);
161			write_unlock(&detail->hash_lock);
162			cache_fresh_unlocked(old, detail);
163			return old;
164		}
165		write_unlock(&detail->hash_lock);
166	}
167	/* We need to insert a new entry */
168	tmp = detail->alloc();
169	if (!tmp) {
170		cache_put(old, detail);
171		return NULL;
172	}
173	cache_init(tmp);
174	detail->init(tmp, old);
175	head = &detail->hash_table[hash];
176
177	write_lock(&detail->hash_lock);
178	if (test_bit(CACHE_NEGATIVE, &new->flags))
179		set_bit(CACHE_NEGATIVE, &tmp->flags);
180	else
181		detail->update(tmp, new);
182	tmp->next = *head;
183	*head = tmp;
184	detail->entries++;
185	cache_get(tmp);
186	cache_fresh_locked(tmp, new->expiry_time);
187	cache_fresh_locked(old, 0);
188	write_unlock(&detail->hash_lock);
189	cache_fresh_unlocked(tmp, detail);
190	cache_fresh_unlocked(old, detail);
191	cache_put(old, detail);
192	return tmp;
193}
194EXPORT_SYMBOL_GPL(sunrpc_cache_update);
195
196static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
197{
198	if (!cd->cache_upcall)
199		return -EINVAL;
200	return cd->cache_upcall(cd, h);
201}
202
203static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
204{
205	if (!test_bit(CACHE_VALID, &h->flags))
206		return -EAGAIN;
207	else {
208		/* entry is valid */
209		if (test_bit(CACHE_NEGATIVE, &h->flags))
210			return -ENOENT;
211		else
212			return 0;
213	}
214}
215
216/*
217 * This is the generic cache management routine for all
218 * the authentication caches.
219 * It checks the currency of a cache item and will (later)
220 * initiate an upcall to fill it if needed.
221 *
222 *
223 * Returns 0 if the cache_head can be used, or cache_puts it and returns
224 * -EAGAIN if upcall is pending and request has been queued
225 * -ETIMEDOUT if upcall failed or request could not be queue or
226 *           upcall completed but item is still invalid (implying that
227 *           the cache item has been replaced with a newer one).
228 * -ENOENT if cache entry was negative
229 */
230int cache_check(struct cache_detail *detail,
231		    struct cache_head *h, struct cache_req *rqstp)
232{
233	int rv;
234	long refresh_age, age;
235
236	/* First decide return status as best we can */
237	rv = cache_is_valid(detail, h);
238
239	/* now see if we want to start an upcall */
240	refresh_age = (h->expiry_time - h->last_refresh);
241	age = get_seconds() - h->last_refresh;
242
243	if (rqstp == NULL) {
244		if (rv == -EAGAIN)
245			rv = -ENOENT;
246	} else if (rv == -EAGAIN || age > refresh_age/2) {
247		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
248				refresh_age, age);
249		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
250			switch (cache_make_upcall(detail, h)) {
251			case -EINVAL:
252				clear_bit(CACHE_PENDING, &h->flags);
253				cache_revisit_request(h);
254				if (rv == -EAGAIN) {
255					set_bit(CACHE_NEGATIVE, &h->flags);
256					cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY);
257					cache_fresh_unlocked(h, detail);
258					rv = -ENOENT;
259				}
260				break;
261
262			case -EAGAIN:
263				clear_bit(CACHE_PENDING, &h->flags);
264				cache_revisit_request(h);
265				break;
266			}
267		}
268	}
269
270	if (rv == -EAGAIN) {
271		if (cache_defer_req(rqstp, h) < 0) {
272			/* Request is not deferred */
273			rv = cache_is_valid(detail, h);
274			if (rv == -EAGAIN)
275				rv = -ETIMEDOUT;
276		}
277	}
278	if (rv)
279		cache_put(h, detail);
280	return rv;
281}
282EXPORT_SYMBOL_GPL(cache_check);
283
284/*
285 * caches need to be periodically cleaned.
286 * For this we maintain a list of cache_detail and
287 * a current pointer into that list and into the table
288 * for that entry.
289 *
290 * Each time clean_cache is called it finds the next non-empty entry
291 * in the current table and walks the list in that entry
292 * looking for entries that can be removed.
293 *
294 * An entry gets removed if:
295 * - The expiry is before current time
296 * - The last_refresh time is before the flush_time for that cache
297 *
298 * later we might drop old entries with non-NEVER expiry if that table
299 * is getting 'full' for some definition of 'full'
300 *
301 * The question of "how often to scan a table" is an interesting one
302 * and is answered in part by the use of the "nextcheck" field in the
303 * cache_detail.
304 * When a scan of a table begins, the nextcheck field is set to a time
305 * that is well into the future.
306 * While scanning, if an expiry time is found that is earlier than the
307 * current nextcheck time, nextcheck is set to that expiry time.
308 * If the flush_time is ever set to a time earlier than the nextcheck
309 * time, the nextcheck time is then set to that flush_time.
310 *
311 * A table is then only scanned if the current time is at least
312 * the nextcheck time.
313 *
314 */
315
316static LIST_HEAD(cache_list);
317static DEFINE_SPINLOCK(cache_list_lock);
318static struct cache_detail *current_detail;
319static int current_index;
320
321static void do_cache_clean(struct work_struct *work);
322static struct delayed_work cache_cleaner;
323
324static void sunrpc_init_cache_detail(struct cache_detail *cd)
325{
326	rwlock_init(&cd->hash_lock);
327	INIT_LIST_HEAD(&cd->queue);
328	spin_lock(&cache_list_lock);
329	cd->nextcheck = 0;
330	cd->entries = 0;
331	atomic_set(&cd->readers, 0);
332	cd->last_close = 0;
333	cd->last_warn = -1;
334	list_add(&cd->others, &cache_list);
335	spin_unlock(&cache_list_lock);
336
337	/* start the cleaning process */
338	schedule_delayed_work(&cache_cleaner, 0);
339}
340
341static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
342{
343	cache_purge(cd);
344	spin_lock(&cache_list_lock);
345	write_lock(&cd->hash_lock);
346	if (cd->entries || atomic_read(&cd->inuse)) {
347		write_unlock(&cd->hash_lock);
348		spin_unlock(&cache_list_lock);
349		goto out;
350	}
351	if (current_detail == cd)
352		current_detail = NULL;
353	list_del_init(&cd->others);
354	write_unlock(&cd->hash_lock);
355	spin_unlock(&cache_list_lock);
356	if (list_empty(&cache_list)) {
357		/* module must be being unloaded so its safe to kill the worker */
358		cancel_delayed_work_sync(&cache_cleaner);
359	}
360	return;
361out:
362	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
363}
364
365/* clean cache tries to find something to clean
366 * and cleans it.
367 * It returns 1 if it cleaned something,
368 *            0 if it didn't find anything this time
369 *           -1 if it fell off the end of the list.
370 */
371static int cache_clean(void)
372{
373	int rv = 0;
374	struct list_head *next;
375
376	spin_lock(&cache_list_lock);
377
378	/* find a suitable table if we don't already have one */
379	while (current_detail == NULL ||
380	    current_index >= current_detail->hash_size) {
381		if (current_detail)
382			next = current_detail->others.next;
383		else
384			next = cache_list.next;
385		if (next == &cache_list) {
386			current_detail = NULL;
387			spin_unlock(&cache_list_lock);
388			return -1;
389		}
390		current_detail = list_entry(next, struct cache_detail, others);
391		if (current_detail->nextcheck > get_seconds())
392			current_index = current_detail->hash_size;
393		else {
394			current_index = 0;
395			current_detail->nextcheck = get_seconds()+30*60;
396		}
397	}
398
399	/* find a non-empty bucket in the table */
400	while (current_detail &&
401	       current_index < current_detail->hash_size &&
402	       current_detail->hash_table[current_index] == NULL)
403		current_index++;
404
405	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
406
407	if (current_detail && current_index < current_detail->hash_size) {
408		struct cache_head *ch, **cp;
409		struct cache_detail *d;
410
411		write_lock(&current_detail->hash_lock);
412
413		/* Ok, now to clean this strand */
414
415		cp = & current_detail->hash_table[current_index];
416		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
417			if (current_detail->nextcheck > ch->expiry_time)
418				current_detail->nextcheck = ch->expiry_time+1;
419			if (!cache_is_expired(current_detail, ch))
420				continue;
421
422			*cp = ch->next;
423			ch->next = NULL;
424			current_detail->entries--;
425			rv = 1;
426			break;
427		}
428
429		write_unlock(&current_detail->hash_lock);
430		d = current_detail;
431		if (!ch)
432			current_index ++;
433		spin_unlock(&cache_list_lock);
434		if (ch) {
435			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
436				cache_dequeue(current_detail, ch);
437			cache_revisit_request(ch);
438			cache_put(ch, d);
439		}
440	} else
441		spin_unlock(&cache_list_lock);
442
443	return rv;
444}
445
446/*
447 * We want to regularly clean the cache, so we need to schedule some work ...
448 */
449static void do_cache_clean(struct work_struct *work)
450{
451	int delay = 5;
452	if (cache_clean() == -1)
453		delay = round_jiffies_relative(30*HZ);
454
455	if (list_empty(&cache_list))
456		delay = 0;
457
458	if (delay)
459		schedule_delayed_work(&cache_cleaner, delay);
460}
461
462
463/*
464 * Clean all caches promptly.  This just calls cache_clean
465 * repeatedly until we are sure that every cache has had a chance to
466 * be fully cleaned
467 */
468void cache_flush(void)
469{
470	while (cache_clean() != -1)
471		cond_resched();
472	while (cache_clean() != -1)
473		cond_resched();
474}
475EXPORT_SYMBOL_GPL(cache_flush);
476
477void cache_purge(struct cache_detail *detail)
478{
479	detail->flush_time = LONG_MAX;
480	detail->nextcheck = get_seconds();
481	cache_flush();
482	detail->flush_time = 1;
483}
484EXPORT_SYMBOL_GPL(cache_purge);
485
486
487/*
488 * Deferral and Revisiting of Requests.
489 *
490 * If a cache lookup finds a pending entry, we
491 * need to defer the request and revisit it later.
492 * All deferred requests are stored in a hash table,
493 * indexed by "struct cache_head *".
494 * As it may be wasteful to store a whole request
495 * structure, we allow the request to provide a
496 * deferred form, which must contain a
497 * 'struct cache_deferred_req'
498 * This cache_deferred_req contains a method to allow
499 * it to be revisited when cache info is available
500 */
501
502#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
503#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
504
505#define	DFR_MAX	300	/* ??? */
506
507static DEFINE_SPINLOCK(cache_defer_lock);
508static LIST_HEAD(cache_defer_list);
509static struct list_head cache_defer_hash[DFR_HASHSIZE];
510static int cache_defer_cnt;
511
512static int cache_defer_req(struct cache_req *req, struct cache_head *item)
513{
514	struct cache_deferred_req *dreq, *discard;
515	int hash = DFR_HASH(item);
516
517	if (cache_defer_cnt >= DFR_MAX) {
518		/* too much in the cache, randomly drop this one,
519		 * or continue and drop the oldest below
520		 */
521		if (net_random()&1)
522			return -ENOMEM;
523	}
524	dreq = req->defer(req);
525	if (dreq == NULL)
526		return -ENOMEM;
527
528	dreq->item = item;
529
530	spin_lock(&cache_defer_lock);
531
532	list_add(&dreq->recent, &cache_defer_list);
533
534	if (cache_defer_hash[hash].next == NULL)
535		INIT_LIST_HEAD(&cache_defer_hash[hash]);
536	list_add(&dreq->hash, &cache_defer_hash[hash]);
537
538	/* it is in, now maybe clean up */
539	discard = NULL;
540	if (++cache_defer_cnt > DFR_MAX) {
541		discard = list_entry(cache_defer_list.prev,
542				     struct cache_deferred_req, recent);
543		list_del_init(&discard->recent);
544		list_del_init(&discard->hash);
545		cache_defer_cnt--;
546	}
547	spin_unlock(&cache_defer_lock);
548
549	if (discard)
550		/* there was one too many */
551		discard->revisit(discard, 1);
552
553	if (!test_bit(CACHE_PENDING, &item->flags)) {
554		/* must have just been validated... */
555		cache_revisit_request(item);
556		return -EAGAIN;
557	}
558	return 0;
559}
560
561static void cache_revisit_request(struct cache_head *item)
562{
563	struct cache_deferred_req *dreq;
564	struct list_head pending;
565
566	struct list_head *lp;
567	int hash = DFR_HASH(item);
568
569	INIT_LIST_HEAD(&pending);
570	spin_lock(&cache_defer_lock);
571
572	lp = cache_defer_hash[hash].next;
573	if (lp) {
574		while (lp != &cache_defer_hash[hash]) {
575			dreq = list_entry(lp, struct cache_deferred_req, hash);
576			lp = lp->next;
577			if (dreq->item == item) {
578				list_del_init(&dreq->hash);
579				list_move(&dreq->recent, &pending);
580				cache_defer_cnt--;
581			}
582		}
583	}
584	spin_unlock(&cache_defer_lock);
585
586	while (!list_empty(&pending)) {
587		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
588		list_del_init(&dreq->recent);
589		dreq->revisit(dreq, 0);
590	}
591}
592
593void cache_clean_deferred(void *owner)
594{
595	struct cache_deferred_req *dreq, *tmp;
596	struct list_head pending;
597
598
599	INIT_LIST_HEAD(&pending);
600	spin_lock(&cache_defer_lock);
601
602	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
603		if (dreq->owner == owner) {
604			list_del_init(&dreq->hash);
605			list_move(&dreq->recent, &pending);
606			cache_defer_cnt--;
607		}
608	}
609	spin_unlock(&cache_defer_lock);
610
611	while (!list_empty(&pending)) {
612		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
613		list_del_init(&dreq->recent);
614		dreq->revisit(dreq, 1);
615	}
616}
617
618/*
619 * communicate with user-space
620 *
621 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
622 * On read, you get a full request, or block.
623 * On write, an update request is processed.
624 * Poll works if anything to read, and always allows write.
625 *
626 * Implemented by linked list of requests.  Each open file has
627 * a ->private that also exists in this list.  New requests are added
628 * to the end and may wakeup and preceding readers.
629 * New readers are added to the head.  If, on read, an item is found with
630 * CACHE_UPCALLING clear, we free it from the list.
631 *
632 */
633
634static DEFINE_SPINLOCK(queue_lock);
635static DEFINE_MUTEX(queue_io_mutex);
636
637struct cache_queue {
638	struct list_head	list;
639	int			reader;	/* if 0, then request */
640};
641struct cache_request {
642	struct cache_queue	q;
643	struct cache_head	*item;
644	char			* buf;
645	int			len;
646	int			readers;
647};
648struct cache_reader {
649	struct cache_queue	q;
650	int			offset;	/* if non-0, we have a refcnt on next request */
651};
652
653static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
654			  loff_t *ppos, struct cache_detail *cd)
655{
656	struct cache_reader *rp = filp->private_data;
657	struct cache_request *rq;
658	struct inode *inode = filp->f_path.dentry->d_inode;
659	int err;
660
661	if (count == 0)
662		return 0;
663
664	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
665			      * readers on this file */
666 again:
667	spin_lock(&queue_lock);
668	/* need to find next request */
669	while (rp->q.list.next != &cd->queue &&
670	       list_entry(rp->q.list.next, struct cache_queue, list)
671	       ->reader) {
672		struct list_head *next = rp->q.list.next;
673		list_move(&rp->q.list, next);
674	}
675	if (rp->q.list.next == &cd->queue) {
676		spin_unlock(&queue_lock);
677		mutex_unlock(&inode->i_mutex);
678		BUG_ON(rp->offset);
679		return 0;
680	}
681	rq = container_of(rp->q.list.next, struct cache_request, q.list);
682	BUG_ON(rq->q.reader);
683	if (rp->offset == 0)
684		rq->readers++;
685	spin_unlock(&queue_lock);
686
687	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
688		err = -EAGAIN;
689		spin_lock(&queue_lock);
690		list_move(&rp->q.list, &rq->q.list);
691		spin_unlock(&queue_lock);
692	} else {
693		if (rp->offset + count > rq->len)
694			count = rq->len - rp->offset;
695		err = -EFAULT;
696		if (copy_to_user(buf, rq->buf + rp->offset, count))
697			goto out;
698		rp->offset += count;
699		if (rp->offset >= rq->len) {
700			rp->offset = 0;
701			spin_lock(&queue_lock);
702			list_move(&rp->q.list, &rq->q.list);
703			spin_unlock(&queue_lock);
704		}
705		err = 0;
706	}
707 out:
708	if (rp->offset == 0) {
709		/* need to release rq */
710		spin_lock(&queue_lock);
711		rq->readers--;
712		if (rq->readers == 0 &&
713		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
714			list_del(&rq->q.list);
715			spin_unlock(&queue_lock);
716			cache_put(rq->item, cd);
717			kfree(rq->buf);
718			kfree(rq);
719		} else
720			spin_unlock(&queue_lock);
721	}
722	if (err == -EAGAIN)
723		goto again;
724	mutex_unlock(&inode->i_mutex);
725	return err ? err :  count;
726}
727
728static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
729				 size_t count, struct cache_detail *cd)
730{
731	ssize_t ret;
732
733	if (copy_from_user(kaddr, buf, count))
734		return -EFAULT;
735	kaddr[count] = '\0';
736	ret = cd->cache_parse(cd, kaddr, count);
737	if (!ret)
738		ret = count;
739	return ret;
740}
741
742static ssize_t cache_slow_downcall(const char __user *buf,
743				   size_t count, struct cache_detail *cd)
744{
745	static char write_buf[8192]; /* protected by queue_io_mutex */
746	ssize_t ret = -EINVAL;
747
748	if (count >= sizeof(write_buf))
749		goto out;
750	mutex_lock(&queue_io_mutex);
751	ret = cache_do_downcall(write_buf, buf, count, cd);
752	mutex_unlock(&queue_io_mutex);
753out:
754	return ret;
755}
756
757static ssize_t cache_downcall(struct address_space *mapping,
758			      const char __user *buf,
759			      size_t count, struct cache_detail *cd)
760{
761	struct page *page;
762	char *kaddr;
763	ssize_t ret = -ENOMEM;
764
765	if (count >= PAGE_CACHE_SIZE)
766		goto out_slow;
767
768	page = find_or_create_page(mapping, 0, GFP_KERNEL);
769	if (!page)
770		goto out_slow;
771
772	kaddr = kmap(page);
773	ret = cache_do_downcall(kaddr, buf, count, cd);
774	kunmap(page);
775	unlock_page(page);
776	page_cache_release(page);
777	return ret;
778out_slow:
779	return cache_slow_downcall(buf, count, cd);
780}
781
782static ssize_t cache_write(struct file *filp, const char __user *buf,
783			   size_t count, loff_t *ppos,
784			   struct cache_detail *cd)
785{
786	struct address_space *mapping = filp->f_mapping;
787	struct inode *inode = filp->f_path.dentry->d_inode;
788	ssize_t ret = -EINVAL;
789
790	if (!cd->cache_parse)
791		goto out;
792
793	mutex_lock(&inode->i_mutex);
794	ret = cache_downcall(mapping, buf, count, cd);
795	mutex_unlock(&inode->i_mutex);
796out:
797	return ret;
798}
799
800static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
801
802static unsigned int cache_poll(struct file *filp, poll_table *wait,
803			       struct cache_detail *cd)
804{
805	unsigned int mask;
806	struct cache_reader *rp = filp->private_data;
807	struct cache_queue *cq;
808
809	poll_wait(filp, &queue_wait, wait);
810
811	/* alway allow write */
812	mask = POLL_OUT | POLLWRNORM;
813
814	if (!rp)
815		return mask;
816
817	spin_lock(&queue_lock);
818
819	for (cq= &rp->q; &cq->list != &cd->queue;
820	     cq = list_entry(cq->list.next, struct cache_queue, list))
821		if (!cq->reader) {
822			mask |= POLLIN | POLLRDNORM;
823			break;
824		}
825	spin_unlock(&queue_lock);
826	return mask;
827}
828
829static int cache_ioctl(struct inode *ino, struct file *filp,
830		       unsigned int cmd, unsigned long arg,
831		       struct cache_detail *cd)
832{
833	int len = 0;
834	struct cache_reader *rp = filp->private_data;
835	struct cache_queue *cq;
836
837	if (cmd != FIONREAD || !rp)
838		return -EINVAL;
839
840	spin_lock(&queue_lock);
841
842	/* only find the length remaining in current request,
843	 * or the length of the next request
844	 */
845	for (cq= &rp->q; &cq->list != &cd->queue;
846	     cq = list_entry(cq->list.next, struct cache_queue, list))
847		if (!cq->reader) {
848			struct cache_request *cr =
849				container_of(cq, struct cache_request, q);
850			len = cr->len - rp->offset;
851			break;
852		}
853	spin_unlock(&queue_lock);
854
855	return put_user(len, (int __user *)arg);
856}
857
858static int cache_open(struct inode *inode, struct file *filp,
859		      struct cache_detail *cd)
860{
861	struct cache_reader *rp = NULL;
862
863	if (!cd || !try_module_get(cd->owner))
864		return -EACCES;
865	nonseekable_open(inode, filp);
866	if (filp->f_mode & FMODE_READ) {
867		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
868		if (!rp)
869			return -ENOMEM;
870		rp->offset = 0;
871		rp->q.reader = 1;
872		atomic_inc(&cd->readers);
873		spin_lock(&queue_lock);
874		list_add(&rp->q.list, &cd->queue);
875		spin_unlock(&queue_lock);
876	}
877	filp->private_data = rp;
878	return 0;
879}
880
881static int cache_release(struct inode *inode, struct file *filp,
882			 struct cache_detail *cd)
883{
884	struct cache_reader *rp = filp->private_data;
885
886	if (rp) {
887		spin_lock(&queue_lock);
888		if (rp->offset) {
889			struct cache_queue *cq;
890			for (cq= &rp->q; &cq->list != &cd->queue;
891			     cq = list_entry(cq->list.next, struct cache_queue, list))
892				if (!cq->reader) {
893					container_of(cq, struct cache_request, q)
894						->readers--;
895					break;
896				}
897			rp->offset = 0;
898		}
899		list_del(&rp->q.list);
900		spin_unlock(&queue_lock);
901
902		filp->private_data = NULL;
903		kfree(rp);
904
905		cd->last_close = get_seconds();
906		atomic_dec(&cd->readers);
907	}
908	module_put(cd->owner);
909	return 0;
910}
911
912
913
914static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
915{
916	struct cache_queue *cq;
917	spin_lock(&queue_lock);
918	list_for_each_entry(cq, &detail->queue, list)
919		if (!cq->reader) {
920			struct cache_request *cr = container_of(cq, struct cache_request, q);
921			if (cr->item != ch)
922				continue;
923			if (cr->readers != 0)
924				continue;
925			list_del(&cr->q.list);
926			spin_unlock(&queue_lock);
927			cache_put(cr->item, detail);
928			kfree(cr->buf);
929			kfree(cr);
930			return;
931		}
932	spin_unlock(&queue_lock);
933}
934
935/*
936 * Support routines for text-based upcalls.
937 * Fields are separated by spaces.
938 * Fields are either mangled to quote space tab newline slosh with slosh
939 * or a hexified with a leading \x
940 * Record is terminated with newline.
941 *
942 */
943
944void qword_add(char **bpp, int *lp, char *str)
945{
946	char *bp = *bpp;
947	int len = *lp;
948	char c;
949
950	if (len < 0) return;
951
952	while ((c=*str++) && len)
953		switch(c) {
954		case ' ':
955		case '\t':
956		case '\n':
957		case '\\':
958			if (len >= 4) {
959				*bp++ = '\\';
960				*bp++ = '0' + ((c & 0300)>>6);
961				*bp++ = '0' + ((c & 0070)>>3);
962				*bp++ = '0' + ((c & 0007)>>0);
963			}
964			len -= 4;
965			break;
966		default:
967			*bp++ = c;
968			len--;
969		}
970	if (c || len <1) len = -1;
971	else {
972		*bp++ = ' ';
973		len--;
974	}
975	*bpp = bp;
976	*lp = len;
977}
978EXPORT_SYMBOL_GPL(qword_add);
979
980void qword_addhex(char **bpp, int *lp, char *buf, int blen)
981{
982	char *bp = *bpp;
983	int len = *lp;
984
985	if (len < 0) return;
986
987	if (len > 2) {
988		*bp++ = '\\';
989		*bp++ = 'x';
990		len -= 2;
991		while (blen && len >= 2) {
992			unsigned char c = *buf++;
993			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
994			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
995			len -= 2;
996			blen--;
997		}
998	}
999	if (blen || len<1) len = -1;
1000	else {
1001		*bp++ = ' ';
1002		len--;
1003	}
1004	*bpp = bp;
1005	*lp = len;
1006}
1007EXPORT_SYMBOL_GPL(qword_addhex);
1008
1009static void warn_no_listener(struct cache_detail *detail)
1010{
1011	if (detail->last_warn != detail->last_close) {
1012		detail->last_warn = detail->last_close;
1013		if (detail->warn_no_listener)
1014			detail->warn_no_listener(detail, detail->last_close != 0);
1015	}
1016}
1017
1018/*
1019 * register an upcall request to user-space and queue it up for read() by the
1020 * upcall daemon.
1021 *
1022 * Each request is at most one page long.
1023 */
1024int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1025		void (*cache_request)(struct cache_detail *,
1026				      struct cache_head *,
1027				      char **,
1028				      int *))
1029{
1030
1031	char *buf;
1032	struct cache_request *crq;
1033	char *bp;
1034	int len;
1035
1036	if (atomic_read(&detail->readers) == 0 &&
1037	    detail->last_close < get_seconds() - 30) {
1038			warn_no_listener(detail);
1039			return -EINVAL;
1040	}
1041
1042	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1043	if (!buf)
1044		return -EAGAIN;
1045
1046	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1047	if (!crq) {
1048		kfree(buf);
1049		return -EAGAIN;
1050	}
1051
1052	bp = buf; len = PAGE_SIZE;
1053
1054	cache_request(detail, h, &bp, &len);
1055
1056	if (len < 0) {
1057		kfree(buf);
1058		kfree(crq);
1059		return -EAGAIN;
1060	}
1061	crq->q.reader = 0;
1062	crq->item = cache_get(h);
1063	crq->buf = buf;
1064	crq->len = PAGE_SIZE - len;
1065	crq->readers = 0;
1066	spin_lock(&queue_lock);
1067	list_add_tail(&crq->q.list, &detail->queue);
1068	spin_unlock(&queue_lock);
1069	wake_up(&queue_wait);
1070	return 0;
1071}
1072EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1073
1074/*
1075 * parse a message from user-space and pass it
1076 * to an appropriate cache
1077 * Messages are, like requests, separated into fields by
1078 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1079 *
1080 * Message is
1081 *   reply cachename expiry key ... content....
1082 *
1083 * key and content are both parsed by cache
1084 */
1085
1086#define isodigit(c) (isdigit(c) && c <= '7')
1087int qword_get(char **bpp, char *dest, int bufsize)
1088{
1089	/* return bytes copied, or -1 on error */
1090	char *bp = *bpp;
1091	int len = 0;
1092
1093	while (*bp == ' ') bp++;
1094
1095	if (bp[0] == '\\' && bp[1] == 'x') {
1096		/* HEX STRING */
1097		bp += 2;
1098		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1099			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1100			bp++;
1101			byte <<= 4;
1102			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1103			*dest++ = byte;
1104			bp++;
1105			len++;
1106		}
1107	} else {
1108		/* text with \nnn octal quoting */
1109		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1110			if (*bp == '\\' &&
1111			    isodigit(bp[1]) && (bp[1] <= '3') &&
1112			    isodigit(bp[2]) &&
1113			    isodigit(bp[3])) {
1114				int byte = (*++bp -'0');
1115				bp++;
1116				byte = (byte << 3) | (*bp++ - '0');
1117				byte = (byte << 3) | (*bp++ - '0');
1118				*dest++ = byte;
1119				len++;
1120			} else {
1121				*dest++ = *bp++;
1122				len++;
1123			}
1124		}
1125	}
1126
1127	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1128		return -1;
1129	while (*bp == ' ') bp++;
1130	*bpp = bp;
1131	*dest = '\0';
1132	return len;
1133}
1134EXPORT_SYMBOL_GPL(qword_get);
1135
1136
1137/*
1138 * support /proc/sunrpc/cache/$CACHENAME/content
1139 * as a seqfile.
1140 * We call ->cache_show passing NULL for the item to
1141 * get a header, then pass each real item in the cache
1142 */
1143
1144struct handle {
1145	struct cache_detail *cd;
1146};
1147
1148static void *c_start(struct seq_file *m, loff_t *pos)
1149	__acquires(cd->hash_lock)
1150{
1151	loff_t n = *pos;
1152	unsigned hash, entry;
1153	struct cache_head *ch;
1154	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1155
1156
1157	read_lock(&cd->hash_lock);
1158	if (!n--)
1159		return SEQ_START_TOKEN;
1160	hash = n >> 32;
1161	entry = n & ((1LL<<32) - 1);
1162
1163	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1164		if (!entry--)
1165			return ch;
1166	n &= ~((1LL<<32) - 1);
1167	do {
1168		hash++;
1169		n += 1LL<<32;
1170	} while(hash < cd->hash_size &&
1171		cd->hash_table[hash]==NULL);
1172	if (hash >= cd->hash_size)
1173		return NULL;
1174	*pos = n+1;
1175	return cd->hash_table[hash];
1176}
1177
1178static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1179{
1180	struct cache_head *ch = p;
1181	int hash = (*pos >> 32);
1182	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1183
1184	if (p == SEQ_START_TOKEN)
1185		hash = 0;
1186	else if (ch->next == NULL) {
1187		hash++;
1188		*pos += 1LL<<32;
1189	} else {
1190		++*pos;
1191		return ch->next;
1192	}
1193	*pos &= ~((1LL<<32) - 1);
1194	while (hash < cd->hash_size &&
1195	       cd->hash_table[hash] == NULL) {
1196		hash++;
1197		*pos += 1LL<<32;
1198	}
1199	if (hash >= cd->hash_size)
1200		return NULL;
1201	++*pos;
1202	return cd->hash_table[hash];
1203}
1204
1205static void c_stop(struct seq_file *m, void *p)
1206	__releases(cd->hash_lock)
1207{
1208	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1209	read_unlock(&cd->hash_lock);
1210}
1211
1212static int c_show(struct seq_file *m, void *p)
1213{
1214	struct cache_head *cp = p;
1215	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1216
1217	if (p == SEQ_START_TOKEN)
1218		return cd->cache_show(m, cd, NULL);
1219
1220	ifdebug(CACHE)
1221		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1222			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1223	cache_get(cp);
1224	if (cache_check(cd, cp, NULL))
1225		/* cache_check does a cache_put on failure */
1226		seq_printf(m, "# ");
1227	else
1228		cache_put(cp, cd);
1229
1230	return cd->cache_show(m, cd, cp);
1231}
1232
1233static const struct seq_operations cache_content_op = {
1234	.start	= c_start,
1235	.next	= c_next,
1236	.stop	= c_stop,
1237	.show	= c_show,
1238};
1239
1240static int content_open(struct inode *inode, struct file *file,
1241			struct cache_detail *cd)
1242{
1243	struct handle *han;
1244
1245	if (!cd || !try_module_get(cd->owner))
1246		return -EACCES;
1247	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1248	if (han == NULL) {
1249		module_put(cd->owner);
1250		return -ENOMEM;
1251	}
1252
1253	han->cd = cd;
1254	return 0;
1255}
1256
1257static int content_release(struct inode *inode, struct file *file,
1258		struct cache_detail *cd)
1259{
1260	int ret = seq_release_private(inode, file);
1261	module_put(cd->owner);
1262	return ret;
1263}
1264
1265static int open_flush(struct inode *inode, struct file *file,
1266			struct cache_detail *cd)
1267{
1268	if (!cd || !try_module_get(cd->owner))
1269		return -EACCES;
1270	return nonseekable_open(inode, file);
1271}
1272
1273static int release_flush(struct inode *inode, struct file *file,
1274			struct cache_detail *cd)
1275{
1276	module_put(cd->owner);
1277	return 0;
1278}
1279
1280static ssize_t read_flush(struct file *file, char __user *buf,
1281			  size_t count, loff_t *ppos,
1282			  struct cache_detail *cd)
1283{
1284	char tbuf[20];
1285	unsigned long p = *ppos;
1286	size_t len;
1287
1288	sprintf(tbuf, "%lu\n", cd->flush_time);
1289	len = strlen(tbuf);
1290	if (p >= len)
1291		return 0;
1292	len -= p;
1293	if (len > count)
1294		len = count;
1295	if (copy_to_user(buf, (void*)(tbuf+p), len))
1296		return -EFAULT;
1297	*ppos += len;
1298	return len;
1299}
1300
1301static ssize_t write_flush(struct file *file, const char __user *buf,
1302			   size_t count, loff_t *ppos,
1303			   struct cache_detail *cd)
1304{
1305	char tbuf[20];
1306	char *ep;
1307	long flushtime;
1308	if (*ppos || count > sizeof(tbuf)-1)
1309		return -EINVAL;
1310	if (copy_from_user(tbuf, buf, count))
1311		return -EFAULT;
1312	tbuf[count] = 0;
1313	flushtime = simple_strtoul(tbuf, &ep, 0);
1314	if (*ep && *ep != '\n')
1315		return -EINVAL;
1316
1317	cd->flush_time = flushtime;
1318	cd->nextcheck = get_seconds();
1319	cache_flush();
1320
1321	*ppos += count;
1322	return count;
1323}
1324
1325static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1326				 size_t count, loff_t *ppos)
1327{
1328	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1329
1330	return cache_read(filp, buf, count, ppos, cd);
1331}
1332
1333static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1334				  size_t count, loff_t *ppos)
1335{
1336	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1337
1338	return cache_write(filp, buf, count, ppos, cd);
1339}
1340
1341static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1342{
1343	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1344
1345	return cache_poll(filp, wait, cd);
1346}
1347
1348static long cache_ioctl_procfs(struct file *filp,
1349			       unsigned int cmd, unsigned long arg)
1350{
1351	long ret;
1352	struct inode *inode = filp->f_path.dentry->d_inode;
1353	struct cache_detail *cd = PDE(inode)->data;
1354
1355	lock_kernel();
1356	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1357	unlock_kernel();
1358
1359	return ret;
1360}
1361
1362static int cache_open_procfs(struct inode *inode, struct file *filp)
1363{
1364	struct cache_detail *cd = PDE(inode)->data;
1365
1366	return cache_open(inode, filp, cd);
1367}
1368
1369static int cache_release_procfs(struct inode *inode, struct file *filp)
1370{
1371	struct cache_detail *cd = PDE(inode)->data;
1372
1373	return cache_release(inode, filp, cd);
1374}
1375
1376static const struct file_operations cache_file_operations_procfs = {
1377	.owner		= THIS_MODULE,
1378	.llseek		= no_llseek,
1379	.read		= cache_read_procfs,
1380	.write		= cache_write_procfs,
1381	.poll		= cache_poll_procfs,
1382	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1383	.open		= cache_open_procfs,
1384	.release	= cache_release_procfs,
1385};
1386
1387static int content_open_procfs(struct inode *inode, struct file *filp)
1388{
1389	struct cache_detail *cd = PDE(inode)->data;
1390
1391	return content_open(inode, filp, cd);
1392}
1393
1394static int content_release_procfs(struct inode *inode, struct file *filp)
1395{
1396	struct cache_detail *cd = PDE(inode)->data;
1397
1398	return content_release(inode, filp, cd);
1399}
1400
1401static const struct file_operations content_file_operations_procfs = {
1402	.open		= content_open_procfs,
1403	.read		= seq_read,
1404	.llseek		= seq_lseek,
1405	.release	= content_release_procfs,
1406};
1407
1408static int open_flush_procfs(struct inode *inode, struct file *filp)
1409{
1410	struct cache_detail *cd = PDE(inode)->data;
1411
1412	return open_flush(inode, filp, cd);
1413}
1414
1415static int release_flush_procfs(struct inode *inode, struct file *filp)
1416{
1417	struct cache_detail *cd = PDE(inode)->data;
1418
1419	return release_flush(inode, filp, cd);
1420}
1421
1422static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1423			    size_t count, loff_t *ppos)
1424{
1425	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1426
1427	return read_flush(filp, buf, count, ppos, cd);
1428}
1429
1430static ssize_t write_flush_procfs(struct file *filp,
1431				  const char __user *buf,
1432				  size_t count, loff_t *ppos)
1433{
1434	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1435
1436	return write_flush(filp, buf, count, ppos, cd);
1437}
1438
1439static const struct file_operations cache_flush_operations_procfs = {
1440	.open		= open_flush_procfs,
1441	.read		= read_flush_procfs,
1442	.write		= write_flush_procfs,
1443	.release	= release_flush_procfs,
1444};
1445
1446static void remove_cache_proc_entries(struct cache_detail *cd)
1447{
1448	if (cd->u.procfs.proc_ent == NULL)
1449		return;
1450	if (cd->u.procfs.flush_ent)
1451		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1452	if (cd->u.procfs.channel_ent)
1453		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1454	if (cd->u.procfs.content_ent)
1455		remove_proc_entry("content", cd->u.procfs.proc_ent);
1456	cd->u.procfs.proc_ent = NULL;
1457	remove_proc_entry(cd->name, proc_net_rpc);
1458}
1459
1460#ifdef CONFIG_PROC_FS
1461static int create_cache_proc_entries(struct cache_detail *cd)
1462{
1463	struct proc_dir_entry *p;
1464
1465	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1466	if (cd->u.procfs.proc_ent == NULL)
1467		goto out_nomem;
1468	cd->u.procfs.channel_ent = NULL;
1469	cd->u.procfs.content_ent = NULL;
1470
1471	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1472			     cd->u.procfs.proc_ent,
1473			     &cache_flush_operations_procfs, cd);
1474	cd->u.procfs.flush_ent = p;
1475	if (p == NULL)
1476		goto out_nomem;
1477
1478	if (cd->cache_upcall || cd->cache_parse) {
1479		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1480				     cd->u.procfs.proc_ent,
1481				     &cache_file_operations_procfs, cd);
1482		cd->u.procfs.channel_ent = p;
1483		if (p == NULL)
1484			goto out_nomem;
1485	}
1486	if (cd->cache_show) {
1487		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1488				cd->u.procfs.proc_ent,
1489				&content_file_operations_procfs, cd);
1490		cd->u.procfs.content_ent = p;
1491		if (p == NULL)
1492			goto out_nomem;
1493	}
1494	return 0;
1495out_nomem:
1496	remove_cache_proc_entries(cd);
1497	return -ENOMEM;
1498}
1499#else /* CONFIG_PROC_FS */
1500static int create_cache_proc_entries(struct cache_detail *cd)
1501{
1502	return 0;
1503}
1504#endif
1505
1506void __init cache_initialize(void)
1507{
1508	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1509}
1510
1511int cache_register(struct cache_detail *cd)
1512{
1513	int ret;
1514
1515	sunrpc_init_cache_detail(cd);
1516	ret = create_cache_proc_entries(cd);
1517	if (ret)
1518		sunrpc_destroy_cache_detail(cd);
1519	return ret;
1520}
1521EXPORT_SYMBOL_GPL(cache_register);
1522
1523void cache_unregister(struct cache_detail *cd)
1524{
1525	remove_cache_proc_entries(cd);
1526	sunrpc_destroy_cache_detail(cd);
1527}
1528EXPORT_SYMBOL_GPL(cache_unregister);
1529
1530static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1531				 size_t count, loff_t *ppos)
1532{
1533	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1534
1535	return cache_read(filp, buf, count, ppos, cd);
1536}
1537
1538static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1539				  size_t count, loff_t *ppos)
1540{
1541	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1542
1543	return cache_write(filp, buf, count, ppos, cd);
1544}
1545
1546static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1547{
1548	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1549
1550	return cache_poll(filp, wait, cd);
1551}
1552
1553static long cache_ioctl_pipefs(struct file *filp,
1554			      unsigned int cmd, unsigned long arg)
1555{
1556	struct inode *inode = filp->f_dentry->d_inode;
1557	struct cache_detail *cd = RPC_I(inode)->private;
1558	long ret;
1559
1560	lock_kernel();
1561	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1562	unlock_kernel();
1563
1564	return ret;
1565}
1566
1567static int cache_open_pipefs(struct inode *inode, struct file *filp)
1568{
1569	struct cache_detail *cd = RPC_I(inode)->private;
1570
1571	return cache_open(inode, filp, cd);
1572}
1573
1574static int cache_release_pipefs(struct inode *inode, struct file *filp)
1575{
1576	struct cache_detail *cd = RPC_I(inode)->private;
1577
1578	return cache_release(inode, filp, cd);
1579}
1580
1581const struct file_operations cache_file_operations_pipefs = {
1582	.owner		= THIS_MODULE,
1583	.llseek		= no_llseek,
1584	.read		= cache_read_pipefs,
1585	.write		= cache_write_pipefs,
1586	.poll		= cache_poll_pipefs,
1587	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1588	.open		= cache_open_pipefs,
1589	.release	= cache_release_pipefs,
1590};
1591
1592static int content_open_pipefs(struct inode *inode, struct file *filp)
1593{
1594	struct cache_detail *cd = RPC_I(inode)->private;
1595
1596	return content_open(inode, filp, cd);
1597}
1598
1599static int content_release_pipefs(struct inode *inode, struct file *filp)
1600{
1601	struct cache_detail *cd = RPC_I(inode)->private;
1602
1603	return content_release(inode, filp, cd);
1604}
1605
1606const struct file_operations content_file_operations_pipefs = {
1607	.open		= content_open_pipefs,
1608	.read		= seq_read,
1609	.llseek		= seq_lseek,
1610	.release	= content_release_pipefs,
1611};
1612
1613static int open_flush_pipefs(struct inode *inode, struct file *filp)
1614{
1615	struct cache_detail *cd = RPC_I(inode)->private;
1616
1617	return open_flush(inode, filp, cd);
1618}
1619
1620static int release_flush_pipefs(struct inode *inode, struct file *filp)
1621{
1622	struct cache_detail *cd = RPC_I(inode)->private;
1623
1624	return release_flush(inode, filp, cd);
1625}
1626
1627static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1628			    size_t count, loff_t *ppos)
1629{
1630	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1631
1632	return read_flush(filp, buf, count, ppos, cd);
1633}
1634
1635static ssize_t write_flush_pipefs(struct file *filp,
1636				  const char __user *buf,
1637				  size_t count, loff_t *ppos)
1638{
1639	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1640
1641	return write_flush(filp, buf, count, ppos, cd);
1642}
1643
1644const struct file_operations cache_flush_operations_pipefs = {
1645	.open		= open_flush_pipefs,
1646	.read		= read_flush_pipefs,
1647	.write		= write_flush_pipefs,
1648	.release	= release_flush_pipefs,
1649};
1650
1651int sunrpc_cache_register_pipefs(struct dentry *parent,
1652				 const char *name, mode_t umode,
1653				 struct cache_detail *cd)
1654{
1655	struct qstr q;
1656	struct dentry *dir;
1657	int ret = 0;
1658
1659	sunrpc_init_cache_detail(cd);
1660	q.name = name;
1661	q.len = strlen(name);
1662	q.hash = full_name_hash(q.name, q.len);
1663	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1664	if (!IS_ERR(dir))
1665		cd->u.pipefs.dir = dir;
1666	else {
1667		sunrpc_destroy_cache_detail(cd);
1668		ret = PTR_ERR(dir);
1669	}
1670	return ret;
1671}
1672EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1673
1674void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1675{
1676	rpc_remove_cache_dir(cd->u.pipefs.dir);
1677	cd->u.pipefs.dir = NULL;
1678	sunrpc_destroy_cache_detail(cd);
1679}
1680EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1681
1682