cache.c revision e7f483eabea8ef6d2b5ce1b74c8184cc06819f15
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <linux/smp_lock.h>
32#include <asm/ioctls.h>
33#include <linux/sunrpc/types.h>
34#include <linux/sunrpc/cache.h>
35#include <linux/sunrpc/stats.h>
36#include <linux/sunrpc/rpc_pipe_fs.h>
37
38#define	 RPCDBG_FACILITY RPCDBG_CACHE
39
40static int cache_defer_req(struct cache_req *req, struct cache_head *item);
41static void cache_revisit_request(struct cache_head *item);
42
43static void cache_init(struct cache_head *h)
44{
45	time_t now = seconds_since_boot();
46	h->next = NULL;
47	h->flags = 0;
48	kref_init(&h->ref);
49	h->expiry_time = now + CACHE_NEW_EXPIRY;
50	h->last_refresh = now;
51}
52
53static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54{
55	return  (h->expiry_time < seconds_since_boot()) ||
56		(detail->flush_time > h->last_refresh);
57}
58
59struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60				       struct cache_head *key, int hash)
61{
62	struct cache_head **head,  **hp;
63	struct cache_head *new = NULL, *freeme = NULL;
64
65	head = &detail->hash_table[hash];
66
67	read_lock(&detail->hash_lock);
68
69	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70		struct cache_head *tmp = *hp;
71		if (detail->match(tmp, key)) {
72			if (cache_is_expired(detail, tmp))
73				/* This entry is expired, we will discard it. */
74				break;
75			cache_get(tmp);
76			read_unlock(&detail->hash_lock);
77			return tmp;
78		}
79	}
80	read_unlock(&detail->hash_lock);
81	/* Didn't find anything, insert an empty entry */
82
83	new = detail->alloc();
84	if (!new)
85		return NULL;
86	/* must fully initialise 'new', else
87	 * we might get lose if we need to
88	 * cache_put it soon.
89	 */
90	cache_init(new);
91	detail->init(new, key);
92
93	write_lock(&detail->hash_lock);
94
95	/* check if entry appeared while we slept */
96	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97		struct cache_head *tmp = *hp;
98		if (detail->match(tmp, key)) {
99			if (cache_is_expired(detail, tmp)) {
100				*hp = tmp->next;
101				tmp->next = NULL;
102				detail->entries --;
103				freeme = tmp;
104				break;
105			}
106			cache_get(tmp);
107			write_unlock(&detail->hash_lock);
108			cache_put(new, detail);
109			return tmp;
110		}
111	}
112	new->next = *head;
113	*head = new;
114	detail->entries++;
115	cache_get(new);
116	write_unlock(&detail->hash_lock);
117
118	if (freeme)
119		cache_put(freeme, detail);
120	return new;
121}
122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128{
129	head->expiry_time = expiry;
130	head->last_refresh = seconds_since_boot();
131	set_bit(CACHE_VALID, &head->flags);
132}
133
134static void cache_fresh_unlocked(struct cache_head *head,
135				 struct cache_detail *detail)
136{
137	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
138		cache_revisit_request(head);
139		cache_dequeue(detail, head);
140	}
141}
142
143struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
144				       struct cache_head *new, struct cache_head *old, int hash)
145{
146	/* The 'old' entry is to be replaced by 'new'.
147	 * If 'old' is not VALID, we update it directly,
148	 * otherwise we need to replace it
149	 */
150	struct cache_head **head;
151	struct cache_head *tmp;
152
153	if (!test_bit(CACHE_VALID, &old->flags)) {
154		write_lock(&detail->hash_lock);
155		if (!test_bit(CACHE_VALID, &old->flags)) {
156			if (test_bit(CACHE_NEGATIVE, &new->flags))
157				set_bit(CACHE_NEGATIVE, &old->flags);
158			else
159				detail->update(old, new);
160			cache_fresh_locked(old, new->expiry_time);
161			write_unlock(&detail->hash_lock);
162			cache_fresh_unlocked(old, detail);
163			return old;
164		}
165		write_unlock(&detail->hash_lock);
166	}
167	/* We need to insert a new entry */
168	tmp = detail->alloc();
169	if (!tmp) {
170		cache_put(old, detail);
171		return NULL;
172	}
173	cache_init(tmp);
174	detail->init(tmp, old);
175	head = &detail->hash_table[hash];
176
177	write_lock(&detail->hash_lock);
178	if (test_bit(CACHE_NEGATIVE, &new->flags))
179		set_bit(CACHE_NEGATIVE, &tmp->flags);
180	else
181		detail->update(tmp, new);
182	tmp->next = *head;
183	*head = tmp;
184	detail->entries++;
185	cache_get(tmp);
186	cache_fresh_locked(tmp, new->expiry_time);
187	cache_fresh_locked(old, 0);
188	write_unlock(&detail->hash_lock);
189	cache_fresh_unlocked(tmp, detail);
190	cache_fresh_unlocked(old, detail);
191	cache_put(old, detail);
192	return tmp;
193}
194EXPORT_SYMBOL_GPL(sunrpc_cache_update);
195
196static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
197{
198	if (!cd->cache_upcall)
199		return -EINVAL;
200	return cd->cache_upcall(cd, h);
201}
202
203static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
204{
205	if (!test_bit(CACHE_VALID, &h->flags))
206		return -EAGAIN;
207	else {
208		/* entry is valid */
209		if (test_bit(CACHE_NEGATIVE, &h->flags))
210			return -ENOENT;
211		else
212			return 0;
213	}
214}
215
216/*
217 * This is the generic cache management routine for all
218 * the authentication caches.
219 * It checks the currency of a cache item and will (later)
220 * initiate an upcall to fill it if needed.
221 *
222 *
223 * Returns 0 if the cache_head can be used, or cache_puts it and returns
224 * -EAGAIN if upcall is pending and request has been queued
225 * -ETIMEDOUT if upcall failed or request could not be queue or
226 *           upcall completed but item is still invalid (implying that
227 *           the cache item has been replaced with a newer one).
228 * -ENOENT if cache entry was negative
229 */
230int cache_check(struct cache_detail *detail,
231		    struct cache_head *h, struct cache_req *rqstp)
232{
233	int rv;
234	long refresh_age, age;
235
236	/* First decide return status as best we can */
237	rv = cache_is_valid(detail, h);
238
239	/* now see if we want to start an upcall */
240	refresh_age = (h->expiry_time - h->last_refresh);
241	age = seconds_since_boot() - h->last_refresh;
242
243	if (rqstp == NULL) {
244		if (rv == -EAGAIN)
245			rv = -ENOENT;
246	} else if (rv == -EAGAIN || age > refresh_age/2) {
247		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
248				refresh_age, age);
249		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
250			switch (cache_make_upcall(detail, h)) {
251			case -EINVAL:
252				clear_bit(CACHE_PENDING, &h->flags);
253				cache_revisit_request(h);
254				if (rv == -EAGAIN) {
255					set_bit(CACHE_NEGATIVE, &h->flags);
256					cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
257					cache_fresh_unlocked(h, detail);
258					rv = -ENOENT;
259				}
260				break;
261
262			case -EAGAIN:
263				clear_bit(CACHE_PENDING, &h->flags);
264				cache_revisit_request(h);
265				break;
266			}
267		}
268	}
269
270	if (rv == -EAGAIN) {
271		if (cache_defer_req(rqstp, h) < 0) {
272			/* Request is not deferred */
273			rv = cache_is_valid(detail, h);
274			if (rv == -EAGAIN)
275				rv = -ETIMEDOUT;
276		}
277	}
278	if (rv)
279		cache_put(h, detail);
280	return rv;
281}
282EXPORT_SYMBOL_GPL(cache_check);
283
284/*
285 * caches need to be periodically cleaned.
286 * For this we maintain a list of cache_detail and
287 * a current pointer into that list and into the table
288 * for that entry.
289 *
290 * Each time clean_cache is called it finds the next non-empty entry
291 * in the current table and walks the list in that entry
292 * looking for entries that can be removed.
293 *
294 * An entry gets removed if:
295 * - The expiry is before current time
296 * - The last_refresh time is before the flush_time for that cache
297 *
298 * later we might drop old entries with non-NEVER expiry if that table
299 * is getting 'full' for some definition of 'full'
300 *
301 * The question of "how often to scan a table" is an interesting one
302 * and is answered in part by the use of the "nextcheck" field in the
303 * cache_detail.
304 * When a scan of a table begins, the nextcheck field is set to a time
305 * that is well into the future.
306 * While scanning, if an expiry time is found that is earlier than the
307 * current nextcheck time, nextcheck is set to that expiry time.
308 * If the flush_time is ever set to a time earlier than the nextcheck
309 * time, the nextcheck time is then set to that flush_time.
310 *
311 * A table is then only scanned if the current time is at least
312 * the nextcheck time.
313 *
314 */
315
316static LIST_HEAD(cache_list);
317static DEFINE_SPINLOCK(cache_list_lock);
318static struct cache_detail *current_detail;
319static int current_index;
320
321static void do_cache_clean(struct work_struct *work);
322static struct delayed_work cache_cleaner;
323
324static void sunrpc_init_cache_detail(struct cache_detail *cd)
325{
326	rwlock_init(&cd->hash_lock);
327	INIT_LIST_HEAD(&cd->queue);
328	spin_lock(&cache_list_lock);
329	cd->nextcheck = 0;
330	cd->entries = 0;
331	atomic_set(&cd->readers, 0);
332	cd->last_close = 0;
333	cd->last_warn = -1;
334	list_add(&cd->others, &cache_list);
335	spin_unlock(&cache_list_lock);
336
337	/* start the cleaning process */
338	schedule_delayed_work(&cache_cleaner, 0);
339}
340
341static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
342{
343	cache_purge(cd);
344	spin_lock(&cache_list_lock);
345	write_lock(&cd->hash_lock);
346	if (cd->entries || atomic_read(&cd->inuse)) {
347		write_unlock(&cd->hash_lock);
348		spin_unlock(&cache_list_lock);
349		goto out;
350	}
351	if (current_detail == cd)
352		current_detail = NULL;
353	list_del_init(&cd->others);
354	write_unlock(&cd->hash_lock);
355	spin_unlock(&cache_list_lock);
356	if (list_empty(&cache_list)) {
357		/* module must be being unloaded so its safe to kill the worker */
358		cancel_delayed_work_sync(&cache_cleaner);
359	}
360	return;
361out:
362	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
363}
364
365/* clean cache tries to find something to clean
366 * and cleans it.
367 * It returns 1 if it cleaned something,
368 *            0 if it didn't find anything this time
369 *           -1 if it fell off the end of the list.
370 */
371static int cache_clean(void)
372{
373	int rv = 0;
374	struct list_head *next;
375
376	spin_lock(&cache_list_lock);
377
378	/* find a suitable table if we don't already have one */
379	while (current_detail == NULL ||
380	    current_index >= current_detail->hash_size) {
381		if (current_detail)
382			next = current_detail->others.next;
383		else
384			next = cache_list.next;
385		if (next == &cache_list) {
386			current_detail = NULL;
387			spin_unlock(&cache_list_lock);
388			return -1;
389		}
390		current_detail = list_entry(next, struct cache_detail, others);
391		if (current_detail->nextcheck > seconds_since_boot())
392			current_index = current_detail->hash_size;
393		else {
394			current_index = 0;
395			current_detail->nextcheck = seconds_since_boot()+30*60;
396		}
397	}
398
399	/* find a non-empty bucket in the table */
400	while (current_detail &&
401	       current_index < current_detail->hash_size &&
402	       current_detail->hash_table[current_index] == NULL)
403		current_index++;
404
405	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
406
407	if (current_detail && current_index < current_detail->hash_size) {
408		struct cache_head *ch, **cp;
409		struct cache_detail *d;
410
411		write_lock(&current_detail->hash_lock);
412
413		/* Ok, now to clean this strand */
414
415		cp = & current_detail->hash_table[current_index];
416		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
417			if (current_detail->nextcheck > ch->expiry_time)
418				current_detail->nextcheck = ch->expiry_time+1;
419			if (!cache_is_expired(current_detail, ch))
420				continue;
421
422			*cp = ch->next;
423			ch->next = NULL;
424			current_detail->entries--;
425			rv = 1;
426			break;
427		}
428
429		write_unlock(&current_detail->hash_lock);
430		d = current_detail;
431		if (!ch)
432			current_index ++;
433		spin_unlock(&cache_list_lock);
434		if (ch) {
435			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
436				cache_dequeue(current_detail, ch);
437			cache_revisit_request(ch);
438			cache_put(ch, d);
439		}
440	} else
441		spin_unlock(&cache_list_lock);
442
443	return rv;
444}
445
446/*
447 * We want to regularly clean the cache, so we need to schedule some work ...
448 */
449static void do_cache_clean(struct work_struct *work)
450{
451	int delay = 5;
452	if (cache_clean() == -1)
453		delay = round_jiffies_relative(30*HZ);
454
455	if (list_empty(&cache_list))
456		delay = 0;
457
458	if (delay)
459		schedule_delayed_work(&cache_cleaner, delay);
460}
461
462
463/*
464 * Clean all caches promptly.  This just calls cache_clean
465 * repeatedly until we are sure that every cache has had a chance to
466 * be fully cleaned
467 */
468void cache_flush(void)
469{
470	while (cache_clean() != -1)
471		cond_resched();
472	while (cache_clean() != -1)
473		cond_resched();
474}
475EXPORT_SYMBOL_GPL(cache_flush);
476
477void cache_purge(struct cache_detail *detail)
478{
479	detail->flush_time = LONG_MAX;
480	detail->nextcheck = seconds_since_boot();
481	cache_flush();
482	detail->flush_time = 1;
483}
484EXPORT_SYMBOL_GPL(cache_purge);
485
486
487/*
488 * Deferral and Revisiting of Requests.
489 *
490 * If a cache lookup finds a pending entry, we
491 * need to defer the request and revisit it later.
492 * All deferred requests are stored in a hash table,
493 * indexed by "struct cache_head *".
494 * As it may be wasteful to store a whole request
495 * structure, we allow the request to provide a
496 * deferred form, which must contain a
497 * 'struct cache_deferred_req'
498 * This cache_deferred_req contains a method to allow
499 * it to be revisited when cache info is available
500 */
501
502#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
503#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
504
505#define	DFR_MAX	300	/* ??? */
506
507static DEFINE_SPINLOCK(cache_defer_lock);
508static LIST_HEAD(cache_defer_list);
509static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
510static int cache_defer_cnt;
511
512static void __unhash_deferred_req(struct cache_deferred_req *dreq)
513{
514	list_del_init(&dreq->recent);
515	hlist_del_init(&dreq->hash);
516	cache_defer_cnt--;
517}
518
519static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
520{
521	int hash = DFR_HASH(item);
522
523	list_add(&dreq->recent, &cache_defer_list);
524	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
525}
526
527static int setup_deferral(struct cache_deferred_req *dreq, struct cache_head *item)
528{
529	struct cache_deferred_req *discard;
530
531	dreq->item = item;
532
533	spin_lock(&cache_defer_lock);
534
535	__hash_deferred_req(dreq, item);
536
537	/* it is in, now maybe clean up */
538	discard = NULL;
539	if (++cache_defer_cnt > DFR_MAX) {
540		discard = list_entry(cache_defer_list.prev,
541				     struct cache_deferred_req, recent);
542		__unhash_deferred_req(discard);
543	}
544	spin_unlock(&cache_defer_lock);
545
546	if (discard)
547		/* there was one too many */
548		discard->revisit(discard, 1);
549
550	if (!test_bit(CACHE_PENDING, &item->flags)) {
551		/* must have just been validated... */
552		cache_revisit_request(item);
553		return -EAGAIN;
554	}
555	return 0;
556}
557
558struct thread_deferred_req {
559	struct cache_deferred_req handle;
560	struct completion completion;
561};
562
563static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
564{
565	struct thread_deferred_req *dr =
566		container_of(dreq, struct thread_deferred_req, handle);
567	complete(&dr->completion);
568}
569
570static int cache_wait_req(struct cache_req *req, struct cache_head *item)
571{
572	struct thread_deferred_req sleeper;
573	struct cache_deferred_req *dreq = &sleeper.handle;
574	int ret;
575
576	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
577	dreq->revisit = cache_restart_thread;
578
579	ret = setup_deferral(dreq, item);
580	if (ret)
581		return ret;
582
583	if (wait_for_completion_interruptible_timeout(
584		    &sleeper.completion, req->thread_wait) <= 0) {
585		/* The completion wasn't completed, so we need
586		 * to clean up
587		 */
588		spin_lock(&cache_defer_lock);
589		if (!hlist_unhashed(&sleeper.handle.hash)) {
590			__unhash_deferred_req(&sleeper.handle);
591			spin_unlock(&cache_defer_lock);
592		} else {
593			/* cache_revisit_request already removed
594			 * this from the hash table, but hasn't
595			 * called ->revisit yet.  It will very soon
596			 * and we need to wait for it.
597			 */
598			spin_unlock(&cache_defer_lock);
599			wait_for_completion(&sleeper.completion);
600		}
601	}
602	if (test_bit(CACHE_PENDING, &item->flags)) {
603		/* item is still pending, try request
604		 * deferral
605		 */
606		return -ETIMEDOUT;
607	}
608	/* only return success if we actually deferred the
609	 * request.  In this case we waited until it was
610	 * answered so no deferral has happened - rather
611	 * an answer already exists.
612	 */
613	return -EEXIST;
614}
615
616static int cache_defer_req(struct cache_req *req, struct cache_head *item)
617{
618	struct cache_deferred_req *dreq;
619	int ret;
620
621	if (cache_defer_cnt >= DFR_MAX) {
622		/* too much in the cache, randomly drop this one,
623		 * or continue and drop the oldest
624		 */
625		if (net_random()&1)
626			return -ENOMEM;
627	}
628	if (req->thread_wait) {
629		ret = cache_wait_req(req, item);
630		if (ret != -ETIMEDOUT)
631			return ret;
632	}
633	dreq = req->defer(req);
634	if (dreq == NULL)
635		return -ENOMEM;
636	return setup_deferral(dreq, item);
637}
638
639static void cache_revisit_request(struct cache_head *item)
640{
641	struct cache_deferred_req *dreq;
642	struct list_head pending;
643	struct hlist_node *lp, *tmp;
644	int hash = DFR_HASH(item);
645
646	INIT_LIST_HEAD(&pending);
647	spin_lock(&cache_defer_lock);
648
649	hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
650		if (dreq->item == item) {
651			__unhash_deferred_req(dreq);
652			list_add(&dreq->recent, &pending);
653		}
654
655	spin_unlock(&cache_defer_lock);
656
657	while (!list_empty(&pending)) {
658		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
659		list_del_init(&dreq->recent);
660		dreq->revisit(dreq, 0);
661	}
662}
663
664void cache_clean_deferred(void *owner)
665{
666	struct cache_deferred_req *dreq, *tmp;
667	struct list_head pending;
668
669
670	INIT_LIST_HEAD(&pending);
671	spin_lock(&cache_defer_lock);
672
673	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
674		if (dreq->owner == owner)
675			__unhash_deferred_req(dreq);
676	}
677	spin_unlock(&cache_defer_lock);
678
679	while (!list_empty(&pending)) {
680		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
681		list_del_init(&dreq->recent);
682		dreq->revisit(dreq, 1);
683	}
684}
685
686/*
687 * communicate with user-space
688 *
689 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
690 * On read, you get a full request, or block.
691 * On write, an update request is processed.
692 * Poll works if anything to read, and always allows write.
693 *
694 * Implemented by linked list of requests.  Each open file has
695 * a ->private that also exists in this list.  New requests are added
696 * to the end and may wakeup and preceding readers.
697 * New readers are added to the head.  If, on read, an item is found with
698 * CACHE_UPCALLING clear, we free it from the list.
699 *
700 */
701
702static DEFINE_SPINLOCK(queue_lock);
703static DEFINE_MUTEX(queue_io_mutex);
704
705struct cache_queue {
706	struct list_head	list;
707	int			reader;	/* if 0, then request */
708};
709struct cache_request {
710	struct cache_queue	q;
711	struct cache_head	*item;
712	char			* buf;
713	int			len;
714	int			readers;
715};
716struct cache_reader {
717	struct cache_queue	q;
718	int			offset;	/* if non-0, we have a refcnt on next request */
719};
720
721static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
722			  loff_t *ppos, struct cache_detail *cd)
723{
724	struct cache_reader *rp = filp->private_data;
725	struct cache_request *rq;
726	struct inode *inode = filp->f_path.dentry->d_inode;
727	int err;
728
729	if (count == 0)
730		return 0;
731
732	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
733			      * readers on this file */
734 again:
735	spin_lock(&queue_lock);
736	/* need to find next request */
737	while (rp->q.list.next != &cd->queue &&
738	       list_entry(rp->q.list.next, struct cache_queue, list)
739	       ->reader) {
740		struct list_head *next = rp->q.list.next;
741		list_move(&rp->q.list, next);
742	}
743	if (rp->q.list.next == &cd->queue) {
744		spin_unlock(&queue_lock);
745		mutex_unlock(&inode->i_mutex);
746		BUG_ON(rp->offset);
747		return 0;
748	}
749	rq = container_of(rp->q.list.next, struct cache_request, q.list);
750	BUG_ON(rq->q.reader);
751	if (rp->offset == 0)
752		rq->readers++;
753	spin_unlock(&queue_lock);
754
755	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
756		err = -EAGAIN;
757		spin_lock(&queue_lock);
758		list_move(&rp->q.list, &rq->q.list);
759		spin_unlock(&queue_lock);
760	} else {
761		if (rp->offset + count > rq->len)
762			count = rq->len - rp->offset;
763		err = -EFAULT;
764		if (copy_to_user(buf, rq->buf + rp->offset, count))
765			goto out;
766		rp->offset += count;
767		if (rp->offset >= rq->len) {
768			rp->offset = 0;
769			spin_lock(&queue_lock);
770			list_move(&rp->q.list, &rq->q.list);
771			spin_unlock(&queue_lock);
772		}
773		err = 0;
774	}
775 out:
776	if (rp->offset == 0) {
777		/* need to release rq */
778		spin_lock(&queue_lock);
779		rq->readers--;
780		if (rq->readers == 0 &&
781		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
782			list_del(&rq->q.list);
783			spin_unlock(&queue_lock);
784			cache_put(rq->item, cd);
785			kfree(rq->buf);
786			kfree(rq);
787		} else
788			spin_unlock(&queue_lock);
789	}
790	if (err == -EAGAIN)
791		goto again;
792	mutex_unlock(&inode->i_mutex);
793	return err ? err :  count;
794}
795
796static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
797				 size_t count, struct cache_detail *cd)
798{
799	ssize_t ret;
800
801	if (copy_from_user(kaddr, buf, count))
802		return -EFAULT;
803	kaddr[count] = '\0';
804	ret = cd->cache_parse(cd, kaddr, count);
805	if (!ret)
806		ret = count;
807	return ret;
808}
809
810static ssize_t cache_slow_downcall(const char __user *buf,
811				   size_t count, struct cache_detail *cd)
812{
813	static char write_buf[8192]; /* protected by queue_io_mutex */
814	ssize_t ret = -EINVAL;
815
816	if (count >= sizeof(write_buf))
817		goto out;
818	mutex_lock(&queue_io_mutex);
819	ret = cache_do_downcall(write_buf, buf, count, cd);
820	mutex_unlock(&queue_io_mutex);
821out:
822	return ret;
823}
824
825static ssize_t cache_downcall(struct address_space *mapping,
826			      const char __user *buf,
827			      size_t count, struct cache_detail *cd)
828{
829	struct page *page;
830	char *kaddr;
831	ssize_t ret = -ENOMEM;
832
833	if (count >= PAGE_CACHE_SIZE)
834		goto out_slow;
835
836	page = find_or_create_page(mapping, 0, GFP_KERNEL);
837	if (!page)
838		goto out_slow;
839
840	kaddr = kmap(page);
841	ret = cache_do_downcall(kaddr, buf, count, cd);
842	kunmap(page);
843	unlock_page(page);
844	page_cache_release(page);
845	return ret;
846out_slow:
847	return cache_slow_downcall(buf, count, cd);
848}
849
850static ssize_t cache_write(struct file *filp, const char __user *buf,
851			   size_t count, loff_t *ppos,
852			   struct cache_detail *cd)
853{
854	struct address_space *mapping = filp->f_mapping;
855	struct inode *inode = filp->f_path.dentry->d_inode;
856	ssize_t ret = -EINVAL;
857
858	if (!cd->cache_parse)
859		goto out;
860
861	mutex_lock(&inode->i_mutex);
862	ret = cache_downcall(mapping, buf, count, cd);
863	mutex_unlock(&inode->i_mutex);
864out:
865	return ret;
866}
867
868static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
869
870static unsigned int cache_poll(struct file *filp, poll_table *wait,
871			       struct cache_detail *cd)
872{
873	unsigned int mask;
874	struct cache_reader *rp = filp->private_data;
875	struct cache_queue *cq;
876
877	poll_wait(filp, &queue_wait, wait);
878
879	/* alway allow write */
880	mask = POLL_OUT | POLLWRNORM;
881
882	if (!rp)
883		return mask;
884
885	spin_lock(&queue_lock);
886
887	for (cq= &rp->q; &cq->list != &cd->queue;
888	     cq = list_entry(cq->list.next, struct cache_queue, list))
889		if (!cq->reader) {
890			mask |= POLLIN | POLLRDNORM;
891			break;
892		}
893	spin_unlock(&queue_lock);
894	return mask;
895}
896
897static int cache_ioctl(struct inode *ino, struct file *filp,
898		       unsigned int cmd, unsigned long arg,
899		       struct cache_detail *cd)
900{
901	int len = 0;
902	struct cache_reader *rp = filp->private_data;
903	struct cache_queue *cq;
904
905	if (cmd != FIONREAD || !rp)
906		return -EINVAL;
907
908	spin_lock(&queue_lock);
909
910	/* only find the length remaining in current request,
911	 * or the length of the next request
912	 */
913	for (cq= &rp->q; &cq->list != &cd->queue;
914	     cq = list_entry(cq->list.next, struct cache_queue, list))
915		if (!cq->reader) {
916			struct cache_request *cr =
917				container_of(cq, struct cache_request, q);
918			len = cr->len - rp->offset;
919			break;
920		}
921	spin_unlock(&queue_lock);
922
923	return put_user(len, (int __user *)arg);
924}
925
926static int cache_open(struct inode *inode, struct file *filp,
927		      struct cache_detail *cd)
928{
929	struct cache_reader *rp = NULL;
930
931	if (!cd || !try_module_get(cd->owner))
932		return -EACCES;
933	nonseekable_open(inode, filp);
934	if (filp->f_mode & FMODE_READ) {
935		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
936		if (!rp)
937			return -ENOMEM;
938		rp->offset = 0;
939		rp->q.reader = 1;
940		atomic_inc(&cd->readers);
941		spin_lock(&queue_lock);
942		list_add(&rp->q.list, &cd->queue);
943		spin_unlock(&queue_lock);
944	}
945	filp->private_data = rp;
946	return 0;
947}
948
949static int cache_release(struct inode *inode, struct file *filp,
950			 struct cache_detail *cd)
951{
952	struct cache_reader *rp = filp->private_data;
953
954	if (rp) {
955		spin_lock(&queue_lock);
956		if (rp->offset) {
957			struct cache_queue *cq;
958			for (cq= &rp->q; &cq->list != &cd->queue;
959			     cq = list_entry(cq->list.next, struct cache_queue, list))
960				if (!cq->reader) {
961					container_of(cq, struct cache_request, q)
962						->readers--;
963					break;
964				}
965			rp->offset = 0;
966		}
967		list_del(&rp->q.list);
968		spin_unlock(&queue_lock);
969
970		filp->private_data = NULL;
971		kfree(rp);
972
973		cd->last_close = seconds_since_boot();
974		atomic_dec(&cd->readers);
975	}
976	module_put(cd->owner);
977	return 0;
978}
979
980
981
982static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
983{
984	struct cache_queue *cq;
985	spin_lock(&queue_lock);
986	list_for_each_entry(cq, &detail->queue, list)
987		if (!cq->reader) {
988			struct cache_request *cr = container_of(cq, struct cache_request, q);
989			if (cr->item != ch)
990				continue;
991			if (cr->readers != 0)
992				continue;
993			list_del(&cr->q.list);
994			spin_unlock(&queue_lock);
995			cache_put(cr->item, detail);
996			kfree(cr->buf);
997			kfree(cr);
998			return;
999		}
1000	spin_unlock(&queue_lock);
1001}
1002
1003/*
1004 * Support routines for text-based upcalls.
1005 * Fields are separated by spaces.
1006 * Fields are either mangled to quote space tab newline slosh with slosh
1007 * or a hexified with a leading \x
1008 * Record is terminated with newline.
1009 *
1010 */
1011
1012void qword_add(char **bpp, int *lp, char *str)
1013{
1014	char *bp = *bpp;
1015	int len = *lp;
1016	char c;
1017
1018	if (len < 0) return;
1019
1020	while ((c=*str++) && len)
1021		switch(c) {
1022		case ' ':
1023		case '\t':
1024		case '\n':
1025		case '\\':
1026			if (len >= 4) {
1027				*bp++ = '\\';
1028				*bp++ = '0' + ((c & 0300)>>6);
1029				*bp++ = '0' + ((c & 0070)>>3);
1030				*bp++ = '0' + ((c & 0007)>>0);
1031			}
1032			len -= 4;
1033			break;
1034		default:
1035			*bp++ = c;
1036			len--;
1037		}
1038	if (c || len <1) len = -1;
1039	else {
1040		*bp++ = ' ';
1041		len--;
1042	}
1043	*bpp = bp;
1044	*lp = len;
1045}
1046EXPORT_SYMBOL_GPL(qword_add);
1047
1048void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1049{
1050	char *bp = *bpp;
1051	int len = *lp;
1052
1053	if (len < 0) return;
1054
1055	if (len > 2) {
1056		*bp++ = '\\';
1057		*bp++ = 'x';
1058		len -= 2;
1059		while (blen && len >= 2) {
1060			unsigned char c = *buf++;
1061			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1062			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1063			len -= 2;
1064			blen--;
1065		}
1066	}
1067	if (blen || len<1) len = -1;
1068	else {
1069		*bp++ = ' ';
1070		len--;
1071	}
1072	*bpp = bp;
1073	*lp = len;
1074}
1075EXPORT_SYMBOL_GPL(qword_addhex);
1076
1077static void warn_no_listener(struct cache_detail *detail)
1078{
1079	if (detail->last_warn != detail->last_close) {
1080		detail->last_warn = detail->last_close;
1081		if (detail->warn_no_listener)
1082			detail->warn_no_listener(detail, detail->last_close != 0);
1083	}
1084}
1085
1086static bool cache_listeners_exist(struct cache_detail *detail)
1087{
1088	if (atomic_read(&detail->readers))
1089		return true;
1090	if (detail->last_close == 0)
1091		/* This cache was never opened */
1092		return false;
1093	if (detail->last_close < seconds_since_boot() - 30)
1094		/*
1095		 * We allow for the possibility that someone might
1096		 * restart a userspace daemon without restarting the
1097		 * server; but after 30 seconds, we give up.
1098		 */
1099		 return false;
1100	return true;
1101}
1102
1103/*
1104 * register an upcall request to user-space and queue it up for read() by the
1105 * upcall daemon.
1106 *
1107 * Each request is at most one page long.
1108 */
1109int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1110		void (*cache_request)(struct cache_detail *,
1111				      struct cache_head *,
1112				      char **,
1113				      int *))
1114{
1115
1116	char *buf;
1117	struct cache_request *crq;
1118	char *bp;
1119	int len;
1120
1121	if (!cache_listeners_exist(detail)) {
1122		warn_no_listener(detail);
1123		return -EINVAL;
1124	}
1125
1126	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1127	if (!buf)
1128		return -EAGAIN;
1129
1130	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1131	if (!crq) {
1132		kfree(buf);
1133		return -EAGAIN;
1134	}
1135
1136	bp = buf; len = PAGE_SIZE;
1137
1138	cache_request(detail, h, &bp, &len);
1139
1140	if (len < 0) {
1141		kfree(buf);
1142		kfree(crq);
1143		return -EAGAIN;
1144	}
1145	crq->q.reader = 0;
1146	crq->item = cache_get(h);
1147	crq->buf = buf;
1148	crq->len = PAGE_SIZE - len;
1149	crq->readers = 0;
1150	spin_lock(&queue_lock);
1151	list_add_tail(&crq->q.list, &detail->queue);
1152	spin_unlock(&queue_lock);
1153	wake_up(&queue_wait);
1154	return 0;
1155}
1156EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1157
1158/*
1159 * parse a message from user-space and pass it
1160 * to an appropriate cache
1161 * Messages are, like requests, separated into fields by
1162 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1163 *
1164 * Message is
1165 *   reply cachename expiry key ... content....
1166 *
1167 * key and content are both parsed by cache
1168 */
1169
1170#define isodigit(c) (isdigit(c) && c <= '7')
1171int qword_get(char **bpp, char *dest, int bufsize)
1172{
1173	/* return bytes copied, or -1 on error */
1174	char *bp = *bpp;
1175	int len = 0;
1176
1177	while (*bp == ' ') bp++;
1178
1179	if (bp[0] == '\\' && bp[1] == 'x') {
1180		/* HEX STRING */
1181		bp += 2;
1182		while (len < bufsize) {
1183			int h, l;
1184
1185			h = hex_to_bin(bp[0]);
1186			if (h < 0)
1187				break;
1188
1189			l = hex_to_bin(bp[1]);
1190			if (l < 0)
1191				break;
1192
1193			*dest++ = (h << 4) | l;
1194			bp += 2;
1195			len++;
1196		}
1197	} else {
1198		/* text with \nnn octal quoting */
1199		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1200			if (*bp == '\\' &&
1201			    isodigit(bp[1]) && (bp[1] <= '3') &&
1202			    isodigit(bp[2]) &&
1203			    isodigit(bp[3])) {
1204				int byte = (*++bp -'0');
1205				bp++;
1206				byte = (byte << 3) | (*bp++ - '0');
1207				byte = (byte << 3) | (*bp++ - '0');
1208				*dest++ = byte;
1209				len++;
1210			} else {
1211				*dest++ = *bp++;
1212				len++;
1213			}
1214		}
1215	}
1216
1217	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1218		return -1;
1219	while (*bp == ' ') bp++;
1220	*bpp = bp;
1221	*dest = '\0';
1222	return len;
1223}
1224EXPORT_SYMBOL_GPL(qword_get);
1225
1226
1227/*
1228 * support /proc/sunrpc/cache/$CACHENAME/content
1229 * as a seqfile.
1230 * We call ->cache_show passing NULL for the item to
1231 * get a header, then pass each real item in the cache
1232 */
1233
1234struct handle {
1235	struct cache_detail *cd;
1236};
1237
1238static void *c_start(struct seq_file *m, loff_t *pos)
1239	__acquires(cd->hash_lock)
1240{
1241	loff_t n = *pos;
1242	unsigned hash, entry;
1243	struct cache_head *ch;
1244	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1245
1246
1247	read_lock(&cd->hash_lock);
1248	if (!n--)
1249		return SEQ_START_TOKEN;
1250	hash = n >> 32;
1251	entry = n & ((1LL<<32) - 1);
1252
1253	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1254		if (!entry--)
1255			return ch;
1256	n &= ~((1LL<<32) - 1);
1257	do {
1258		hash++;
1259		n += 1LL<<32;
1260	} while(hash < cd->hash_size &&
1261		cd->hash_table[hash]==NULL);
1262	if (hash >= cd->hash_size)
1263		return NULL;
1264	*pos = n+1;
1265	return cd->hash_table[hash];
1266}
1267
1268static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1269{
1270	struct cache_head *ch = p;
1271	int hash = (*pos >> 32);
1272	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1273
1274	if (p == SEQ_START_TOKEN)
1275		hash = 0;
1276	else if (ch->next == NULL) {
1277		hash++;
1278		*pos += 1LL<<32;
1279	} else {
1280		++*pos;
1281		return ch->next;
1282	}
1283	*pos &= ~((1LL<<32) - 1);
1284	while (hash < cd->hash_size &&
1285	       cd->hash_table[hash] == NULL) {
1286		hash++;
1287		*pos += 1LL<<32;
1288	}
1289	if (hash >= cd->hash_size)
1290		return NULL;
1291	++*pos;
1292	return cd->hash_table[hash];
1293}
1294
1295static void c_stop(struct seq_file *m, void *p)
1296	__releases(cd->hash_lock)
1297{
1298	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1299	read_unlock(&cd->hash_lock);
1300}
1301
1302static int c_show(struct seq_file *m, void *p)
1303{
1304	struct cache_head *cp = p;
1305	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1306
1307	if (p == SEQ_START_TOKEN)
1308		return cd->cache_show(m, cd, NULL);
1309
1310	ifdebug(CACHE)
1311		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1312			   convert_to_wallclock(cp->expiry_time),
1313			   atomic_read(&cp->ref.refcount), cp->flags);
1314	cache_get(cp);
1315	if (cache_check(cd, cp, NULL))
1316		/* cache_check does a cache_put on failure */
1317		seq_printf(m, "# ");
1318	else
1319		cache_put(cp, cd);
1320
1321	return cd->cache_show(m, cd, cp);
1322}
1323
1324static const struct seq_operations cache_content_op = {
1325	.start	= c_start,
1326	.next	= c_next,
1327	.stop	= c_stop,
1328	.show	= c_show,
1329};
1330
1331static int content_open(struct inode *inode, struct file *file,
1332			struct cache_detail *cd)
1333{
1334	struct handle *han;
1335
1336	if (!cd || !try_module_get(cd->owner))
1337		return -EACCES;
1338	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1339	if (han == NULL) {
1340		module_put(cd->owner);
1341		return -ENOMEM;
1342	}
1343
1344	han->cd = cd;
1345	return 0;
1346}
1347
1348static int content_release(struct inode *inode, struct file *file,
1349		struct cache_detail *cd)
1350{
1351	int ret = seq_release_private(inode, file);
1352	module_put(cd->owner);
1353	return ret;
1354}
1355
1356static int open_flush(struct inode *inode, struct file *file,
1357			struct cache_detail *cd)
1358{
1359	if (!cd || !try_module_get(cd->owner))
1360		return -EACCES;
1361	return nonseekable_open(inode, file);
1362}
1363
1364static int release_flush(struct inode *inode, struct file *file,
1365			struct cache_detail *cd)
1366{
1367	module_put(cd->owner);
1368	return 0;
1369}
1370
1371static ssize_t read_flush(struct file *file, char __user *buf,
1372			  size_t count, loff_t *ppos,
1373			  struct cache_detail *cd)
1374{
1375	char tbuf[20];
1376	unsigned long p = *ppos;
1377	size_t len;
1378
1379	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1380	len = strlen(tbuf);
1381	if (p >= len)
1382		return 0;
1383	len -= p;
1384	if (len > count)
1385		len = count;
1386	if (copy_to_user(buf, (void*)(tbuf+p), len))
1387		return -EFAULT;
1388	*ppos += len;
1389	return len;
1390}
1391
1392static ssize_t write_flush(struct file *file, const char __user *buf,
1393			   size_t count, loff_t *ppos,
1394			   struct cache_detail *cd)
1395{
1396	char tbuf[20];
1397	char *bp, *ep;
1398
1399	if (*ppos || count > sizeof(tbuf)-1)
1400		return -EINVAL;
1401	if (copy_from_user(tbuf, buf, count))
1402		return -EFAULT;
1403	tbuf[count] = 0;
1404	simple_strtoul(tbuf, &ep, 0);
1405	if (*ep && *ep != '\n')
1406		return -EINVAL;
1407
1408	bp = tbuf;
1409	cd->flush_time = get_expiry(&bp);
1410	cd->nextcheck = seconds_since_boot();
1411	cache_flush();
1412
1413	*ppos += count;
1414	return count;
1415}
1416
1417static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1418				 size_t count, loff_t *ppos)
1419{
1420	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1421
1422	return cache_read(filp, buf, count, ppos, cd);
1423}
1424
1425static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1426				  size_t count, loff_t *ppos)
1427{
1428	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1429
1430	return cache_write(filp, buf, count, ppos, cd);
1431}
1432
1433static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1434{
1435	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1436
1437	return cache_poll(filp, wait, cd);
1438}
1439
1440static long cache_ioctl_procfs(struct file *filp,
1441			       unsigned int cmd, unsigned long arg)
1442{
1443	long ret;
1444	struct inode *inode = filp->f_path.dentry->d_inode;
1445	struct cache_detail *cd = PDE(inode)->data;
1446
1447	lock_kernel();
1448	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1449	unlock_kernel();
1450
1451	return ret;
1452}
1453
1454static int cache_open_procfs(struct inode *inode, struct file *filp)
1455{
1456	struct cache_detail *cd = PDE(inode)->data;
1457
1458	return cache_open(inode, filp, cd);
1459}
1460
1461static int cache_release_procfs(struct inode *inode, struct file *filp)
1462{
1463	struct cache_detail *cd = PDE(inode)->data;
1464
1465	return cache_release(inode, filp, cd);
1466}
1467
1468static const struct file_operations cache_file_operations_procfs = {
1469	.owner		= THIS_MODULE,
1470	.llseek		= no_llseek,
1471	.read		= cache_read_procfs,
1472	.write		= cache_write_procfs,
1473	.poll		= cache_poll_procfs,
1474	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1475	.open		= cache_open_procfs,
1476	.release	= cache_release_procfs,
1477};
1478
1479static int content_open_procfs(struct inode *inode, struct file *filp)
1480{
1481	struct cache_detail *cd = PDE(inode)->data;
1482
1483	return content_open(inode, filp, cd);
1484}
1485
1486static int content_release_procfs(struct inode *inode, struct file *filp)
1487{
1488	struct cache_detail *cd = PDE(inode)->data;
1489
1490	return content_release(inode, filp, cd);
1491}
1492
1493static const struct file_operations content_file_operations_procfs = {
1494	.open		= content_open_procfs,
1495	.read		= seq_read,
1496	.llseek		= seq_lseek,
1497	.release	= content_release_procfs,
1498};
1499
1500static int open_flush_procfs(struct inode *inode, struct file *filp)
1501{
1502	struct cache_detail *cd = PDE(inode)->data;
1503
1504	return open_flush(inode, filp, cd);
1505}
1506
1507static int release_flush_procfs(struct inode *inode, struct file *filp)
1508{
1509	struct cache_detail *cd = PDE(inode)->data;
1510
1511	return release_flush(inode, filp, cd);
1512}
1513
1514static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1515			    size_t count, loff_t *ppos)
1516{
1517	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1518
1519	return read_flush(filp, buf, count, ppos, cd);
1520}
1521
1522static ssize_t write_flush_procfs(struct file *filp,
1523				  const char __user *buf,
1524				  size_t count, loff_t *ppos)
1525{
1526	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1527
1528	return write_flush(filp, buf, count, ppos, cd);
1529}
1530
1531static const struct file_operations cache_flush_operations_procfs = {
1532	.open		= open_flush_procfs,
1533	.read		= read_flush_procfs,
1534	.write		= write_flush_procfs,
1535	.release	= release_flush_procfs,
1536};
1537
1538static void remove_cache_proc_entries(struct cache_detail *cd)
1539{
1540	if (cd->u.procfs.proc_ent == NULL)
1541		return;
1542	if (cd->u.procfs.flush_ent)
1543		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1544	if (cd->u.procfs.channel_ent)
1545		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1546	if (cd->u.procfs.content_ent)
1547		remove_proc_entry("content", cd->u.procfs.proc_ent);
1548	cd->u.procfs.proc_ent = NULL;
1549	remove_proc_entry(cd->name, proc_net_rpc);
1550}
1551
1552#ifdef CONFIG_PROC_FS
1553static int create_cache_proc_entries(struct cache_detail *cd)
1554{
1555	struct proc_dir_entry *p;
1556
1557	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1558	if (cd->u.procfs.proc_ent == NULL)
1559		goto out_nomem;
1560	cd->u.procfs.channel_ent = NULL;
1561	cd->u.procfs.content_ent = NULL;
1562
1563	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1564			     cd->u.procfs.proc_ent,
1565			     &cache_flush_operations_procfs, cd);
1566	cd->u.procfs.flush_ent = p;
1567	if (p == NULL)
1568		goto out_nomem;
1569
1570	if (cd->cache_upcall || cd->cache_parse) {
1571		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1572				     cd->u.procfs.proc_ent,
1573				     &cache_file_operations_procfs, cd);
1574		cd->u.procfs.channel_ent = p;
1575		if (p == NULL)
1576			goto out_nomem;
1577	}
1578	if (cd->cache_show) {
1579		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1580				cd->u.procfs.proc_ent,
1581				&content_file_operations_procfs, cd);
1582		cd->u.procfs.content_ent = p;
1583		if (p == NULL)
1584			goto out_nomem;
1585	}
1586	return 0;
1587out_nomem:
1588	remove_cache_proc_entries(cd);
1589	return -ENOMEM;
1590}
1591#else /* CONFIG_PROC_FS */
1592static int create_cache_proc_entries(struct cache_detail *cd)
1593{
1594	return 0;
1595}
1596#endif
1597
1598void __init cache_initialize(void)
1599{
1600	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1601}
1602
1603int cache_register(struct cache_detail *cd)
1604{
1605	int ret;
1606
1607	sunrpc_init_cache_detail(cd);
1608	ret = create_cache_proc_entries(cd);
1609	if (ret)
1610		sunrpc_destroy_cache_detail(cd);
1611	return ret;
1612}
1613EXPORT_SYMBOL_GPL(cache_register);
1614
1615void cache_unregister(struct cache_detail *cd)
1616{
1617	remove_cache_proc_entries(cd);
1618	sunrpc_destroy_cache_detail(cd);
1619}
1620EXPORT_SYMBOL_GPL(cache_unregister);
1621
1622static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1623				 size_t count, loff_t *ppos)
1624{
1625	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1626
1627	return cache_read(filp, buf, count, ppos, cd);
1628}
1629
1630static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1631				  size_t count, loff_t *ppos)
1632{
1633	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1634
1635	return cache_write(filp, buf, count, ppos, cd);
1636}
1637
1638static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1639{
1640	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1641
1642	return cache_poll(filp, wait, cd);
1643}
1644
1645static long cache_ioctl_pipefs(struct file *filp,
1646			      unsigned int cmd, unsigned long arg)
1647{
1648	struct inode *inode = filp->f_dentry->d_inode;
1649	struct cache_detail *cd = RPC_I(inode)->private;
1650	long ret;
1651
1652	lock_kernel();
1653	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1654	unlock_kernel();
1655
1656	return ret;
1657}
1658
1659static int cache_open_pipefs(struct inode *inode, struct file *filp)
1660{
1661	struct cache_detail *cd = RPC_I(inode)->private;
1662
1663	return cache_open(inode, filp, cd);
1664}
1665
1666static int cache_release_pipefs(struct inode *inode, struct file *filp)
1667{
1668	struct cache_detail *cd = RPC_I(inode)->private;
1669
1670	return cache_release(inode, filp, cd);
1671}
1672
1673const struct file_operations cache_file_operations_pipefs = {
1674	.owner		= THIS_MODULE,
1675	.llseek		= no_llseek,
1676	.read		= cache_read_pipefs,
1677	.write		= cache_write_pipefs,
1678	.poll		= cache_poll_pipefs,
1679	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1680	.open		= cache_open_pipefs,
1681	.release	= cache_release_pipefs,
1682};
1683
1684static int content_open_pipefs(struct inode *inode, struct file *filp)
1685{
1686	struct cache_detail *cd = RPC_I(inode)->private;
1687
1688	return content_open(inode, filp, cd);
1689}
1690
1691static int content_release_pipefs(struct inode *inode, struct file *filp)
1692{
1693	struct cache_detail *cd = RPC_I(inode)->private;
1694
1695	return content_release(inode, filp, cd);
1696}
1697
1698const struct file_operations content_file_operations_pipefs = {
1699	.open		= content_open_pipefs,
1700	.read		= seq_read,
1701	.llseek		= seq_lseek,
1702	.release	= content_release_pipefs,
1703};
1704
1705static int open_flush_pipefs(struct inode *inode, struct file *filp)
1706{
1707	struct cache_detail *cd = RPC_I(inode)->private;
1708
1709	return open_flush(inode, filp, cd);
1710}
1711
1712static int release_flush_pipefs(struct inode *inode, struct file *filp)
1713{
1714	struct cache_detail *cd = RPC_I(inode)->private;
1715
1716	return release_flush(inode, filp, cd);
1717}
1718
1719static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1720			    size_t count, loff_t *ppos)
1721{
1722	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1723
1724	return read_flush(filp, buf, count, ppos, cd);
1725}
1726
1727static ssize_t write_flush_pipefs(struct file *filp,
1728				  const char __user *buf,
1729				  size_t count, loff_t *ppos)
1730{
1731	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1732
1733	return write_flush(filp, buf, count, ppos, cd);
1734}
1735
1736const struct file_operations cache_flush_operations_pipefs = {
1737	.open		= open_flush_pipefs,
1738	.read		= read_flush_pipefs,
1739	.write		= write_flush_pipefs,
1740	.release	= release_flush_pipefs,
1741};
1742
1743int sunrpc_cache_register_pipefs(struct dentry *parent,
1744				 const char *name, mode_t umode,
1745				 struct cache_detail *cd)
1746{
1747	struct qstr q;
1748	struct dentry *dir;
1749	int ret = 0;
1750
1751	sunrpc_init_cache_detail(cd);
1752	q.name = name;
1753	q.len = strlen(name);
1754	q.hash = full_name_hash(q.name, q.len);
1755	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1756	if (!IS_ERR(dir))
1757		cd->u.pipefs.dir = dir;
1758	else {
1759		sunrpc_destroy_cache_detail(cd);
1760		ret = PTR_ERR(dir);
1761	}
1762	return ret;
1763}
1764EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1765
1766void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1767{
1768	rpc_remove_cache_dir(cd->u.pipefs.dir);
1769	cd->u.pipefs.dir = NULL;
1770	sunrpc_destroy_cache_detail(cd);
1771}
1772EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1773
1774