cache.c revision f16b6e8d838b2e2bb4561201311c66ac02ad67df
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <linux/pagemap.h>
31#include <linux/smp_lock.h>
32#include <asm/ioctls.h>
33#include <linux/sunrpc/types.h>
34#include <linux/sunrpc/cache.h>
35#include <linux/sunrpc/stats.h>
36#include <linux/sunrpc/rpc_pipe_fs.h>
37
38#define	 RPCDBG_FACILITY RPCDBG_CACHE
39
40static int cache_defer_req(struct cache_req *req, struct cache_head *item);
41static void cache_revisit_request(struct cache_head *item);
42
43static void cache_init(struct cache_head *h)
44{
45	time_t now = seconds_since_boot();
46	h->next = NULL;
47	h->flags = 0;
48	kref_init(&h->ref);
49	h->expiry_time = now + CACHE_NEW_EXPIRY;
50	h->last_refresh = now;
51}
52
53static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54{
55	return  (h->expiry_time < seconds_since_boot()) ||
56		(detail->flush_time > h->last_refresh);
57}
58
59struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60				       struct cache_head *key, int hash)
61{
62	struct cache_head **head,  **hp;
63	struct cache_head *new = NULL, *freeme = NULL;
64
65	head = &detail->hash_table[hash];
66
67	read_lock(&detail->hash_lock);
68
69	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70		struct cache_head *tmp = *hp;
71		if (detail->match(tmp, key)) {
72			if (cache_is_expired(detail, tmp))
73				/* This entry is expired, we will discard it. */
74				break;
75			cache_get(tmp);
76			read_unlock(&detail->hash_lock);
77			return tmp;
78		}
79	}
80	read_unlock(&detail->hash_lock);
81	/* Didn't find anything, insert an empty entry */
82
83	new = detail->alloc();
84	if (!new)
85		return NULL;
86	/* must fully initialise 'new', else
87	 * we might get lose if we need to
88	 * cache_put it soon.
89	 */
90	cache_init(new);
91	detail->init(new, key);
92
93	write_lock(&detail->hash_lock);
94
95	/* check if entry appeared while we slept */
96	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97		struct cache_head *tmp = *hp;
98		if (detail->match(tmp, key)) {
99			if (cache_is_expired(detail, tmp)) {
100				*hp = tmp->next;
101				tmp->next = NULL;
102				detail->entries --;
103				freeme = tmp;
104				break;
105			}
106			cache_get(tmp);
107			write_unlock(&detail->hash_lock);
108			cache_put(new, detail);
109			return tmp;
110		}
111	}
112	new->next = *head;
113	*head = new;
114	detail->entries++;
115	cache_get(new);
116	write_unlock(&detail->hash_lock);
117
118	if (freeme)
119		cache_put(freeme, detail);
120	return new;
121}
122EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128{
129	head->expiry_time = expiry;
130	head->last_refresh = seconds_since_boot();
131	set_bit(CACHE_VALID, &head->flags);
132}
133
134static void cache_fresh_unlocked(struct cache_head *head,
135				 struct cache_detail *detail)
136{
137	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
138		cache_revisit_request(head);
139		cache_dequeue(detail, head);
140	}
141}
142
143struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
144				       struct cache_head *new, struct cache_head *old, int hash)
145{
146	/* The 'old' entry is to be replaced by 'new'.
147	 * If 'old' is not VALID, we update it directly,
148	 * otherwise we need to replace it
149	 */
150	struct cache_head **head;
151	struct cache_head *tmp;
152
153	if (!test_bit(CACHE_VALID, &old->flags)) {
154		write_lock(&detail->hash_lock);
155		if (!test_bit(CACHE_VALID, &old->flags)) {
156			if (test_bit(CACHE_NEGATIVE, &new->flags))
157				set_bit(CACHE_NEGATIVE, &old->flags);
158			else
159				detail->update(old, new);
160			cache_fresh_locked(old, new->expiry_time);
161			write_unlock(&detail->hash_lock);
162			cache_fresh_unlocked(old, detail);
163			return old;
164		}
165		write_unlock(&detail->hash_lock);
166	}
167	/* We need to insert a new entry */
168	tmp = detail->alloc();
169	if (!tmp) {
170		cache_put(old, detail);
171		return NULL;
172	}
173	cache_init(tmp);
174	detail->init(tmp, old);
175	head = &detail->hash_table[hash];
176
177	write_lock(&detail->hash_lock);
178	if (test_bit(CACHE_NEGATIVE, &new->flags))
179		set_bit(CACHE_NEGATIVE, &tmp->flags);
180	else
181		detail->update(tmp, new);
182	tmp->next = *head;
183	*head = tmp;
184	detail->entries++;
185	cache_get(tmp);
186	cache_fresh_locked(tmp, new->expiry_time);
187	cache_fresh_locked(old, 0);
188	write_unlock(&detail->hash_lock);
189	cache_fresh_unlocked(tmp, detail);
190	cache_fresh_unlocked(old, detail);
191	cache_put(old, detail);
192	return tmp;
193}
194EXPORT_SYMBOL_GPL(sunrpc_cache_update);
195
196static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
197{
198	if (!cd->cache_upcall)
199		return -EINVAL;
200	return cd->cache_upcall(cd, h);
201}
202
203static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
204{
205	if (!test_bit(CACHE_VALID, &h->flags))
206		return -EAGAIN;
207	else {
208		/* entry is valid */
209		if (test_bit(CACHE_NEGATIVE, &h->flags))
210			return -ENOENT;
211		else
212			return 0;
213	}
214}
215
216/*
217 * This is the generic cache management routine for all
218 * the authentication caches.
219 * It checks the currency of a cache item and will (later)
220 * initiate an upcall to fill it if needed.
221 *
222 *
223 * Returns 0 if the cache_head can be used, or cache_puts it and returns
224 * -EAGAIN if upcall is pending and request has been queued
225 * -ETIMEDOUT if upcall failed or request could not be queue or
226 *           upcall completed but item is still invalid (implying that
227 *           the cache item has been replaced with a newer one).
228 * -ENOENT if cache entry was negative
229 */
230int cache_check(struct cache_detail *detail,
231		    struct cache_head *h, struct cache_req *rqstp)
232{
233	int rv;
234	long refresh_age, age;
235
236	/* First decide return status as best we can */
237	rv = cache_is_valid(detail, h);
238
239	/* now see if we want to start an upcall */
240	refresh_age = (h->expiry_time - h->last_refresh);
241	age = seconds_since_boot() - h->last_refresh;
242
243	if (rqstp == NULL) {
244		if (rv == -EAGAIN)
245			rv = -ENOENT;
246	} else if (rv == -EAGAIN || age > refresh_age/2) {
247		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
248				refresh_age, age);
249		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
250			switch (cache_make_upcall(detail, h)) {
251			case -EINVAL:
252				clear_bit(CACHE_PENDING, &h->flags);
253				cache_revisit_request(h);
254				if (rv == -EAGAIN) {
255					set_bit(CACHE_NEGATIVE, &h->flags);
256					cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
257					cache_fresh_unlocked(h, detail);
258					rv = -ENOENT;
259				}
260				break;
261
262			case -EAGAIN:
263				clear_bit(CACHE_PENDING, &h->flags);
264				cache_revisit_request(h);
265				break;
266			}
267		}
268	}
269
270	if (rv == -EAGAIN) {
271		if (cache_defer_req(rqstp, h) < 0) {
272			/* Request is not deferred */
273			rv = cache_is_valid(detail, h);
274			if (rv == -EAGAIN)
275				rv = -ETIMEDOUT;
276		}
277	}
278	if (rv)
279		cache_put(h, detail);
280	return rv;
281}
282EXPORT_SYMBOL_GPL(cache_check);
283
284/*
285 * caches need to be periodically cleaned.
286 * For this we maintain a list of cache_detail and
287 * a current pointer into that list and into the table
288 * for that entry.
289 *
290 * Each time clean_cache is called it finds the next non-empty entry
291 * in the current table and walks the list in that entry
292 * looking for entries that can be removed.
293 *
294 * An entry gets removed if:
295 * - The expiry is before current time
296 * - The last_refresh time is before the flush_time for that cache
297 *
298 * later we might drop old entries with non-NEVER expiry if that table
299 * is getting 'full' for some definition of 'full'
300 *
301 * The question of "how often to scan a table" is an interesting one
302 * and is answered in part by the use of the "nextcheck" field in the
303 * cache_detail.
304 * When a scan of a table begins, the nextcheck field is set to a time
305 * that is well into the future.
306 * While scanning, if an expiry time is found that is earlier than the
307 * current nextcheck time, nextcheck is set to that expiry time.
308 * If the flush_time is ever set to a time earlier than the nextcheck
309 * time, the nextcheck time is then set to that flush_time.
310 *
311 * A table is then only scanned if the current time is at least
312 * the nextcheck time.
313 *
314 */
315
316static LIST_HEAD(cache_list);
317static DEFINE_SPINLOCK(cache_list_lock);
318static struct cache_detail *current_detail;
319static int current_index;
320
321static void do_cache_clean(struct work_struct *work);
322static struct delayed_work cache_cleaner;
323
324static void sunrpc_init_cache_detail(struct cache_detail *cd)
325{
326	rwlock_init(&cd->hash_lock);
327	INIT_LIST_HEAD(&cd->queue);
328	spin_lock(&cache_list_lock);
329	cd->nextcheck = 0;
330	cd->entries = 0;
331	atomic_set(&cd->readers, 0);
332	cd->last_close = 0;
333	cd->last_warn = -1;
334	list_add(&cd->others, &cache_list);
335	spin_unlock(&cache_list_lock);
336
337	/* start the cleaning process */
338	schedule_delayed_work(&cache_cleaner, 0);
339}
340
341static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
342{
343	cache_purge(cd);
344	spin_lock(&cache_list_lock);
345	write_lock(&cd->hash_lock);
346	if (cd->entries || atomic_read(&cd->inuse)) {
347		write_unlock(&cd->hash_lock);
348		spin_unlock(&cache_list_lock);
349		goto out;
350	}
351	if (current_detail == cd)
352		current_detail = NULL;
353	list_del_init(&cd->others);
354	write_unlock(&cd->hash_lock);
355	spin_unlock(&cache_list_lock);
356	if (list_empty(&cache_list)) {
357		/* module must be being unloaded so its safe to kill the worker */
358		cancel_delayed_work_sync(&cache_cleaner);
359	}
360	return;
361out:
362	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
363}
364
365/* clean cache tries to find something to clean
366 * and cleans it.
367 * It returns 1 if it cleaned something,
368 *            0 if it didn't find anything this time
369 *           -1 if it fell off the end of the list.
370 */
371static int cache_clean(void)
372{
373	int rv = 0;
374	struct list_head *next;
375
376	spin_lock(&cache_list_lock);
377
378	/* find a suitable table if we don't already have one */
379	while (current_detail == NULL ||
380	    current_index >= current_detail->hash_size) {
381		if (current_detail)
382			next = current_detail->others.next;
383		else
384			next = cache_list.next;
385		if (next == &cache_list) {
386			current_detail = NULL;
387			spin_unlock(&cache_list_lock);
388			return -1;
389		}
390		current_detail = list_entry(next, struct cache_detail, others);
391		if (current_detail->nextcheck > seconds_since_boot())
392			current_index = current_detail->hash_size;
393		else {
394			current_index = 0;
395			current_detail->nextcheck = seconds_since_boot()+30*60;
396		}
397	}
398
399	/* find a non-empty bucket in the table */
400	while (current_detail &&
401	       current_index < current_detail->hash_size &&
402	       current_detail->hash_table[current_index] == NULL)
403		current_index++;
404
405	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
406
407	if (current_detail && current_index < current_detail->hash_size) {
408		struct cache_head *ch, **cp;
409		struct cache_detail *d;
410
411		write_lock(&current_detail->hash_lock);
412
413		/* Ok, now to clean this strand */
414
415		cp = & current_detail->hash_table[current_index];
416		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
417			if (current_detail->nextcheck > ch->expiry_time)
418				current_detail->nextcheck = ch->expiry_time+1;
419			if (!cache_is_expired(current_detail, ch))
420				continue;
421
422			*cp = ch->next;
423			ch->next = NULL;
424			current_detail->entries--;
425			rv = 1;
426			break;
427		}
428
429		write_unlock(&current_detail->hash_lock);
430		d = current_detail;
431		if (!ch)
432			current_index ++;
433		spin_unlock(&cache_list_lock);
434		if (ch) {
435			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
436				cache_dequeue(current_detail, ch);
437			cache_revisit_request(ch);
438			cache_put(ch, d);
439		}
440	} else
441		spin_unlock(&cache_list_lock);
442
443	return rv;
444}
445
446/*
447 * We want to regularly clean the cache, so we need to schedule some work ...
448 */
449static void do_cache_clean(struct work_struct *work)
450{
451	int delay = 5;
452	if (cache_clean() == -1)
453		delay = round_jiffies_relative(30*HZ);
454
455	if (list_empty(&cache_list))
456		delay = 0;
457
458	if (delay)
459		schedule_delayed_work(&cache_cleaner, delay);
460}
461
462
463/*
464 * Clean all caches promptly.  This just calls cache_clean
465 * repeatedly until we are sure that every cache has had a chance to
466 * be fully cleaned
467 */
468void cache_flush(void)
469{
470	while (cache_clean() != -1)
471		cond_resched();
472	while (cache_clean() != -1)
473		cond_resched();
474}
475EXPORT_SYMBOL_GPL(cache_flush);
476
477void cache_purge(struct cache_detail *detail)
478{
479	detail->flush_time = LONG_MAX;
480	detail->nextcheck = seconds_since_boot();
481	cache_flush();
482	detail->flush_time = 1;
483}
484EXPORT_SYMBOL_GPL(cache_purge);
485
486
487/*
488 * Deferral and Revisiting of Requests.
489 *
490 * If a cache lookup finds a pending entry, we
491 * need to defer the request and revisit it later.
492 * All deferred requests are stored in a hash table,
493 * indexed by "struct cache_head *".
494 * As it may be wasteful to store a whole request
495 * structure, we allow the request to provide a
496 * deferred form, which must contain a
497 * 'struct cache_deferred_req'
498 * This cache_deferred_req contains a method to allow
499 * it to be revisited when cache info is available
500 */
501
502#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
503#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
504
505#define	DFR_MAX	300	/* ??? */
506
507static DEFINE_SPINLOCK(cache_defer_lock);
508static LIST_HEAD(cache_defer_list);
509static struct list_head cache_defer_hash[DFR_HASHSIZE];
510static int cache_defer_cnt;
511
512struct thread_deferred_req {
513	struct cache_deferred_req handle;
514	struct completion completion;
515};
516static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
517{
518	struct thread_deferred_req *dr =
519		container_of(dreq, struct thread_deferred_req, handle);
520	complete(&dr->completion);
521}
522
523static int cache_defer_req(struct cache_req *req, struct cache_head *item)
524{
525	struct cache_deferred_req *dreq, *discard;
526	int hash = DFR_HASH(item);
527	struct thread_deferred_req sleeper;
528
529	if (cache_defer_cnt >= DFR_MAX) {
530		/* too much in the cache, randomly drop this one,
531		 * or continue and drop the oldest below
532		 */
533		if (net_random()&1)
534			return -ENOMEM;
535	}
536	if (req->thread_wait) {
537		dreq = &sleeper.handle;
538		sleeper.completion =
539			COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
540		dreq->revisit = cache_restart_thread;
541	} else
542		dreq = req->defer(req);
543
544 retry:
545	if (dreq == NULL)
546		return -ENOMEM;
547
548	dreq->item = item;
549
550	spin_lock(&cache_defer_lock);
551
552	list_add(&dreq->recent, &cache_defer_list);
553
554	if (cache_defer_hash[hash].next == NULL)
555		INIT_LIST_HEAD(&cache_defer_hash[hash]);
556	list_add(&dreq->hash, &cache_defer_hash[hash]);
557
558	/* it is in, now maybe clean up */
559	discard = NULL;
560	if (++cache_defer_cnt > DFR_MAX) {
561		discard = list_entry(cache_defer_list.prev,
562				     struct cache_deferred_req, recent);
563		list_del_init(&discard->recent);
564		list_del_init(&discard->hash);
565		cache_defer_cnt--;
566	}
567	spin_unlock(&cache_defer_lock);
568
569	if (discard)
570		/* there was one too many */
571		discard->revisit(discard, 1);
572
573	if (!test_bit(CACHE_PENDING, &item->flags)) {
574		/* must have just been validated... */
575		cache_revisit_request(item);
576		return -EAGAIN;
577	}
578
579	if (dreq == &sleeper.handle) {
580		if (wait_for_completion_interruptible_timeout(
581			    &sleeper.completion, req->thread_wait) <= 0) {
582			/* The completion wasn't completed, so we need
583			 * to clean up
584			 */
585			spin_lock(&cache_defer_lock);
586			if (!list_empty(&sleeper.handle.hash)) {
587				list_del_init(&sleeper.handle.recent);
588				list_del_init(&sleeper.handle.hash);
589				cache_defer_cnt--;
590				spin_unlock(&cache_defer_lock);
591			} else {
592				/* cache_revisit_request already removed
593				 * this from the hash table, but hasn't
594				 * called ->revisit yet.  It will very soon
595				 * and we need to wait for it.
596				 */
597				spin_unlock(&cache_defer_lock);
598				wait_for_completion(&sleeper.completion);
599			}
600		}
601		if (test_bit(CACHE_PENDING, &item->flags)) {
602			/* item is still pending, try request
603			 * deferral
604			 */
605			dreq = req->defer(req);
606			goto retry;
607		}
608		/* only return success if we actually deferred the
609		 * request.  In this case we waited until it was
610		 * answered so no deferral has happened - rather
611		 * an answer already exists.
612		 */
613		return -EEXIST;
614	}
615	return 0;
616}
617
618static void cache_revisit_request(struct cache_head *item)
619{
620	struct cache_deferred_req *dreq;
621	struct list_head pending;
622
623	struct list_head *lp;
624	int hash = DFR_HASH(item);
625
626	INIT_LIST_HEAD(&pending);
627	spin_lock(&cache_defer_lock);
628
629	lp = cache_defer_hash[hash].next;
630	if (lp) {
631		while (lp != &cache_defer_hash[hash]) {
632			dreq = list_entry(lp, struct cache_deferred_req, hash);
633			lp = lp->next;
634			if (dreq->item == item) {
635				list_del_init(&dreq->hash);
636				list_move(&dreq->recent, &pending);
637				cache_defer_cnt--;
638			}
639		}
640	}
641	spin_unlock(&cache_defer_lock);
642
643	while (!list_empty(&pending)) {
644		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
645		list_del_init(&dreq->recent);
646		dreq->revisit(dreq, 0);
647	}
648}
649
650void cache_clean_deferred(void *owner)
651{
652	struct cache_deferred_req *dreq, *tmp;
653	struct list_head pending;
654
655
656	INIT_LIST_HEAD(&pending);
657	spin_lock(&cache_defer_lock);
658
659	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
660		if (dreq->owner == owner) {
661			list_del_init(&dreq->hash);
662			list_move(&dreq->recent, &pending);
663			cache_defer_cnt--;
664		}
665	}
666	spin_unlock(&cache_defer_lock);
667
668	while (!list_empty(&pending)) {
669		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
670		list_del_init(&dreq->recent);
671		dreq->revisit(dreq, 1);
672	}
673}
674
675/*
676 * communicate with user-space
677 *
678 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
679 * On read, you get a full request, or block.
680 * On write, an update request is processed.
681 * Poll works if anything to read, and always allows write.
682 *
683 * Implemented by linked list of requests.  Each open file has
684 * a ->private that also exists in this list.  New requests are added
685 * to the end and may wakeup and preceding readers.
686 * New readers are added to the head.  If, on read, an item is found with
687 * CACHE_UPCALLING clear, we free it from the list.
688 *
689 */
690
691static DEFINE_SPINLOCK(queue_lock);
692static DEFINE_MUTEX(queue_io_mutex);
693
694struct cache_queue {
695	struct list_head	list;
696	int			reader;	/* if 0, then request */
697};
698struct cache_request {
699	struct cache_queue	q;
700	struct cache_head	*item;
701	char			* buf;
702	int			len;
703	int			readers;
704};
705struct cache_reader {
706	struct cache_queue	q;
707	int			offset;	/* if non-0, we have a refcnt on next request */
708};
709
710static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
711			  loff_t *ppos, struct cache_detail *cd)
712{
713	struct cache_reader *rp = filp->private_data;
714	struct cache_request *rq;
715	struct inode *inode = filp->f_path.dentry->d_inode;
716	int err;
717
718	if (count == 0)
719		return 0;
720
721	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
722			      * readers on this file */
723 again:
724	spin_lock(&queue_lock);
725	/* need to find next request */
726	while (rp->q.list.next != &cd->queue &&
727	       list_entry(rp->q.list.next, struct cache_queue, list)
728	       ->reader) {
729		struct list_head *next = rp->q.list.next;
730		list_move(&rp->q.list, next);
731	}
732	if (rp->q.list.next == &cd->queue) {
733		spin_unlock(&queue_lock);
734		mutex_unlock(&inode->i_mutex);
735		BUG_ON(rp->offset);
736		return 0;
737	}
738	rq = container_of(rp->q.list.next, struct cache_request, q.list);
739	BUG_ON(rq->q.reader);
740	if (rp->offset == 0)
741		rq->readers++;
742	spin_unlock(&queue_lock);
743
744	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
745		err = -EAGAIN;
746		spin_lock(&queue_lock);
747		list_move(&rp->q.list, &rq->q.list);
748		spin_unlock(&queue_lock);
749	} else {
750		if (rp->offset + count > rq->len)
751			count = rq->len - rp->offset;
752		err = -EFAULT;
753		if (copy_to_user(buf, rq->buf + rp->offset, count))
754			goto out;
755		rp->offset += count;
756		if (rp->offset >= rq->len) {
757			rp->offset = 0;
758			spin_lock(&queue_lock);
759			list_move(&rp->q.list, &rq->q.list);
760			spin_unlock(&queue_lock);
761		}
762		err = 0;
763	}
764 out:
765	if (rp->offset == 0) {
766		/* need to release rq */
767		spin_lock(&queue_lock);
768		rq->readers--;
769		if (rq->readers == 0 &&
770		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
771			list_del(&rq->q.list);
772			spin_unlock(&queue_lock);
773			cache_put(rq->item, cd);
774			kfree(rq->buf);
775			kfree(rq);
776		} else
777			spin_unlock(&queue_lock);
778	}
779	if (err == -EAGAIN)
780		goto again;
781	mutex_unlock(&inode->i_mutex);
782	return err ? err :  count;
783}
784
785static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
786				 size_t count, struct cache_detail *cd)
787{
788	ssize_t ret;
789
790	if (copy_from_user(kaddr, buf, count))
791		return -EFAULT;
792	kaddr[count] = '\0';
793	ret = cd->cache_parse(cd, kaddr, count);
794	if (!ret)
795		ret = count;
796	return ret;
797}
798
799static ssize_t cache_slow_downcall(const char __user *buf,
800				   size_t count, struct cache_detail *cd)
801{
802	static char write_buf[8192]; /* protected by queue_io_mutex */
803	ssize_t ret = -EINVAL;
804
805	if (count >= sizeof(write_buf))
806		goto out;
807	mutex_lock(&queue_io_mutex);
808	ret = cache_do_downcall(write_buf, buf, count, cd);
809	mutex_unlock(&queue_io_mutex);
810out:
811	return ret;
812}
813
814static ssize_t cache_downcall(struct address_space *mapping,
815			      const char __user *buf,
816			      size_t count, struct cache_detail *cd)
817{
818	struct page *page;
819	char *kaddr;
820	ssize_t ret = -ENOMEM;
821
822	if (count >= PAGE_CACHE_SIZE)
823		goto out_slow;
824
825	page = find_or_create_page(mapping, 0, GFP_KERNEL);
826	if (!page)
827		goto out_slow;
828
829	kaddr = kmap(page);
830	ret = cache_do_downcall(kaddr, buf, count, cd);
831	kunmap(page);
832	unlock_page(page);
833	page_cache_release(page);
834	return ret;
835out_slow:
836	return cache_slow_downcall(buf, count, cd);
837}
838
839static ssize_t cache_write(struct file *filp, const char __user *buf,
840			   size_t count, loff_t *ppos,
841			   struct cache_detail *cd)
842{
843	struct address_space *mapping = filp->f_mapping;
844	struct inode *inode = filp->f_path.dentry->d_inode;
845	ssize_t ret = -EINVAL;
846
847	if (!cd->cache_parse)
848		goto out;
849
850	mutex_lock(&inode->i_mutex);
851	ret = cache_downcall(mapping, buf, count, cd);
852	mutex_unlock(&inode->i_mutex);
853out:
854	return ret;
855}
856
857static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
858
859static unsigned int cache_poll(struct file *filp, poll_table *wait,
860			       struct cache_detail *cd)
861{
862	unsigned int mask;
863	struct cache_reader *rp = filp->private_data;
864	struct cache_queue *cq;
865
866	poll_wait(filp, &queue_wait, wait);
867
868	/* alway allow write */
869	mask = POLL_OUT | POLLWRNORM;
870
871	if (!rp)
872		return mask;
873
874	spin_lock(&queue_lock);
875
876	for (cq= &rp->q; &cq->list != &cd->queue;
877	     cq = list_entry(cq->list.next, struct cache_queue, list))
878		if (!cq->reader) {
879			mask |= POLLIN | POLLRDNORM;
880			break;
881		}
882	spin_unlock(&queue_lock);
883	return mask;
884}
885
886static int cache_ioctl(struct inode *ino, struct file *filp,
887		       unsigned int cmd, unsigned long arg,
888		       struct cache_detail *cd)
889{
890	int len = 0;
891	struct cache_reader *rp = filp->private_data;
892	struct cache_queue *cq;
893
894	if (cmd != FIONREAD || !rp)
895		return -EINVAL;
896
897	spin_lock(&queue_lock);
898
899	/* only find the length remaining in current request,
900	 * or the length of the next request
901	 */
902	for (cq= &rp->q; &cq->list != &cd->queue;
903	     cq = list_entry(cq->list.next, struct cache_queue, list))
904		if (!cq->reader) {
905			struct cache_request *cr =
906				container_of(cq, struct cache_request, q);
907			len = cr->len - rp->offset;
908			break;
909		}
910	spin_unlock(&queue_lock);
911
912	return put_user(len, (int __user *)arg);
913}
914
915static int cache_open(struct inode *inode, struct file *filp,
916		      struct cache_detail *cd)
917{
918	struct cache_reader *rp = NULL;
919
920	if (!cd || !try_module_get(cd->owner))
921		return -EACCES;
922	nonseekable_open(inode, filp);
923	if (filp->f_mode & FMODE_READ) {
924		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
925		if (!rp)
926			return -ENOMEM;
927		rp->offset = 0;
928		rp->q.reader = 1;
929		atomic_inc(&cd->readers);
930		spin_lock(&queue_lock);
931		list_add(&rp->q.list, &cd->queue);
932		spin_unlock(&queue_lock);
933	}
934	filp->private_data = rp;
935	return 0;
936}
937
938static int cache_release(struct inode *inode, struct file *filp,
939			 struct cache_detail *cd)
940{
941	struct cache_reader *rp = filp->private_data;
942
943	if (rp) {
944		spin_lock(&queue_lock);
945		if (rp->offset) {
946			struct cache_queue *cq;
947			for (cq= &rp->q; &cq->list != &cd->queue;
948			     cq = list_entry(cq->list.next, struct cache_queue, list))
949				if (!cq->reader) {
950					container_of(cq, struct cache_request, q)
951						->readers--;
952					break;
953				}
954			rp->offset = 0;
955		}
956		list_del(&rp->q.list);
957		spin_unlock(&queue_lock);
958
959		filp->private_data = NULL;
960		kfree(rp);
961
962		cd->last_close = seconds_since_boot();
963		atomic_dec(&cd->readers);
964	}
965	module_put(cd->owner);
966	return 0;
967}
968
969
970
971static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
972{
973	struct cache_queue *cq;
974	spin_lock(&queue_lock);
975	list_for_each_entry(cq, &detail->queue, list)
976		if (!cq->reader) {
977			struct cache_request *cr = container_of(cq, struct cache_request, q);
978			if (cr->item != ch)
979				continue;
980			if (cr->readers != 0)
981				continue;
982			list_del(&cr->q.list);
983			spin_unlock(&queue_lock);
984			cache_put(cr->item, detail);
985			kfree(cr->buf);
986			kfree(cr);
987			return;
988		}
989	spin_unlock(&queue_lock);
990}
991
992/*
993 * Support routines for text-based upcalls.
994 * Fields are separated by spaces.
995 * Fields are either mangled to quote space tab newline slosh with slosh
996 * or a hexified with a leading \x
997 * Record is terminated with newline.
998 *
999 */
1000
1001void qword_add(char **bpp, int *lp, char *str)
1002{
1003	char *bp = *bpp;
1004	int len = *lp;
1005	char c;
1006
1007	if (len < 0) return;
1008
1009	while ((c=*str++) && len)
1010		switch(c) {
1011		case ' ':
1012		case '\t':
1013		case '\n':
1014		case '\\':
1015			if (len >= 4) {
1016				*bp++ = '\\';
1017				*bp++ = '0' + ((c & 0300)>>6);
1018				*bp++ = '0' + ((c & 0070)>>3);
1019				*bp++ = '0' + ((c & 0007)>>0);
1020			}
1021			len -= 4;
1022			break;
1023		default:
1024			*bp++ = c;
1025			len--;
1026		}
1027	if (c || len <1) len = -1;
1028	else {
1029		*bp++ = ' ';
1030		len--;
1031	}
1032	*bpp = bp;
1033	*lp = len;
1034}
1035EXPORT_SYMBOL_GPL(qword_add);
1036
1037void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1038{
1039	char *bp = *bpp;
1040	int len = *lp;
1041
1042	if (len < 0) return;
1043
1044	if (len > 2) {
1045		*bp++ = '\\';
1046		*bp++ = 'x';
1047		len -= 2;
1048		while (blen && len >= 2) {
1049			unsigned char c = *buf++;
1050			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1051			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1052			len -= 2;
1053			blen--;
1054		}
1055	}
1056	if (blen || len<1) len = -1;
1057	else {
1058		*bp++ = ' ';
1059		len--;
1060	}
1061	*bpp = bp;
1062	*lp = len;
1063}
1064EXPORT_SYMBOL_GPL(qword_addhex);
1065
1066static void warn_no_listener(struct cache_detail *detail)
1067{
1068	if (detail->last_warn != detail->last_close) {
1069		detail->last_warn = detail->last_close;
1070		if (detail->warn_no_listener)
1071			detail->warn_no_listener(detail, detail->last_close != 0);
1072	}
1073}
1074
1075/*
1076 * register an upcall request to user-space and queue it up for read() by the
1077 * upcall daemon.
1078 *
1079 * Each request is at most one page long.
1080 */
1081int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1082		void (*cache_request)(struct cache_detail *,
1083				      struct cache_head *,
1084				      char **,
1085				      int *))
1086{
1087
1088	char *buf;
1089	struct cache_request *crq;
1090	char *bp;
1091	int len;
1092
1093	if (atomic_read(&detail->readers) == 0 &&
1094	    detail->last_close < seconds_since_boot() - 30) {
1095			warn_no_listener(detail);
1096			return -EINVAL;
1097	}
1098
1099	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1100	if (!buf)
1101		return -EAGAIN;
1102
1103	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1104	if (!crq) {
1105		kfree(buf);
1106		return -EAGAIN;
1107	}
1108
1109	bp = buf; len = PAGE_SIZE;
1110
1111	cache_request(detail, h, &bp, &len);
1112
1113	if (len < 0) {
1114		kfree(buf);
1115		kfree(crq);
1116		return -EAGAIN;
1117	}
1118	crq->q.reader = 0;
1119	crq->item = cache_get(h);
1120	crq->buf = buf;
1121	crq->len = PAGE_SIZE - len;
1122	crq->readers = 0;
1123	spin_lock(&queue_lock);
1124	list_add_tail(&crq->q.list, &detail->queue);
1125	spin_unlock(&queue_lock);
1126	wake_up(&queue_wait);
1127	return 0;
1128}
1129EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1130
1131/*
1132 * parse a message from user-space and pass it
1133 * to an appropriate cache
1134 * Messages are, like requests, separated into fields by
1135 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1136 *
1137 * Message is
1138 *   reply cachename expiry key ... content....
1139 *
1140 * key and content are both parsed by cache
1141 */
1142
1143#define isodigit(c) (isdigit(c) && c <= '7')
1144int qword_get(char **bpp, char *dest, int bufsize)
1145{
1146	/* return bytes copied, or -1 on error */
1147	char *bp = *bpp;
1148	int len = 0;
1149
1150	while (*bp == ' ') bp++;
1151
1152	if (bp[0] == '\\' && bp[1] == 'x') {
1153		/* HEX STRING */
1154		bp += 2;
1155		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1156			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1157			bp++;
1158			byte <<= 4;
1159			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1160			*dest++ = byte;
1161			bp++;
1162			len++;
1163		}
1164	} else {
1165		/* text with \nnn octal quoting */
1166		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1167			if (*bp == '\\' &&
1168			    isodigit(bp[1]) && (bp[1] <= '3') &&
1169			    isodigit(bp[2]) &&
1170			    isodigit(bp[3])) {
1171				int byte = (*++bp -'0');
1172				bp++;
1173				byte = (byte << 3) | (*bp++ - '0');
1174				byte = (byte << 3) | (*bp++ - '0');
1175				*dest++ = byte;
1176				len++;
1177			} else {
1178				*dest++ = *bp++;
1179				len++;
1180			}
1181		}
1182	}
1183
1184	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1185		return -1;
1186	while (*bp == ' ') bp++;
1187	*bpp = bp;
1188	*dest = '\0';
1189	return len;
1190}
1191EXPORT_SYMBOL_GPL(qword_get);
1192
1193
1194/*
1195 * support /proc/sunrpc/cache/$CACHENAME/content
1196 * as a seqfile.
1197 * We call ->cache_show passing NULL for the item to
1198 * get a header, then pass each real item in the cache
1199 */
1200
1201struct handle {
1202	struct cache_detail *cd;
1203};
1204
1205static void *c_start(struct seq_file *m, loff_t *pos)
1206	__acquires(cd->hash_lock)
1207{
1208	loff_t n = *pos;
1209	unsigned hash, entry;
1210	struct cache_head *ch;
1211	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1212
1213
1214	read_lock(&cd->hash_lock);
1215	if (!n--)
1216		return SEQ_START_TOKEN;
1217	hash = n >> 32;
1218	entry = n & ((1LL<<32) - 1);
1219
1220	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1221		if (!entry--)
1222			return ch;
1223	n &= ~((1LL<<32) - 1);
1224	do {
1225		hash++;
1226		n += 1LL<<32;
1227	} while(hash < cd->hash_size &&
1228		cd->hash_table[hash]==NULL);
1229	if (hash >= cd->hash_size)
1230		return NULL;
1231	*pos = n+1;
1232	return cd->hash_table[hash];
1233}
1234
1235static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1236{
1237	struct cache_head *ch = p;
1238	int hash = (*pos >> 32);
1239	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1240
1241	if (p == SEQ_START_TOKEN)
1242		hash = 0;
1243	else if (ch->next == NULL) {
1244		hash++;
1245		*pos += 1LL<<32;
1246	} else {
1247		++*pos;
1248		return ch->next;
1249	}
1250	*pos &= ~((1LL<<32) - 1);
1251	while (hash < cd->hash_size &&
1252	       cd->hash_table[hash] == NULL) {
1253		hash++;
1254		*pos += 1LL<<32;
1255	}
1256	if (hash >= cd->hash_size)
1257		return NULL;
1258	++*pos;
1259	return cd->hash_table[hash];
1260}
1261
1262static void c_stop(struct seq_file *m, void *p)
1263	__releases(cd->hash_lock)
1264{
1265	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1266	read_unlock(&cd->hash_lock);
1267}
1268
1269static int c_show(struct seq_file *m, void *p)
1270{
1271	struct cache_head *cp = p;
1272	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1273
1274	if (p == SEQ_START_TOKEN)
1275		return cd->cache_show(m, cd, NULL);
1276
1277	ifdebug(CACHE)
1278		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1279			   convert_to_wallclock(cp->expiry_time),
1280			   atomic_read(&cp->ref.refcount), cp->flags);
1281	cache_get(cp);
1282	if (cache_check(cd, cp, NULL))
1283		/* cache_check does a cache_put on failure */
1284		seq_printf(m, "# ");
1285	else
1286		cache_put(cp, cd);
1287
1288	return cd->cache_show(m, cd, cp);
1289}
1290
1291static const struct seq_operations cache_content_op = {
1292	.start	= c_start,
1293	.next	= c_next,
1294	.stop	= c_stop,
1295	.show	= c_show,
1296};
1297
1298static int content_open(struct inode *inode, struct file *file,
1299			struct cache_detail *cd)
1300{
1301	struct handle *han;
1302
1303	if (!cd || !try_module_get(cd->owner))
1304		return -EACCES;
1305	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1306	if (han == NULL) {
1307		module_put(cd->owner);
1308		return -ENOMEM;
1309	}
1310
1311	han->cd = cd;
1312	return 0;
1313}
1314
1315static int content_release(struct inode *inode, struct file *file,
1316		struct cache_detail *cd)
1317{
1318	int ret = seq_release_private(inode, file);
1319	module_put(cd->owner);
1320	return ret;
1321}
1322
1323static int open_flush(struct inode *inode, struct file *file,
1324			struct cache_detail *cd)
1325{
1326	if (!cd || !try_module_get(cd->owner))
1327		return -EACCES;
1328	return nonseekable_open(inode, file);
1329}
1330
1331static int release_flush(struct inode *inode, struct file *file,
1332			struct cache_detail *cd)
1333{
1334	module_put(cd->owner);
1335	return 0;
1336}
1337
1338static ssize_t read_flush(struct file *file, char __user *buf,
1339			  size_t count, loff_t *ppos,
1340			  struct cache_detail *cd)
1341{
1342	char tbuf[20];
1343	unsigned long p = *ppos;
1344	size_t len;
1345
1346	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1347	len = strlen(tbuf);
1348	if (p >= len)
1349		return 0;
1350	len -= p;
1351	if (len > count)
1352		len = count;
1353	if (copy_to_user(buf, (void*)(tbuf+p), len))
1354		return -EFAULT;
1355	*ppos += len;
1356	return len;
1357}
1358
1359static ssize_t write_flush(struct file *file, const char __user *buf,
1360			   size_t count, loff_t *ppos,
1361			   struct cache_detail *cd)
1362{
1363	char tbuf[20];
1364	char *bp, *ep;
1365
1366	if (*ppos || count > sizeof(tbuf)-1)
1367		return -EINVAL;
1368	if (copy_from_user(tbuf, buf, count))
1369		return -EFAULT;
1370	tbuf[count] = 0;
1371	simple_strtoul(tbuf, &ep, 0);
1372	if (*ep && *ep != '\n')
1373		return -EINVAL;
1374
1375	bp = tbuf;
1376	cd->flush_time = get_expiry(&bp);
1377	cd->nextcheck = seconds_since_boot();
1378	cache_flush();
1379
1380	*ppos += count;
1381	return count;
1382}
1383
1384static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1385				 size_t count, loff_t *ppos)
1386{
1387	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1388
1389	return cache_read(filp, buf, count, ppos, cd);
1390}
1391
1392static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1393				  size_t count, loff_t *ppos)
1394{
1395	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1396
1397	return cache_write(filp, buf, count, ppos, cd);
1398}
1399
1400static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1401{
1402	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1403
1404	return cache_poll(filp, wait, cd);
1405}
1406
1407static long cache_ioctl_procfs(struct file *filp,
1408			       unsigned int cmd, unsigned long arg)
1409{
1410	long ret;
1411	struct inode *inode = filp->f_path.dentry->d_inode;
1412	struct cache_detail *cd = PDE(inode)->data;
1413
1414	lock_kernel();
1415	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1416	unlock_kernel();
1417
1418	return ret;
1419}
1420
1421static int cache_open_procfs(struct inode *inode, struct file *filp)
1422{
1423	struct cache_detail *cd = PDE(inode)->data;
1424
1425	return cache_open(inode, filp, cd);
1426}
1427
1428static int cache_release_procfs(struct inode *inode, struct file *filp)
1429{
1430	struct cache_detail *cd = PDE(inode)->data;
1431
1432	return cache_release(inode, filp, cd);
1433}
1434
1435static const struct file_operations cache_file_operations_procfs = {
1436	.owner		= THIS_MODULE,
1437	.llseek		= no_llseek,
1438	.read		= cache_read_procfs,
1439	.write		= cache_write_procfs,
1440	.poll		= cache_poll_procfs,
1441	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1442	.open		= cache_open_procfs,
1443	.release	= cache_release_procfs,
1444};
1445
1446static int content_open_procfs(struct inode *inode, struct file *filp)
1447{
1448	struct cache_detail *cd = PDE(inode)->data;
1449
1450	return content_open(inode, filp, cd);
1451}
1452
1453static int content_release_procfs(struct inode *inode, struct file *filp)
1454{
1455	struct cache_detail *cd = PDE(inode)->data;
1456
1457	return content_release(inode, filp, cd);
1458}
1459
1460static const struct file_operations content_file_operations_procfs = {
1461	.open		= content_open_procfs,
1462	.read		= seq_read,
1463	.llseek		= seq_lseek,
1464	.release	= content_release_procfs,
1465};
1466
1467static int open_flush_procfs(struct inode *inode, struct file *filp)
1468{
1469	struct cache_detail *cd = PDE(inode)->data;
1470
1471	return open_flush(inode, filp, cd);
1472}
1473
1474static int release_flush_procfs(struct inode *inode, struct file *filp)
1475{
1476	struct cache_detail *cd = PDE(inode)->data;
1477
1478	return release_flush(inode, filp, cd);
1479}
1480
1481static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1482			    size_t count, loff_t *ppos)
1483{
1484	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1485
1486	return read_flush(filp, buf, count, ppos, cd);
1487}
1488
1489static ssize_t write_flush_procfs(struct file *filp,
1490				  const char __user *buf,
1491				  size_t count, loff_t *ppos)
1492{
1493	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1494
1495	return write_flush(filp, buf, count, ppos, cd);
1496}
1497
1498static const struct file_operations cache_flush_operations_procfs = {
1499	.open		= open_flush_procfs,
1500	.read		= read_flush_procfs,
1501	.write		= write_flush_procfs,
1502	.release	= release_flush_procfs,
1503};
1504
1505static void remove_cache_proc_entries(struct cache_detail *cd)
1506{
1507	if (cd->u.procfs.proc_ent == NULL)
1508		return;
1509	if (cd->u.procfs.flush_ent)
1510		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1511	if (cd->u.procfs.channel_ent)
1512		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1513	if (cd->u.procfs.content_ent)
1514		remove_proc_entry("content", cd->u.procfs.proc_ent);
1515	cd->u.procfs.proc_ent = NULL;
1516	remove_proc_entry(cd->name, proc_net_rpc);
1517}
1518
1519#ifdef CONFIG_PROC_FS
1520static int create_cache_proc_entries(struct cache_detail *cd)
1521{
1522	struct proc_dir_entry *p;
1523
1524	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1525	if (cd->u.procfs.proc_ent == NULL)
1526		goto out_nomem;
1527	cd->u.procfs.channel_ent = NULL;
1528	cd->u.procfs.content_ent = NULL;
1529
1530	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1531			     cd->u.procfs.proc_ent,
1532			     &cache_flush_operations_procfs, cd);
1533	cd->u.procfs.flush_ent = p;
1534	if (p == NULL)
1535		goto out_nomem;
1536
1537	if (cd->cache_upcall || cd->cache_parse) {
1538		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1539				     cd->u.procfs.proc_ent,
1540				     &cache_file_operations_procfs, cd);
1541		cd->u.procfs.channel_ent = p;
1542		if (p == NULL)
1543			goto out_nomem;
1544	}
1545	if (cd->cache_show) {
1546		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1547				cd->u.procfs.proc_ent,
1548				&content_file_operations_procfs, cd);
1549		cd->u.procfs.content_ent = p;
1550		if (p == NULL)
1551			goto out_nomem;
1552	}
1553	return 0;
1554out_nomem:
1555	remove_cache_proc_entries(cd);
1556	return -ENOMEM;
1557}
1558#else /* CONFIG_PROC_FS */
1559static int create_cache_proc_entries(struct cache_detail *cd)
1560{
1561	return 0;
1562}
1563#endif
1564
1565void __init cache_initialize(void)
1566{
1567	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1568}
1569
1570int cache_register(struct cache_detail *cd)
1571{
1572	int ret;
1573
1574	sunrpc_init_cache_detail(cd);
1575	ret = create_cache_proc_entries(cd);
1576	if (ret)
1577		sunrpc_destroy_cache_detail(cd);
1578	return ret;
1579}
1580EXPORT_SYMBOL_GPL(cache_register);
1581
1582void cache_unregister(struct cache_detail *cd)
1583{
1584	remove_cache_proc_entries(cd);
1585	sunrpc_destroy_cache_detail(cd);
1586}
1587EXPORT_SYMBOL_GPL(cache_unregister);
1588
1589static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1590				 size_t count, loff_t *ppos)
1591{
1592	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1593
1594	return cache_read(filp, buf, count, ppos, cd);
1595}
1596
1597static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1598				  size_t count, loff_t *ppos)
1599{
1600	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1601
1602	return cache_write(filp, buf, count, ppos, cd);
1603}
1604
1605static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1606{
1607	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1608
1609	return cache_poll(filp, wait, cd);
1610}
1611
1612static long cache_ioctl_pipefs(struct file *filp,
1613			      unsigned int cmd, unsigned long arg)
1614{
1615	struct inode *inode = filp->f_dentry->d_inode;
1616	struct cache_detail *cd = RPC_I(inode)->private;
1617	long ret;
1618
1619	lock_kernel();
1620	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1621	unlock_kernel();
1622
1623	return ret;
1624}
1625
1626static int cache_open_pipefs(struct inode *inode, struct file *filp)
1627{
1628	struct cache_detail *cd = RPC_I(inode)->private;
1629
1630	return cache_open(inode, filp, cd);
1631}
1632
1633static int cache_release_pipefs(struct inode *inode, struct file *filp)
1634{
1635	struct cache_detail *cd = RPC_I(inode)->private;
1636
1637	return cache_release(inode, filp, cd);
1638}
1639
1640const struct file_operations cache_file_operations_pipefs = {
1641	.owner		= THIS_MODULE,
1642	.llseek		= no_llseek,
1643	.read		= cache_read_pipefs,
1644	.write		= cache_write_pipefs,
1645	.poll		= cache_poll_pipefs,
1646	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1647	.open		= cache_open_pipefs,
1648	.release	= cache_release_pipefs,
1649};
1650
1651static int content_open_pipefs(struct inode *inode, struct file *filp)
1652{
1653	struct cache_detail *cd = RPC_I(inode)->private;
1654
1655	return content_open(inode, filp, cd);
1656}
1657
1658static int content_release_pipefs(struct inode *inode, struct file *filp)
1659{
1660	struct cache_detail *cd = RPC_I(inode)->private;
1661
1662	return content_release(inode, filp, cd);
1663}
1664
1665const struct file_operations content_file_operations_pipefs = {
1666	.open		= content_open_pipefs,
1667	.read		= seq_read,
1668	.llseek		= seq_lseek,
1669	.release	= content_release_pipefs,
1670};
1671
1672static int open_flush_pipefs(struct inode *inode, struct file *filp)
1673{
1674	struct cache_detail *cd = RPC_I(inode)->private;
1675
1676	return open_flush(inode, filp, cd);
1677}
1678
1679static int release_flush_pipefs(struct inode *inode, struct file *filp)
1680{
1681	struct cache_detail *cd = RPC_I(inode)->private;
1682
1683	return release_flush(inode, filp, cd);
1684}
1685
1686static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1687			    size_t count, loff_t *ppos)
1688{
1689	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1690
1691	return read_flush(filp, buf, count, ppos, cd);
1692}
1693
1694static ssize_t write_flush_pipefs(struct file *filp,
1695				  const char __user *buf,
1696				  size_t count, loff_t *ppos)
1697{
1698	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1699
1700	return write_flush(filp, buf, count, ppos, cd);
1701}
1702
1703const struct file_operations cache_flush_operations_pipefs = {
1704	.open		= open_flush_pipefs,
1705	.read		= read_flush_pipefs,
1706	.write		= write_flush_pipefs,
1707	.release	= release_flush_pipefs,
1708};
1709
1710int sunrpc_cache_register_pipefs(struct dentry *parent,
1711				 const char *name, mode_t umode,
1712				 struct cache_detail *cd)
1713{
1714	struct qstr q;
1715	struct dentry *dir;
1716	int ret = 0;
1717
1718	sunrpc_init_cache_detail(cd);
1719	q.name = name;
1720	q.len = strlen(name);
1721	q.hash = full_name_hash(q.name, q.len);
1722	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1723	if (!IS_ERR(dir))
1724		cd->u.pipefs.dir = dir;
1725	else {
1726		sunrpc_destroy_cache_detail(cd);
1727		ret = PTR_ERR(dir);
1728	}
1729	return ret;
1730}
1731EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1732
1733void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1734{
1735	rpc_remove_cache_dir(cd->u.pipefs.dir);
1736	cd->u.pipefs.dir = NULL;
1737	sunrpc_destroy_cache_detail(cd);
1738}
1739EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1740
1741