cache.c revision f2d395865faa2a7cd4620b07178e58cbb160ba08
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2.  See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <linux/mutex.h>
30#include <asm/ioctls.h>
31#include <linux/sunrpc/types.h>
32#include <linux/sunrpc/cache.h>
33#include <linux/sunrpc/stats.h>
34
35#define	 RPCDBG_FACILITY RPCDBG_CACHE
36
37static void cache_defer_req(struct cache_req *req, struct cache_head *item);
38static void cache_revisit_request(struct cache_head *item);
39
40static void cache_init(struct cache_head *h)
41{
42	time_t now = get_seconds();
43	h->next = NULL;
44	h->flags = 0;
45	kref_init(&h->ref);
46	h->expiry_time = now + CACHE_NEW_EXPIRY;
47	h->last_refresh = now;
48}
49
50struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51				       struct cache_head *key, int hash)
52{
53	struct cache_head **head,  **hp;
54	struct cache_head *new = NULL;
55
56	head = &detail->hash_table[hash];
57
58	read_lock(&detail->hash_lock);
59
60	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61		struct cache_head *tmp = *hp;
62		if (detail->match(tmp, key)) {
63			cache_get(tmp);
64			read_unlock(&detail->hash_lock);
65			return tmp;
66		}
67	}
68	read_unlock(&detail->hash_lock);
69	/* Didn't find anything, insert an empty entry */
70
71	new = detail->alloc();
72	if (!new)
73		return NULL;
74	cache_init(new);
75
76	write_lock(&detail->hash_lock);
77
78	/* check if entry appeared while we slept */
79	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
80		struct cache_head *tmp = *hp;
81		if (detail->match(tmp, key)) {
82			cache_get(tmp);
83			write_unlock(&detail->hash_lock);
84			cache_put(new, detail);
85			return tmp;
86		}
87	}
88	detail->init(new, key);
89	new->next = *head;
90	*head = new;
91	detail->entries++;
92	cache_get(new);
93	write_unlock(&detail->hash_lock);
94
95	return new;
96}
97EXPORT_SYMBOL(sunrpc_cache_lookup);
98
99
100static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
101
102static int cache_fresh_locked(struct cache_head *head, time_t expiry)
103{
104	head->expiry_time = expiry;
105	head->last_refresh = get_seconds();
106	return !test_and_set_bit(CACHE_VALID, &head->flags);
107}
108
109static void cache_fresh_unlocked(struct cache_head *head,
110			struct cache_detail *detail, int new)
111{
112	if (new)
113		cache_revisit_request(head);
114	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
115		cache_revisit_request(head);
116		queue_loose(detail, head);
117	}
118}
119
120struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
121				       struct cache_head *new, struct cache_head *old, int hash)
122{
123	/* The 'old' entry is to be replaced by 'new'.
124	 * If 'old' is not VALID, we update it directly,
125	 * otherwise we need to replace it
126	 */
127	struct cache_head **head;
128	struct cache_head *tmp;
129	int is_new;
130
131	if (!test_bit(CACHE_VALID, &old->flags)) {
132		write_lock(&detail->hash_lock);
133		if (!test_bit(CACHE_VALID, &old->flags)) {
134			if (test_bit(CACHE_NEGATIVE, &new->flags))
135				set_bit(CACHE_NEGATIVE, &old->flags);
136			else
137				detail->update(old, new);
138			is_new = cache_fresh_locked(old, new->expiry_time);
139			write_unlock(&detail->hash_lock);
140			cache_fresh_unlocked(old, detail, is_new);
141			return old;
142		}
143		write_unlock(&detail->hash_lock);
144	}
145	/* We need to insert a new entry */
146	tmp = detail->alloc();
147	if (!tmp) {
148		cache_put(old, detail);
149		return NULL;
150	}
151	cache_init(tmp);
152	detail->init(tmp, old);
153	head = &detail->hash_table[hash];
154
155	write_lock(&detail->hash_lock);
156	if (test_bit(CACHE_NEGATIVE, &new->flags))
157		set_bit(CACHE_NEGATIVE, &tmp->flags);
158	else
159		detail->update(tmp, new);
160	tmp->next = *head;
161	*head = tmp;
162	detail->entries++;
163	cache_get(tmp);
164	is_new = cache_fresh_locked(tmp, new->expiry_time);
165	cache_fresh_locked(old, 0);
166	write_unlock(&detail->hash_lock);
167	cache_fresh_unlocked(tmp, detail, is_new);
168	cache_fresh_unlocked(old, detail, 0);
169	cache_put(old, detail);
170	return tmp;
171}
172EXPORT_SYMBOL(sunrpc_cache_update);
173
174static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
175/*
176 * This is the generic cache management routine for all
177 * the authentication caches.
178 * It checks the currency of a cache item and will (later)
179 * initiate an upcall to fill it if needed.
180 *
181 *
182 * Returns 0 if the cache_head can be used, or cache_puts it and returns
183 * -EAGAIN if upcall is pending,
184 * -ENOENT if cache entry was negative
185 */
186int cache_check(struct cache_detail *detail,
187		    struct cache_head *h, struct cache_req *rqstp)
188{
189	int rv;
190	long refresh_age, age;
191
192	/* First decide return status as best we can */
193	if (!test_bit(CACHE_VALID, &h->flags) ||
194	    h->expiry_time < get_seconds())
195		rv = -EAGAIN;
196	else if (detail->flush_time > h->last_refresh)
197		rv = -EAGAIN;
198	else {
199		/* entry is valid */
200		if (test_bit(CACHE_NEGATIVE, &h->flags))
201			rv = -ENOENT;
202		else rv = 0;
203	}
204
205	/* now see if we want to start an upcall */
206	refresh_age = (h->expiry_time - h->last_refresh);
207	age = get_seconds() - h->last_refresh;
208
209	if (rqstp == NULL) {
210		if (rv == -EAGAIN)
211			rv = -ENOENT;
212	} else if (rv == -EAGAIN || age > refresh_age/2) {
213		dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
214		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
215			switch (cache_make_upcall(detail, h)) {
216			case -EINVAL:
217				clear_bit(CACHE_PENDING, &h->flags);
218				if (rv == -EAGAIN) {
219					set_bit(CACHE_NEGATIVE, &h->flags);
220					cache_fresh_unlocked(h, detail,
221					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
222					rv = -ENOENT;
223				}
224				break;
225
226			case -EAGAIN:
227				clear_bit(CACHE_PENDING, &h->flags);
228				cache_revisit_request(h);
229				break;
230			}
231		}
232	}
233
234	if (rv == -EAGAIN)
235		cache_defer_req(rqstp, h);
236
237	if (rv)
238		cache_put(h, detail);
239	return rv;
240}
241
242/*
243 * caches need to be periodically cleaned.
244 * For this we maintain a list of cache_detail and
245 * a current pointer into that list and into the table
246 * for that entry.
247 *
248 * Each time clean_cache is called it finds the next non-empty entry
249 * in the current table and walks the list in that entry
250 * looking for entries that can be removed.
251 *
252 * An entry gets removed if:
253 * - The expiry is before current time
254 * - The last_refresh time is before the flush_time for that cache
255 *
256 * later we might drop old entries with non-NEVER expiry if that table
257 * is getting 'full' for some definition of 'full'
258 *
259 * The question of "how often to scan a table" is an interesting one
260 * and is answered in part by the use of the "nextcheck" field in the
261 * cache_detail.
262 * When a scan of a table begins, the nextcheck field is set to a time
263 * that is well into the future.
264 * While scanning, if an expiry time is found that is earlier than the
265 * current nextcheck time, nextcheck is set to that expiry time.
266 * If the flush_time is ever set to a time earlier than the nextcheck
267 * time, the nextcheck time is then set to that flush_time.
268 *
269 * A table is then only scanned if the current time is at least
270 * the nextcheck time.
271 *
272 */
273
274static LIST_HEAD(cache_list);
275static DEFINE_SPINLOCK(cache_list_lock);
276static struct cache_detail *current_detail;
277static int current_index;
278
279static struct file_operations cache_file_operations;
280static struct file_operations content_file_operations;
281static struct file_operations cache_flush_operations;
282
283static void do_cache_clean(void *data);
284static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
285
286void cache_register(struct cache_detail *cd)
287{
288	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
289	if (cd->proc_ent) {
290		struct proc_dir_entry *p;
291		cd->proc_ent->owner = cd->owner;
292		cd->channel_ent = cd->content_ent = NULL;
293
294 		p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
295 				      cd->proc_ent);
296		cd->flush_ent =  p;
297 		if (p) {
298 			p->proc_fops = &cache_flush_operations;
299 			p->owner = cd->owner;
300 			p->data = cd;
301 		}
302
303		if (cd->cache_request || cd->cache_parse) {
304			p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
305					      cd->proc_ent);
306			cd->channel_ent = p;
307			if (p) {
308				p->proc_fops = &cache_file_operations;
309				p->owner = cd->owner;
310				p->data = cd;
311			}
312		}
313 		if (cd->cache_show) {
314 			p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
315 					      cd->proc_ent);
316			cd->content_ent = p;
317 			if (p) {
318 				p->proc_fops = &content_file_operations;
319 				p->owner = cd->owner;
320 				p->data = cd;
321 			}
322 		}
323	}
324	rwlock_init(&cd->hash_lock);
325	INIT_LIST_HEAD(&cd->queue);
326	spin_lock(&cache_list_lock);
327	cd->nextcheck = 0;
328	cd->entries = 0;
329	atomic_set(&cd->readers, 0);
330	cd->last_close = 0;
331	cd->last_warn = -1;
332	list_add(&cd->others, &cache_list);
333	spin_unlock(&cache_list_lock);
334
335	/* start the cleaning process */
336	schedule_work(&cache_cleaner);
337}
338
339int cache_unregister(struct cache_detail *cd)
340{
341	cache_purge(cd);
342	spin_lock(&cache_list_lock);
343	write_lock(&cd->hash_lock);
344	if (cd->entries || atomic_read(&cd->inuse)) {
345		write_unlock(&cd->hash_lock);
346		spin_unlock(&cache_list_lock);
347		return -EBUSY;
348	}
349	if (current_detail == cd)
350		current_detail = NULL;
351	list_del_init(&cd->others);
352	write_unlock(&cd->hash_lock);
353	spin_unlock(&cache_list_lock);
354	if (cd->proc_ent) {
355		if (cd->flush_ent)
356			remove_proc_entry("flush", cd->proc_ent);
357		if (cd->channel_ent)
358			remove_proc_entry("channel", cd->proc_ent);
359		if (cd->content_ent)
360			remove_proc_entry("content", cd->proc_ent);
361
362		cd->proc_ent = NULL;
363		remove_proc_entry(cd->name, proc_net_rpc);
364	}
365	if (list_empty(&cache_list)) {
366		/* module must be being unloaded so its safe to kill the worker */
367		cancel_delayed_work(&cache_cleaner);
368		flush_scheduled_work();
369	}
370	return 0;
371}
372
373/* clean cache tries to find something to clean
374 * and cleans it.
375 * It returns 1 if it cleaned something,
376 *            0 if it didn't find anything this time
377 *           -1 if it fell off the end of the list.
378 */
379static int cache_clean(void)
380{
381	int rv = 0;
382	struct list_head *next;
383
384	spin_lock(&cache_list_lock);
385
386	/* find a suitable table if we don't already have one */
387	while (current_detail == NULL ||
388	    current_index >= current_detail->hash_size) {
389		if (current_detail)
390			next = current_detail->others.next;
391		else
392			next = cache_list.next;
393		if (next == &cache_list) {
394			current_detail = NULL;
395			spin_unlock(&cache_list_lock);
396			return -1;
397		}
398		current_detail = list_entry(next, struct cache_detail, others);
399		if (current_detail->nextcheck > get_seconds())
400			current_index = current_detail->hash_size;
401		else {
402			current_index = 0;
403			current_detail->nextcheck = get_seconds()+30*60;
404		}
405	}
406
407	/* find a non-empty bucket in the table */
408	while (current_detail &&
409	       current_index < current_detail->hash_size &&
410	       current_detail->hash_table[current_index] == NULL)
411		current_index++;
412
413	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
414
415	if (current_detail && current_index < current_detail->hash_size) {
416		struct cache_head *ch, **cp;
417		struct cache_detail *d;
418
419		write_lock(&current_detail->hash_lock);
420
421		/* Ok, now to clean this strand */
422
423		cp = & current_detail->hash_table[current_index];
424		ch = *cp;
425		for (; ch; cp= & ch->next, ch= *cp) {
426			if (current_detail->nextcheck > ch->expiry_time)
427				current_detail->nextcheck = ch->expiry_time+1;
428			if (ch->expiry_time >= get_seconds()
429			    && ch->last_refresh >= current_detail->flush_time
430				)
431				continue;
432			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
433				queue_loose(current_detail, ch);
434
435			if (atomic_read(&ch->ref.refcount) == 1)
436				break;
437		}
438		if (ch) {
439			*cp = ch->next;
440			ch->next = NULL;
441			current_detail->entries--;
442			rv = 1;
443		}
444		write_unlock(&current_detail->hash_lock);
445		d = current_detail;
446		if (!ch)
447			current_index ++;
448		spin_unlock(&cache_list_lock);
449		if (ch)
450			cache_put(ch, d);
451	} else
452		spin_unlock(&cache_list_lock);
453
454	return rv;
455}
456
457/*
458 * We want to regularly clean the cache, so we need to schedule some work ...
459 */
460static void do_cache_clean(void *data)
461{
462	int delay = 5;
463	if (cache_clean() == -1)
464		delay = 30*HZ;
465
466	if (list_empty(&cache_list))
467		delay = 0;
468
469	if (delay)
470		schedule_delayed_work(&cache_cleaner, delay);
471}
472
473
474/*
475 * Clean all caches promptly.  This just calls cache_clean
476 * repeatedly until we are sure that every cache has had a chance to
477 * be fully cleaned
478 */
479void cache_flush(void)
480{
481	while (cache_clean() != -1)
482		cond_resched();
483	while (cache_clean() != -1)
484		cond_resched();
485}
486
487void cache_purge(struct cache_detail *detail)
488{
489	detail->flush_time = LONG_MAX;
490	detail->nextcheck = get_seconds();
491	cache_flush();
492	detail->flush_time = 1;
493}
494
495
496
497/*
498 * Deferral and Revisiting of Requests.
499 *
500 * If a cache lookup finds a pending entry, we
501 * need to defer the request and revisit it later.
502 * All deferred requests are stored in a hash table,
503 * indexed by "struct cache_head *".
504 * As it may be wasteful to store a whole request
505 * structure, we allow the request to provide a
506 * deferred form, which must contain a
507 * 'struct cache_deferred_req'
508 * This cache_deferred_req contains a method to allow
509 * it to be revisited when cache info is available
510 */
511
512#define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
513#define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
514
515#define	DFR_MAX	300	/* ??? */
516
517static DEFINE_SPINLOCK(cache_defer_lock);
518static LIST_HEAD(cache_defer_list);
519static struct list_head cache_defer_hash[DFR_HASHSIZE];
520static int cache_defer_cnt;
521
522static void cache_defer_req(struct cache_req *req, struct cache_head *item)
523{
524	struct cache_deferred_req *dreq;
525	int hash = DFR_HASH(item);
526
527	dreq = req->defer(req);
528	if (dreq == NULL)
529		return;
530
531	dreq->item = item;
532	dreq->recv_time = get_seconds();
533
534	spin_lock(&cache_defer_lock);
535
536	list_add(&dreq->recent, &cache_defer_list);
537
538	if (cache_defer_hash[hash].next == NULL)
539		INIT_LIST_HEAD(&cache_defer_hash[hash]);
540	list_add(&dreq->hash, &cache_defer_hash[hash]);
541
542	/* it is in, now maybe clean up */
543	dreq = NULL;
544	if (++cache_defer_cnt > DFR_MAX) {
545		/* too much in the cache, randomly drop
546		 * first or last
547		 */
548		if (net_random()&1)
549			dreq = list_entry(cache_defer_list.next,
550					  struct cache_deferred_req,
551					  recent);
552		else
553			dreq = list_entry(cache_defer_list.prev,
554					  struct cache_deferred_req,
555					  recent);
556		list_del(&dreq->recent);
557		list_del(&dreq->hash);
558		cache_defer_cnt--;
559	}
560	spin_unlock(&cache_defer_lock);
561
562	if (dreq) {
563		/* there was one too many */
564		dreq->revisit(dreq, 1);
565	}
566	if (!test_bit(CACHE_PENDING, &item->flags)) {
567		/* must have just been validated... */
568		cache_revisit_request(item);
569	}
570}
571
572static void cache_revisit_request(struct cache_head *item)
573{
574	struct cache_deferred_req *dreq;
575	struct list_head pending;
576
577	struct list_head *lp;
578	int hash = DFR_HASH(item);
579
580	INIT_LIST_HEAD(&pending);
581	spin_lock(&cache_defer_lock);
582
583	lp = cache_defer_hash[hash].next;
584	if (lp) {
585		while (lp != &cache_defer_hash[hash]) {
586			dreq = list_entry(lp, struct cache_deferred_req, hash);
587			lp = lp->next;
588			if (dreq->item == item) {
589				list_del(&dreq->hash);
590				list_move(&dreq->recent, &pending);
591				cache_defer_cnt--;
592			}
593		}
594	}
595	spin_unlock(&cache_defer_lock);
596
597	while (!list_empty(&pending)) {
598		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
599		list_del_init(&dreq->recent);
600		dreq->revisit(dreq, 0);
601	}
602}
603
604void cache_clean_deferred(void *owner)
605{
606	struct cache_deferred_req *dreq, *tmp;
607	struct list_head pending;
608
609
610	INIT_LIST_HEAD(&pending);
611	spin_lock(&cache_defer_lock);
612
613	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
614		if (dreq->owner == owner) {
615			list_del(&dreq->hash);
616			list_move(&dreq->recent, &pending);
617			cache_defer_cnt--;
618		}
619	}
620	spin_unlock(&cache_defer_lock);
621
622	while (!list_empty(&pending)) {
623		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
624		list_del_init(&dreq->recent);
625		dreq->revisit(dreq, 1);
626	}
627}
628
629/*
630 * communicate with user-space
631 *
632 * We have a magic /proc file - /proc/sunrpc/cache
633 * On read, you get a full request, or block
634 * On write, an update request is processed
635 * Poll works if anything to read, and always allows write
636 *
637 * Implemented by linked list of requests.  Each open file has
638 * a ->private that also exists in this list.  New request are added
639 * to the end and may wakeup and preceding readers.
640 * New readers are added to the head.  If, on read, an item is found with
641 * CACHE_UPCALLING clear, we free it from the list.
642 *
643 */
644
645static DEFINE_SPINLOCK(queue_lock);
646static DEFINE_MUTEX(queue_io_mutex);
647
648struct cache_queue {
649	struct list_head	list;
650	int			reader;	/* if 0, then request */
651};
652struct cache_request {
653	struct cache_queue	q;
654	struct cache_head	*item;
655	char			* buf;
656	int			len;
657	int			readers;
658};
659struct cache_reader {
660	struct cache_queue	q;
661	int			offset;	/* if non-0, we have a refcnt on next request */
662};
663
664static ssize_t
665cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
666{
667	struct cache_reader *rp = filp->private_data;
668	struct cache_request *rq;
669	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
670	int err;
671
672	if (count == 0)
673		return 0;
674
675	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
676			      * readers on this file */
677 again:
678	spin_lock(&queue_lock);
679	/* need to find next request */
680	while (rp->q.list.next != &cd->queue &&
681	       list_entry(rp->q.list.next, struct cache_queue, list)
682	       ->reader) {
683		struct list_head *next = rp->q.list.next;
684		list_move(&rp->q.list, next);
685	}
686	if (rp->q.list.next == &cd->queue) {
687		spin_unlock(&queue_lock);
688		mutex_unlock(&queue_io_mutex);
689		BUG_ON(rp->offset);
690		return 0;
691	}
692	rq = container_of(rp->q.list.next, struct cache_request, q.list);
693	BUG_ON(rq->q.reader);
694	if (rp->offset == 0)
695		rq->readers++;
696	spin_unlock(&queue_lock);
697
698	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
699		err = -EAGAIN;
700		spin_lock(&queue_lock);
701		list_move(&rp->q.list, &rq->q.list);
702		spin_unlock(&queue_lock);
703	} else {
704		if (rp->offset + count > rq->len)
705			count = rq->len - rp->offset;
706		err = -EFAULT;
707		if (copy_to_user(buf, rq->buf + rp->offset, count))
708			goto out;
709		rp->offset += count;
710		if (rp->offset >= rq->len) {
711			rp->offset = 0;
712			spin_lock(&queue_lock);
713			list_move(&rp->q.list, &rq->q.list);
714			spin_unlock(&queue_lock);
715		}
716		err = 0;
717	}
718 out:
719	if (rp->offset == 0) {
720		/* need to release rq */
721		spin_lock(&queue_lock);
722		rq->readers--;
723		if (rq->readers == 0 &&
724		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
725			list_del(&rq->q.list);
726			spin_unlock(&queue_lock);
727			cache_put(rq->item, cd);
728			kfree(rq->buf);
729			kfree(rq);
730		} else
731			spin_unlock(&queue_lock);
732	}
733	if (err == -EAGAIN)
734		goto again;
735	mutex_unlock(&queue_io_mutex);
736	return err ? err :  count;
737}
738
739static char write_buf[8192]; /* protected by queue_io_mutex */
740
741static ssize_t
742cache_write(struct file *filp, const char __user *buf, size_t count,
743	    loff_t *ppos)
744{
745	int err;
746	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
747
748	if (count == 0)
749		return 0;
750	if (count >= sizeof(write_buf))
751		return -EINVAL;
752
753	mutex_lock(&queue_io_mutex);
754
755	if (copy_from_user(write_buf, buf, count)) {
756		mutex_unlock(&queue_io_mutex);
757		return -EFAULT;
758	}
759	write_buf[count] = '\0';
760	if (cd->cache_parse)
761		err = cd->cache_parse(cd, write_buf, count);
762	else
763		err = -EINVAL;
764
765	mutex_unlock(&queue_io_mutex);
766	return err ? err : count;
767}
768
769static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
770
771static unsigned int
772cache_poll(struct file *filp, poll_table *wait)
773{
774	unsigned int mask;
775	struct cache_reader *rp = filp->private_data;
776	struct cache_queue *cq;
777	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
778
779	poll_wait(filp, &queue_wait, wait);
780
781	/* alway allow write */
782	mask = POLL_OUT | POLLWRNORM;
783
784	if (!rp)
785		return mask;
786
787	spin_lock(&queue_lock);
788
789	for (cq= &rp->q; &cq->list != &cd->queue;
790	     cq = list_entry(cq->list.next, struct cache_queue, list))
791		if (!cq->reader) {
792			mask |= POLLIN | POLLRDNORM;
793			break;
794		}
795	spin_unlock(&queue_lock);
796	return mask;
797}
798
799static int
800cache_ioctl(struct inode *ino, struct file *filp,
801	    unsigned int cmd, unsigned long arg)
802{
803	int len = 0;
804	struct cache_reader *rp = filp->private_data;
805	struct cache_queue *cq;
806	struct cache_detail *cd = PDE(ino)->data;
807
808	if (cmd != FIONREAD || !rp)
809		return -EINVAL;
810
811	spin_lock(&queue_lock);
812
813	/* only find the length remaining in current request,
814	 * or the length of the next request
815	 */
816	for (cq= &rp->q; &cq->list != &cd->queue;
817	     cq = list_entry(cq->list.next, struct cache_queue, list))
818		if (!cq->reader) {
819			struct cache_request *cr =
820				container_of(cq, struct cache_request, q);
821			len = cr->len - rp->offset;
822			break;
823		}
824	spin_unlock(&queue_lock);
825
826	return put_user(len, (int __user *)arg);
827}
828
829static int
830cache_open(struct inode *inode, struct file *filp)
831{
832	struct cache_reader *rp = NULL;
833
834	nonseekable_open(inode, filp);
835	if (filp->f_mode & FMODE_READ) {
836		struct cache_detail *cd = PDE(inode)->data;
837
838		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
839		if (!rp)
840			return -ENOMEM;
841		rp->offset = 0;
842		rp->q.reader = 1;
843		atomic_inc(&cd->readers);
844		spin_lock(&queue_lock);
845		list_add(&rp->q.list, &cd->queue);
846		spin_unlock(&queue_lock);
847	}
848	filp->private_data = rp;
849	return 0;
850}
851
852static int
853cache_release(struct inode *inode, struct file *filp)
854{
855	struct cache_reader *rp = filp->private_data;
856	struct cache_detail *cd = PDE(inode)->data;
857
858	if (rp) {
859		spin_lock(&queue_lock);
860		if (rp->offset) {
861			struct cache_queue *cq;
862			for (cq= &rp->q; &cq->list != &cd->queue;
863			     cq = list_entry(cq->list.next, struct cache_queue, list))
864				if (!cq->reader) {
865					container_of(cq, struct cache_request, q)
866						->readers--;
867					break;
868				}
869			rp->offset = 0;
870		}
871		list_del(&rp->q.list);
872		spin_unlock(&queue_lock);
873
874		filp->private_data = NULL;
875		kfree(rp);
876
877		cd->last_close = get_seconds();
878		atomic_dec(&cd->readers);
879	}
880	return 0;
881}
882
883
884
885static struct file_operations cache_file_operations = {
886	.owner		= THIS_MODULE,
887	.llseek		= no_llseek,
888	.read		= cache_read,
889	.write		= cache_write,
890	.poll		= cache_poll,
891	.ioctl		= cache_ioctl, /* for FIONREAD */
892	.open		= cache_open,
893	.release	= cache_release,
894};
895
896
897static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
898{
899	struct cache_queue *cq;
900	spin_lock(&queue_lock);
901	list_for_each_entry(cq, &detail->queue, list)
902		if (!cq->reader) {
903			struct cache_request *cr = container_of(cq, struct cache_request, q);
904			if (cr->item != ch)
905				continue;
906			if (cr->readers != 0)
907				continue;
908			list_del(&cr->q.list);
909			spin_unlock(&queue_lock);
910			cache_put(cr->item, detail);
911			kfree(cr->buf);
912			kfree(cr);
913			return;
914		}
915	spin_unlock(&queue_lock);
916}
917
918/*
919 * Support routines for text-based upcalls.
920 * Fields are separated by spaces.
921 * Fields are either mangled to quote space tab newline slosh with slosh
922 * or a hexified with a leading \x
923 * Record is terminated with newline.
924 *
925 */
926
927void qword_add(char **bpp, int *lp, char *str)
928{
929	char *bp = *bpp;
930	int len = *lp;
931	char c;
932
933	if (len < 0) return;
934
935	while ((c=*str++) && len)
936		switch(c) {
937		case ' ':
938		case '\t':
939		case '\n':
940		case '\\':
941			if (len >= 4) {
942				*bp++ = '\\';
943				*bp++ = '0' + ((c & 0300)>>6);
944				*bp++ = '0' + ((c & 0070)>>3);
945				*bp++ = '0' + ((c & 0007)>>0);
946			}
947			len -= 4;
948			break;
949		default:
950			*bp++ = c;
951			len--;
952		}
953	if (c || len <1) len = -1;
954	else {
955		*bp++ = ' ';
956		len--;
957	}
958	*bpp = bp;
959	*lp = len;
960}
961
962void qword_addhex(char **bpp, int *lp, char *buf, int blen)
963{
964	char *bp = *bpp;
965	int len = *lp;
966
967	if (len < 0) return;
968
969	if (len > 2) {
970		*bp++ = '\\';
971		*bp++ = 'x';
972		len -= 2;
973		while (blen && len >= 2) {
974			unsigned char c = *buf++;
975			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
976			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
977			len -= 2;
978			blen--;
979		}
980	}
981	if (blen || len<1) len = -1;
982	else {
983		*bp++ = ' ';
984		len--;
985	}
986	*bpp = bp;
987	*lp = len;
988}
989
990static void warn_no_listener(struct cache_detail *detail)
991{
992	if (detail->last_warn != detail->last_close) {
993		detail->last_warn = detail->last_close;
994		if (detail->warn_no_listener)
995			detail->warn_no_listener(detail);
996	}
997}
998
999/*
1000 * register an upcall request to user-space.
1001 * Each request is at most one page long.
1002 */
1003static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1004{
1005
1006	char *buf;
1007	struct cache_request *crq;
1008	char *bp;
1009	int len;
1010
1011	if (detail->cache_request == NULL)
1012		return -EINVAL;
1013
1014	if (atomic_read(&detail->readers) == 0 &&
1015	    detail->last_close < get_seconds() - 30) {
1016			warn_no_listener(detail);
1017			return -EINVAL;
1018	}
1019
1020	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1021	if (!buf)
1022		return -EAGAIN;
1023
1024	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1025	if (!crq) {
1026		kfree(buf);
1027		return -EAGAIN;
1028	}
1029
1030	bp = buf; len = PAGE_SIZE;
1031
1032	detail->cache_request(detail, h, &bp, &len);
1033
1034	if (len < 0) {
1035		kfree(buf);
1036		kfree(crq);
1037		return -EAGAIN;
1038	}
1039	crq->q.reader = 0;
1040	crq->item = cache_get(h);
1041	crq->buf = buf;
1042	crq->len = PAGE_SIZE - len;
1043	crq->readers = 0;
1044	spin_lock(&queue_lock);
1045	list_add_tail(&crq->q.list, &detail->queue);
1046	spin_unlock(&queue_lock);
1047	wake_up(&queue_wait);
1048	return 0;
1049}
1050
1051/*
1052 * parse a message from user-space and pass it
1053 * to an appropriate cache
1054 * Messages are, like requests, separated into fields by
1055 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1056 *
1057 * Message is
1058 *   reply cachename expiry key ... content....
1059 *
1060 * key and content are both parsed by cache
1061 */
1062
1063#define isodigit(c) (isdigit(c) && c <= '7')
1064int qword_get(char **bpp, char *dest, int bufsize)
1065{
1066	/* return bytes copied, or -1 on error */
1067	char *bp = *bpp;
1068	int len = 0;
1069
1070	while (*bp == ' ') bp++;
1071
1072	if (bp[0] == '\\' && bp[1] == 'x') {
1073		/* HEX STRING */
1074		bp += 2;
1075		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1076			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1077			bp++;
1078			byte <<= 4;
1079			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1080			*dest++ = byte;
1081			bp++;
1082			len++;
1083		}
1084	} else {
1085		/* text with \nnn octal quoting */
1086		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1087			if (*bp == '\\' &&
1088			    isodigit(bp[1]) && (bp[1] <= '3') &&
1089			    isodigit(bp[2]) &&
1090			    isodigit(bp[3])) {
1091				int byte = (*++bp -'0');
1092				bp++;
1093				byte = (byte << 3) | (*bp++ - '0');
1094				byte = (byte << 3) | (*bp++ - '0');
1095				*dest++ = byte;
1096				len++;
1097			} else {
1098				*dest++ = *bp++;
1099				len++;
1100			}
1101		}
1102	}
1103
1104	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1105		return -1;
1106	while (*bp == ' ') bp++;
1107	*bpp = bp;
1108	*dest = '\0';
1109	return len;
1110}
1111
1112
1113/*
1114 * support /proc/sunrpc/cache/$CACHENAME/content
1115 * as a seqfile.
1116 * We call ->cache_show passing NULL for the item to
1117 * get a header, then pass each real item in the cache
1118 */
1119
1120struct handle {
1121	struct cache_detail *cd;
1122};
1123
1124static void *c_start(struct seq_file *m, loff_t *pos)
1125{
1126	loff_t n = *pos;
1127	unsigned hash, entry;
1128	struct cache_head *ch;
1129	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1130
1131
1132	read_lock(&cd->hash_lock);
1133	if (!n--)
1134		return SEQ_START_TOKEN;
1135	hash = n >> 32;
1136	entry = n & ((1LL<<32) - 1);
1137
1138	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1139		if (!entry--)
1140			return ch;
1141	n &= ~((1LL<<32) - 1);
1142	do {
1143		hash++;
1144		n += 1LL<<32;
1145	} while(hash < cd->hash_size &&
1146		cd->hash_table[hash]==NULL);
1147	if (hash >= cd->hash_size)
1148		return NULL;
1149	*pos = n+1;
1150	return cd->hash_table[hash];
1151}
1152
1153static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1154{
1155	struct cache_head *ch = p;
1156	int hash = (*pos >> 32);
1157	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1158
1159	if (p == SEQ_START_TOKEN)
1160		hash = 0;
1161	else if (ch->next == NULL) {
1162		hash++;
1163		*pos += 1LL<<32;
1164	} else {
1165		++*pos;
1166		return ch->next;
1167	}
1168	*pos &= ~((1LL<<32) - 1);
1169	while (hash < cd->hash_size &&
1170	       cd->hash_table[hash] == NULL) {
1171		hash++;
1172		*pos += 1LL<<32;
1173	}
1174	if (hash >= cd->hash_size)
1175		return NULL;
1176	++*pos;
1177	return cd->hash_table[hash];
1178}
1179
1180static void c_stop(struct seq_file *m, void *p)
1181{
1182	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1183	read_unlock(&cd->hash_lock);
1184}
1185
1186static int c_show(struct seq_file *m, void *p)
1187{
1188	struct cache_head *cp = p;
1189	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1190
1191	if (p == SEQ_START_TOKEN)
1192		return cd->cache_show(m, cd, NULL);
1193
1194	ifdebug(CACHE)
1195		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1196			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1197	cache_get(cp);
1198	if (cache_check(cd, cp, NULL))
1199		/* cache_check does a cache_put on failure */
1200		seq_printf(m, "# ");
1201	else
1202		cache_put(cp, cd);
1203
1204	return cd->cache_show(m, cd, cp);
1205}
1206
1207static struct seq_operations cache_content_op = {
1208	.start	= c_start,
1209	.next	= c_next,
1210	.stop	= c_stop,
1211	.show	= c_show,
1212};
1213
1214static int content_open(struct inode *inode, struct file *file)
1215{
1216	int res;
1217	struct handle *han;
1218	struct cache_detail *cd = PDE(inode)->data;
1219
1220	han = kmalloc(sizeof(*han), GFP_KERNEL);
1221	if (han == NULL)
1222		return -ENOMEM;
1223
1224	han->cd = cd;
1225
1226	res = seq_open(file, &cache_content_op);
1227	if (res)
1228		kfree(han);
1229	else
1230		((struct seq_file *)file->private_data)->private = han;
1231
1232	return res;
1233}
1234static int content_release(struct inode *inode, struct file *file)
1235{
1236	struct seq_file *m = (struct seq_file *)file->private_data;
1237	struct handle *han = m->private;
1238	kfree(han);
1239	m->private = NULL;
1240	return seq_release(inode, file);
1241}
1242
1243static struct file_operations content_file_operations = {
1244	.open		= content_open,
1245	.read		= seq_read,
1246	.llseek		= seq_lseek,
1247	.release	= content_release,
1248};
1249
1250static ssize_t read_flush(struct file *file, char __user *buf,
1251			    size_t count, loff_t *ppos)
1252{
1253	struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1254	char tbuf[20];
1255	unsigned long p = *ppos;
1256	int len;
1257
1258	sprintf(tbuf, "%lu\n", cd->flush_time);
1259	len = strlen(tbuf);
1260	if (p >= len)
1261		return 0;
1262	len -= p;
1263	if (len > count) len = count;
1264	if (copy_to_user(buf, (void*)(tbuf+p), len))
1265		len = -EFAULT;
1266	else
1267		*ppos += len;
1268	return len;
1269}
1270
1271static ssize_t write_flush(struct file * file, const char __user * buf,
1272			     size_t count, loff_t *ppos)
1273{
1274	struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1275	char tbuf[20];
1276	char *ep;
1277	long flushtime;
1278	if (*ppos || count > sizeof(tbuf)-1)
1279		return -EINVAL;
1280	if (copy_from_user(tbuf, buf, count))
1281		return -EFAULT;
1282	tbuf[count] = 0;
1283	flushtime = simple_strtoul(tbuf, &ep, 0);
1284	if (*ep && *ep != '\n')
1285		return -EINVAL;
1286
1287	cd->flush_time = flushtime;
1288	cd->nextcheck = get_seconds();
1289	cache_flush();
1290
1291	*ppos += count;
1292	return count;
1293}
1294
1295static struct file_operations cache_flush_operations = {
1296	.open		= nonseekable_open,
1297	.read		= read_flush,
1298	.write		= write_flush,
1299};
1300