1/*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 *      Redistributions of source code must retain the above copyright
15 *      notice, this list of conditions and the following disclaimer.
16 *
17 *      Redistributions in binary form must reproduce the above
18 *      copyright notice, this list of conditions and the following
19 *      disclaimer in the documentation and/or other materials provided
20 *      with the distribution.
21 *
22 *      Neither the name of the Network Appliance, Inc. nor the names of
23 *      its contributors may be used to endorse or promote products
24 *      derived from this software without specific prior written
25 *      permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * rpc_rdma.c
42 *
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
46 */
47
48#include "xprt_rdma.h"
49
50#include <linux/highmem.h>
51
52#ifdef RPC_DEBUG
53# define RPCDBG_FACILITY	RPCDBG_TRANS
54#endif
55
56#ifdef RPC_DEBUG
57static const char transfertypes[][12] = {
58	"pure inline",	/* no chunks */
59	" read chunk",	/* some argument via rdma read */
60	"*read chunk",	/* entire request via rdma read */
61	"write chunk",	/* some result via rdma write */
62	"reply chunk"	/* entire reply via rdma write */
63};
64#endif
65
66/*
67 * Chunk assembly from upper layer xdr_buf.
68 *
69 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
70 * elements. Segments are then coalesced when registered, if possible
71 * within the selected memreg mode.
72 *
73 * Returns positive number of segments converted, or a negative errno.
74 */
75
76static int
77rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
78	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
79{
80	int len, n = 0, p;
81	int page_base;
82	struct page **ppages;
83
84	if (pos == 0 && xdrbuf->head[0].iov_len) {
85		seg[n].mr_page = NULL;
86		seg[n].mr_offset = xdrbuf->head[0].iov_base;
87		seg[n].mr_len = xdrbuf->head[0].iov_len;
88		++n;
89	}
90
91	len = xdrbuf->page_len;
92	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
93	page_base = xdrbuf->page_base & ~PAGE_MASK;
94	p = 0;
95	while (len && n < nsegs) {
96		if (!ppages[p]) {
97			/* alloc the pagelist for receiving buffer */
98			ppages[p] = alloc_page(GFP_ATOMIC);
99			if (!ppages[p])
100				return -ENOMEM;
101		}
102		seg[n].mr_page = ppages[p];
103		seg[n].mr_offset = (void *)(unsigned long) page_base;
104		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
105		if (seg[n].mr_len > PAGE_SIZE)
106			return -EIO;
107		len -= seg[n].mr_len;
108		++n;
109		++p;
110		page_base = 0;	/* page offset only applies to first page */
111	}
112
113	/* Message overflows the seg array */
114	if (len && n == nsegs)
115		return -EIO;
116
117	if (xdrbuf->tail[0].iov_len) {
118		/* the rpcrdma protocol allows us to omit any trailing
119		 * xdr pad bytes, saving the server an RDMA operation. */
120		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
121			return n;
122		if (n == nsegs)
123			/* Tail remains, but we're out of segments */
124			return -EIO;
125		seg[n].mr_page = NULL;
126		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
127		seg[n].mr_len = xdrbuf->tail[0].iov_len;
128		++n;
129	}
130
131	return n;
132}
133
134/*
135 * Create read/write chunk lists, and reply chunks, for RDMA
136 *
137 *   Assume check against THRESHOLD has been done, and chunks are required.
138 *   Assume only encoding one list entry for read|write chunks. The NFSv3
139 *     protocol is simple enough to allow this as it only has a single "bulk
140 *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
141 *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
142 *
143 * When used for a single reply chunk (which is a special write
144 * chunk used for the entire reply, rather than just the data), it
145 * is used primarily for READDIR and READLINK which would otherwise
146 * be severely size-limited by a small rdma inline read max. The server
147 * response will come back as an RDMA Write, followed by a message
148 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
149 * chunks do not provide data alignment, however they do not require
150 * "fixup" (moving the response to the upper layer buffer) either.
151 *
152 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
153 *
154 *  Read chunklist (a linked list):
155 *   N elements, position P (same P for all chunks of same arg!):
156 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
157 *
158 *  Write chunklist (a list of (one) counted array):
159 *   N elements:
160 *    1 - N - HLOO - HLOO - ... - HLOO - 0
161 *
162 *  Reply chunk (a counted array):
163 *   N elements:
164 *    1 - N - HLOO - HLOO - ... - HLOO
165 *
166 * Returns positive RPC/RDMA header size, or negative errno.
167 */
168
169static ssize_t
170rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172{
173	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
175	int n, nsegs, nchunks = 0;
176	unsigned int pos;
177	struct rpcrdma_mr_seg *seg = req->rl_segments;
178	struct rpcrdma_read_chunk *cur_rchunk = NULL;
179	struct rpcrdma_write_array *warray = NULL;
180	struct rpcrdma_write_chunk *cur_wchunk = NULL;
181	__be32 *iptr = headerp->rm_body.rm_chunks;
182
183	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184		/* a read chunk - server will RDMA Read our memory */
185		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186	} else {
187		/* a write or reply chunk - server will RDMA Write our memory */
188		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
189		if (type == rpcrdma_replych)
190			*iptr++ = xdr_zero;	/* a NULL write chunk list */
191		warray = (struct rpcrdma_write_array *) iptr;
192		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193	}
194
195	if (type == rpcrdma_replych || type == rpcrdma_areadch)
196		pos = 0;
197	else
198		pos = target->head[0].iov_len;
199
200	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201	if (nsegs < 0)
202		return nsegs;
203
204	do {
205		n = rpcrdma_register_external(seg, nsegs,
206						cur_wchunk != NULL, r_xprt);
207		if (n <= 0)
208			goto out;
209		if (cur_rchunk) {	/* read */
210			cur_rchunk->rc_discrim = xdr_one;
211			/* all read chunks have the same "position" */
212			cur_rchunk->rc_position = htonl(pos);
213			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
214			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
215			xdr_encode_hyper(
216					(__be32 *)&cur_rchunk->rc_target.rs_offset,
217					seg->mr_base);
218			dprintk("RPC:       %s: read chunk "
219				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
220				seg->mr_len, (unsigned long long)seg->mr_base,
221				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
222			cur_rchunk++;
223			r_xprt->rx_stats.read_chunk_count++;
224		} else {		/* write/reply */
225			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
226			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
227			xdr_encode_hyper(
228					(__be32 *)&cur_wchunk->wc_target.rs_offset,
229					seg->mr_base);
230			dprintk("RPC:       %s: %s chunk "
231				"elem %d@0x%llx:0x%x (%s)\n", __func__,
232				(type == rpcrdma_replych) ? "reply" : "write",
233				seg->mr_len, (unsigned long long)seg->mr_base,
234				seg->mr_rkey, n < nsegs ? "more" : "last");
235			cur_wchunk++;
236			if (type == rpcrdma_replych)
237				r_xprt->rx_stats.reply_chunk_count++;
238			else
239				r_xprt->rx_stats.write_chunk_count++;
240			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
241		}
242		nchunks++;
243		seg   += n;
244		nsegs -= n;
245	} while (nsegs);
246
247	/* success. all failures return above */
248	req->rl_nchunks = nchunks;
249
250	/*
251	 * finish off header. If write, marshal discrim and nchunks.
252	 */
253	if (cur_rchunk) {
254		iptr = (__be32 *) cur_rchunk;
255		*iptr++ = xdr_zero;	/* finish the read chunk list */
256		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
257		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
258	} else {
259		warray->wc_discrim = xdr_one;
260		warray->wc_nchunks = htonl(nchunks);
261		iptr = (__be32 *) cur_wchunk;
262		if (type == rpcrdma_writech) {
263			*iptr++ = xdr_zero; /* finish the write chunk list */
264			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
265		}
266	}
267
268	/*
269	 * Return header size.
270	 */
271	return (unsigned char *)iptr - (unsigned char *)headerp;
272
273out:
274	if (r_xprt->rx_ia.ri_memreg_strategy != RPCRDMA_FRMR) {
275		for (pos = 0; nchunks--;)
276			pos += rpcrdma_deregister_external(
277					&req->rl_segments[pos], r_xprt);
278	}
279	return n;
280}
281
282/*
283 * Marshal chunks. This routine returns the header length
284 * consumed by marshaling.
285 *
286 * Returns positive RPC/RDMA header size, or negative errno.
287 */
288
289ssize_t
290rpcrdma_marshal_chunks(struct rpc_rqst *rqst, ssize_t result)
291{
292	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
293	struct rpcrdma_msg *headerp = (struct rpcrdma_msg *)req->rl_base;
294
295	if (req->rl_rtype != rpcrdma_noch)
296		result = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
297					       headerp, req->rl_rtype);
298	else if (req->rl_wtype != rpcrdma_noch)
299		result = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
300					       headerp, req->rl_wtype);
301	return result;
302}
303
304/*
305 * Copy write data inline.
306 * This function is used for "small" requests. Data which is passed
307 * to RPC via iovecs (or page list) is copied directly into the
308 * pre-registered memory buffer for this request. For small amounts
309 * of data, this is efficient. The cutoff value is tunable.
310 */
311static int
312rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
313{
314	int i, npages, curlen;
315	int copy_len;
316	unsigned char *srcp, *destp;
317	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
318	int page_base;
319	struct page **ppages;
320
321	destp = rqst->rq_svec[0].iov_base;
322	curlen = rqst->rq_svec[0].iov_len;
323	destp += curlen;
324	/*
325	 * Do optional padding where it makes sense. Alignment of write
326	 * payload can help the server, if our setting is accurate.
327	 */
328	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
329	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
330		pad = 0;	/* don't pad this request */
331
332	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
333		__func__, pad, destp, rqst->rq_slen, curlen);
334
335	copy_len = rqst->rq_snd_buf.page_len;
336
337	if (rqst->rq_snd_buf.tail[0].iov_len) {
338		curlen = rqst->rq_snd_buf.tail[0].iov_len;
339		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
340			memmove(destp + copy_len,
341				rqst->rq_snd_buf.tail[0].iov_base, curlen);
342			r_xprt->rx_stats.pullup_copy_count += curlen;
343		}
344		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
345			__func__, destp + copy_len, curlen);
346		rqst->rq_svec[0].iov_len += curlen;
347	}
348	r_xprt->rx_stats.pullup_copy_count += copy_len;
349
350	page_base = rqst->rq_snd_buf.page_base;
351	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
352	page_base &= ~PAGE_MASK;
353	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
354	for (i = 0; copy_len && i < npages; i++) {
355		curlen = PAGE_SIZE - page_base;
356		if (curlen > copy_len)
357			curlen = copy_len;
358		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
359			__func__, i, destp, copy_len, curlen);
360		srcp = kmap_atomic(ppages[i]);
361		memcpy(destp, srcp+page_base, curlen);
362		kunmap_atomic(srcp);
363		rqst->rq_svec[0].iov_len += curlen;
364		destp += curlen;
365		copy_len -= curlen;
366		page_base = 0;
367	}
368	/* header now contains entire send message */
369	return pad;
370}
371
372/*
373 * Marshal a request: the primary job of this routine is to choose
374 * the transfer modes. See comments below.
375 *
376 * Uses multiple RDMA IOVs for a request:
377 *  [0] -- RPC RDMA header, which uses memory from the *start* of the
378 *         preregistered buffer that already holds the RPC data in
379 *         its middle.
380 *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
381 *  [2] -- optional padding.
382 *  [3] -- if padded, header only in [1] and data here.
383 *
384 * Returns zero on success, otherwise a negative errno.
385 */
386
387int
388rpcrdma_marshal_req(struct rpc_rqst *rqst)
389{
390	struct rpc_xprt *xprt = rqst->rq_xprt;
391	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
392	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
393	char *base;
394	size_t rpclen, padlen;
395	ssize_t hdrlen;
396	struct rpcrdma_msg *headerp;
397
398	/*
399	 * rpclen gets amount of data in first buffer, which is the
400	 * pre-registered buffer.
401	 */
402	base = rqst->rq_svec[0].iov_base;
403	rpclen = rqst->rq_svec[0].iov_len;
404
405	/* build RDMA header in private area at front */
406	headerp = (struct rpcrdma_msg *) req->rl_base;
407	/* don't htonl XID, it's already done in request */
408	headerp->rm_xid = rqst->rq_xid;
409	headerp->rm_vers = xdr_one;
410	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
411	headerp->rm_type = htonl(RDMA_MSG);
412
413	/*
414	 * Chunks needed for results?
415	 *
416	 * o If the expected result is under the inline threshold, all ops
417	 *   return as inline (but see later).
418	 * o Large non-read ops return as a single reply chunk.
419	 * o Large read ops return data as write chunk(s), header as inline.
420	 *
421	 * Note: the NFS code sending down multiple result segments implies
422	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
423	 */
424
425	/*
426	 * This code can handle read chunks, write chunks OR reply
427	 * chunks -- only one type. If the request is too big to fit
428	 * inline, then we will choose read chunks. If the request is
429	 * a READ, then use write chunks to separate the file data
430	 * into pages; otherwise use reply chunks.
431	 */
432	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
433		req->rl_wtype = rpcrdma_noch;
434	else if (rqst->rq_rcv_buf.page_len == 0)
435		req->rl_wtype = rpcrdma_replych;
436	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
437		req->rl_wtype = rpcrdma_writech;
438	else
439		req->rl_wtype = rpcrdma_replych;
440
441	/*
442	 * Chunks needed for arguments?
443	 *
444	 * o If the total request is under the inline threshold, all ops
445	 *   are sent as inline.
446	 * o Large non-write ops are sent with the entire message as a
447	 *   single read chunk (protocol 0-position special case).
448	 * o Large write ops transmit data as read chunk(s), header as
449	 *   inline.
450	 *
451	 * Note: the NFS code sending down multiple argument segments
452	 * implies the op is a write.
453	 * TBD check NFSv4 setacl
454	 */
455	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
456		req->rl_rtype = rpcrdma_noch;
457	else if (rqst->rq_snd_buf.page_len == 0)
458		req->rl_rtype = rpcrdma_areadch;
459	else
460		req->rl_rtype = rpcrdma_readch;
461
462	/* The following simplification is not true forever */
463	if (req->rl_rtype != rpcrdma_noch && req->rl_wtype == rpcrdma_replych)
464		req->rl_wtype = rpcrdma_noch;
465	if (req->rl_rtype != rpcrdma_noch && req->rl_wtype != rpcrdma_noch) {
466		dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
467			__func__);
468		return -EIO;
469	}
470
471	hdrlen = 28; /*sizeof *headerp;*/
472	padlen = 0;
473
474	/*
475	 * Pull up any extra send data into the preregistered buffer.
476	 * When padding is in use and applies to the transfer, insert
477	 * it and change the message type.
478	 */
479	if (req->rl_rtype == rpcrdma_noch) {
480
481		padlen = rpcrdma_inline_pullup(rqst,
482						RPCRDMA_INLINE_PAD_VALUE(rqst));
483
484		if (padlen) {
485			headerp->rm_type = htonl(RDMA_MSGP);
486			headerp->rm_body.rm_padded.rm_align =
487				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
488			headerp->rm_body.rm_padded.rm_thresh =
489				htonl(RPCRDMA_INLINE_PAD_THRESH);
490			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
491			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
492			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
493			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
494			if (req->rl_wtype != rpcrdma_noch) {
495				dprintk("RPC:       %s: invalid chunk list\n",
496					__func__);
497				return -EIO;
498			}
499		} else {
500			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
501			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
502			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
503			/* new length after pullup */
504			rpclen = rqst->rq_svec[0].iov_len;
505			/*
506			 * Currently we try to not actually use read inline.
507			 * Reply chunks have the desirable property that
508			 * they land, packed, directly in the target buffers
509			 * without headers, so they require no fixup. The
510			 * additional RDMA Write op sends the same amount
511			 * of data, streams on-the-wire and adds no overhead
512			 * on receive. Therefore, we request a reply chunk
513			 * for non-writes wherever feasible and efficient.
514			 */
515			if (req->rl_wtype == rpcrdma_noch)
516				req->rl_wtype = rpcrdma_replych;
517		}
518	}
519
520	hdrlen = rpcrdma_marshal_chunks(rqst, hdrlen);
521	if (hdrlen < 0)
522		return hdrlen;
523
524	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
525		" headerp 0x%p base 0x%p lkey 0x%x\n",
526		__func__, transfertypes[req->rl_wtype], hdrlen, rpclen, padlen,
527		headerp, base, req->rl_iov.lkey);
528
529	/*
530	 * initialize send_iov's - normally only two: rdma chunk header and
531	 * single preregistered RPC header buffer, but if padding is present,
532	 * then use a preregistered (and zeroed) pad buffer between the RPC
533	 * header and any write data. In all non-rdma cases, any following
534	 * data has been copied into the RPC header buffer.
535	 */
536	req->rl_send_iov[0].addr = req->rl_iov.addr;
537	req->rl_send_iov[0].length = hdrlen;
538	req->rl_send_iov[0].lkey = req->rl_iov.lkey;
539
540	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
541	req->rl_send_iov[1].length = rpclen;
542	req->rl_send_iov[1].lkey = req->rl_iov.lkey;
543
544	req->rl_niovs = 2;
545
546	if (padlen) {
547		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
548
549		req->rl_send_iov[2].addr = ep->rep_pad.addr;
550		req->rl_send_iov[2].length = padlen;
551		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
552
553		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
554		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
555		req->rl_send_iov[3].lkey = req->rl_iov.lkey;
556
557		req->rl_niovs = 4;
558	}
559
560	return 0;
561}
562
563/*
564 * Chase down a received write or reply chunklist to get length
565 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
566 */
567static int
568rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
569{
570	unsigned int i, total_len;
571	struct rpcrdma_write_chunk *cur_wchunk;
572
573	i = ntohl(**iptrp);	/* get array count */
574	if (i > max)
575		return -1;
576	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
577	total_len = 0;
578	while (i--) {
579		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
580		ifdebug(FACILITY) {
581			u64 off;
582			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
583			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
584				__func__,
585				ntohl(seg->rs_length),
586				(unsigned long long)off,
587				ntohl(seg->rs_handle));
588		}
589		total_len += ntohl(seg->rs_length);
590		++cur_wchunk;
591	}
592	/* check and adjust for properly terminated write chunk */
593	if (wrchunk) {
594		__be32 *w = (__be32 *) cur_wchunk;
595		if (*w++ != xdr_zero)
596			return -1;
597		cur_wchunk = (struct rpcrdma_write_chunk *) w;
598	}
599	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
600		return -1;
601
602	*iptrp = (__be32 *) cur_wchunk;
603	return total_len;
604}
605
606/*
607 * Scatter inline received data back into provided iov's.
608 */
609static void
610rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
611{
612	int i, npages, curlen, olen;
613	char *destp;
614	struct page **ppages;
615	int page_base;
616
617	curlen = rqst->rq_rcv_buf.head[0].iov_len;
618	if (curlen > copy_len) {	/* write chunk header fixup */
619		curlen = copy_len;
620		rqst->rq_rcv_buf.head[0].iov_len = curlen;
621	}
622
623	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
624		__func__, srcp, copy_len, curlen);
625
626	/* Shift pointer for first receive segment only */
627	rqst->rq_rcv_buf.head[0].iov_base = srcp;
628	srcp += curlen;
629	copy_len -= curlen;
630
631	olen = copy_len;
632	i = 0;
633	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
634	page_base = rqst->rq_rcv_buf.page_base;
635	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
636	page_base &= ~PAGE_MASK;
637
638	if (copy_len && rqst->rq_rcv_buf.page_len) {
639		npages = PAGE_ALIGN(page_base +
640			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
641		for (; i < npages; i++) {
642			curlen = PAGE_SIZE - page_base;
643			if (curlen > copy_len)
644				curlen = copy_len;
645			dprintk("RPC:       %s: page %d"
646				" srcp 0x%p len %d curlen %d\n",
647				__func__, i, srcp, copy_len, curlen);
648			destp = kmap_atomic(ppages[i]);
649			memcpy(destp + page_base, srcp, curlen);
650			flush_dcache_page(ppages[i]);
651			kunmap_atomic(destp);
652			srcp += curlen;
653			copy_len -= curlen;
654			if (copy_len == 0)
655				break;
656			page_base = 0;
657		}
658	}
659
660	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
661		curlen = copy_len;
662		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
663			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
664		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
665			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
666		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
667			__func__, srcp, copy_len, curlen);
668		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
669		copy_len -= curlen; ++i;
670	} else
671		rqst->rq_rcv_buf.tail[0].iov_len = 0;
672
673	if (pad) {
674		/* implicit padding on terminal chunk */
675		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
676		while (pad--)
677			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
678	}
679
680	if (copy_len)
681		dprintk("RPC:       %s: %d bytes in"
682			" %d extra segments (%d lost)\n",
683			__func__, olen, i, copy_len);
684
685	/* TBD avoid a warning from call_decode() */
686	rqst->rq_private_buf = rqst->rq_rcv_buf;
687}
688
689void
690rpcrdma_connect_worker(struct work_struct *work)
691{
692	struct rpcrdma_ep *ep =
693		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
694	struct rpc_xprt *xprt = ep->rep_xprt;
695
696	spin_lock_bh(&xprt->transport_lock);
697	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
698		++xprt->connect_cookie;
699	if (ep->rep_connected > 0) {
700		if (!xprt_test_and_set_connected(xprt))
701			xprt_wake_pending_tasks(xprt, 0);
702	} else {
703		if (xprt_test_and_clear_connected(xprt))
704			xprt_wake_pending_tasks(xprt, -ENOTCONN);
705	}
706	spin_unlock_bh(&xprt->transport_lock);
707}
708
709/*
710 * This function is called when an async event is posted to
711 * the connection which changes the connection state. All it
712 * does at this point is mark the connection up/down, the rpc
713 * timers do the rest.
714 */
715void
716rpcrdma_conn_func(struct rpcrdma_ep *ep)
717{
718	schedule_delayed_work(&ep->rep_connect_worker, 0);
719}
720
721/*
722 * Called as a tasklet to do req/reply match and complete a request
723 * Errors must result in the RPC task either being awakened, or
724 * allowed to timeout, to discover the errors at that time.
725 */
726void
727rpcrdma_reply_handler(struct rpcrdma_rep *rep)
728{
729	struct rpcrdma_msg *headerp;
730	struct rpcrdma_req *req;
731	struct rpc_rqst *rqst;
732	struct rpc_xprt *xprt = rep->rr_xprt;
733	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
734	__be32 *iptr;
735	int rdmalen, status;
736	unsigned long cwnd;
737
738	/* Check status. If bad, signal disconnect and return rep to pool */
739	if (rep->rr_len == ~0U) {
740		rpcrdma_recv_buffer_put(rep);
741		if (r_xprt->rx_ep.rep_connected == 1) {
742			r_xprt->rx_ep.rep_connected = -EIO;
743			rpcrdma_conn_func(&r_xprt->rx_ep);
744		}
745		return;
746	}
747	if (rep->rr_len < 28) {
748		dprintk("RPC:       %s: short/invalid reply\n", __func__);
749		goto repost;
750	}
751	headerp = (struct rpcrdma_msg *) rep->rr_base;
752	if (headerp->rm_vers != xdr_one) {
753		dprintk("RPC:       %s: invalid version %d\n",
754			__func__, ntohl(headerp->rm_vers));
755		goto repost;
756	}
757
758	/* Get XID and try for a match. */
759	spin_lock(&xprt->transport_lock);
760	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
761	if (rqst == NULL) {
762		spin_unlock(&xprt->transport_lock);
763		dprintk("RPC:       %s: reply 0x%p failed "
764			"to match any request xid 0x%08x len %d\n",
765			__func__, rep, headerp->rm_xid, rep->rr_len);
766repost:
767		r_xprt->rx_stats.bad_reply_count++;
768		rep->rr_func = rpcrdma_reply_handler;
769		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
770			rpcrdma_recv_buffer_put(rep);
771
772		return;
773	}
774
775	/* get request object */
776	req = rpcr_to_rdmar(rqst);
777	if (req->rl_reply) {
778		spin_unlock(&xprt->transport_lock);
779		dprintk("RPC:       %s: duplicate reply 0x%p to RPC "
780			"request 0x%p: xid 0x%08x\n", __func__, rep, req,
781			headerp->rm_xid);
782		goto repost;
783	}
784
785	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
786		"                   RPC request 0x%p xid 0x%08x\n",
787			__func__, rep, req, rqst, headerp->rm_xid);
788
789	/* from here on, the reply is no longer an orphan */
790	req->rl_reply = rep;
791	xprt->reestablish_timeout = 0;
792
793	/* check for expected message types */
794	/* The order of some of these tests is important. */
795	switch (headerp->rm_type) {
796	case htonl(RDMA_MSG):
797		/* never expect read chunks */
798		/* never expect reply chunks (two ways to check) */
799		/* never expect write chunks without having offered RDMA */
800		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
801		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
802		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
803		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
804		     req->rl_nchunks == 0))
805			goto badheader;
806		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
807			/* count any expected write chunks in read reply */
808			/* start at write chunk array count */
809			iptr = &headerp->rm_body.rm_chunks[2];
810			rdmalen = rpcrdma_count_chunks(rep,
811						req->rl_nchunks, 1, &iptr);
812			/* check for validity, and no reply chunk after */
813			if (rdmalen < 0 || *iptr++ != xdr_zero)
814				goto badheader;
815			rep->rr_len -=
816			    ((unsigned char *)iptr - (unsigned char *)headerp);
817			status = rep->rr_len + rdmalen;
818			r_xprt->rx_stats.total_rdma_reply += rdmalen;
819			/* special case - last chunk may omit padding */
820			if (rdmalen &= 3) {
821				rdmalen = 4 - rdmalen;
822				status += rdmalen;
823			}
824		} else {
825			/* else ordinary inline */
826			rdmalen = 0;
827			iptr = (__be32 *)((unsigned char *)headerp + 28);
828			rep->rr_len -= 28; /*sizeof *headerp;*/
829			status = rep->rr_len;
830		}
831		/* Fix up the rpc results for upper layer */
832		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
833		break;
834
835	case htonl(RDMA_NOMSG):
836		/* never expect read or write chunks, always reply chunks */
837		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
838		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
839		    headerp->rm_body.rm_chunks[2] != xdr_one ||
840		    req->rl_nchunks == 0)
841			goto badheader;
842		iptr = (__be32 *)((unsigned char *)headerp + 28);
843		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
844		if (rdmalen < 0)
845			goto badheader;
846		r_xprt->rx_stats.total_rdma_reply += rdmalen;
847		/* Reply chunk buffer already is the reply vector - no fixup. */
848		status = rdmalen;
849		break;
850
851badheader:
852	default:
853		dprintk("%s: invalid rpcrdma reply header (type %d):"
854				" chunks[012] == %d %d %d"
855				" expected chunks <= %d\n",
856				__func__, ntohl(headerp->rm_type),
857				headerp->rm_body.rm_chunks[0],
858				headerp->rm_body.rm_chunks[1],
859				headerp->rm_body.rm_chunks[2],
860				req->rl_nchunks);
861		status = -EIO;
862		r_xprt->rx_stats.bad_reply_count++;
863		break;
864	}
865
866	cwnd = xprt->cwnd;
867	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
868	if (xprt->cwnd > cwnd)
869		xprt_release_rqst_cong(rqst->rq_task);
870
871	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
872			__func__, xprt, rqst, status);
873	xprt_complete_rqst(rqst->rq_task, status);
874	spin_unlock(&xprt->transport_lock);
875}
876