rpc_rdma.c revision 50e1092b3a119bb4660bb6bd2e1749dc2d8ac62e
1/*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 *      Redistributions of source code must retain the above copyright
15 *      notice, this list of conditions and the following disclaimer.
16 *
17 *      Redistributions in binary form must reproduce the above
18 *      copyright notice, this list of conditions and the following
19 *      disclaimer in the documentation and/or other materials provided
20 *      with the distribution.
21 *
22 *      Neither the name of the Network Appliance, Inc. nor the names of
23 *      its contributors may be used to endorse or promote products
24 *      derived from this software without specific prior written
25 *      permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * rpc_rdma.c
42 *
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
46 */
47
48#include "xprt_rdma.h"
49
50#include <linux/highmem.h>
51
52#ifdef RPC_DEBUG
53# define RPCDBG_FACILITY	RPCDBG_TRANS
54#endif
55
56enum rpcrdma_chunktype {
57	rpcrdma_noch = 0,
58	rpcrdma_readch,
59	rpcrdma_areadch,
60	rpcrdma_writech,
61	rpcrdma_replych
62};
63
64#ifdef RPC_DEBUG
65static const char transfertypes[][12] = {
66	"pure inline",	/* no chunks */
67	" read chunk",	/* some argument via rdma read */
68	"*read chunk",	/* entire request via rdma read */
69	"write chunk",	/* some result via rdma write */
70	"reply chunk"	/* entire reply via rdma write */
71};
72#endif
73
74/*
75 * Chunk assembly from upper layer xdr_buf.
76 *
77 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78 * elements. Segments are then coalesced when registered, if possible
79 * within the selected memreg mode.
80 *
81 * Note, this routine is never called if the connection's memory
82 * registration strategy is 0 (bounce buffers).
83 */
84
85static int
86rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, int pos,
87	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
88{
89	int len, n = 0, p;
90
91	if (pos == 0 && xdrbuf->head[0].iov_len) {
92		seg[n].mr_page = NULL;
93		seg[n].mr_offset = xdrbuf->head[0].iov_base;
94		seg[n].mr_len = xdrbuf->head[0].iov_len;
95		++n;
96	}
97
98	if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
99		if (n == nsegs)
100			return 0;
101		seg[n].mr_page = xdrbuf->pages[0];
102		seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
103		seg[n].mr_len = min_t(u32,
104			PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
105		len = xdrbuf->page_len - seg[n].mr_len;
106		++n;
107		p = 1;
108		while (len > 0) {
109			if (n == nsegs)
110				return 0;
111			seg[n].mr_page = xdrbuf->pages[p];
112			seg[n].mr_offset = NULL;
113			seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
114			len -= seg[n].mr_len;
115			++n;
116			++p;
117		}
118	}
119
120	if (xdrbuf->tail[0].iov_len) {
121		if (n == nsegs)
122			return 0;
123		seg[n].mr_page = NULL;
124		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
125		seg[n].mr_len = xdrbuf->tail[0].iov_len;
126		++n;
127	}
128
129	return n;
130}
131
132/*
133 * Create read/write chunk lists, and reply chunks, for RDMA
134 *
135 *   Assume check against THRESHOLD has been done, and chunks are required.
136 *   Assume only encoding one list entry for read|write chunks. The NFSv3
137 *     protocol is simple enough to allow this as it only has a single "bulk
138 *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
139 *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
140 *
141 * When used for a single reply chunk (which is a special write
142 * chunk used for the entire reply, rather than just the data), it
143 * is used primarily for READDIR and READLINK which would otherwise
144 * be severely size-limited by a small rdma inline read max. The server
145 * response will come back as an RDMA Write, followed by a message
146 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
147 * chunks do not provide data alignment, however they do not require
148 * "fixup" (moving the response to the upper layer buffer) either.
149 *
150 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
151 *
152 *  Read chunklist (a linked list):
153 *   N elements, position P (same P for all chunks of same arg!):
154 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
155 *
156 *  Write chunklist (a list of (one) counted array):
157 *   N elements:
158 *    1 - N - HLOO - HLOO - ... - HLOO - 0
159 *
160 *  Reply chunk (a counted array):
161 *   N elements:
162 *    1 - N - HLOO - HLOO - ... - HLOO
163 */
164
165static unsigned int
166rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
167		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
168{
169	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
170	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
171	int nsegs, nchunks = 0;
172	int pos;
173	struct rpcrdma_mr_seg *seg = req->rl_segments;
174	struct rpcrdma_read_chunk *cur_rchunk = NULL;
175	struct rpcrdma_write_array *warray = NULL;
176	struct rpcrdma_write_chunk *cur_wchunk = NULL;
177	__be32 *iptr = headerp->rm_body.rm_chunks;
178
179	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
180		/* a read chunk - server will RDMA Read our memory */
181		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
182	} else {
183		/* a write or reply chunk - server will RDMA Write our memory */
184		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
185		if (type == rpcrdma_replych)
186			*iptr++ = xdr_zero;	/* a NULL write chunk list */
187		warray = (struct rpcrdma_write_array *) iptr;
188		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
189	}
190
191	if (type == rpcrdma_replych || type == rpcrdma_areadch)
192		pos = 0;
193	else
194		pos = target->head[0].iov_len;
195
196	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
197	if (nsegs == 0)
198		return 0;
199
200	do {
201		/* bind/register the memory, then build chunk from result. */
202		int n = rpcrdma_register_external(seg, nsegs,
203						cur_wchunk != NULL, r_xprt);
204		if (n <= 0)
205			goto out;
206		if (cur_rchunk) {	/* read */
207			cur_rchunk->rc_discrim = xdr_one;
208			/* all read chunks have the same "position" */
209			cur_rchunk->rc_position = htonl(pos);
210			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
211			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
212			xdr_encode_hyper(
213					(__be32 *)&cur_rchunk->rc_target.rs_offset,
214					seg->mr_base);
215			dprintk("RPC:       %s: read chunk "
216				"elem %d@0x%llx:0x%x pos %d (%s)\n", __func__,
217				seg->mr_len, (unsigned long long)seg->mr_base,
218				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
219			cur_rchunk++;
220			r_xprt->rx_stats.read_chunk_count++;
221		} else {		/* write/reply */
222			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
223			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
224			xdr_encode_hyper(
225					(__be32 *)&cur_wchunk->wc_target.rs_offset,
226					seg->mr_base);
227			dprintk("RPC:       %s: %s chunk "
228				"elem %d@0x%llx:0x%x (%s)\n", __func__,
229				(type == rpcrdma_replych) ? "reply" : "write",
230				seg->mr_len, (unsigned long long)seg->mr_base,
231				seg->mr_rkey, n < nsegs ? "more" : "last");
232			cur_wchunk++;
233			if (type == rpcrdma_replych)
234				r_xprt->rx_stats.reply_chunk_count++;
235			else
236				r_xprt->rx_stats.write_chunk_count++;
237			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
238		}
239		nchunks++;
240		seg   += n;
241		nsegs -= n;
242	} while (nsegs);
243
244	/* success. all failures return above */
245	req->rl_nchunks = nchunks;
246
247	BUG_ON(nchunks == 0);
248
249	/*
250	 * finish off header. If write, marshal discrim and nchunks.
251	 */
252	if (cur_rchunk) {
253		iptr = (__be32 *) cur_rchunk;
254		*iptr++ = xdr_zero;	/* finish the read chunk list */
255		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
256		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
257	} else {
258		warray->wc_discrim = xdr_one;
259		warray->wc_nchunks = htonl(nchunks);
260		iptr = (__be32 *) cur_wchunk;
261		if (type == rpcrdma_writech) {
262			*iptr++ = xdr_zero; /* finish the write chunk list */
263			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
264		}
265	}
266
267	/*
268	 * Return header size.
269	 */
270	return (unsigned char *)iptr - (unsigned char *)headerp;
271
272out:
273	for (pos = 0; nchunks--;)
274		pos += rpcrdma_deregister_external(
275				&req->rl_segments[pos], r_xprt, NULL);
276	return 0;
277}
278
279/*
280 * Copy write data inline.
281 * This function is used for "small" requests. Data which is passed
282 * to RPC via iovecs (or page list) is copied directly into the
283 * pre-registered memory buffer for this request. For small amounts
284 * of data, this is efficient. The cutoff value is tunable.
285 */
286static int
287rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
288{
289	int i, npages, curlen;
290	int copy_len;
291	unsigned char *srcp, *destp;
292	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
293
294	destp = rqst->rq_svec[0].iov_base;
295	curlen = rqst->rq_svec[0].iov_len;
296	destp += curlen;
297	/*
298	 * Do optional padding where it makes sense. Alignment of write
299	 * payload can help the server, if our setting is accurate.
300	 */
301	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
302	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
303		pad = 0;	/* don't pad this request */
304
305	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
306		__func__, pad, destp, rqst->rq_slen, curlen);
307
308	copy_len = rqst->rq_snd_buf.page_len;
309	r_xprt->rx_stats.pullup_copy_count += copy_len;
310	npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
311	for (i = 0; copy_len && i < npages; i++) {
312		if (i == 0)
313			curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
314		else
315			curlen = PAGE_SIZE;
316		if (curlen > copy_len)
317			curlen = copy_len;
318		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
319			__func__, i, destp, copy_len, curlen);
320		srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
321					KM_SKB_SUNRPC_DATA);
322		if (i == 0)
323			memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
324		else
325			memcpy(destp, srcp, curlen);
326		kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
327		rqst->rq_svec[0].iov_len += curlen;
328		destp += curlen;
329		copy_len -= curlen;
330	}
331	if (rqst->rq_snd_buf.tail[0].iov_len) {
332		curlen = rqst->rq_snd_buf.tail[0].iov_len;
333		if (destp != rqst->rq_snd_buf.tail[0].iov_base) {
334			memcpy(destp,
335				rqst->rq_snd_buf.tail[0].iov_base, curlen);
336			r_xprt->rx_stats.pullup_copy_count += curlen;
337		}
338		dprintk("RPC:       %s: tail destp 0x%p len %d curlen %d\n",
339			__func__, destp, copy_len, curlen);
340		rqst->rq_svec[0].iov_len += curlen;
341	}
342	/* header now contains entire send message */
343	return pad;
344}
345
346/*
347 * Marshal a request: the primary job of this routine is to choose
348 * the transfer modes. See comments below.
349 *
350 * Uses multiple RDMA IOVs for a request:
351 *  [0] -- RPC RDMA header, which uses memory from the *start* of the
352 *         preregistered buffer that already holds the RPC data in
353 *         its middle.
354 *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
355 *  [2] -- optional padding.
356 *  [3] -- if padded, header only in [1] and data here.
357 */
358
359int
360rpcrdma_marshal_req(struct rpc_rqst *rqst)
361{
362	struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
363	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
364	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
365	char *base;
366	size_t hdrlen, rpclen, padlen;
367	enum rpcrdma_chunktype rtype, wtype;
368	struct rpcrdma_msg *headerp;
369
370	/*
371	 * rpclen gets amount of data in first buffer, which is the
372	 * pre-registered buffer.
373	 */
374	base = rqst->rq_svec[0].iov_base;
375	rpclen = rqst->rq_svec[0].iov_len;
376
377	/* build RDMA header in private area at front */
378	headerp = (struct rpcrdma_msg *) req->rl_base;
379	/* don't htonl XID, it's already done in request */
380	headerp->rm_xid = rqst->rq_xid;
381	headerp->rm_vers = xdr_one;
382	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
383	headerp->rm_type = __constant_htonl(RDMA_MSG);
384
385	/*
386	 * Chunks needed for results?
387	 *
388	 * o If the expected result is under the inline threshold, all ops
389	 *   return as inline (but see later).
390	 * o Large non-read ops return as a single reply chunk.
391	 * o Large read ops return data as write chunk(s), header as inline.
392	 *
393	 * Note: the NFS code sending down multiple result segments implies
394	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
395	 */
396
397	/*
398	 * This code can handle read chunks, write chunks OR reply
399	 * chunks -- only one type. If the request is too big to fit
400	 * inline, then we will choose read chunks. If the request is
401	 * a READ, then use write chunks to separate the file data
402	 * into pages; otherwise use reply chunks.
403	 */
404	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
405		wtype = rpcrdma_noch;
406	else if (rqst->rq_rcv_buf.page_len == 0)
407		wtype = rpcrdma_replych;
408	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
409		wtype = rpcrdma_writech;
410	else
411		wtype = rpcrdma_replych;
412
413	/*
414	 * Chunks needed for arguments?
415	 *
416	 * o If the total request is under the inline threshold, all ops
417	 *   are sent as inline.
418	 * o Large non-write ops are sent with the entire message as a
419	 *   single read chunk (protocol 0-position special case).
420	 * o Large write ops transmit data as read chunk(s), header as
421	 *   inline.
422	 *
423	 * Note: the NFS code sending down multiple argument segments
424	 * implies the op is a write.
425	 * TBD check NFSv4 setacl
426	 */
427	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
428		rtype = rpcrdma_noch;
429	else if (rqst->rq_snd_buf.page_len == 0)
430		rtype = rpcrdma_areadch;
431	else
432		rtype = rpcrdma_readch;
433
434	/* The following simplification is not true forever */
435	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
436		wtype = rpcrdma_noch;
437	BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
438
439	if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
440	    (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
441		/* forced to "pure inline"? */
442		dprintk("RPC:       %s: too much data (%d/%d) for inline\n",
443			__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
444		return -1;
445	}
446
447	hdrlen = 28; /*sizeof *headerp;*/
448	padlen = 0;
449
450	/*
451	 * Pull up any extra send data into the preregistered buffer.
452	 * When padding is in use and applies to the transfer, insert
453	 * it and change the message type.
454	 */
455	if (rtype == rpcrdma_noch) {
456
457		padlen = rpcrdma_inline_pullup(rqst,
458						RPCRDMA_INLINE_PAD_VALUE(rqst));
459
460		if (padlen) {
461			headerp->rm_type = __constant_htonl(RDMA_MSGP);
462			headerp->rm_body.rm_padded.rm_align =
463				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
464			headerp->rm_body.rm_padded.rm_thresh =
465				__constant_htonl(RPCRDMA_INLINE_PAD_THRESH);
466			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
467			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
468			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
469			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
470			BUG_ON(wtype != rpcrdma_noch);
471
472		} else {
473			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
474			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
475			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
476			/* new length after pullup */
477			rpclen = rqst->rq_svec[0].iov_len;
478			/*
479			 * Currently we try to not actually use read inline.
480			 * Reply chunks have the desirable property that
481			 * they land, packed, directly in the target buffers
482			 * without headers, so they require no fixup. The
483			 * additional RDMA Write op sends the same amount
484			 * of data, streams on-the-wire and adds no overhead
485			 * on receive. Therefore, we request a reply chunk
486			 * for non-writes wherever feasible and efficient.
487			 */
488			if (wtype == rpcrdma_noch &&
489			    r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
490				wtype = rpcrdma_replych;
491		}
492	}
493
494	/*
495	 * Marshal chunks. This routine will return the header length
496	 * consumed by marshaling.
497	 */
498	if (rtype != rpcrdma_noch) {
499		hdrlen = rpcrdma_create_chunks(rqst,
500					&rqst->rq_snd_buf, headerp, rtype);
501		wtype = rtype;	/* simplify dprintk */
502
503	} else if (wtype != rpcrdma_noch) {
504		hdrlen = rpcrdma_create_chunks(rqst,
505					&rqst->rq_rcv_buf, headerp, wtype);
506	}
507
508	if (hdrlen == 0)
509		return -1;
510
511	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd\n"
512		"                   headerp 0x%p base 0x%p lkey 0x%x\n",
513		__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
514		headerp, base, req->rl_iov.lkey);
515
516	/*
517	 * initialize send_iov's - normally only two: rdma chunk header and
518	 * single preregistered RPC header buffer, but if padding is present,
519	 * then use a preregistered (and zeroed) pad buffer between the RPC
520	 * header and any write data. In all non-rdma cases, any following
521	 * data has been copied into the RPC header buffer.
522	 */
523	req->rl_send_iov[0].addr = req->rl_iov.addr;
524	req->rl_send_iov[0].length = hdrlen;
525	req->rl_send_iov[0].lkey = req->rl_iov.lkey;
526
527	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
528	req->rl_send_iov[1].length = rpclen;
529	req->rl_send_iov[1].lkey = req->rl_iov.lkey;
530
531	req->rl_niovs = 2;
532
533	if (padlen) {
534		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
535
536		req->rl_send_iov[2].addr = ep->rep_pad.addr;
537		req->rl_send_iov[2].length = padlen;
538		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
539
540		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
541		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
542		req->rl_send_iov[3].lkey = req->rl_iov.lkey;
543
544		req->rl_niovs = 4;
545	}
546
547	return 0;
548}
549
550/*
551 * Chase down a received write or reply chunklist to get length
552 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
553 */
554static int
555rpcrdma_count_chunks(struct rpcrdma_rep *rep, int max, int wrchunk, __be32 **iptrp)
556{
557	unsigned int i, total_len;
558	struct rpcrdma_write_chunk *cur_wchunk;
559
560	i = ntohl(**iptrp);	/* get array count */
561	if (i > max)
562		return -1;
563	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
564	total_len = 0;
565	while (i--) {
566		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
567		ifdebug(FACILITY) {
568			u64 off;
569			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
570			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
571				__func__,
572				ntohl(seg->rs_length),
573				(unsigned long long)off,
574				ntohl(seg->rs_handle));
575		}
576		total_len += ntohl(seg->rs_length);
577		++cur_wchunk;
578	}
579	/* check and adjust for properly terminated write chunk */
580	if (wrchunk) {
581		__be32 *w = (__be32 *) cur_wchunk;
582		if (*w++ != xdr_zero)
583			return -1;
584		cur_wchunk = (struct rpcrdma_write_chunk *) w;
585	}
586	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
587		return -1;
588
589	*iptrp = (__be32 *) cur_wchunk;
590	return total_len;
591}
592
593/*
594 * Scatter inline received data back into provided iov's.
595 */
596static void
597rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len)
598{
599	int i, npages, curlen, olen;
600	char *destp;
601
602	curlen = rqst->rq_rcv_buf.head[0].iov_len;
603	if (curlen > copy_len) {	/* write chunk header fixup */
604		curlen = copy_len;
605		rqst->rq_rcv_buf.head[0].iov_len = curlen;
606	}
607
608	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
609		__func__, srcp, copy_len, curlen);
610
611	/* Shift pointer for first receive segment only */
612	rqst->rq_rcv_buf.head[0].iov_base = srcp;
613	srcp += curlen;
614	copy_len -= curlen;
615
616	olen = copy_len;
617	i = 0;
618	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
619	if (copy_len && rqst->rq_rcv_buf.page_len) {
620		npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
621			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
622		for (; i < npages; i++) {
623			if (i == 0)
624				curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
625			else
626				curlen = PAGE_SIZE;
627			if (curlen > copy_len)
628				curlen = copy_len;
629			dprintk("RPC:       %s: page %d"
630				" srcp 0x%p len %d curlen %d\n",
631				__func__, i, srcp, copy_len, curlen);
632			destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
633						KM_SKB_SUNRPC_DATA);
634			if (i == 0)
635				memcpy(destp + rqst->rq_rcv_buf.page_base,
636						srcp, curlen);
637			else
638				memcpy(destp, srcp, curlen);
639			flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
640			kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
641			srcp += curlen;
642			copy_len -= curlen;
643			if (copy_len == 0)
644				break;
645		}
646		rqst->rq_rcv_buf.page_len = olen - copy_len;
647	} else
648		rqst->rq_rcv_buf.page_len = 0;
649
650	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
651		curlen = copy_len;
652		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
653			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
654		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
655			memcpy(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
656		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
657			__func__, srcp, copy_len, curlen);
658		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
659		copy_len -= curlen; ++i;
660	} else
661		rqst->rq_rcv_buf.tail[0].iov_len = 0;
662
663	if (copy_len)
664		dprintk("RPC:       %s: %d bytes in"
665			" %d extra segments (%d lost)\n",
666			__func__, olen, i, copy_len);
667
668	/* TBD avoid a warning from call_decode() */
669	rqst->rq_private_buf = rqst->rq_rcv_buf;
670}
671
672/*
673 * This function is called when an async event is posted to
674 * the connection which changes the connection state. All it
675 * does at this point is mark the connection up/down, the rpc
676 * timers do the rest.
677 */
678void
679rpcrdma_conn_func(struct rpcrdma_ep *ep)
680{
681	struct rpc_xprt *xprt = ep->rep_xprt;
682
683	spin_lock_bh(&xprt->transport_lock);
684	if (ep->rep_connected > 0) {
685		if (!xprt_test_and_set_connected(xprt))
686			xprt_wake_pending_tasks(xprt, 0);
687	} else {
688		if (xprt_test_and_clear_connected(xprt))
689			xprt_wake_pending_tasks(xprt, ep->rep_connected);
690	}
691	spin_unlock_bh(&xprt->transport_lock);
692}
693
694/*
695 * This function is called when memory window unbind which we are waiting
696 * for completes. Just use rr_func (zeroed by upcall) to signal completion.
697 */
698static void
699rpcrdma_unbind_func(struct rpcrdma_rep *rep)
700{
701	wake_up(&rep->rr_unbind);
702}
703
704/*
705 * Called as a tasklet to do req/reply match and complete a request
706 * Errors must result in the RPC task either being awakened, or
707 * allowed to timeout, to discover the errors at that time.
708 */
709void
710rpcrdma_reply_handler(struct rpcrdma_rep *rep)
711{
712	struct rpcrdma_msg *headerp;
713	struct rpcrdma_req *req;
714	struct rpc_rqst *rqst;
715	struct rpc_xprt *xprt = rep->rr_xprt;
716	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
717	__be32 *iptr;
718	int i, rdmalen, status;
719
720	/* Check status. If bad, signal disconnect and return rep to pool */
721	if (rep->rr_len == ~0U) {
722		rpcrdma_recv_buffer_put(rep);
723		if (r_xprt->rx_ep.rep_connected == 1) {
724			r_xprt->rx_ep.rep_connected = -EIO;
725			rpcrdma_conn_func(&r_xprt->rx_ep);
726		}
727		return;
728	}
729	if (rep->rr_len < 28) {
730		dprintk("RPC:       %s: short/invalid reply\n", __func__);
731		goto repost;
732	}
733	headerp = (struct rpcrdma_msg *) rep->rr_base;
734	if (headerp->rm_vers != xdr_one) {
735		dprintk("RPC:       %s: invalid version %d\n",
736			__func__, ntohl(headerp->rm_vers));
737		goto repost;
738	}
739
740	/* Get XID and try for a match. */
741	spin_lock(&xprt->transport_lock);
742	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
743	if (rqst == NULL) {
744		spin_unlock(&xprt->transport_lock);
745		dprintk("RPC:       %s: reply 0x%p failed "
746			"to match any request xid 0x%08x len %d\n",
747			__func__, rep, headerp->rm_xid, rep->rr_len);
748repost:
749		r_xprt->rx_stats.bad_reply_count++;
750		rep->rr_func = rpcrdma_reply_handler;
751		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
752			rpcrdma_recv_buffer_put(rep);
753
754		return;
755	}
756
757	/* get request object */
758	req = rpcr_to_rdmar(rqst);
759
760	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
761		"                   RPC request 0x%p xid 0x%08x\n",
762			__func__, rep, req, rqst, headerp->rm_xid);
763
764	BUG_ON(!req || req->rl_reply);
765
766	/* from here on, the reply is no longer an orphan */
767	req->rl_reply = rep;
768
769	/* check for expected message types */
770	/* The order of some of these tests is important. */
771	switch (headerp->rm_type) {
772	case __constant_htonl(RDMA_MSG):
773		/* never expect read chunks */
774		/* never expect reply chunks (two ways to check) */
775		/* never expect write chunks without having offered RDMA */
776		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
777		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
778		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
779		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
780		     req->rl_nchunks == 0))
781			goto badheader;
782		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
783			/* count any expected write chunks in read reply */
784			/* start at write chunk array count */
785			iptr = &headerp->rm_body.rm_chunks[2];
786			rdmalen = rpcrdma_count_chunks(rep,
787						req->rl_nchunks, 1, &iptr);
788			/* check for validity, and no reply chunk after */
789			if (rdmalen < 0 || *iptr++ != xdr_zero)
790				goto badheader;
791			rep->rr_len -=
792			    ((unsigned char *)iptr - (unsigned char *)headerp);
793			status = rep->rr_len + rdmalen;
794			r_xprt->rx_stats.total_rdma_reply += rdmalen;
795		} else {
796			/* else ordinary inline */
797			iptr = (__be32 *)((unsigned char *)headerp + 28);
798			rep->rr_len -= 28; /*sizeof *headerp;*/
799			status = rep->rr_len;
800		}
801		/* Fix up the rpc results for upper layer */
802		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len);
803		break;
804
805	case __constant_htonl(RDMA_NOMSG):
806		/* never expect read or write chunks, always reply chunks */
807		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
808		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
809		    headerp->rm_body.rm_chunks[2] != xdr_one ||
810		    req->rl_nchunks == 0)
811			goto badheader;
812		iptr = (__be32 *)((unsigned char *)headerp + 28);
813		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
814		if (rdmalen < 0)
815			goto badheader;
816		r_xprt->rx_stats.total_rdma_reply += rdmalen;
817		/* Reply chunk buffer already is the reply vector - no fixup. */
818		status = rdmalen;
819		break;
820
821badheader:
822	default:
823		dprintk("%s: invalid rpcrdma reply header (type %d):"
824				" chunks[012] == %d %d %d"
825				" expected chunks <= %d\n",
826				__func__, ntohl(headerp->rm_type),
827				headerp->rm_body.rm_chunks[0],
828				headerp->rm_body.rm_chunks[1],
829				headerp->rm_body.rm_chunks[2],
830				req->rl_nchunks);
831		status = -EIO;
832		r_xprt->rx_stats.bad_reply_count++;
833		break;
834	}
835
836	/* If using mw bind, start the deregister process now. */
837	/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
838	if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
839	case RPCRDMA_MEMWINDOWS:
840		for (i = 0; req->rl_nchunks-- > 1;)
841			i += rpcrdma_deregister_external(
842				&req->rl_segments[i], r_xprt, NULL);
843		/* Optionally wait (not here) for unbinds to complete */
844		rep->rr_func = rpcrdma_unbind_func;
845		(void) rpcrdma_deregister_external(&req->rl_segments[i],
846						   r_xprt, rep);
847		break;
848	case RPCRDMA_MEMWINDOWS_ASYNC:
849		for (i = 0; req->rl_nchunks--;)
850			i += rpcrdma_deregister_external(&req->rl_segments[i],
851							 r_xprt, NULL);
852		break;
853	default:
854		break;
855	}
856
857	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
858			__func__, xprt, rqst, status);
859	xprt_complete_rqst(rqst->rq_task, status);
860	spin_unlock(&xprt->transport_lock);
861}
862