security.c revision 2e72d51b4ac32989496870cd8171b3682fea1839
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 *	This program is free software; you can redistribute it and/or modify
9 *	it under the terms of the GNU General Public License as published by
10 *	the Free Software Foundation; either version 2 of the License, or
11 *	(at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19#include <linux/integrity.h>
20#include <linux/ima.h>
21#include <linux/evm.h>
22#include <linux/fsnotify.h>
23#include <linux/mman.h>
24#include <linux/mount.h>
25#include <linux/personality.h>
26#include <linux/backing-dev.h>
27#include <net/flow.h>
28
29#define MAX_LSM_EVM_XATTR	2
30
31/* Boot-time LSM user choice */
32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33	CONFIG_DEFAULT_SECURITY;
34
35static struct security_operations *security_ops;
36static struct security_operations default_security_ops = {
37	.name	= "default",
38};
39
40static inline int __init verify(struct security_operations *ops)
41{
42	/* verify the security_operations structure exists */
43	if (!ops)
44		return -EINVAL;
45	security_fixup_ops(ops);
46	return 0;
47}
48
49static void __init do_security_initcalls(void)
50{
51	initcall_t *call;
52	call = __security_initcall_start;
53	while (call < __security_initcall_end) {
54		(*call) ();
55		call++;
56	}
57}
58
59/**
60 * security_init - initializes the security framework
61 *
62 * This should be called early in the kernel initialization sequence.
63 */
64int __init security_init(void)
65{
66	printk(KERN_INFO "Security Framework initialized\n");
67
68	security_fixup_ops(&default_security_ops);
69	security_ops = &default_security_ops;
70	do_security_initcalls();
71
72	return 0;
73}
74
75void reset_security_ops(void)
76{
77	security_ops = &default_security_ops;
78}
79
80/* Save user chosen LSM */
81static int __init choose_lsm(char *str)
82{
83	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84	return 1;
85}
86__setup("security=", choose_lsm);
87
88/**
89 * security_module_enable - Load given security module on boot ?
90 * @ops: a pointer to the struct security_operations that is to be checked.
91 *
92 * Each LSM must pass this method before registering its own operations
93 * to avoid security registration races. This method may also be used
94 * to check if your LSM is currently loaded during kernel initialization.
95 *
96 * Return true if:
97 *	-The passed LSM is the one chosen by user at boot time,
98 *	-or the passed LSM is configured as the default and the user did not
99 *	 choose an alternate LSM at boot time.
100 * Otherwise, return false.
101 */
102int __init security_module_enable(struct security_operations *ops)
103{
104	return !strcmp(ops->name, chosen_lsm);
105}
106
107/**
108 * register_security - registers a security framework with the kernel
109 * @ops: a pointer to the struct security_options that is to be registered
110 *
111 * This function allows a security module to register itself with the
112 * kernel security subsystem.  Some rudimentary checking is done on the @ops
113 * value passed to this function. You'll need to check first if your LSM
114 * is allowed to register its @ops by calling security_module_enable(@ops).
115 *
116 * If there is already a security module registered with the kernel,
117 * an error will be returned.  Otherwise %0 is returned on success.
118 */
119int __init register_security(struct security_operations *ops)
120{
121	if (verify(ops)) {
122		printk(KERN_DEBUG "%s could not verify "
123		       "security_operations structure.\n", __func__);
124		return -EINVAL;
125	}
126
127	if (security_ops != &default_security_ops)
128		return -EAGAIN;
129
130	security_ops = ops;
131
132	return 0;
133}
134
135/* Security operations */
136
137int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
138{
139#ifdef CONFIG_SECURITY_YAMA_STACKED
140	int rc;
141	rc = yama_ptrace_access_check(child, mode);
142	if (rc)
143		return rc;
144#endif
145	return security_ops->ptrace_access_check(child, mode);
146}
147
148int security_ptrace_traceme(struct task_struct *parent)
149{
150#ifdef CONFIG_SECURITY_YAMA_STACKED
151	int rc;
152	rc = yama_ptrace_traceme(parent);
153	if (rc)
154		return rc;
155#endif
156	return security_ops->ptrace_traceme(parent);
157}
158
159int security_capget(struct task_struct *target,
160		     kernel_cap_t *effective,
161		     kernel_cap_t *inheritable,
162		     kernel_cap_t *permitted)
163{
164	return security_ops->capget(target, effective, inheritable, permitted);
165}
166
167int security_capset(struct cred *new, const struct cred *old,
168		    const kernel_cap_t *effective,
169		    const kernel_cap_t *inheritable,
170		    const kernel_cap_t *permitted)
171{
172	return security_ops->capset(new, old,
173				    effective, inheritable, permitted);
174}
175
176int security_capable(const struct cred *cred, struct user_namespace *ns,
177		     int cap)
178{
179	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
180}
181
182int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
183			     int cap)
184{
185	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
186}
187
188int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189{
190	return security_ops->quotactl(cmds, type, id, sb);
191}
192
193int security_quota_on(struct dentry *dentry)
194{
195	return security_ops->quota_on(dentry);
196}
197
198int security_syslog(int type)
199{
200	return security_ops->syslog(type);
201}
202
203int security_settime(const struct timespec *ts, const struct timezone *tz)
204{
205	return security_ops->settime(ts, tz);
206}
207
208int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
209{
210	return security_ops->vm_enough_memory(mm, pages);
211}
212
213int security_bprm_set_creds(struct linux_binprm *bprm)
214{
215	return security_ops->bprm_set_creds(bprm);
216}
217
218int security_bprm_check(struct linux_binprm *bprm)
219{
220	int ret;
221
222	ret = security_ops->bprm_check_security(bprm);
223	if (ret)
224		return ret;
225	return ima_bprm_check(bprm);
226}
227
228void security_bprm_committing_creds(struct linux_binprm *bprm)
229{
230	security_ops->bprm_committing_creds(bprm);
231}
232
233void security_bprm_committed_creds(struct linux_binprm *bprm)
234{
235	security_ops->bprm_committed_creds(bprm);
236}
237
238int security_bprm_secureexec(struct linux_binprm *bprm)
239{
240	return security_ops->bprm_secureexec(bprm);
241}
242
243int security_sb_alloc(struct super_block *sb)
244{
245	return security_ops->sb_alloc_security(sb);
246}
247
248void security_sb_free(struct super_block *sb)
249{
250	security_ops->sb_free_security(sb);
251}
252
253int security_sb_copy_data(char *orig, char *copy)
254{
255	return security_ops->sb_copy_data(orig, copy);
256}
257EXPORT_SYMBOL(security_sb_copy_data);
258
259int security_sb_remount(struct super_block *sb, void *data)
260{
261	return security_ops->sb_remount(sb, data);
262}
263
264int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
265{
266	return security_ops->sb_kern_mount(sb, flags, data);
267}
268
269int security_sb_show_options(struct seq_file *m, struct super_block *sb)
270{
271	return security_ops->sb_show_options(m, sb);
272}
273
274int security_sb_statfs(struct dentry *dentry)
275{
276	return security_ops->sb_statfs(dentry);
277}
278
279int security_sb_mount(const char *dev_name, struct path *path,
280                       const char *type, unsigned long flags, void *data)
281{
282	return security_ops->sb_mount(dev_name, path, type, flags, data);
283}
284
285int security_sb_umount(struct vfsmount *mnt, int flags)
286{
287	return security_ops->sb_umount(mnt, flags);
288}
289
290int security_sb_pivotroot(struct path *old_path, struct path *new_path)
291{
292	return security_ops->sb_pivotroot(old_path, new_path);
293}
294
295int security_sb_set_mnt_opts(struct super_block *sb,
296				struct security_mnt_opts *opts)
297{
298	return security_ops->sb_set_mnt_opts(sb, opts);
299}
300EXPORT_SYMBOL(security_sb_set_mnt_opts);
301
302void security_sb_clone_mnt_opts(const struct super_block *oldsb,
303				struct super_block *newsb)
304{
305	security_ops->sb_clone_mnt_opts(oldsb, newsb);
306}
307EXPORT_SYMBOL(security_sb_clone_mnt_opts);
308
309int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
310{
311	return security_ops->sb_parse_opts_str(options, opts);
312}
313EXPORT_SYMBOL(security_sb_parse_opts_str);
314
315int security_inode_alloc(struct inode *inode)
316{
317	inode->i_security = NULL;
318	return security_ops->inode_alloc_security(inode);
319}
320
321void security_inode_free(struct inode *inode)
322{
323	integrity_inode_free(inode);
324	security_ops->inode_free_security(inode);
325}
326
327int security_inode_init_security(struct inode *inode, struct inode *dir,
328				 const struct qstr *qstr,
329				 const initxattrs initxattrs, void *fs_data)
330{
331	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
332	struct xattr *lsm_xattr, *evm_xattr, *xattr;
333	int ret;
334
335	if (unlikely(IS_PRIVATE(inode)))
336		return 0;
337
338	memset(new_xattrs, 0, sizeof new_xattrs);
339	if (!initxattrs)
340		return security_ops->inode_init_security(inode, dir, qstr,
341							 NULL, NULL, NULL);
342	lsm_xattr = new_xattrs;
343	ret = security_ops->inode_init_security(inode, dir, qstr,
344						&lsm_xattr->name,
345						&lsm_xattr->value,
346						&lsm_xattr->value_len);
347	if (ret)
348		goto out;
349
350	evm_xattr = lsm_xattr + 1;
351	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
352	if (ret)
353		goto out;
354	ret = initxattrs(inode, new_xattrs, fs_data);
355out:
356	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
357		kfree(xattr->name);
358		kfree(xattr->value);
359	}
360	return (ret == -EOPNOTSUPP) ? 0 : ret;
361}
362EXPORT_SYMBOL(security_inode_init_security);
363
364int security_old_inode_init_security(struct inode *inode, struct inode *dir,
365				     const struct qstr *qstr, char **name,
366				     void **value, size_t *len)
367{
368	if (unlikely(IS_PRIVATE(inode)))
369		return -EOPNOTSUPP;
370	return security_ops->inode_init_security(inode, dir, qstr, name, value,
371						 len);
372}
373EXPORT_SYMBOL(security_old_inode_init_security);
374
375#ifdef CONFIG_SECURITY_PATH
376int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
377			unsigned int dev)
378{
379	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380		return 0;
381	return security_ops->path_mknod(dir, dentry, mode, dev);
382}
383EXPORT_SYMBOL(security_path_mknod);
384
385int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
386{
387	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
388		return 0;
389	return security_ops->path_mkdir(dir, dentry, mode);
390}
391EXPORT_SYMBOL(security_path_mkdir);
392
393int security_path_rmdir(struct path *dir, struct dentry *dentry)
394{
395	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
396		return 0;
397	return security_ops->path_rmdir(dir, dentry);
398}
399
400int security_path_unlink(struct path *dir, struct dentry *dentry)
401{
402	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403		return 0;
404	return security_ops->path_unlink(dir, dentry);
405}
406EXPORT_SYMBOL(security_path_unlink);
407
408int security_path_symlink(struct path *dir, struct dentry *dentry,
409			  const char *old_name)
410{
411	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
412		return 0;
413	return security_ops->path_symlink(dir, dentry, old_name);
414}
415
416int security_path_link(struct dentry *old_dentry, struct path *new_dir,
417		       struct dentry *new_dentry)
418{
419	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
420		return 0;
421	return security_ops->path_link(old_dentry, new_dir, new_dentry);
422}
423
424int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
425			 struct path *new_dir, struct dentry *new_dentry)
426{
427	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
428		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
429		return 0;
430	return security_ops->path_rename(old_dir, old_dentry, new_dir,
431					 new_dentry);
432}
433EXPORT_SYMBOL(security_path_rename);
434
435int security_path_truncate(struct path *path)
436{
437	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
438		return 0;
439	return security_ops->path_truncate(path);
440}
441
442int security_path_chmod(struct path *path, umode_t mode)
443{
444	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
445		return 0;
446	return security_ops->path_chmod(path, mode);
447}
448
449int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
450{
451	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452		return 0;
453	return security_ops->path_chown(path, uid, gid);
454}
455
456int security_path_chroot(struct path *path)
457{
458	return security_ops->path_chroot(path);
459}
460#endif
461
462int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
463{
464	if (unlikely(IS_PRIVATE(dir)))
465		return 0;
466	return security_ops->inode_create(dir, dentry, mode);
467}
468EXPORT_SYMBOL_GPL(security_inode_create);
469
470int security_inode_link(struct dentry *old_dentry, struct inode *dir,
471			 struct dentry *new_dentry)
472{
473	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
474		return 0;
475	return security_ops->inode_link(old_dentry, dir, new_dentry);
476}
477
478int security_inode_unlink(struct inode *dir, struct dentry *dentry)
479{
480	if (unlikely(IS_PRIVATE(dentry->d_inode)))
481		return 0;
482	return security_ops->inode_unlink(dir, dentry);
483}
484
485int security_inode_symlink(struct inode *dir, struct dentry *dentry,
486			    const char *old_name)
487{
488	if (unlikely(IS_PRIVATE(dir)))
489		return 0;
490	return security_ops->inode_symlink(dir, dentry, old_name);
491}
492
493int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
494{
495	if (unlikely(IS_PRIVATE(dir)))
496		return 0;
497	return security_ops->inode_mkdir(dir, dentry, mode);
498}
499EXPORT_SYMBOL_GPL(security_inode_mkdir);
500
501int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
502{
503	if (unlikely(IS_PRIVATE(dentry->d_inode)))
504		return 0;
505	return security_ops->inode_rmdir(dir, dentry);
506}
507
508int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
509{
510	if (unlikely(IS_PRIVATE(dir)))
511		return 0;
512	return security_ops->inode_mknod(dir, dentry, mode, dev);
513}
514
515int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
516			   struct inode *new_dir, struct dentry *new_dentry)
517{
518        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
519            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
520		return 0;
521	return security_ops->inode_rename(old_dir, old_dentry,
522					   new_dir, new_dentry);
523}
524
525int security_inode_readlink(struct dentry *dentry)
526{
527	if (unlikely(IS_PRIVATE(dentry->d_inode)))
528		return 0;
529	return security_ops->inode_readlink(dentry);
530}
531
532int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
533{
534	if (unlikely(IS_PRIVATE(dentry->d_inode)))
535		return 0;
536	return security_ops->inode_follow_link(dentry, nd);
537}
538
539int security_inode_permission(struct inode *inode, int mask)
540{
541	if (unlikely(IS_PRIVATE(inode)))
542		return 0;
543	return security_ops->inode_permission(inode, mask);
544}
545
546int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
547{
548	int ret;
549
550	if (unlikely(IS_PRIVATE(dentry->d_inode)))
551		return 0;
552	ret = security_ops->inode_setattr(dentry, attr);
553	if (ret)
554		return ret;
555	return evm_inode_setattr(dentry, attr);
556}
557EXPORT_SYMBOL_GPL(security_inode_setattr);
558
559int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
560{
561	if (unlikely(IS_PRIVATE(dentry->d_inode)))
562		return 0;
563	return security_ops->inode_getattr(mnt, dentry);
564}
565
566int security_inode_setxattr(struct dentry *dentry, const char *name,
567			    const void *value, size_t size, int flags)
568{
569	int ret;
570
571	if (unlikely(IS_PRIVATE(dentry->d_inode)))
572		return 0;
573	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
574	if (ret)
575		return ret;
576	ret = ima_inode_setxattr(dentry, name, value, size);
577	if (ret)
578		return ret;
579	return evm_inode_setxattr(dentry, name, value, size);
580}
581
582void security_inode_post_setxattr(struct dentry *dentry, const char *name,
583				  const void *value, size_t size, int flags)
584{
585	if (unlikely(IS_PRIVATE(dentry->d_inode)))
586		return;
587	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
588	evm_inode_post_setxattr(dentry, name, value, size);
589}
590
591int security_inode_getxattr(struct dentry *dentry, const char *name)
592{
593	if (unlikely(IS_PRIVATE(dentry->d_inode)))
594		return 0;
595	return security_ops->inode_getxattr(dentry, name);
596}
597
598int security_inode_listxattr(struct dentry *dentry)
599{
600	if (unlikely(IS_PRIVATE(dentry->d_inode)))
601		return 0;
602	return security_ops->inode_listxattr(dentry);
603}
604
605int security_inode_removexattr(struct dentry *dentry, const char *name)
606{
607	int ret;
608
609	if (unlikely(IS_PRIVATE(dentry->d_inode)))
610		return 0;
611	ret = security_ops->inode_removexattr(dentry, name);
612	if (ret)
613		return ret;
614	ret = ima_inode_removexattr(dentry, name);
615	if (ret)
616		return ret;
617	return evm_inode_removexattr(dentry, name);
618}
619
620int security_inode_need_killpriv(struct dentry *dentry)
621{
622	return security_ops->inode_need_killpriv(dentry);
623}
624
625int security_inode_killpriv(struct dentry *dentry)
626{
627	return security_ops->inode_killpriv(dentry);
628}
629
630int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
631{
632	if (unlikely(IS_PRIVATE(inode)))
633		return -EOPNOTSUPP;
634	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
635}
636
637int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
638{
639	if (unlikely(IS_PRIVATE(inode)))
640		return -EOPNOTSUPP;
641	return security_ops->inode_setsecurity(inode, name, value, size, flags);
642}
643
644int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
645{
646	if (unlikely(IS_PRIVATE(inode)))
647		return 0;
648	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
649}
650
651void security_inode_getsecid(const struct inode *inode, u32 *secid)
652{
653	security_ops->inode_getsecid(inode, secid);
654}
655
656int security_file_permission(struct file *file, int mask)
657{
658	int ret;
659
660	ret = security_ops->file_permission(file, mask);
661	if (ret)
662		return ret;
663
664	return fsnotify_perm(file, mask);
665}
666
667int security_file_alloc(struct file *file)
668{
669	return security_ops->file_alloc_security(file);
670}
671
672void security_file_free(struct file *file)
673{
674	security_ops->file_free_security(file);
675}
676
677int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
678{
679	return security_ops->file_ioctl(file, cmd, arg);
680}
681
682static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
683{
684	/*
685	 * Does we have PROT_READ and does the application expect
686	 * it to imply PROT_EXEC?  If not, nothing to talk about...
687	 */
688	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
689		return prot;
690	if (!(current->personality & READ_IMPLIES_EXEC))
691		return prot;
692	/*
693	 * if that's an anonymous mapping, let it.
694	 */
695	if (!file)
696		return prot | PROT_EXEC;
697	/*
698	 * ditto if it's not on noexec mount, except that on !MMU we need
699	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
700	 */
701	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
702#ifndef CONFIG_MMU
703		unsigned long caps = 0;
704		struct address_space *mapping = file->f_mapping;
705		if (mapping && mapping->backing_dev_info)
706			caps = mapping->backing_dev_info->capabilities;
707		if (!(caps & BDI_CAP_EXEC_MAP))
708			return prot;
709#endif
710		return prot | PROT_EXEC;
711	}
712	/* anything on noexec mount won't get PROT_EXEC */
713	return prot;
714}
715
716int security_mmap_file(struct file *file, unsigned long prot,
717			unsigned long flags)
718{
719	int ret;
720	ret = security_ops->mmap_file(file, prot,
721					mmap_prot(file, prot), flags);
722	if (ret)
723		return ret;
724	return ima_file_mmap(file, prot);
725}
726
727int security_mmap_addr(unsigned long addr)
728{
729	return security_ops->mmap_addr(addr);
730}
731
732int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
733			    unsigned long prot)
734{
735	return security_ops->file_mprotect(vma, reqprot, prot);
736}
737
738int security_file_lock(struct file *file, unsigned int cmd)
739{
740	return security_ops->file_lock(file, cmd);
741}
742
743int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
744{
745	return security_ops->file_fcntl(file, cmd, arg);
746}
747
748int security_file_set_fowner(struct file *file)
749{
750	return security_ops->file_set_fowner(file);
751}
752
753int security_file_send_sigiotask(struct task_struct *tsk,
754				  struct fown_struct *fown, int sig)
755{
756	return security_ops->file_send_sigiotask(tsk, fown, sig);
757}
758
759int security_file_receive(struct file *file)
760{
761	return security_ops->file_receive(file);
762}
763
764int security_file_open(struct file *file, const struct cred *cred)
765{
766	int ret;
767
768	ret = security_ops->file_open(file, cred);
769	if (ret)
770		return ret;
771
772	return fsnotify_perm(file, MAY_OPEN);
773}
774
775int security_task_create(unsigned long clone_flags)
776{
777	return security_ops->task_create(clone_flags);
778}
779
780void security_task_free(struct task_struct *task)
781{
782#ifdef CONFIG_SECURITY_YAMA_STACKED
783	yama_task_free(task);
784#endif
785	security_ops->task_free(task);
786}
787
788int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
789{
790	return security_ops->cred_alloc_blank(cred, gfp);
791}
792
793void security_cred_free(struct cred *cred)
794{
795	security_ops->cred_free(cred);
796}
797
798int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
799{
800	return security_ops->cred_prepare(new, old, gfp);
801}
802
803void security_transfer_creds(struct cred *new, const struct cred *old)
804{
805	security_ops->cred_transfer(new, old);
806}
807
808int security_kernel_act_as(struct cred *new, u32 secid)
809{
810	return security_ops->kernel_act_as(new, secid);
811}
812
813int security_kernel_create_files_as(struct cred *new, struct inode *inode)
814{
815	return security_ops->kernel_create_files_as(new, inode);
816}
817
818int security_kernel_module_request(char *kmod_name)
819{
820	return security_ops->kernel_module_request(kmod_name);
821}
822
823int security_kernel_module_from_file(struct file *file)
824{
825	return security_ops->kernel_module_from_file(file);
826}
827
828int security_task_fix_setuid(struct cred *new, const struct cred *old,
829			     int flags)
830{
831	return security_ops->task_fix_setuid(new, old, flags);
832}
833
834int security_task_setpgid(struct task_struct *p, pid_t pgid)
835{
836	return security_ops->task_setpgid(p, pgid);
837}
838
839int security_task_getpgid(struct task_struct *p)
840{
841	return security_ops->task_getpgid(p);
842}
843
844int security_task_getsid(struct task_struct *p)
845{
846	return security_ops->task_getsid(p);
847}
848
849void security_task_getsecid(struct task_struct *p, u32 *secid)
850{
851	security_ops->task_getsecid(p, secid);
852}
853EXPORT_SYMBOL(security_task_getsecid);
854
855int security_task_setnice(struct task_struct *p, int nice)
856{
857	return security_ops->task_setnice(p, nice);
858}
859
860int security_task_setioprio(struct task_struct *p, int ioprio)
861{
862	return security_ops->task_setioprio(p, ioprio);
863}
864
865int security_task_getioprio(struct task_struct *p)
866{
867	return security_ops->task_getioprio(p);
868}
869
870int security_task_setrlimit(struct task_struct *p, unsigned int resource,
871		struct rlimit *new_rlim)
872{
873	return security_ops->task_setrlimit(p, resource, new_rlim);
874}
875
876int security_task_setscheduler(struct task_struct *p)
877{
878	return security_ops->task_setscheduler(p);
879}
880
881int security_task_getscheduler(struct task_struct *p)
882{
883	return security_ops->task_getscheduler(p);
884}
885
886int security_task_movememory(struct task_struct *p)
887{
888	return security_ops->task_movememory(p);
889}
890
891int security_task_kill(struct task_struct *p, struct siginfo *info,
892			int sig, u32 secid)
893{
894	return security_ops->task_kill(p, info, sig, secid);
895}
896
897int security_task_wait(struct task_struct *p)
898{
899	return security_ops->task_wait(p);
900}
901
902int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
903			 unsigned long arg4, unsigned long arg5)
904{
905#ifdef CONFIG_SECURITY_YAMA_STACKED
906	int rc;
907	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
908	if (rc != -ENOSYS)
909		return rc;
910#endif
911	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
912}
913
914void security_task_to_inode(struct task_struct *p, struct inode *inode)
915{
916	security_ops->task_to_inode(p, inode);
917}
918
919int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
920{
921	return security_ops->ipc_permission(ipcp, flag);
922}
923
924void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
925{
926	security_ops->ipc_getsecid(ipcp, secid);
927}
928
929int security_msg_msg_alloc(struct msg_msg *msg)
930{
931	return security_ops->msg_msg_alloc_security(msg);
932}
933
934void security_msg_msg_free(struct msg_msg *msg)
935{
936	security_ops->msg_msg_free_security(msg);
937}
938
939int security_msg_queue_alloc(struct msg_queue *msq)
940{
941	return security_ops->msg_queue_alloc_security(msq);
942}
943
944void security_msg_queue_free(struct msg_queue *msq)
945{
946	security_ops->msg_queue_free_security(msq);
947}
948
949int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
950{
951	return security_ops->msg_queue_associate(msq, msqflg);
952}
953
954int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
955{
956	return security_ops->msg_queue_msgctl(msq, cmd);
957}
958
959int security_msg_queue_msgsnd(struct msg_queue *msq,
960			       struct msg_msg *msg, int msqflg)
961{
962	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
963}
964
965int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
966			       struct task_struct *target, long type, int mode)
967{
968	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
969}
970
971int security_shm_alloc(struct shmid_kernel *shp)
972{
973	return security_ops->shm_alloc_security(shp);
974}
975
976void security_shm_free(struct shmid_kernel *shp)
977{
978	security_ops->shm_free_security(shp);
979}
980
981int security_shm_associate(struct shmid_kernel *shp, int shmflg)
982{
983	return security_ops->shm_associate(shp, shmflg);
984}
985
986int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
987{
988	return security_ops->shm_shmctl(shp, cmd);
989}
990
991int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
992{
993	return security_ops->shm_shmat(shp, shmaddr, shmflg);
994}
995
996int security_sem_alloc(struct sem_array *sma)
997{
998	return security_ops->sem_alloc_security(sma);
999}
1000
1001void security_sem_free(struct sem_array *sma)
1002{
1003	security_ops->sem_free_security(sma);
1004}
1005
1006int security_sem_associate(struct sem_array *sma, int semflg)
1007{
1008	return security_ops->sem_associate(sma, semflg);
1009}
1010
1011int security_sem_semctl(struct sem_array *sma, int cmd)
1012{
1013	return security_ops->sem_semctl(sma, cmd);
1014}
1015
1016int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1017			unsigned nsops, int alter)
1018{
1019	return security_ops->sem_semop(sma, sops, nsops, alter);
1020}
1021
1022void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1023{
1024	if (unlikely(inode && IS_PRIVATE(inode)))
1025		return;
1026	security_ops->d_instantiate(dentry, inode);
1027}
1028EXPORT_SYMBOL(security_d_instantiate);
1029
1030int security_getprocattr(struct task_struct *p, char *name, char **value)
1031{
1032	return security_ops->getprocattr(p, name, value);
1033}
1034
1035int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1036{
1037	return security_ops->setprocattr(p, name, value, size);
1038}
1039
1040int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1041{
1042	return security_ops->netlink_send(sk, skb);
1043}
1044
1045int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1046{
1047	return security_ops->secid_to_secctx(secid, secdata, seclen);
1048}
1049EXPORT_SYMBOL(security_secid_to_secctx);
1050
1051int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1052{
1053	return security_ops->secctx_to_secid(secdata, seclen, secid);
1054}
1055EXPORT_SYMBOL(security_secctx_to_secid);
1056
1057void security_release_secctx(char *secdata, u32 seclen)
1058{
1059	security_ops->release_secctx(secdata, seclen);
1060}
1061EXPORT_SYMBOL(security_release_secctx);
1062
1063int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1064{
1065	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1066}
1067EXPORT_SYMBOL(security_inode_notifysecctx);
1068
1069int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1070{
1071	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1072}
1073EXPORT_SYMBOL(security_inode_setsecctx);
1074
1075int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1076{
1077	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1078}
1079EXPORT_SYMBOL(security_inode_getsecctx);
1080
1081#ifdef CONFIG_SECURITY_NETWORK
1082
1083int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1084{
1085	return security_ops->unix_stream_connect(sock, other, newsk);
1086}
1087EXPORT_SYMBOL(security_unix_stream_connect);
1088
1089int security_unix_may_send(struct socket *sock,  struct socket *other)
1090{
1091	return security_ops->unix_may_send(sock, other);
1092}
1093EXPORT_SYMBOL(security_unix_may_send);
1094
1095int security_socket_create(int family, int type, int protocol, int kern)
1096{
1097	return security_ops->socket_create(family, type, protocol, kern);
1098}
1099
1100int security_socket_post_create(struct socket *sock, int family,
1101				int type, int protocol, int kern)
1102{
1103	return security_ops->socket_post_create(sock, family, type,
1104						protocol, kern);
1105}
1106
1107int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1108{
1109	return security_ops->socket_bind(sock, address, addrlen);
1110}
1111
1112int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1113{
1114	return security_ops->socket_connect(sock, address, addrlen);
1115}
1116
1117int security_socket_listen(struct socket *sock, int backlog)
1118{
1119	return security_ops->socket_listen(sock, backlog);
1120}
1121
1122int security_socket_accept(struct socket *sock, struct socket *newsock)
1123{
1124	return security_ops->socket_accept(sock, newsock);
1125}
1126
1127int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1128{
1129	return security_ops->socket_sendmsg(sock, msg, size);
1130}
1131
1132int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1133			    int size, int flags)
1134{
1135	return security_ops->socket_recvmsg(sock, msg, size, flags);
1136}
1137
1138int security_socket_getsockname(struct socket *sock)
1139{
1140	return security_ops->socket_getsockname(sock);
1141}
1142
1143int security_socket_getpeername(struct socket *sock)
1144{
1145	return security_ops->socket_getpeername(sock);
1146}
1147
1148int security_socket_getsockopt(struct socket *sock, int level, int optname)
1149{
1150	return security_ops->socket_getsockopt(sock, level, optname);
1151}
1152
1153int security_socket_setsockopt(struct socket *sock, int level, int optname)
1154{
1155	return security_ops->socket_setsockopt(sock, level, optname);
1156}
1157
1158int security_socket_shutdown(struct socket *sock, int how)
1159{
1160	return security_ops->socket_shutdown(sock, how);
1161}
1162
1163int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1164{
1165	return security_ops->socket_sock_rcv_skb(sk, skb);
1166}
1167EXPORT_SYMBOL(security_sock_rcv_skb);
1168
1169int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1170				      int __user *optlen, unsigned len)
1171{
1172	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1173}
1174
1175int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1176{
1177	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1178}
1179EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1180
1181int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1182{
1183	return security_ops->sk_alloc_security(sk, family, priority);
1184}
1185
1186void security_sk_free(struct sock *sk)
1187{
1188	security_ops->sk_free_security(sk);
1189}
1190
1191void security_sk_clone(const struct sock *sk, struct sock *newsk)
1192{
1193	security_ops->sk_clone_security(sk, newsk);
1194}
1195EXPORT_SYMBOL(security_sk_clone);
1196
1197void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1198{
1199	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1200}
1201EXPORT_SYMBOL(security_sk_classify_flow);
1202
1203void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1204{
1205	security_ops->req_classify_flow(req, fl);
1206}
1207EXPORT_SYMBOL(security_req_classify_flow);
1208
1209void security_sock_graft(struct sock *sk, struct socket *parent)
1210{
1211	security_ops->sock_graft(sk, parent);
1212}
1213EXPORT_SYMBOL(security_sock_graft);
1214
1215int security_inet_conn_request(struct sock *sk,
1216			struct sk_buff *skb, struct request_sock *req)
1217{
1218	return security_ops->inet_conn_request(sk, skb, req);
1219}
1220EXPORT_SYMBOL(security_inet_conn_request);
1221
1222void security_inet_csk_clone(struct sock *newsk,
1223			const struct request_sock *req)
1224{
1225	security_ops->inet_csk_clone(newsk, req);
1226}
1227
1228void security_inet_conn_established(struct sock *sk,
1229			struct sk_buff *skb)
1230{
1231	security_ops->inet_conn_established(sk, skb);
1232}
1233
1234int security_secmark_relabel_packet(u32 secid)
1235{
1236	return security_ops->secmark_relabel_packet(secid);
1237}
1238EXPORT_SYMBOL(security_secmark_relabel_packet);
1239
1240void security_secmark_refcount_inc(void)
1241{
1242	security_ops->secmark_refcount_inc();
1243}
1244EXPORT_SYMBOL(security_secmark_refcount_inc);
1245
1246void security_secmark_refcount_dec(void)
1247{
1248	security_ops->secmark_refcount_dec();
1249}
1250EXPORT_SYMBOL(security_secmark_refcount_dec);
1251
1252int security_tun_dev_create(void)
1253{
1254	return security_ops->tun_dev_create();
1255}
1256EXPORT_SYMBOL(security_tun_dev_create);
1257
1258void security_tun_dev_post_create(struct sock *sk)
1259{
1260	return security_ops->tun_dev_post_create(sk);
1261}
1262EXPORT_SYMBOL(security_tun_dev_post_create);
1263
1264int security_tun_dev_attach(struct sock *sk)
1265{
1266	return security_ops->tun_dev_attach(sk);
1267}
1268EXPORT_SYMBOL(security_tun_dev_attach);
1269
1270#endif	/* CONFIG_SECURITY_NETWORK */
1271
1272#ifdef CONFIG_SECURITY_NETWORK_XFRM
1273
1274int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1275{
1276	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1277}
1278EXPORT_SYMBOL(security_xfrm_policy_alloc);
1279
1280int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1281			      struct xfrm_sec_ctx **new_ctxp)
1282{
1283	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1284}
1285
1286void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1287{
1288	security_ops->xfrm_policy_free_security(ctx);
1289}
1290EXPORT_SYMBOL(security_xfrm_policy_free);
1291
1292int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1293{
1294	return security_ops->xfrm_policy_delete_security(ctx);
1295}
1296
1297int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1298{
1299	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1300}
1301EXPORT_SYMBOL(security_xfrm_state_alloc);
1302
1303int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1304				      struct xfrm_sec_ctx *polsec, u32 secid)
1305{
1306	if (!polsec)
1307		return 0;
1308	/*
1309	 * We want the context to be taken from secid which is usually
1310	 * from the sock.
1311	 */
1312	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1313}
1314
1315int security_xfrm_state_delete(struct xfrm_state *x)
1316{
1317	return security_ops->xfrm_state_delete_security(x);
1318}
1319EXPORT_SYMBOL(security_xfrm_state_delete);
1320
1321void security_xfrm_state_free(struct xfrm_state *x)
1322{
1323	security_ops->xfrm_state_free_security(x);
1324}
1325
1326int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1327{
1328	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1329}
1330
1331int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1332				       struct xfrm_policy *xp,
1333				       const struct flowi *fl)
1334{
1335	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1336}
1337
1338int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1339{
1340	return security_ops->xfrm_decode_session(skb, secid, 1);
1341}
1342
1343void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1344{
1345	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1346
1347	BUG_ON(rc);
1348}
1349EXPORT_SYMBOL(security_skb_classify_flow);
1350
1351#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1352
1353#ifdef CONFIG_KEYS
1354
1355int security_key_alloc(struct key *key, const struct cred *cred,
1356		       unsigned long flags)
1357{
1358	return security_ops->key_alloc(key, cred, flags);
1359}
1360
1361void security_key_free(struct key *key)
1362{
1363	security_ops->key_free(key);
1364}
1365
1366int security_key_permission(key_ref_t key_ref,
1367			    const struct cred *cred, key_perm_t perm)
1368{
1369	return security_ops->key_permission(key_ref, cred, perm);
1370}
1371
1372int security_key_getsecurity(struct key *key, char **_buffer)
1373{
1374	return security_ops->key_getsecurity(key, _buffer);
1375}
1376
1377#endif	/* CONFIG_KEYS */
1378
1379#ifdef CONFIG_AUDIT
1380
1381int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1382{
1383	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1384}
1385
1386int security_audit_rule_known(struct audit_krule *krule)
1387{
1388	return security_ops->audit_rule_known(krule);
1389}
1390
1391void security_audit_rule_free(void *lsmrule)
1392{
1393	security_ops->audit_rule_free(lsmrule);
1394}
1395
1396int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1397			      struct audit_context *actx)
1398{
1399	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1400}
1401
1402#endif /* CONFIG_AUDIT */
1403