security.c revision 649f6e7718891fe7691e5084ce3fa623acba3129
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 *	This program is free software; you can redistribute it and/or modify
9 *	it under the terms of the GNU General Public License as published by
10 *	the Free Software Foundation; either version 2 of the License, or
11 *	(at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/security.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <net/flow.h>
29
30#define MAX_LSM_EVM_XATTR	2
31
32/* Boot-time LSM user choice */
33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34	CONFIG_DEFAULT_SECURITY;
35
36static struct security_operations *security_ops;
37static struct security_operations default_security_ops = {
38	.name	= "default",
39};
40
41static inline int __init verify(struct security_operations *ops)
42{
43	/* verify the security_operations structure exists */
44	if (!ops)
45		return -EINVAL;
46	security_fixup_ops(ops);
47	return 0;
48}
49
50static void __init do_security_initcalls(void)
51{
52	initcall_t *call;
53	call = __security_initcall_start;
54	while (call < __security_initcall_end) {
55		(*call) ();
56		call++;
57	}
58}
59
60/**
61 * security_init - initializes the security framework
62 *
63 * This should be called early in the kernel initialization sequence.
64 */
65int __init security_init(void)
66{
67	printk(KERN_INFO "Security Framework initialized\n");
68
69	security_fixup_ops(&default_security_ops);
70	security_ops = &default_security_ops;
71	do_security_initcalls();
72
73	return 0;
74}
75
76void reset_security_ops(void)
77{
78	security_ops = &default_security_ops;
79}
80
81/* Save user chosen LSM */
82static int __init choose_lsm(char *str)
83{
84	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85	return 1;
86}
87__setup("security=", choose_lsm);
88
89/**
90 * security_module_enable - Load given security module on boot ?
91 * @ops: a pointer to the struct security_operations that is to be checked.
92 *
93 * Each LSM must pass this method before registering its own operations
94 * to avoid security registration races. This method may also be used
95 * to check if your LSM is currently loaded during kernel initialization.
96 *
97 * Return true if:
98 *	-The passed LSM is the one chosen by user at boot time,
99 *	-or the passed LSM is configured as the default and the user did not
100 *	 choose an alternate LSM at boot time.
101 * Otherwise, return false.
102 */
103int __init security_module_enable(struct security_operations *ops)
104{
105	return !strcmp(ops->name, chosen_lsm);
106}
107
108/**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem.  Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned.  Otherwise %0 is returned on success.
119 */
120int __init register_security(struct security_operations *ops)
121{
122	if (verify(ops)) {
123		printk(KERN_DEBUG "%s could not verify "
124		       "security_operations structure.\n", __func__);
125		return -EINVAL;
126	}
127
128	if (security_ops != &default_security_ops)
129		return -EAGAIN;
130
131	security_ops = ops;
132
133	return 0;
134}
135
136/* Security operations */
137
138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139{
140#ifdef CONFIG_SECURITY_YAMA_STACKED
141	int rc;
142	rc = yama_ptrace_access_check(child, mode);
143	if (rc)
144		return rc;
145#endif
146	return security_ops->ptrace_access_check(child, mode);
147}
148
149int security_ptrace_traceme(struct task_struct *parent)
150{
151#ifdef CONFIG_SECURITY_YAMA_STACKED
152	int rc;
153	rc = yama_ptrace_traceme(parent);
154	if (rc)
155		return rc;
156#endif
157	return security_ops->ptrace_traceme(parent);
158}
159
160int security_capget(struct task_struct *target,
161		     kernel_cap_t *effective,
162		     kernel_cap_t *inheritable,
163		     kernel_cap_t *permitted)
164{
165	return security_ops->capget(target, effective, inheritable, permitted);
166}
167
168int security_capset(struct cred *new, const struct cred *old,
169		    const kernel_cap_t *effective,
170		    const kernel_cap_t *inheritable,
171		    const kernel_cap_t *permitted)
172{
173	return security_ops->capset(new, old,
174				    effective, inheritable, permitted);
175}
176
177int security_capable(const struct cred *cred, struct user_namespace *ns,
178		     int cap)
179{
180	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181}
182
183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184			     int cap)
185{
186	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187}
188
189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190{
191	return security_ops->quotactl(cmds, type, id, sb);
192}
193
194int security_quota_on(struct dentry *dentry)
195{
196	return security_ops->quota_on(dentry);
197}
198
199int security_syslog(int type)
200{
201	return security_ops->syslog(type);
202}
203
204int security_settime(const struct timespec *ts, const struct timezone *tz)
205{
206	return security_ops->settime(ts, tz);
207}
208
209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210{
211	return security_ops->vm_enough_memory(mm, pages);
212}
213
214int security_bprm_set_creds(struct linux_binprm *bprm)
215{
216	return security_ops->bprm_set_creds(bprm);
217}
218
219int security_bprm_check(struct linux_binprm *bprm)
220{
221	int ret;
222
223	ret = security_ops->bprm_check_security(bprm);
224	if (ret)
225		return ret;
226	return ima_bprm_check(bprm);
227}
228
229void security_bprm_committing_creds(struct linux_binprm *bprm)
230{
231	security_ops->bprm_committing_creds(bprm);
232}
233
234void security_bprm_committed_creds(struct linux_binprm *bprm)
235{
236	security_ops->bprm_committed_creds(bprm);
237}
238
239int security_bprm_secureexec(struct linux_binprm *bprm)
240{
241	return security_ops->bprm_secureexec(bprm);
242}
243
244int security_sb_alloc(struct super_block *sb)
245{
246	return security_ops->sb_alloc_security(sb);
247}
248
249void security_sb_free(struct super_block *sb)
250{
251	security_ops->sb_free_security(sb);
252}
253
254int security_sb_copy_data(char *orig, char *copy)
255{
256	return security_ops->sb_copy_data(orig, copy);
257}
258EXPORT_SYMBOL(security_sb_copy_data);
259
260int security_sb_remount(struct super_block *sb, void *data)
261{
262	return security_ops->sb_remount(sb, data);
263}
264
265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266{
267	return security_ops->sb_kern_mount(sb, flags, data);
268}
269
270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271{
272	return security_ops->sb_show_options(m, sb);
273}
274
275int security_sb_statfs(struct dentry *dentry)
276{
277	return security_ops->sb_statfs(dentry);
278}
279
280int security_sb_mount(const char *dev_name, struct path *path,
281                       const char *type, unsigned long flags, void *data)
282{
283	return security_ops->sb_mount(dev_name, path, type, flags, data);
284}
285
286int security_sb_umount(struct vfsmount *mnt, int flags)
287{
288	return security_ops->sb_umount(mnt, flags);
289}
290
291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292{
293	return security_ops->sb_pivotroot(old_path, new_path);
294}
295
296int security_sb_set_mnt_opts(struct super_block *sb,
297				struct security_mnt_opts *opts,
298				unsigned long kern_flags,
299				unsigned long *set_kern_flags)
300{
301	return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
302						set_kern_flags);
303}
304EXPORT_SYMBOL(security_sb_set_mnt_opts);
305
306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
307				struct super_block *newsb)
308{
309	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
310}
311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
312
313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
314{
315	return security_ops->sb_parse_opts_str(options, opts);
316}
317EXPORT_SYMBOL(security_sb_parse_opts_str);
318
319int security_inode_alloc(struct inode *inode)
320{
321	inode->i_security = NULL;
322	return security_ops->inode_alloc_security(inode);
323}
324
325void security_inode_free(struct inode *inode)
326{
327	integrity_inode_free(inode);
328	security_ops->inode_free_security(inode);
329}
330
331int security_dentry_init_security(struct dentry *dentry, int mode,
332					struct qstr *name, void **ctx,
333					u32 *ctxlen)
334{
335	return security_ops->dentry_init_security(dentry, mode, name,
336							ctx, ctxlen);
337}
338EXPORT_SYMBOL(security_dentry_init_security);
339
340int security_inode_init_security(struct inode *inode, struct inode *dir,
341				 const struct qstr *qstr,
342				 const initxattrs initxattrs, void *fs_data)
343{
344	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
345	struct xattr *lsm_xattr, *evm_xattr, *xattr;
346	int ret;
347
348	if (unlikely(IS_PRIVATE(inode)))
349		return 0;
350
351	memset(new_xattrs, 0, sizeof new_xattrs);
352	if (!initxattrs)
353		return security_ops->inode_init_security(inode, dir, qstr,
354							 NULL, NULL, NULL);
355	lsm_xattr = new_xattrs;
356	ret = security_ops->inode_init_security(inode, dir, qstr,
357						&lsm_xattr->name,
358						&lsm_xattr->value,
359						&lsm_xattr->value_len);
360	if (ret)
361		goto out;
362
363	evm_xattr = lsm_xattr + 1;
364	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
365	if (ret)
366		goto out;
367	ret = initxattrs(inode, new_xattrs, fs_data);
368out:
369	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
370		kfree(xattr->name);
371		kfree(xattr->value);
372	}
373	return (ret == -EOPNOTSUPP) ? 0 : ret;
374}
375EXPORT_SYMBOL(security_inode_init_security);
376
377int security_old_inode_init_security(struct inode *inode, struct inode *dir,
378				     const struct qstr *qstr, char **name,
379				     void **value, size_t *len)
380{
381	if (unlikely(IS_PRIVATE(inode)))
382		return -EOPNOTSUPP;
383	return security_ops->inode_init_security(inode, dir, qstr, name, value,
384						 len);
385}
386EXPORT_SYMBOL(security_old_inode_init_security);
387
388#ifdef CONFIG_SECURITY_PATH
389int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
390			unsigned int dev)
391{
392	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
393		return 0;
394	return security_ops->path_mknod(dir, dentry, mode, dev);
395}
396EXPORT_SYMBOL(security_path_mknod);
397
398int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
399{
400	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
401		return 0;
402	return security_ops->path_mkdir(dir, dentry, mode);
403}
404EXPORT_SYMBOL(security_path_mkdir);
405
406int security_path_rmdir(struct path *dir, struct dentry *dentry)
407{
408	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
409		return 0;
410	return security_ops->path_rmdir(dir, dentry);
411}
412
413int security_path_unlink(struct path *dir, struct dentry *dentry)
414{
415	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
416		return 0;
417	return security_ops->path_unlink(dir, dentry);
418}
419EXPORT_SYMBOL(security_path_unlink);
420
421int security_path_symlink(struct path *dir, struct dentry *dentry,
422			  const char *old_name)
423{
424	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
425		return 0;
426	return security_ops->path_symlink(dir, dentry, old_name);
427}
428
429int security_path_link(struct dentry *old_dentry, struct path *new_dir,
430		       struct dentry *new_dentry)
431{
432	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
433		return 0;
434	return security_ops->path_link(old_dentry, new_dir, new_dentry);
435}
436
437int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
438			 struct path *new_dir, struct dentry *new_dentry)
439{
440	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
441		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
442		return 0;
443	return security_ops->path_rename(old_dir, old_dentry, new_dir,
444					 new_dentry);
445}
446EXPORT_SYMBOL(security_path_rename);
447
448int security_path_truncate(struct path *path)
449{
450	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
451		return 0;
452	return security_ops->path_truncate(path);
453}
454
455int security_path_chmod(struct path *path, umode_t mode)
456{
457	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
458		return 0;
459	return security_ops->path_chmod(path, mode);
460}
461
462int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
463{
464	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465		return 0;
466	return security_ops->path_chown(path, uid, gid);
467}
468
469int security_path_chroot(struct path *path)
470{
471	return security_ops->path_chroot(path);
472}
473#endif
474
475int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
476{
477	if (unlikely(IS_PRIVATE(dir)))
478		return 0;
479	return security_ops->inode_create(dir, dentry, mode);
480}
481EXPORT_SYMBOL_GPL(security_inode_create);
482
483int security_inode_link(struct dentry *old_dentry, struct inode *dir,
484			 struct dentry *new_dentry)
485{
486	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
487		return 0;
488	return security_ops->inode_link(old_dentry, dir, new_dentry);
489}
490
491int security_inode_unlink(struct inode *dir, struct dentry *dentry)
492{
493	if (unlikely(IS_PRIVATE(dentry->d_inode)))
494		return 0;
495	return security_ops->inode_unlink(dir, dentry);
496}
497
498int security_inode_symlink(struct inode *dir, struct dentry *dentry,
499			    const char *old_name)
500{
501	if (unlikely(IS_PRIVATE(dir)))
502		return 0;
503	return security_ops->inode_symlink(dir, dentry, old_name);
504}
505
506int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
507{
508	if (unlikely(IS_PRIVATE(dir)))
509		return 0;
510	return security_ops->inode_mkdir(dir, dentry, mode);
511}
512EXPORT_SYMBOL_GPL(security_inode_mkdir);
513
514int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
515{
516	if (unlikely(IS_PRIVATE(dentry->d_inode)))
517		return 0;
518	return security_ops->inode_rmdir(dir, dentry);
519}
520
521int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
522{
523	if (unlikely(IS_PRIVATE(dir)))
524		return 0;
525	return security_ops->inode_mknod(dir, dentry, mode, dev);
526}
527
528int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
529			   struct inode *new_dir, struct dentry *new_dentry)
530{
531        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
532            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
533		return 0;
534	return security_ops->inode_rename(old_dir, old_dentry,
535					   new_dir, new_dentry);
536}
537
538int security_inode_readlink(struct dentry *dentry)
539{
540	if (unlikely(IS_PRIVATE(dentry->d_inode)))
541		return 0;
542	return security_ops->inode_readlink(dentry);
543}
544
545int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
546{
547	if (unlikely(IS_PRIVATE(dentry->d_inode)))
548		return 0;
549	return security_ops->inode_follow_link(dentry, nd);
550}
551
552int security_inode_permission(struct inode *inode, int mask)
553{
554	if (unlikely(IS_PRIVATE(inode)))
555		return 0;
556	return security_ops->inode_permission(inode, mask);
557}
558
559int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
560{
561	int ret;
562
563	if (unlikely(IS_PRIVATE(dentry->d_inode)))
564		return 0;
565	ret = security_ops->inode_setattr(dentry, attr);
566	if (ret)
567		return ret;
568	return evm_inode_setattr(dentry, attr);
569}
570EXPORT_SYMBOL_GPL(security_inode_setattr);
571
572int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
573{
574	if (unlikely(IS_PRIVATE(dentry->d_inode)))
575		return 0;
576	return security_ops->inode_getattr(mnt, dentry);
577}
578
579int security_inode_setxattr(struct dentry *dentry, const char *name,
580			    const void *value, size_t size, int flags)
581{
582	int ret;
583
584	if (unlikely(IS_PRIVATE(dentry->d_inode)))
585		return 0;
586	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
587	if (ret)
588		return ret;
589	ret = ima_inode_setxattr(dentry, name, value, size);
590	if (ret)
591		return ret;
592	return evm_inode_setxattr(dentry, name, value, size);
593}
594
595void security_inode_post_setxattr(struct dentry *dentry, const char *name,
596				  const void *value, size_t size, int flags)
597{
598	if (unlikely(IS_PRIVATE(dentry->d_inode)))
599		return;
600	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
601	evm_inode_post_setxattr(dentry, name, value, size);
602}
603
604int security_inode_getxattr(struct dentry *dentry, const char *name)
605{
606	if (unlikely(IS_PRIVATE(dentry->d_inode)))
607		return 0;
608	return security_ops->inode_getxattr(dentry, name);
609}
610
611int security_inode_listxattr(struct dentry *dentry)
612{
613	if (unlikely(IS_PRIVATE(dentry->d_inode)))
614		return 0;
615	return security_ops->inode_listxattr(dentry);
616}
617
618int security_inode_removexattr(struct dentry *dentry, const char *name)
619{
620	int ret;
621
622	if (unlikely(IS_PRIVATE(dentry->d_inode)))
623		return 0;
624	ret = security_ops->inode_removexattr(dentry, name);
625	if (ret)
626		return ret;
627	ret = ima_inode_removexattr(dentry, name);
628	if (ret)
629		return ret;
630	return evm_inode_removexattr(dentry, name);
631}
632
633int security_inode_need_killpriv(struct dentry *dentry)
634{
635	return security_ops->inode_need_killpriv(dentry);
636}
637
638int security_inode_killpriv(struct dentry *dentry)
639{
640	return security_ops->inode_killpriv(dentry);
641}
642
643int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
644{
645	if (unlikely(IS_PRIVATE(inode)))
646		return -EOPNOTSUPP;
647	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
648}
649
650int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
651{
652	if (unlikely(IS_PRIVATE(inode)))
653		return -EOPNOTSUPP;
654	return security_ops->inode_setsecurity(inode, name, value, size, flags);
655}
656
657int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
658{
659	if (unlikely(IS_PRIVATE(inode)))
660		return 0;
661	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
662}
663
664void security_inode_getsecid(const struct inode *inode, u32 *secid)
665{
666	security_ops->inode_getsecid(inode, secid);
667}
668
669int security_file_permission(struct file *file, int mask)
670{
671	int ret;
672
673	ret = security_ops->file_permission(file, mask);
674	if (ret)
675		return ret;
676
677	return fsnotify_perm(file, mask);
678}
679
680int security_file_alloc(struct file *file)
681{
682	return security_ops->file_alloc_security(file);
683}
684
685void security_file_free(struct file *file)
686{
687	security_ops->file_free_security(file);
688}
689
690int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
691{
692	return security_ops->file_ioctl(file, cmd, arg);
693}
694
695static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
696{
697	/*
698	 * Does we have PROT_READ and does the application expect
699	 * it to imply PROT_EXEC?  If not, nothing to talk about...
700	 */
701	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
702		return prot;
703	if (!(current->personality & READ_IMPLIES_EXEC))
704		return prot;
705	/*
706	 * if that's an anonymous mapping, let it.
707	 */
708	if (!file)
709		return prot | PROT_EXEC;
710	/*
711	 * ditto if it's not on noexec mount, except that on !MMU we need
712	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
713	 */
714	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
715#ifndef CONFIG_MMU
716		unsigned long caps = 0;
717		struct address_space *mapping = file->f_mapping;
718		if (mapping && mapping->backing_dev_info)
719			caps = mapping->backing_dev_info->capabilities;
720		if (!(caps & BDI_CAP_EXEC_MAP))
721			return prot;
722#endif
723		return prot | PROT_EXEC;
724	}
725	/* anything on noexec mount won't get PROT_EXEC */
726	return prot;
727}
728
729int security_mmap_file(struct file *file, unsigned long prot,
730			unsigned long flags)
731{
732	int ret;
733	ret = security_ops->mmap_file(file, prot,
734					mmap_prot(file, prot), flags);
735	if (ret)
736		return ret;
737	return ima_file_mmap(file, prot);
738}
739
740int security_mmap_addr(unsigned long addr)
741{
742	return security_ops->mmap_addr(addr);
743}
744
745int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
746			    unsigned long prot)
747{
748	return security_ops->file_mprotect(vma, reqprot, prot);
749}
750
751int security_file_lock(struct file *file, unsigned int cmd)
752{
753	return security_ops->file_lock(file, cmd);
754}
755
756int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
757{
758	return security_ops->file_fcntl(file, cmd, arg);
759}
760
761int security_file_set_fowner(struct file *file)
762{
763	return security_ops->file_set_fowner(file);
764}
765
766int security_file_send_sigiotask(struct task_struct *tsk,
767				  struct fown_struct *fown, int sig)
768{
769	return security_ops->file_send_sigiotask(tsk, fown, sig);
770}
771
772int security_file_receive(struct file *file)
773{
774	return security_ops->file_receive(file);
775}
776
777int security_file_open(struct file *file, const struct cred *cred)
778{
779	int ret;
780
781	ret = security_ops->file_open(file, cred);
782	if (ret)
783		return ret;
784
785	return fsnotify_perm(file, MAY_OPEN);
786}
787
788int security_task_create(unsigned long clone_flags)
789{
790	return security_ops->task_create(clone_flags);
791}
792
793void security_task_free(struct task_struct *task)
794{
795#ifdef CONFIG_SECURITY_YAMA_STACKED
796	yama_task_free(task);
797#endif
798	security_ops->task_free(task);
799}
800
801int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
802{
803	return security_ops->cred_alloc_blank(cred, gfp);
804}
805
806void security_cred_free(struct cred *cred)
807{
808	security_ops->cred_free(cred);
809}
810
811int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
812{
813	return security_ops->cred_prepare(new, old, gfp);
814}
815
816void security_transfer_creds(struct cred *new, const struct cred *old)
817{
818	security_ops->cred_transfer(new, old);
819}
820
821int security_kernel_act_as(struct cred *new, u32 secid)
822{
823	return security_ops->kernel_act_as(new, secid);
824}
825
826int security_kernel_create_files_as(struct cred *new, struct inode *inode)
827{
828	return security_ops->kernel_create_files_as(new, inode);
829}
830
831int security_kernel_module_request(char *kmod_name)
832{
833	return security_ops->kernel_module_request(kmod_name);
834}
835
836int security_kernel_module_from_file(struct file *file)
837{
838	int ret;
839
840	ret = security_ops->kernel_module_from_file(file);
841	if (ret)
842		return ret;
843	return ima_module_check(file);
844}
845
846int security_task_fix_setuid(struct cred *new, const struct cred *old,
847			     int flags)
848{
849	return security_ops->task_fix_setuid(new, old, flags);
850}
851
852int security_task_setpgid(struct task_struct *p, pid_t pgid)
853{
854	return security_ops->task_setpgid(p, pgid);
855}
856
857int security_task_getpgid(struct task_struct *p)
858{
859	return security_ops->task_getpgid(p);
860}
861
862int security_task_getsid(struct task_struct *p)
863{
864	return security_ops->task_getsid(p);
865}
866
867void security_task_getsecid(struct task_struct *p, u32 *secid)
868{
869	security_ops->task_getsecid(p, secid);
870}
871EXPORT_SYMBOL(security_task_getsecid);
872
873int security_task_setnice(struct task_struct *p, int nice)
874{
875	return security_ops->task_setnice(p, nice);
876}
877
878int security_task_setioprio(struct task_struct *p, int ioprio)
879{
880	return security_ops->task_setioprio(p, ioprio);
881}
882
883int security_task_getioprio(struct task_struct *p)
884{
885	return security_ops->task_getioprio(p);
886}
887
888int security_task_setrlimit(struct task_struct *p, unsigned int resource,
889		struct rlimit *new_rlim)
890{
891	return security_ops->task_setrlimit(p, resource, new_rlim);
892}
893
894int security_task_setscheduler(struct task_struct *p)
895{
896	return security_ops->task_setscheduler(p);
897}
898
899int security_task_getscheduler(struct task_struct *p)
900{
901	return security_ops->task_getscheduler(p);
902}
903
904int security_task_movememory(struct task_struct *p)
905{
906	return security_ops->task_movememory(p);
907}
908
909int security_task_kill(struct task_struct *p, struct siginfo *info,
910			int sig, u32 secid)
911{
912	return security_ops->task_kill(p, info, sig, secid);
913}
914
915int security_task_wait(struct task_struct *p)
916{
917	return security_ops->task_wait(p);
918}
919
920int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
921			 unsigned long arg4, unsigned long arg5)
922{
923#ifdef CONFIG_SECURITY_YAMA_STACKED
924	int rc;
925	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
926	if (rc != -ENOSYS)
927		return rc;
928#endif
929	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
930}
931
932void security_task_to_inode(struct task_struct *p, struct inode *inode)
933{
934	security_ops->task_to_inode(p, inode);
935}
936
937int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
938{
939	return security_ops->ipc_permission(ipcp, flag);
940}
941
942void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
943{
944	security_ops->ipc_getsecid(ipcp, secid);
945}
946
947int security_msg_msg_alloc(struct msg_msg *msg)
948{
949	return security_ops->msg_msg_alloc_security(msg);
950}
951
952void security_msg_msg_free(struct msg_msg *msg)
953{
954	security_ops->msg_msg_free_security(msg);
955}
956
957int security_msg_queue_alloc(struct msg_queue *msq)
958{
959	return security_ops->msg_queue_alloc_security(msq);
960}
961
962void security_msg_queue_free(struct msg_queue *msq)
963{
964	security_ops->msg_queue_free_security(msq);
965}
966
967int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
968{
969	return security_ops->msg_queue_associate(msq, msqflg);
970}
971
972int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
973{
974	return security_ops->msg_queue_msgctl(msq, cmd);
975}
976
977int security_msg_queue_msgsnd(struct msg_queue *msq,
978			       struct msg_msg *msg, int msqflg)
979{
980	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
981}
982
983int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
984			       struct task_struct *target, long type, int mode)
985{
986	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
987}
988
989int security_shm_alloc(struct shmid_kernel *shp)
990{
991	return security_ops->shm_alloc_security(shp);
992}
993
994void security_shm_free(struct shmid_kernel *shp)
995{
996	security_ops->shm_free_security(shp);
997}
998
999int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1000{
1001	return security_ops->shm_associate(shp, shmflg);
1002}
1003
1004int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1005{
1006	return security_ops->shm_shmctl(shp, cmd);
1007}
1008
1009int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1010{
1011	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1012}
1013
1014int security_sem_alloc(struct sem_array *sma)
1015{
1016	return security_ops->sem_alloc_security(sma);
1017}
1018
1019void security_sem_free(struct sem_array *sma)
1020{
1021	security_ops->sem_free_security(sma);
1022}
1023
1024int security_sem_associate(struct sem_array *sma, int semflg)
1025{
1026	return security_ops->sem_associate(sma, semflg);
1027}
1028
1029int security_sem_semctl(struct sem_array *sma, int cmd)
1030{
1031	return security_ops->sem_semctl(sma, cmd);
1032}
1033
1034int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1035			unsigned nsops, int alter)
1036{
1037	return security_ops->sem_semop(sma, sops, nsops, alter);
1038}
1039
1040void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1041{
1042	if (unlikely(inode && IS_PRIVATE(inode)))
1043		return;
1044	security_ops->d_instantiate(dentry, inode);
1045}
1046EXPORT_SYMBOL(security_d_instantiate);
1047
1048int security_getprocattr(struct task_struct *p, char *name, char **value)
1049{
1050	return security_ops->getprocattr(p, name, value);
1051}
1052
1053int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1054{
1055	return security_ops->setprocattr(p, name, value, size);
1056}
1057
1058int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1059{
1060	return security_ops->netlink_send(sk, skb);
1061}
1062
1063int security_ismaclabel(const char *name)
1064{
1065	return security_ops->ismaclabel(name);
1066}
1067EXPORT_SYMBOL(security_ismaclabel);
1068
1069int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1070{
1071	return security_ops->secid_to_secctx(secid, secdata, seclen);
1072}
1073EXPORT_SYMBOL(security_secid_to_secctx);
1074
1075int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1076{
1077	return security_ops->secctx_to_secid(secdata, seclen, secid);
1078}
1079EXPORT_SYMBOL(security_secctx_to_secid);
1080
1081void security_release_secctx(char *secdata, u32 seclen)
1082{
1083	security_ops->release_secctx(secdata, seclen);
1084}
1085EXPORT_SYMBOL(security_release_secctx);
1086
1087int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1088{
1089	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1090}
1091EXPORT_SYMBOL(security_inode_notifysecctx);
1092
1093int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1094{
1095	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1096}
1097EXPORT_SYMBOL(security_inode_setsecctx);
1098
1099int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1100{
1101	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1102}
1103EXPORT_SYMBOL(security_inode_getsecctx);
1104
1105#ifdef CONFIG_SECURITY_NETWORK
1106
1107int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1108{
1109	return security_ops->unix_stream_connect(sock, other, newsk);
1110}
1111EXPORT_SYMBOL(security_unix_stream_connect);
1112
1113int security_unix_may_send(struct socket *sock,  struct socket *other)
1114{
1115	return security_ops->unix_may_send(sock, other);
1116}
1117EXPORT_SYMBOL(security_unix_may_send);
1118
1119int security_socket_create(int family, int type, int protocol, int kern)
1120{
1121	return security_ops->socket_create(family, type, protocol, kern);
1122}
1123
1124int security_socket_post_create(struct socket *sock, int family,
1125				int type, int protocol, int kern)
1126{
1127	return security_ops->socket_post_create(sock, family, type,
1128						protocol, kern);
1129}
1130
1131int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1132{
1133	return security_ops->socket_bind(sock, address, addrlen);
1134}
1135
1136int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1137{
1138	return security_ops->socket_connect(sock, address, addrlen);
1139}
1140
1141int security_socket_listen(struct socket *sock, int backlog)
1142{
1143	return security_ops->socket_listen(sock, backlog);
1144}
1145
1146int security_socket_accept(struct socket *sock, struct socket *newsock)
1147{
1148	return security_ops->socket_accept(sock, newsock);
1149}
1150
1151int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1152{
1153	return security_ops->socket_sendmsg(sock, msg, size);
1154}
1155
1156int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1157			    int size, int flags)
1158{
1159	return security_ops->socket_recvmsg(sock, msg, size, flags);
1160}
1161
1162int security_socket_getsockname(struct socket *sock)
1163{
1164	return security_ops->socket_getsockname(sock);
1165}
1166
1167int security_socket_getpeername(struct socket *sock)
1168{
1169	return security_ops->socket_getpeername(sock);
1170}
1171
1172int security_socket_getsockopt(struct socket *sock, int level, int optname)
1173{
1174	return security_ops->socket_getsockopt(sock, level, optname);
1175}
1176
1177int security_socket_setsockopt(struct socket *sock, int level, int optname)
1178{
1179	return security_ops->socket_setsockopt(sock, level, optname);
1180}
1181
1182int security_socket_shutdown(struct socket *sock, int how)
1183{
1184	return security_ops->socket_shutdown(sock, how);
1185}
1186
1187int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1188{
1189	return security_ops->socket_sock_rcv_skb(sk, skb);
1190}
1191EXPORT_SYMBOL(security_sock_rcv_skb);
1192
1193int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1194				      int __user *optlen, unsigned len)
1195{
1196	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1197}
1198
1199int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1200{
1201	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1202}
1203EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1204
1205int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1206{
1207	return security_ops->sk_alloc_security(sk, family, priority);
1208}
1209
1210void security_sk_free(struct sock *sk)
1211{
1212	security_ops->sk_free_security(sk);
1213}
1214
1215void security_sk_clone(const struct sock *sk, struct sock *newsk)
1216{
1217	security_ops->sk_clone_security(sk, newsk);
1218}
1219EXPORT_SYMBOL(security_sk_clone);
1220
1221void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1222{
1223	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1224}
1225EXPORT_SYMBOL(security_sk_classify_flow);
1226
1227void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1228{
1229	security_ops->req_classify_flow(req, fl);
1230}
1231EXPORT_SYMBOL(security_req_classify_flow);
1232
1233void security_sock_graft(struct sock *sk, struct socket *parent)
1234{
1235	security_ops->sock_graft(sk, parent);
1236}
1237EXPORT_SYMBOL(security_sock_graft);
1238
1239int security_inet_conn_request(struct sock *sk,
1240			struct sk_buff *skb, struct request_sock *req)
1241{
1242	return security_ops->inet_conn_request(sk, skb, req);
1243}
1244EXPORT_SYMBOL(security_inet_conn_request);
1245
1246void security_inet_csk_clone(struct sock *newsk,
1247			const struct request_sock *req)
1248{
1249	security_ops->inet_csk_clone(newsk, req);
1250}
1251
1252void security_inet_conn_established(struct sock *sk,
1253			struct sk_buff *skb)
1254{
1255	security_ops->inet_conn_established(sk, skb);
1256}
1257
1258int security_secmark_relabel_packet(u32 secid)
1259{
1260	return security_ops->secmark_relabel_packet(secid);
1261}
1262EXPORT_SYMBOL(security_secmark_relabel_packet);
1263
1264void security_secmark_refcount_inc(void)
1265{
1266	security_ops->secmark_refcount_inc();
1267}
1268EXPORT_SYMBOL(security_secmark_refcount_inc);
1269
1270void security_secmark_refcount_dec(void)
1271{
1272	security_ops->secmark_refcount_dec();
1273}
1274EXPORT_SYMBOL(security_secmark_refcount_dec);
1275
1276int security_tun_dev_alloc_security(void **security)
1277{
1278	return security_ops->tun_dev_alloc_security(security);
1279}
1280EXPORT_SYMBOL(security_tun_dev_alloc_security);
1281
1282void security_tun_dev_free_security(void *security)
1283{
1284	security_ops->tun_dev_free_security(security);
1285}
1286EXPORT_SYMBOL(security_tun_dev_free_security);
1287
1288int security_tun_dev_create(void)
1289{
1290	return security_ops->tun_dev_create();
1291}
1292EXPORT_SYMBOL(security_tun_dev_create);
1293
1294int security_tun_dev_attach_queue(void *security)
1295{
1296	return security_ops->tun_dev_attach_queue(security);
1297}
1298EXPORT_SYMBOL(security_tun_dev_attach_queue);
1299
1300int security_tun_dev_attach(struct sock *sk, void *security)
1301{
1302	return security_ops->tun_dev_attach(sk, security);
1303}
1304EXPORT_SYMBOL(security_tun_dev_attach);
1305
1306int security_tun_dev_open(void *security)
1307{
1308	return security_ops->tun_dev_open(security);
1309}
1310EXPORT_SYMBOL(security_tun_dev_open);
1311
1312void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1313{
1314	security_ops->skb_owned_by(skb, sk);
1315}
1316
1317#endif	/* CONFIG_SECURITY_NETWORK */
1318
1319#ifdef CONFIG_SECURITY_NETWORK_XFRM
1320
1321int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1322{
1323	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1324}
1325EXPORT_SYMBOL(security_xfrm_policy_alloc);
1326
1327int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1328			      struct xfrm_sec_ctx **new_ctxp)
1329{
1330	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1331}
1332
1333void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1334{
1335	security_ops->xfrm_policy_free_security(ctx);
1336}
1337EXPORT_SYMBOL(security_xfrm_policy_free);
1338
1339int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1340{
1341	return security_ops->xfrm_policy_delete_security(ctx);
1342}
1343
1344int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1345{
1346	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1347}
1348EXPORT_SYMBOL(security_xfrm_state_alloc);
1349
1350int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1351				      struct xfrm_sec_ctx *polsec, u32 secid)
1352{
1353	if (!polsec)
1354		return 0;
1355	/*
1356	 * We want the context to be taken from secid which is usually
1357	 * from the sock.
1358	 */
1359	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1360}
1361
1362int security_xfrm_state_delete(struct xfrm_state *x)
1363{
1364	return security_ops->xfrm_state_delete_security(x);
1365}
1366EXPORT_SYMBOL(security_xfrm_state_delete);
1367
1368void security_xfrm_state_free(struct xfrm_state *x)
1369{
1370	security_ops->xfrm_state_free_security(x);
1371}
1372
1373int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1374{
1375	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1376}
1377
1378int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1379				       struct xfrm_policy *xp,
1380				       const struct flowi *fl)
1381{
1382	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1383}
1384
1385int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1386{
1387	return security_ops->xfrm_decode_session(skb, secid, 1);
1388}
1389
1390void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1391{
1392	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1393
1394	BUG_ON(rc);
1395}
1396EXPORT_SYMBOL(security_skb_classify_flow);
1397
1398#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1399
1400#ifdef CONFIG_KEYS
1401
1402int security_key_alloc(struct key *key, const struct cred *cred,
1403		       unsigned long flags)
1404{
1405	return security_ops->key_alloc(key, cred, flags);
1406}
1407
1408void security_key_free(struct key *key)
1409{
1410	security_ops->key_free(key);
1411}
1412
1413int security_key_permission(key_ref_t key_ref,
1414			    const struct cred *cred, key_perm_t perm)
1415{
1416	return security_ops->key_permission(key_ref, cred, perm);
1417}
1418
1419int security_key_getsecurity(struct key *key, char **_buffer)
1420{
1421	return security_ops->key_getsecurity(key, _buffer);
1422}
1423
1424#endif	/* CONFIG_KEYS */
1425
1426#ifdef CONFIG_AUDIT
1427
1428int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1429{
1430	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1431}
1432
1433int security_audit_rule_known(struct audit_krule *krule)
1434{
1435	return security_ops->audit_rule_known(krule);
1436}
1437
1438void security_audit_rule_free(void *lsmrule)
1439{
1440	security_ops->audit_rule_free(lsmrule);
1441}
1442
1443int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1444			      struct audit_context *actx)
1445{
1446	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1447}
1448
1449#endif /* CONFIG_AUDIT */
1450