security.c revision 745ca2475a6ac596e3d8d37c2759c0fbe2586227
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 *	This program is free software; you can redistribute it and/or modify
9 *	it under the terms of the GNU General Public License as published by
10 *	the Free Software Foundation; either version 2 of the License, or
11 *	(at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19
20/* Boot-time LSM user choice */
21static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23/* things that live in capability.c */
24extern struct security_operations default_security_ops;
25extern void security_fixup_ops(struct security_operations *ops);
26
27struct security_operations *security_ops;	/* Initialized to NULL */
28
29/* amount of vm to protect from userspace access */
30unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32static inline int verify(struct security_operations *ops)
33{
34	/* verify the security_operations structure exists */
35	if (!ops)
36		return -EINVAL;
37	security_fixup_ops(ops);
38	return 0;
39}
40
41static void __init do_security_initcalls(void)
42{
43	initcall_t *call;
44	call = __security_initcall_start;
45	while (call < __security_initcall_end) {
46		(*call) ();
47		call++;
48	}
49}
50
51/**
52 * security_init - initializes the security framework
53 *
54 * This should be called early in the kernel initialization sequence.
55 */
56int __init security_init(void)
57{
58	printk(KERN_INFO "Security Framework initialized\n");
59
60	security_fixup_ops(&default_security_ops);
61	security_ops = &default_security_ops;
62	do_security_initcalls();
63
64	return 0;
65}
66
67/* Save user chosen LSM */
68static int __init choose_lsm(char *str)
69{
70	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71	return 1;
72}
73__setup("security=", choose_lsm);
74
75/**
76 * security_module_enable - Load given security module on boot ?
77 * @ops: a pointer to the struct security_operations that is to be checked.
78 *
79 * Each LSM must pass this method before registering its own operations
80 * to avoid security registration races. This method may also be used
81 * to check if your LSM is currently loaded during kernel initialization.
82 *
83 * Return true if:
84 *	-The passed LSM is the one chosen by user at boot time,
85 *	-or user didn't specify a specific LSM and we're the first to ask
86 *	 for registration permission,
87 *	-or the passed LSM is currently loaded.
88 * Otherwise, return false.
89 */
90int __init security_module_enable(struct security_operations *ops)
91{
92	if (!*chosen_lsm)
93		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95		return 0;
96
97	return 1;
98}
99
100/**
101 * register_security - registers a security framework with the kernel
102 * @ops: a pointer to the struct security_options that is to be registered
103 *
104 * This function allows a security module to register itself with the
105 * kernel security subsystem.  Some rudimentary checking is done on the @ops
106 * value passed to this function. You'll need to check first if your LSM
107 * is allowed to register its @ops by calling security_module_enable(@ops).
108 *
109 * If there is already a security module registered with the kernel,
110 * an error will be returned.  Otherwise %0 is returned on success.
111 */
112int register_security(struct security_operations *ops)
113{
114	if (verify(ops)) {
115		printk(KERN_DEBUG "%s could not verify "
116		       "security_operations structure.\n", __func__);
117		return -EINVAL;
118	}
119
120	if (security_ops != &default_security_ops)
121		return -EAGAIN;
122
123	security_ops = ops;
124
125	return 0;
126}
127
128/* Security operations */
129
130int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131{
132	return security_ops->ptrace_may_access(child, mode);
133}
134
135int security_ptrace_traceme(struct task_struct *parent)
136{
137	return security_ops->ptrace_traceme(parent);
138}
139
140int security_capget(struct task_struct *target,
141		     kernel_cap_t *effective,
142		     kernel_cap_t *inheritable,
143		     kernel_cap_t *permitted)
144{
145	return security_ops->capget(target, effective, inheritable, permitted);
146}
147
148int security_capset_check(const kernel_cap_t *effective,
149			  const kernel_cap_t *inheritable,
150			  const kernel_cap_t *permitted)
151{
152	return security_ops->capset_check(effective, inheritable, permitted);
153}
154
155void security_capset_set(const kernel_cap_t *effective,
156			 const kernel_cap_t *inheritable,
157			 const kernel_cap_t *permitted)
158{
159	security_ops->capset_set(effective, inheritable, permitted);
160}
161
162int security_capable(struct task_struct *tsk, int cap)
163{
164	return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT);
165}
166
167int security_capable_noaudit(struct task_struct *tsk, int cap)
168{
169	return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT);
170}
171
172int security_acct(struct file *file)
173{
174	return security_ops->acct(file);
175}
176
177int security_sysctl(struct ctl_table *table, int op)
178{
179	return security_ops->sysctl(table, op);
180}
181
182int security_quotactl(int cmds, int type, int id, struct super_block *sb)
183{
184	return security_ops->quotactl(cmds, type, id, sb);
185}
186
187int security_quota_on(struct dentry *dentry)
188{
189	return security_ops->quota_on(dentry);
190}
191
192int security_syslog(int type)
193{
194	return security_ops->syslog(type);
195}
196
197int security_settime(struct timespec *ts, struct timezone *tz)
198{
199	return security_ops->settime(ts, tz);
200}
201
202int security_vm_enough_memory(long pages)
203{
204	WARN_ON(current->mm == NULL);
205	return security_ops->vm_enough_memory(current->mm, pages);
206}
207
208int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
209{
210	WARN_ON(mm == NULL);
211	return security_ops->vm_enough_memory(mm, pages);
212}
213
214int security_vm_enough_memory_kern(long pages)
215{
216	/* If current->mm is a kernel thread then we will pass NULL,
217	   for this specific case that is fine */
218	return security_ops->vm_enough_memory(current->mm, pages);
219}
220
221int security_bprm_alloc(struct linux_binprm *bprm)
222{
223	return security_ops->bprm_alloc_security(bprm);
224}
225
226void security_bprm_free(struct linux_binprm *bprm)
227{
228	security_ops->bprm_free_security(bprm);
229}
230
231void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
232{
233	security_ops->bprm_apply_creds(bprm, unsafe);
234}
235
236void security_bprm_post_apply_creds(struct linux_binprm *bprm)
237{
238	security_ops->bprm_post_apply_creds(bprm);
239}
240
241int security_bprm_set(struct linux_binprm *bprm)
242{
243	return security_ops->bprm_set_security(bprm);
244}
245
246int security_bprm_check(struct linux_binprm *bprm)
247{
248	return security_ops->bprm_check_security(bprm);
249}
250
251int security_bprm_secureexec(struct linux_binprm *bprm)
252{
253	return security_ops->bprm_secureexec(bprm);
254}
255
256int security_sb_alloc(struct super_block *sb)
257{
258	return security_ops->sb_alloc_security(sb);
259}
260
261void security_sb_free(struct super_block *sb)
262{
263	security_ops->sb_free_security(sb);
264}
265
266int security_sb_copy_data(char *orig, char *copy)
267{
268	return security_ops->sb_copy_data(orig, copy);
269}
270EXPORT_SYMBOL(security_sb_copy_data);
271
272int security_sb_kern_mount(struct super_block *sb, void *data)
273{
274	return security_ops->sb_kern_mount(sb, data);
275}
276
277int security_sb_show_options(struct seq_file *m, struct super_block *sb)
278{
279	return security_ops->sb_show_options(m, sb);
280}
281
282int security_sb_statfs(struct dentry *dentry)
283{
284	return security_ops->sb_statfs(dentry);
285}
286
287int security_sb_mount(char *dev_name, struct path *path,
288                       char *type, unsigned long flags, void *data)
289{
290	return security_ops->sb_mount(dev_name, path, type, flags, data);
291}
292
293int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
294{
295	return security_ops->sb_check_sb(mnt, path);
296}
297
298int security_sb_umount(struct vfsmount *mnt, int flags)
299{
300	return security_ops->sb_umount(mnt, flags);
301}
302
303void security_sb_umount_close(struct vfsmount *mnt)
304{
305	security_ops->sb_umount_close(mnt);
306}
307
308void security_sb_umount_busy(struct vfsmount *mnt)
309{
310	security_ops->sb_umount_busy(mnt);
311}
312
313void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
314{
315	security_ops->sb_post_remount(mnt, flags, data);
316}
317
318void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
319{
320	security_ops->sb_post_addmount(mnt, mountpoint);
321}
322
323int security_sb_pivotroot(struct path *old_path, struct path *new_path)
324{
325	return security_ops->sb_pivotroot(old_path, new_path);
326}
327
328void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
329{
330	security_ops->sb_post_pivotroot(old_path, new_path);
331}
332
333int security_sb_set_mnt_opts(struct super_block *sb,
334				struct security_mnt_opts *opts)
335{
336	return security_ops->sb_set_mnt_opts(sb, opts);
337}
338EXPORT_SYMBOL(security_sb_set_mnt_opts);
339
340void security_sb_clone_mnt_opts(const struct super_block *oldsb,
341				struct super_block *newsb)
342{
343	security_ops->sb_clone_mnt_opts(oldsb, newsb);
344}
345EXPORT_SYMBOL(security_sb_clone_mnt_opts);
346
347int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
348{
349	return security_ops->sb_parse_opts_str(options, opts);
350}
351EXPORT_SYMBOL(security_sb_parse_opts_str);
352
353int security_inode_alloc(struct inode *inode)
354{
355	inode->i_security = NULL;
356	return security_ops->inode_alloc_security(inode);
357}
358
359void security_inode_free(struct inode *inode)
360{
361	security_ops->inode_free_security(inode);
362}
363
364int security_inode_init_security(struct inode *inode, struct inode *dir,
365				  char **name, void **value, size_t *len)
366{
367	if (unlikely(IS_PRIVATE(inode)))
368		return -EOPNOTSUPP;
369	return security_ops->inode_init_security(inode, dir, name, value, len);
370}
371EXPORT_SYMBOL(security_inode_init_security);
372
373int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
374{
375	if (unlikely(IS_PRIVATE(dir)))
376		return 0;
377	return security_ops->inode_create(dir, dentry, mode);
378}
379
380int security_inode_link(struct dentry *old_dentry, struct inode *dir,
381			 struct dentry *new_dentry)
382{
383	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
384		return 0;
385	return security_ops->inode_link(old_dentry, dir, new_dentry);
386}
387
388int security_inode_unlink(struct inode *dir, struct dentry *dentry)
389{
390	if (unlikely(IS_PRIVATE(dentry->d_inode)))
391		return 0;
392	return security_ops->inode_unlink(dir, dentry);
393}
394
395int security_inode_symlink(struct inode *dir, struct dentry *dentry,
396			    const char *old_name)
397{
398	if (unlikely(IS_PRIVATE(dir)))
399		return 0;
400	return security_ops->inode_symlink(dir, dentry, old_name);
401}
402
403int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
404{
405	if (unlikely(IS_PRIVATE(dir)))
406		return 0;
407	return security_ops->inode_mkdir(dir, dentry, mode);
408}
409
410int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
411{
412	if (unlikely(IS_PRIVATE(dentry->d_inode)))
413		return 0;
414	return security_ops->inode_rmdir(dir, dentry);
415}
416
417int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
418{
419	if (unlikely(IS_PRIVATE(dir)))
420		return 0;
421	return security_ops->inode_mknod(dir, dentry, mode, dev);
422}
423
424int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
425			   struct inode *new_dir, struct dentry *new_dentry)
426{
427        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
428            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
429		return 0;
430	return security_ops->inode_rename(old_dir, old_dentry,
431					   new_dir, new_dentry);
432}
433
434int security_inode_readlink(struct dentry *dentry)
435{
436	if (unlikely(IS_PRIVATE(dentry->d_inode)))
437		return 0;
438	return security_ops->inode_readlink(dentry);
439}
440
441int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
442{
443	if (unlikely(IS_PRIVATE(dentry->d_inode)))
444		return 0;
445	return security_ops->inode_follow_link(dentry, nd);
446}
447
448int security_inode_permission(struct inode *inode, int mask)
449{
450	if (unlikely(IS_PRIVATE(inode)))
451		return 0;
452	return security_ops->inode_permission(inode, mask);
453}
454
455int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
456{
457	if (unlikely(IS_PRIVATE(dentry->d_inode)))
458		return 0;
459	return security_ops->inode_setattr(dentry, attr);
460}
461EXPORT_SYMBOL_GPL(security_inode_setattr);
462
463int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
464{
465	if (unlikely(IS_PRIVATE(dentry->d_inode)))
466		return 0;
467	return security_ops->inode_getattr(mnt, dentry);
468}
469
470void security_inode_delete(struct inode *inode)
471{
472	if (unlikely(IS_PRIVATE(inode)))
473		return;
474	security_ops->inode_delete(inode);
475}
476
477int security_inode_setxattr(struct dentry *dentry, const char *name,
478			    const void *value, size_t size, int flags)
479{
480	if (unlikely(IS_PRIVATE(dentry->d_inode)))
481		return 0;
482	return security_ops->inode_setxattr(dentry, name, value, size, flags);
483}
484
485void security_inode_post_setxattr(struct dentry *dentry, const char *name,
486				  const void *value, size_t size, int flags)
487{
488	if (unlikely(IS_PRIVATE(dentry->d_inode)))
489		return;
490	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
491}
492
493int security_inode_getxattr(struct dentry *dentry, const char *name)
494{
495	if (unlikely(IS_PRIVATE(dentry->d_inode)))
496		return 0;
497	return security_ops->inode_getxattr(dentry, name);
498}
499
500int security_inode_listxattr(struct dentry *dentry)
501{
502	if (unlikely(IS_PRIVATE(dentry->d_inode)))
503		return 0;
504	return security_ops->inode_listxattr(dentry);
505}
506
507int security_inode_removexattr(struct dentry *dentry, const char *name)
508{
509	if (unlikely(IS_PRIVATE(dentry->d_inode)))
510		return 0;
511	return security_ops->inode_removexattr(dentry, name);
512}
513
514int security_inode_need_killpriv(struct dentry *dentry)
515{
516	return security_ops->inode_need_killpriv(dentry);
517}
518
519int security_inode_killpriv(struct dentry *dentry)
520{
521	return security_ops->inode_killpriv(dentry);
522}
523
524int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
525{
526	if (unlikely(IS_PRIVATE(inode)))
527		return 0;
528	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
529}
530
531int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
532{
533	if (unlikely(IS_PRIVATE(inode)))
534		return 0;
535	return security_ops->inode_setsecurity(inode, name, value, size, flags);
536}
537
538int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
539{
540	if (unlikely(IS_PRIVATE(inode)))
541		return 0;
542	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
543}
544
545void security_inode_getsecid(const struct inode *inode, u32 *secid)
546{
547	security_ops->inode_getsecid(inode, secid);
548}
549
550int security_file_permission(struct file *file, int mask)
551{
552	return security_ops->file_permission(file, mask);
553}
554
555int security_file_alloc(struct file *file)
556{
557	return security_ops->file_alloc_security(file);
558}
559
560void security_file_free(struct file *file)
561{
562	security_ops->file_free_security(file);
563}
564
565int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
566{
567	return security_ops->file_ioctl(file, cmd, arg);
568}
569
570int security_file_mmap(struct file *file, unsigned long reqprot,
571			unsigned long prot, unsigned long flags,
572			unsigned long addr, unsigned long addr_only)
573{
574	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
575}
576
577int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
578			    unsigned long prot)
579{
580	return security_ops->file_mprotect(vma, reqprot, prot);
581}
582
583int security_file_lock(struct file *file, unsigned int cmd)
584{
585	return security_ops->file_lock(file, cmd);
586}
587
588int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
589{
590	return security_ops->file_fcntl(file, cmd, arg);
591}
592
593int security_file_set_fowner(struct file *file)
594{
595	return security_ops->file_set_fowner(file);
596}
597
598int security_file_send_sigiotask(struct task_struct *tsk,
599				  struct fown_struct *fown, int sig)
600{
601	return security_ops->file_send_sigiotask(tsk, fown, sig);
602}
603
604int security_file_receive(struct file *file)
605{
606	return security_ops->file_receive(file);
607}
608
609int security_dentry_open(struct file *file, const struct cred *cred)
610{
611	return security_ops->dentry_open(file, cred);
612}
613
614int security_task_create(unsigned long clone_flags)
615{
616	return security_ops->task_create(clone_flags);
617}
618
619int security_cred_alloc(struct cred *cred)
620{
621	return security_ops->cred_alloc_security(cred);
622}
623
624void security_cred_free(struct cred *cred)
625{
626	security_ops->cred_free(cred);
627}
628
629int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
630{
631	return security_ops->task_setuid(id0, id1, id2, flags);
632}
633
634int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
635			       uid_t old_suid, int flags)
636{
637	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
638}
639
640int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
641{
642	return security_ops->task_setgid(id0, id1, id2, flags);
643}
644
645int security_task_setpgid(struct task_struct *p, pid_t pgid)
646{
647	return security_ops->task_setpgid(p, pgid);
648}
649
650int security_task_getpgid(struct task_struct *p)
651{
652	return security_ops->task_getpgid(p);
653}
654
655int security_task_getsid(struct task_struct *p)
656{
657	return security_ops->task_getsid(p);
658}
659
660void security_task_getsecid(struct task_struct *p, u32 *secid)
661{
662	security_ops->task_getsecid(p, secid);
663}
664EXPORT_SYMBOL(security_task_getsecid);
665
666int security_task_setgroups(struct group_info *group_info)
667{
668	return security_ops->task_setgroups(group_info);
669}
670
671int security_task_setnice(struct task_struct *p, int nice)
672{
673	return security_ops->task_setnice(p, nice);
674}
675
676int security_task_setioprio(struct task_struct *p, int ioprio)
677{
678	return security_ops->task_setioprio(p, ioprio);
679}
680
681int security_task_getioprio(struct task_struct *p)
682{
683	return security_ops->task_getioprio(p);
684}
685
686int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
687{
688	return security_ops->task_setrlimit(resource, new_rlim);
689}
690
691int security_task_setscheduler(struct task_struct *p,
692				int policy, struct sched_param *lp)
693{
694	return security_ops->task_setscheduler(p, policy, lp);
695}
696
697int security_task_getscheduler(struct task_struct *p)
698{
699	return security_ops->task_getscheduler(p);
700}
701
702int security_task_movememory(struct task_struct *p)
703{
704	return security_ops->task_movememory(p);
705}
706
707int security_task_kill(struct task_struct *p, struct siginfo *info,
708			int sig, u32 secid)
709{
710	return security_ops->task_kill(p, info, sig, secid);
711}
712
713int security_task_wait(struct task_struct *p)
714{
715	return security_ops->task_wait(p);
716}
717
718int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
719			 unsigned long arg4, unsigned long arg5, long *rc_p)
720{
721	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
722}
723
724void security_task_reparent_to_init(struct task_struct *p)
725{
726	security_ops->task_reparent_to_init(p);
727}
728
729void security_task_to_inode(struct task_struct *p, struct inode *inode)
730{
731	security_ops->task_to_inode(p, inode);
732}
733
734int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
735{
736	return security_ops->ipc_permission(ipcp, flag);
737}
738
739void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
740{
741	security_ops->ipc_getsecid(ipcp, secid);
742}
743
744int security_msg_msg_alloc(struct msg_msg *msg)
745{
746	return security_ops->msg_msg_alloc_security(msg);
747}
748
749void security_msg_msg_free(struct msg_msg *msg)
750{
751	security_ops->msg_msg_free_security(msg);
752}
753
754int security_msg_queue_alloc(struct msg_queue *msq)
755{
756	return security_ops->msg_queue_alloc_security(msq);
757}
758
759void security_msg_queue_free(struct msg_queue *msq)
760{
761	security_ops->msg_queue_free_security(msq);
762}
763
764int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
765{
766	return security_ops->msg_queue_associate(msq, msqflg);
767}
768
769int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
770{
771	return security_ops->msg_queue_msgctl(msq, cmd);
772}
773
774int security_msg_queue_msgsnd(struct msg_queue *msq,
775			       struct msg_msg *msg, int msqflg)
776{
777	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
778}
779
780int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
781			       struct task_struct *target, long type, int mode)
782{
783	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
784}
785
786int security_shm_alloc(struct shmid_kernel *shp)
787{
788	return security_ops->shm_alloc_security(shp);
789}
790
791void security_shm_free(struct shmid_kernel *shp)
792{
793	security_ops->shm_free_security(shp);
794}
795
796int security_shm_associate(struct shmid_kernel *shp, int shmflg)
797{
798	return security_ops->shm_associate(shp, shmflg);
799}
800
801int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
802{
803	return security_ops->shm_shmctl(shp, cmd);
804}
805
806int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
807{
808	return security_ops->shm_shmat(shp, shmaddr, shmflg);
809}
810
811int security_sem_alloc(struct sem_array *sma)
812{
813	return security_ops->sem_alloc_security(sma);
814}
815
816void security_sem_free(struct sem_array *sma)
817{
818	security_ops->sem_free_security(sma);
819}
820
821int security_sem_associate(struct sem_array *sma, int semflg)
822{
823	return security_ops->sem_associate(sma, semflg);
824}
825
826int security_sem_semctl(struct sem_array *sma, int cmd)
827{
828	return security_ops->sem_semctl(sma, cmd);
829}
830
831int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
832			unsigned nsops, int alter)
833{
834	return security_ops->sem_semop(sma, sops, nsops, alter);
835}
836
837void security_d_instantiate(struct dentry *dentry, struct inode *inode)
838{
839	if (unlikely(inode && IS_PRIVATE(inode)))
840		return;
841	security_ops->d_instantiate(dentry, inode);
842}
843EXPORT_SYMBOL(security_d_instantiate);
844
845int security_getprocattr(struct task_struct *p, char *name, char **value)
846{
847	return security_ops->getprocattr(p, name, value);
848}
849
850int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
851{
852	return security_ops->setprocattr(p, name, value, size);
853}
854
855int security_netlink_send(struct sock *sk, struct sk_buff *skb)
856{
857	return security_ops->netlink_send(sk, skb);
858}
859
860int security_netlink_recv(struct sk_buff *skb, int cap)
861{
862	return security_ops->netlink_recv(skb, cap);
863}
864EXPORT_SYMBOL(security_netlink_recv);
865
866int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
867{
868	return security_ops->secid_to_secctx(secid, secdata, seclen);
869}
870EXPORT_SYMBOL(security_secid_to_secctx);
871
872int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
873{
874	return security_ops->secctx_to_secid(secdata, seclen, secid);
875}
876EXPORT_SYMBOL(security_secctx_to_secid);
877
878void security_release_secctx(char *secdata, u32 seclen)
879{
880	security_ops->release_secctx(secdata, seclen);
881}
882EXPORT_SYMBOL(security_release_secctx);
883
884#ifdef CONFIG_SECURITY_NETWORK
885
886int security_unix_stream_connect(struct socket *sock, struct socket *other,
887				 struct sock *newsk)
888{
889	return security_ops->unix_stream_connect(sock, other, newsk);
890}
891EXPORT_SYMBOL(security_unix_stream_connect);
892
893int security_unix_may_send(struct socket *sock,  struct socket *other)
894{
895	return security_ops->unix_may_send(sock, other);
896}
897EXPORT_SYMBOL(security_unix_may_send);
898
899int security_socket_create(int family, int type, int protocol, int kern)
900{
901	return security_ops->socket_create(family, type, protocol, kern);
902}
903
904int security_socket_post_create(struct socket *sock, int family,
905				int type, int protocol, int kern)
906{
907	return security_ops->socket_post_create(sock, family, type,
908						protocol, kern);
909}
910
911int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
912{
913	return security_ops->socket_bind(sock, address, addrlen);
914}
915
916int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
917{
918	return security_ops->socket_connect(sock, address, addrlen);
919}
920
921int security_socket_listen(struct socket *sock, int backlog)
922{
923	return security_ops->socket_listen(sock, backlog);
924}
925
926int security_socket_accept(struct socket *sock, struct socket *newsock)
927{
928	return security_ops->socket_accept(sock, newsock);
929}
930
931void security_socket_post_accept(struct socket *sock, struct socket *newsock)
932{
933	security_ops->socket_post_accept(sock, newsock);
934}
935
936int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
937{
938	return security_ops->socket_sendmsg(sock, msg, size);
939}
940
941int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
942			    int size, int flags)
943{
944	return security_ops->socket_recvmsg(sock, msg, size, flags);
945}
946
947int security_socket_getsockname(struct socket *sock)
948{
949	return security_ops->socket_getsockname(sock);
950}
951
952int security_socket_getpeername(struct socket *sock)
953{
954	return security_ops->socket_getpeername(sock);
955}
956
957int security_socket_getsockopt(struct socket *sock, int level, int optname)
958{
959	return security_ops->socket_getsockopt(sock, level, optname);
960}
961
962int security_socket_setsockopt(struct socket *sock, int level, int optname)
963{
964	return security_ops->socket_setsockopt(sock, level, optname);
965}
966
967int security_socket_shutdown(struct socket *sock, int how)
968{
969	return security_ops->socket_shutdown(sock, how);
970}
971
972int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
973{
974	return security_ops->socket_sock_rcv_skb(sk, skb);
975}
976EXPORT_SYMBOL(security_sock_rcv_skb);
977
978int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
979				      int __user *optlen, unsigned len)
980{
981	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
982}
983
984int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
985{
986	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
987}
988EXPORT_SYMBOL(security_socket_getpeersec_dgram);
989
990int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
991{
992	return security_ops->sk_alloc_security(sk, family, priority);
993}
994
995void security_sk_free(struct sock *sk)
996{
997	security_ops->sk_free_security(sk);
998}
999
1000void security_sk_clone(const struct sock *sk, struct sock *newsk)
1001{
1002	security_ops->sk_clone_security(sk, newsk);
1003}
1004
1005void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1006{
1007	security_ops->sk_getsecid(sk, &fl->secid);
1008}
1009EXPORT_SYMBOL(security_sk_classify_flow);
1010
1011void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1012{
1013	security_ops->req_classify_flow(req, fl);
1014}
1015EXPORT_SYMBOL(security_req_classify_flow);
1016
1017void security_sock_graft(struct sock *sk, struct socket *parent)
1018{
1019	security_ops->sock_graft(sk, parent);
1020}
1021EXPORT_SYMBOL(security_sock_graft);
1022
1023int security_inet_conn_request(struct sock *sk,
1024			struct sk_buff *skb, struct request_sock *req)
1025{
1026	return security_ops->inet_conn_request(sk, skb, req);
1027}
1028EXPORT_SYMBOL(security_inet_conn_request);
1029
1030void security_inet_csk_clone(struct sock *newsk,
1031			const struct request_sock *req)
1032{
1033	security_ops->inet_csk_clone(newsk, req);
1034}
1035
1036void security_inet_conn_established(struct sock *sk,
1037			struct sk_buff *skb)
1038{
1039	security_ops->inet_conn_established(sk, skb);
1040}
1041
1042#endif	/* CONFIG_SECURITY_NETWORK */
1043
1044#ifdef CONFIG_SECURITY_NETWORK_XFRM
1045
1046int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1047{
1048	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1049}
1050EXPORT_SYMBOL(security_xfrm_policy_alloc);
1051
1052int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1053			      struct xfrm_sec_ctx **new_ctxp)
1054{
1055	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1056}
1057
1058void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1059{
1060	security_ops->xfrm_policy_free_security(ctx);
1061}
1062EXPORT_SYMBOL(security_xfrm_policy_free);
1063
1064int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1065{
1066	return security_ops->xfrm_policy_delete_security(ctx);
1067}
1068
1069int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1070{
1071	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1072}
1073EXPORT_SYMBOL(security_xfrm_state_alloc);
1074
1075int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1076				      struct xfrm_sec_ctx *polsec, u32 secid)
1077{
1078	if (!polsec)
1079		return 0;
1080	/*
1081	 * We want the context to be taken from secid which is usually
1082	 * from the sock.
1083	 */
1084	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1085}
1086
1087int security_xfrm_state_delete(struct xfrm_state *x)
1088{
1089	return security_ops->xfrm_state_delete_security(x);
1090}
1091EXPORT_SYMBOL(security_xfrm_state_delete);
1092
1093void security_xfrm_state_free(struct xfrm_state *x)
1094{
1095	security_ops->xfrm_state_free_security(x);
1096}
1097
1098int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1099{
1100	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1101}
1102
1103int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1104				       struct xfrm_policy *xp, struct flowi *fl)
1105{
1106	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1107}
1108
1109int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1110{
1111	return security_ops->xfrm_decode_session(skb, secid, 1);
1112}
1113
1114void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1115{
1116	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1117
1118	BUG_ON(rc);
1119}
1120EXPORT_SYMBOL(security_skb_classify_flow);
1121
1122#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1123
1124#ifdef CONFIG_KEYS
1125
1126int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1127{
1128	return security_ops->key_alloc(key, tsk, flags);
1129}
1130
1131void security_key_free(struct key *key)
1132{
1133	security_ops->key_free(key);
1134}
1135
1136int security_key_permission(key_ref_t key_ref,
1137			    struct task_struct *context, key_perm_t perm)
1138{
1139	return security_ops->key_permission(key_ref, context, perm);
1140}
1141
1142int security_key_getsecurity(struct key *key, char **_buffer)
1143{
1144	return security_ops->key_getsecurity(key, _buffer);
1145}
1146
1147#endif	/* CONFIG_KEYS */
1148
1149#ifdef CONFIG_AUDIT
1150
1151int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1152{
1153	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1154}
1155
1156int security_audit_rule_known(struct audit_krule *krule)
1157{
1158	return security_ops->audit_rule_known(krule);
1159}
1160
1161void security_audit_rule_free(void *lsmrule)
1162{
1163	security_ops->audit_rule_free(lsmrule);
1164}
1165
1166int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1167			      struct audit_context *actx)
1168{
1169	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1170}
1171
1172#endif /* CONFIG_AUDIT */
1173