security.c revision dd6f953adb5c4deb9cd7b6a5054e7d5eafe4ed71
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 *	This program is free software; you can redistribute it and/or modify
9 *	it under the terms of the GNU General Public License as published by
10 *	the Free Software Foundation; either version 2 of the License, or
11 *	(at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19
20
21/* things that live in dummy.c */
22extern struct security_operations dummy_security_ops;
23extern void security_fixup_ops(struct security_operations *ops);
24
25struct security_operations *security_ops;	/* Initialized to NULL */
26
27/* amount of vm to protect from userspace access */
28unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
29
30static inline int verify(struct security_operations *ops)
31{
32	/* verify the security_operations structure exists */
33	if (!ops)
34		return -EINVAL;
35	security_fixup_ops(ops);
36	return 0;
37}
38
39static void __init do_security_initcalls(void)
40{
41	initcall_t *call;
42	call = __security_initcall_start;
43	while (call < __security_initcall_end) {
44		(*call) ();
45		call++;
46	}
47}
48
49/**
50 * security_init - initializes the security framework
51 *
52 * This should be called early in the kernel initialization sequence.
53 */
54int __init security_init(void)
55{
56	printk(KERN_INFO "Security Framework initialized\n");
57
58	if (verify(&dummy_security_ops)) {
59		printk(KERN_ERR "%s could not verify "
60		       "dummy_security_ops structure.\n", __func__);
61		return -EIO;
62	}
63
64	security_ops = &dummy_security_ops;
65	do_security_initcalls();
66
67	return 0;
68}
69
70/**
71 * register_security - registers a security framework with the kernel
72 * @ops: a pointer to the struct security_options that is to be registered
73 *
74 * This function is to allow a security module to register itself with the
75 * kernel security subsystem.  Some rudimentary checking is done on the @ops
76 * value passed to this function.
77 *
78 * If there is already a security module registered with the kernel,
79 * an error will be returned.  Otherwise 0 is returned on success.
80 */
81int register_security(struct security_operations *ops)
82{
83	if (verify(ops)) {
84		printk(KERN_DEBUG "%s could not verify "
85		       "security_operations structure.\n", __func__);
86		return -EINVAL;
87	}
88
89	if (security_ops != &dummy_security_ops)
90		return -EAGAIN;
91
92	security_ops = ops;
93
94	return 0;
95}
96
97/**
98 * mod_reg_security - allows security modules to be "stacked"
99 * @name: a pointer to a string with the name of the security_options to be registered
100 * @ops: a pointer to the struct security_options that is to be registered
101 *
102 * This function allows security modules to be stacked if the currently loaded
103 * security module allows this to happen.  It passes the @name and @ops to the
104 * register_security function of the currently loaded security module.
105 *
106 * The return value depends on the currently loaded security module, with 0 as
107 * success.
108 */
109int mod_reg_security(const char *name, struct security_operations *ops)
110{
111	if (verify(ops)) {
112		printk(KERN_INFO "%s could not verify "
113		       "security operations.\n", __func__);
114		return -EINVAL;
115	}
116
117	if (ops == security_ops) {
118		printk(KERN_INFO "%s security operations "
119		       "already registered.\n", __func__);
120		return -EINVAL;
121	}
122
123	return security_ops->register_security(name, ops);
124}
125
126/* Security operations */
127
128int security_ptrace(struct task_struct *parent, struct task_struct *child)
129{
130	return security_ops->ptrace(parent, child);
131}
132
133int security_capget(struct task_struct *target,
134		     kernel_cap_t *effective,
135		     kernel_cap_t *inheritable,
136		     kernel_cap_t *permitted)
137{
138	return security_ops->capget(target, effective, inheritable, permitted);
139}
140
141int security_capset_check(struct task_struct *target,
142			   kernel_cap_t *effective,
143			   kernel_cap_t *inheritable,
144			   kernel_cap_t *permitted)
145{
146	return security_ops->capset_check(target, effective, inheritable, permitted);
147}
148
149void security_capset_set(struct task_struct *target,
150			  kernel_cap_t *effective,
151			  kernel_cap_t *inheritable,
152			  kernel_cap_t *permitted)
153{
154	security_ops->capset_set(target, effective, inheritable, permitted);
155}
156
157int security_capable(struct task_struct *tsk, int cap)
158{
159	return security_ops->capable(tsk, cap);
160}
161
162int security_acct(struct file *file)
163{
164	return security_ops->acct(file);
165}
166
167int security_sysctl(struct ctl_table *table, int op)
168{
169	return security_ops->sysctl(table, op);
170}
171
172int security_quotactl(int cmds, int type, int id, struct super_block *sb)
173{
174	return security_ops->quotactl(cmds, type, id, sb);
175}
176
177int security_quota_on(struct dentry *dentry)
178{
179	return security_ops->quota_on(dentry);
180}
181
182int security_syslog(int type)
183{
184	return security_ops->syslog(type);
185}
186
187int security_settime(struct timespec *ts, struct timezone *tz)
188{
189	return security_ops->settime(ts, tz);
190}
191
192int security_vm_enough_memory(long pages)
193{
194	return security_ops->vm_enough_memory(current->mm, pages);
195}
196
197int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
198{
199	return security_ops->vm_enough_memory(mm, pages);
200}
201
202int security_bprm_alloc(struct linux_binprm *bprm)
203{
204	return security_ops->bprm_alloc_security(bprm);
205}
206
207void security_bprm_free(struct linux_binprm *bprm)
208{
209	security_ops->bprm_free_security(bprm);
210}
211
212void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
213{
214	security_ops->bprm_apply_creds(bprm, unsafe);
215}
216
217void security_bprm_post_apply_creds(struct linux_binprm *bprm)
218{
219	security_ops->bprm_post_apply_creds(bprm);
220}
221
222int security_bprm_set(struct linux_binprm *bprm)
223{
224	return security_ops->bprm_set_security(bprm);
225}
226
227int security_bprm_check(struct linux_binprm *bprm)
228{
229	return security_ops->bprm_check_security(bprm);
230}
231
232int security_bprm_secureexec(struct linux_binprm *bprm)
233{
234	return security_ops->bprm_secureexec(bprm);
235}
236
237int security_sb_alloc(struct super_block *sb)
238{
239	return security_ops->sb_alloc_security(sb);
240}
241
242void security_sb_free(struct super_block *sb)
243{
244	security_ops->sb_free_security(sb);
245}
246
247int security_sb_copy_data(char *orig, char *copy)
248{
249	return security_ops->sb_copy_data(orig, copy);
250}
251EXPORT_SYMBOL(security_sb_copy_data);
252
253int security_sb_kern_mount(struct super_block *sb, void *data)
254{
255	return security_ops->sb_kern_mount(sb, data);
256}
257
258int security_sb_statfs(struct dentry *dentry)
259{
260	return security_ops->sb_statfs(dentry);
261}
262
263int security_sb_mount(char *dev_name, struct nameidata *nd,
264                       char *type, unsigned long flags, void *data)
265{
266	return security_ops->sb_mount(dev_name, nd, type, flags, data);
267}
268
269int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
270{
271	return security_ops->sb_check_sb(mnt, nd);
272}
273
274int security_sb_umount(struct vfsmount *mnt, int flags)
275{
276	return security_ops->sb_umount(mnt, flags);
277}
278
279void security_sb_umount_close(struct vfsmount *mnt)
280{
281	security_ops->sb_umount_close(mnt);
282}
283
284void security_sb_umount_busy(struct vfsmount *mnt)
285{
286	security_ops->sb_umount_busy(mnt);
287}
288
289void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
290{
291	security_ops->sb_post_remount(mnt, flags, data);
292}
293
294void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
295{
296	security_ops->sb_post_addmount(mnt, mountpoint_nd);
297}
298
299int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
300{
301	return security_ops->sb_pivotroot(old_nd, new_nd);
302}
303
304void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
305{
306	security_ops->sb_post_pivotroot(old_nd, new_nd);
307}
308
309int security_sb_get_mnt_opts(const struct super_block *sb,
310				struct security_mnt_opts *opts)
311{
312	return security_ops->sb_get_mnt_opts(sb, opts);
313}
314
315int security_sb_set_mnt_opts(struct super_block *sb,
316				struct security_mnt_opts *opts)
317{
318	return security_ops->sb_set_mnt_opts(sb, opts);
319}
320EXPORT_SYMBOL(security_sb_set_mnt_opts);
321
322void security_sb_clone_mnt_opts(const struct super_block *oldsb,
323				struct super_block *newsb)
324{
325	security_ops->sb_clone_mnt_opts(oldsb, newsb);
326}
327EXPORT_SYMBOL(security_sb_clone_mnt_opts);
328
329int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
330{
331	return security_ops->sb_parse_opts_str(options, opts);
332}
333EXPORT_SYMBOL(security_sb_parse_opts_str);
334
335int security_inode_alloc(struct inode *inode)
336{
337	inode->i_security = NULL;
338	return security_ops->inode_alloc_security(inode);
339}
340
341void security_inode_free(struct inode *inode)
342{
343	security_ops->inode_free_security(inode);
344}
345
346int security_inode_init_security(struct inode *inode, struct inode *dir,
347				  char **name, void **value, size_t *len)
348{
349	if (unlikely(IS_PRIVATE(inode)))
350		return -EOPNOTSUPP;
351	return security_ops->inode_init_security(inode, dir, name, value, len);
352}
353EXPORT_SYMBOL(security_inode_init_security);
354
355int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
356{
357	if (unlikely(IS_PRIVATE(dir)))
358		return 0;
359	return security_ops->inode_create(dir, dentry, mode);
360}
361
362int security_inode_link(struct dentry *old_dentry, struct inode *dir,
363			 struct dentry *new_dentry)
364{
365	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
366		return 0;
367	return security_ops->inode_link(old_dentry, dir, new_dentry);
368}
369
370int security_inode_unlink(struct inode *dir, struct dentry *dentry)
371{
372	if (unlikely(IS_PRIVATE(dentry->d_inode)))
373		return 0;
374	return security_ops->inode_unlink(dir, dentry);
375}
376
377int security_inode_symlink(struct inode *dir, struct dentry *dentry,
378			    const char *old_name)
379{
380	if (unlikely(IS_PRIVATE(dir)))
381		return 0;
382	return security_ops->inode_symlink(dir, dentry, old_name);
383}
384
385int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
386{
387	if (unlikely(IS_PRIVATE(dir)))
388		return 0;
389	return security_ops->inode_mkdir(dir, dentry, mode);
390}
391
392int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
393{
394	if (unlikely(IS_PRIVATE(dentry->d_inode)))
395		return 0;
396	return security_ops->inode_rmdir(dir, dentry);
397}
398
399int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
400{
401	if (unlikely(IS_PRIVATE(dir)))
402		return 0;
403	return security_ops->inode_mknod(dir, dentry, mode, dev);
404}
405
406int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
407			   struct inode *new_dir, struct dentry *new_dentry)
408{
409        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
410            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
411		return 0;
412	return security_ops->inode_rename(old_dir, old_dentry,
413					   new_dir, new_dentry);
414}
415
416int security_inode_readlink(struct dentry *dentry)
417{
418	if (unlikely(IS_PRIVATE(dentry->d_inode)))
419		return 0;
420	return security_ops->inode_readlink(dentry);
421}
422
423int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
424{
425	if (unlikely(IS_PRIVATE(dentry->d_inode)))
426		return 0;
427	return security_ops->inode_follow_link(dentry, nd);
428}
429
430int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
431{
432	if (unlikely(IS_PRIVATE(inode)))
433		return 0;
434	return security_ops->inode_permission(inode, mask, nd);
435}
436
437int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
438{
439	if (unlikely(IS_PRIVATE(dentry->d_inode)))
440		return 0;
441	return security_ops->inode_setattr(dentry, attr);
442}
443
444int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
445{
446	if (unlikely(IS_PRIVATE(dentry->d_inode)))
447		return 0;
448	return security_ops->inode_getattr(mnt, dentry);
449}
450
451void security_inode_delete(struct inode *inode)
452{
453	if (unlikely(IS_PRIVATE(inode)))
454		return;
455	security_ops->inode_delete(inode);
456}
457
458int security_inode_setxattr(struct dentry *dentry, char *name,
459			     void *value, size_t size, int flags)
460{
461	if (unlikely(IS_PRIVATE(dentry->d_inode)))
462		return 0;
463	return security_ops->inode_setxattr(dentry, name, value, size, flags);
464}
465
466void security_inode_post_setxattr(struct dentry *dentry, char *name,
467				   void *value, size_t size, int flags)
468{
469	if (unlikely(IS_PRIVATE(dentry->d_inode)))
470		return;
471	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
472}
473
474int security_inode_getxattr(struct dentry *dentry, char *name)
475{
476	if (unlikely(IS_PRIVATE(dentry->d_inode)))
477		return 0;
478	return security_ops->inode_getxattr(dentry, name);
479}
480
481int security_inode_listxattr(struct dentry *dentry)
482{
483	if (unlikely(IS_PRIVATE(dentry->d_inode)))
484		return 0;
485	return security_ops->inode_listxattr(dentry);
486}
487
488int security_inode_removexattr(struct dentry *dentry, char *name)
489{
490	if (unlikely(IS_PRIVATE(dentry->d_inode)))
491		return 0;
492	return security_ops->inode_removexattr(dentry, name);
493}
494
495int security_inode_need_killpriv(struct dentry *dentry)
496{
497	return security_ops->inode_need_killpriv(dentry);
498}
499
500int security_inode_killpriv(struct dentry *dentry)
501{
502	return security_ops->inode_killpriv(dentry);
503}
504
505int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
506{
507	if (unlikely(IS_PRIVATE(inode)))
508		return 0;
509	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
510}
511
512int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
513{
514	if (unlikely(IS_PRIVATE(inode)))
515		return 0;
516	return security_ops->inode_setsecurity(inode, name, value, size, flags);
517}
518
519int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
520{
521	if (unlikely(IS_PRIVATE(inode)))
522		return 0;
523	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
524}
525
526int security_file_permission(struct file *file, int mask)
527{
528	return security_ops->file_permission(file, mask);
529}
530
531int security_file_alloc(struct file *file)
532{
533	return security_ops->file_alloc_security(file);
534}
535
536void security_file_free(struct file *file)
537{
538	security_ops->file_free_security(file);
539}
540
541int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
542{
543	return security_ops->file_ioctl(file, cmd, arg);
544}
545
546int security_file_mmap(struct file *file, unsigned long reqprot,
547			unsigned long prot, unsigned long flags,
548			unsigned long addr, unsigned long addr_only)
549{
550	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
551}
552
553int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
554			    unsigned long prot)
555{
556	return security_ops->file_mprotect(vma, reqprot, prot);
557}
558
559int security_file_lock(struct file *file, unsigned int cmd)
560{
561	return security_ops->file_lock(file, cmd);
562}
563
564int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
565{
566	return security_ops->file_fcntl(file, cmd, arg);
567}
568
569int security_file_set_fowner(struct file *file)
570{
571	return security_ops->file_set_fowner(file);
572}
573
574int security_file_send_sigiotask(struct task_struct *tsk,
575				  struct fown_struct *fown, int sig)
576{
577	return security_ops->file_send_sigiotask(tsk, fown, sig);
578}
579
580int security_file_receive(struct file *file)
581{
582	return security_ops->file_receive(file);
583}
584
585int security_dentry_open(struct file *file)
586{
587	return security_ops->dentry_open(file);
588}
589
590int security_task_create(unsigned long clone_flags)
591{
592	return security_ops->task_create(clone_flags);
593}
594
595int security_task_alloc(struct task_struct *p)
596{
597	return security_ops->task_alloc_security(p);
598}
599
600void security_task_free(struct task_struct *p)
601{
602	security_ops->task_free_security(p);
603}
604
605int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
606{
607	return security_ops->task_setuid(id0, id1, id2, flags);
608}
609
610int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
611			       uid_t old_suid, int flags)
612{
613	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
614}
615
616int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
617{
618	return security_ops->task_setgid(id0, id1, id2, flags);
619}
620
621int security_task_setpgid(struct task_struct *p, pid_t pgid)
622{
623	return security_ops->task_setpgid(p, pgid);
624}
625
626int security_task_getpgid(struct task_struct *p)
627{
628	return security_ops->task_getpgid(p);
629}
630
631int security_task_getsid(struct task_struct *p)
632{
633	return security_ops->task_getsid(p);
634}
635
636void security_task_getsecid(struct task_struct *p, u32 *secid)
637{
638	security_ops->task_getsecid(p, secid);
639}
640EXPORT_SYMBOL(security_task_getsecid);
641
642int security_task_setgroups(struct group_info *group_info)
643{
644	return security_ops->task_setgroups(group_info);
645}
646
647int security_task_setnice(struct task_struct *p, int nice)
648{
649	return security_ops->task_setnice(p, nice);
650}
651
652int security_task_setioprio(struct task_struct *p, int ioprio)
653{
654	return security_ops->task_setioprio(p, ioprio);
655}
656
657int security_task_getioprio(struct task_struct *p)
658{
659	return security_ops->task_getioprio(p);
660}
661
662int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
663{
664	return security_ops->task_setrlimit(resource, new_rlim);
665}
666
667int security_task_setscheduler(struct task_struct *p,
668				int policy, struct sched_param *lp)
669{
670	return security_ops->task_setscheduler(p, policy, lp);
671}
672
673int security_task_getscheduler(struct task_struct *p)
674{
675	return security_ops->task_getscheduler(p);
676}
677
678int security_task_movememory(struct task_struct *p)
679{
680	return security_ops->task_movememory(p);
681}
682
683int security_task_kill(struct task_struct *p, struct siginfo *info,
684			int sig, u32 secid)
685{
686	return security_ops->task_kill(p, info, sig, secid);
687}
688
689int security_task_wait(struct task_struct *p)
690{
691	return security_ops->task_wait(p);
692}
693
694int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
695			 unsigned long arg4, unsigned long arg5)
696{
697	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
698}
699
700void security_task_reparent_to_init(struct task_struct *p)
701{
702	security_ops->task_reparent_to_init(p);
703}
704
705void security_task_to_inode(struct task_struct *p, struct inode *inode)
706{
707	security_ops->task_to_inode(p, inode);
708}
709
710int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
711{
712	return security_ops->ipc_permission(ipcp, flag);
713}
714
715int security_msg_msg_alloc(struct msg_msg *msg)
716{
717	return security_ops->msg_msg_alloc_security(msg);
718}
719
720void security_msg_msg_free(struct msg_msg *msg)
721{
722	security_ops->msg_msg_free_security(msg);
723}
724
725int security_msg_queue_alloc(struct msg_queue *msq)
726{
727	return security_ops->msg_queue_alloc_security(msq);
728}
729
730void security_msg_queue_free(struct msg_queue *msq)
731{
732	security_ops->msg_queue_free_security(msq);
733}
734
735int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
736{
737	return security_ops->msg_queue_associate(msq, msqflg);
738}
739
740int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
741{
742	return security_ops->msg_queue_msgctl(msq, cmd);
743}
744
745int security_msg_queue_msgsnd(struct msg_queue *msq,
746			       struct msg_msg *msg, int msqflg)
747{
748	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
749}
750
751int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
752			       struct task_struct *target, long type, int mode)
753{
754	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
755}
756
757int security_shm_alloc(struct shmid_kernel *shp)
758{
759	return security_ops->shm_alloc_security(shp);
760}
761
762void security_shm_free(struct shmid_kernel *shp)
763{
764	security_ops->shm_free_security(shp);
765}
766
767int security_shm_associate(struct shmid_kernel *shp, int shmflg)
768{
769	return security_ops->shm_associate(shp, shmflg);
770}
771
772int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
773{
774	return security_ops->shm_shmctl(shp, cmd);
775}
776
777int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
778{
779	return security_ops->shm_shmat(shp, shmaddr, shmflg);
780}
781
782int security_sem_alloc(struct sem_array *sma)
783{
784	return security_ops->sem_alloc_security(sma);
785}
786
787void security_sem_free(struct sem_array *sma)
788{
789	security_ops->sem_free_security(sma);
790}
791
792int security_sem_associate(struct sem_array *sma, int semflg)
793{
794	return security_ops->sem_associate(sma, semflg);
795}
796
797int security_sem_semctl(struct sem_array *sma, int cmd)
798{
799	return security_ops->sem_semctl(sma, cmd);
800}
801
802int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
803			unsigned nsops, int alter)
804{
805	return security_ops->sem_semop(sma, sops, nsops, alter);
806}
807
808void security_d_instantiate(struct dentry *dentry, struct inode *inode)
809{
810	if (unlikely(inode && IS_PRIVATE(inode)))
811		return;
812	security_ops->d_instantiate(dentry, inode);
813}
814EXPORT_SYMBOL(security_d_instantiate);
815
816int security_getprocattr(struct task_struct *p, char *name, char **value)
817{
818	return security_ops->getprocattr(p, name, value);
819}
820
821int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
822{
823	return security_ops->setprocattr(p, name, value, size);
824}
825
826int security_netlink_send(struct sock *sk, struct sk_buff *skb)
827{
828	return security_ops->netlink_send(sk, skb);
829}
830
831int security_netlink_recv(struct sk_buff *skb, int cap)
832{
833	return security_ops->netlink_recv(skb, cap);
834}
835EXPORT_SYMBOL(security_netlink_recv);
836
837int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
838{
839	return security_ops->secid_to_secctx(secid, secdata, seclen);
840}
841EXPORT_SYMBOL(security_secid_to_secctx);
842
843int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
844{
845	return security_ops->secctx_to_secid(secdata, seclen, secid);
846}
847EXPORT_SYMBOL(security_secctx_to_secid);
848
849void security_release_secctx(char *secdata, u32 seclen)
850{
851	return security_ops->release_secctx(secdata, seclen);
852}
853EXPORT_SYMBOL(security_release_secctx);
854
855#ifdef CONFIG_SECURITY_NETWORK
856
857int security_unix_stream_connect(struct socket *sock, struct socket *other,
858				 struct sock *newsk)
859{
860	return security_ops->unix_stream_connect(sock, other, newsk);
861}
862EXPORT_SYMBOL(security_unix_stream_connect);
863
864int security_unix_may_send(struct socket *sock,  struct socket *other)
865{
866	return security_ops->unix_may_send(sock, other);
867}
868EXPORT_SYMBOL(security_unix_may_send);
869
870int security_socket_create(int family, int type, int protocol, int kern)
871{
872	return security_ops->socket_create(family, type, protocol, kern);
873}
874
875int security_socket_post_create(struct socket *sock, int family,
876				int type, int protocol, int kern)
877{
878	return security_ops->socket_post_create(sock, family, type,
879						protocol, kern);
880}
881
882int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
883{
884	return security_ops->socket_bind(sock, address, addrlen);
885}
886
887int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
888{
889	return security_ops->socket_connect(sock, address, addrlen);
890}
891
892int security_socket_listen(struct socket *sock, int backlog)
893{
894	return security_ops->socket_listen(sock, backlog);
895}
896
897int security_socket_accept(struct socket *sock, struct socket *newsock)
898{
899	return security_ops->socket_accept(sock, newsock);
900}
901
902void security_socket_post_accept(struct socket *sock, struct socket *newsock)
903{
904	security_ops->socket_post_accept(sock, newsock);
905}
906
907int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
908{
909	return security_ops->socket_sendmsg(sock, msg, size);
910}
911
912int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
913			    int size, int flags)
914{
915	return security_ops->socket_recvmsg(sock, msg, size, flags);
916}
917
918int security_socket_getsockname(struct socket *sock)
919{
920	return security_ops->socket_getsockname(sock);
921}
922
923int security_socket_getpeername(struct socket *sock)
924{
925	return security_ops->socket_getpeername(sock);
926}
927
928int security_socket_getsockopt(struct socket *sock, int level, int optname)
929{
930	return security_ops->socket_getsockopt(sock, level, optname);
931}
932
933int security_socket_setsockopt(struct socket *sock, int level, int optname)
934{
935	return security_ops->socket_setsockopt(sock, level, optname);
936}
937
938int security_socket_shutdown(struct socket *sock, int how)
939{
940	return security_ops->socket_shutdown(sock, how);
941}
942
943int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
944{
945	return security_ops->socket_sock_rcv_skb(sk, skb);
946}
947EXPORT_SYMBOL(security_sock_rcv_skb);
948
949int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
950				      int __user *optlen, unsigned len)
951{
952	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
953}
954
955int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
956{
957	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
958}
959EXPORT_SYMBOL(security_socket_getpeersec_dgram);
960
961int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
962{
963	return security_ops->sk_alloc_security(sk, family, priority);
964}
965
966void security_sk_free(struct sock *sk)
967{
968	return security_ops->sk_free_security(sk);
969}
970
971void security_sk_clone(const struct sock *sk, struct sock *newsk)
972{
973	return security_ops->sk_clone_security(sk, newsk);
974}
975
976void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
977{
978	security_ops->sk_getsecid(sk, &fl->secid);
979}
980EXPORT_SYMBOL(security_sk_classify_flow);
981
982void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
983{
984	security_ops->req_classify_flow(req, fl);
985}
986EXPORT_SYMBOL(security_req_classify_flow);
987
988void security_sock_graft(struct sock *sk, struct socket *parent)
989{
990	security_ops->sock_graft(sk, parent);
991}
992EXPORT_SYMBOL(security_sock_graft);
993
994int security_inet_conn_request(struct sock *sk,
995			struct sk_buff *skb, struct request_sock *req)
996{
997	return security_ops->inet_conn_request(sk, skb, req);
998}
999EXPORT_SYMBOL(security_inet_conn_request);
1000
1001void security_inet_csk_clone(struct sock *newsk,
1002			const struct request_sock *req)
1003{
1004	security_ops->inet_csk_clone(newsk, req);
1005}
1006
1007void security_inet_conn_established(struct sock *sk,
1008			struct sk_buff *skb)
1009{
1010	security_ops->inet_conn_established(sk, skb);
1011}
1012
1013#endif	/* CONFIG_SECURITY_NETWORK */
1014
1015#ifdef CONFIG_SECURITY_NETWORK_XFRM
1016
1017int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
1018{
1019	return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
1020}
1021EXPORT_SYMBOL(security_xfrm_policy_alloc);
1022
1023int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
1024{
1025	return security_ops->xfrm_policy_clone_security(old, new);
1026}
1027
1028void security_xfrm_policy_free(struct xfrm_policy *xp)
1029{
1030	security_ops->xfrm_policy_free_security(xp);
1031}
1032EXPORT_SYMBOL(security_xfrm_policy_free);
1033
1034int security_xfrm_policy_delete(struct xfrm_policy *xp)
1035{
1036	return security_ops->xfrm_policy_delete_security(xp);
1037}
1038
1039int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1040{
1041	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1042}
1043EXPORT_SYMBOL(security_xfrm_state_alloc);
1044
1045int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1046				      struct xfrm_sec_ctx *polsec, u32 secid)
1047{
1048	if (!polsec)
1049		return 0;
1050	/*
1051	 * We want the context to be taken from secid which is usually
1052	 * from the sock.
1053	 */
1054	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1055}
1056
1057int security_xfrm_state_delete(struct xfrm_state *x)
1058{
1059	return security_ops->xfrm_state_delete_security(x);
1060}
1061EXPORT_SYMBOL(security_xfrm_state_delete);
1062
1063void security_xfrm_state_free(struct xfrm_state *x)
1064{
1065	security_ops->xfrm_state_free_security(x);
1066}
1067
1068int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1069{
1070	return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1071}
1072
1073int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1074				       struct xfrm_policy *xp, struct flowi *fl)
1075{
1076	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1077}
1078
1079int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1080{
1081	return security_ops->xfrm_decode_session(skb, secid, 1);
1082}
1083
1084void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1085{
1086	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1087
1088	BUG_ON(rc);
1089}
1090EXPORT_SYMBOL(security_skb_classify_flow);
1091
1092#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1093
1094#ifdef CONFIG_KEYS
1095
1096int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1097{
1098	return security_ops->key_alloc(key, tsk, flags);
1099}
1100
1101void security_key_free(struct key *key)
1102{
1103	security_ops->key_free(key);
1104}
1105
1106int security_key_permission(key_ref_t key_ref,
1107			    struct task_struct *context, key_perm_t perm)
1108{
1109	return security_ops->key_permission(key_ref, context, perm);
1110}
1111
1112#endif	/* CONFIG_KEYS */
1113