security.c revision e52c1764f18a62776a0f2bc6752fb76b6e345827
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 *	This program is free software; you can redistribute it and/or modify
9 *	it under the terms of the GNU General Public License as published by
10 *	the Free Software Foundation; either version 2 of the License, or
11 *	(at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19
20/* Boot-time LSM user choice */
21static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23/* things that live in dummy.c */
24extern struct security_operations dummy_security_ops;
25extern void security_fixup_ops(struct security_operations *ops);
26
27struct security_operations *security_ops;	/* Initialized to NULL */
28
29/* amount of vm to protect from userspace access */
30unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32static inline int verify(struct security_operations *ops)
33{
34	/* verify the security_operations structure exists */
35	if (!ops)
36		return -EINVAL;
37	security_fixup_ops(ops);
38	return 0;
39}
40
41static void __init do_security_initcalls(void)
42{
43	initcall_t *call;
44	call = __security_initcall_start;
45	while (call < __security_initcall_end) {
46		(*call) ();
47		call++;
48	}
49}
50
51/**
52 * security_init - initializes the security framework
53 *
54 * This should be called early in the kernel initialization sequence.
55 */
56int __init security_init(void)
57{
58	printk(KERN_INFO "Security Framework initialized\n");
59
60	if (verify(&dummy_security_ops)) {
61		printk(KERN_ERR "%s could not verify "
62		       "dummy_security_ops structure.\n", __func__);
63		return -EIO;
64	}
65
66	security_ops = &dummy_security_ops;
67	do_security_initcalls();
68
69	return 0;
70}
71
72/* Save user chosen LSM */
73static int __init choose_lsm(char *str)
74{
75	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
76	return 1;
77}
78__setup("security=", choose_lsm);
79
80/**
81 * security_module_enable - Load given security module on boot ?
82 * @ops: a pointer to the struct security_operations that is to be checked.
83 *
84 * Each LSM must pass this method before registering its own operations
85 * to avoid security registration races. This method may also be used
86 * to check if your LSM is currently loaded during kernel initialization.
87 *
88 * Return true if:
89 *	-The passed LSM is the one chosen by user at boot time,
90 *	-or user didsn't specify a specific LSM and we're the first to ask
91 *	 for registeration permissoin,
92 *	-or the passed LSM is currently loaded.
93 * Otherwise, return false.
94 */
95int __init security_module_enable(struct security_operations *ops)
96{
97	if (!*chosen_lsm)
98		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
99	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
100		return 0;
101
102	return 1;
103}
104
105/**
106 * register_security - registers a security framework with the kernel
107 * @ops: a pointer to the struct security_options that is to be registered
108 *
109 * This function is to allow a security module to register itself with the
110 * kernel security subsystem.  Some rudimentary checking is done on the @ops
111 * value passed to this function. You'll need to check first if your LSM
112 * is allowed to register its @ops by calling security_module_enable(@ops).
113 *
114 * If there is already a security module registered with the kernel,
115 * an error will be returned.  Otherwise 0 is returned on success.
116 */
117int register_security(struct security_operations *ops)
118{
119	if (verify(ops)) {
120		printk(KERN_DEBUG "%s could not verify "
121		       "security_operations structure.\n", __func__);
122		return -EINVAL;
123	}
124
125	if (security_ops != &dummy_security_ops)
126		return -EAGAIN;
127
128	security_ops = ops;
129
130	return 0;
131}
132
133/**
134 * mod_reg_security - allows security modules to be "stacked"
135 * @name: a pointer to a string with the name of the security_options to be registered
136 * @ops: a pointer to the struct security_options that is to be registered
137 *
138 * This function allows security modules to be stacked if the currently loaded
139 * security module allows this to happen.  It passes the @name and @ops to the
140 * register_security function of the currently loaded security module.
141 *
142 * The return value depends on the currently loaded security module, with 0 as
143 * success.
144 */
145int mod_reg_security(const char *name, struct security_operations *ops)
146{
147	if (verify(ops)) {
148		printk(KERN_INFO "%s could not verify "
149		       "security operations.\n", __func__);
150		return -EINVAL;
151	}
152
153	if (ops == security_ops) {
154		printk(KERN_INFO "%s security operations "
155		       "already registered.\n", __func__);
156		return -EINVAL;
157	}
158
159	return security_ops->register_security(name, ops);
160}
161
162/* Security operations */
163
164int security_ptrace(struct task_struct *parent, struct task_struct *child)
165{
166	return security_ops->ptrace(parent, child);
167}
168
169int security_capget(struct task_struct *target,
170		     kernel_cap_t *effective,
171		     kernel_cap_t *inheritable,
172		     kernel_cap_t *permitted)
173{
174	return security_ops->capget(target, effective, inheritable, permitted);
175}
176
177int security_capset_check(struct task_struct *target,
178			   kernel_cap_t *effective,
179			   kernel_cap_t *inheritable,
180			   kernel_cap_t *permitted)
181{
182	return security_ops->capset_check(target, effective, inheritable, permitted);
183}
184
185void security_capset_set(struct task_struct *target,
186			  kernel_cap_t *effective,
187			  kernel_cap_t *inheritable,
188			  kernel_cap_t *permitted)
189{
190	security_ops->capset_set(target, effective, inheritable, permitted);
191}
192
193int security_capable(struct task_struct *tsk, int cap)
194{
195	return security_ops->capable(tsk, cap);
196}
197
198int security_acct(struct file *file)
199{
200	return security_ops->acct(file);
201}
202
203int security_sysctl(struct ctl_table *table, int op)
204{
205	return security_ops->sysctl(table, op);
206}
207
208int security_quotactl(int cmds, int type, int id, struct super_block *sb)
209{
210	return security_ops->quotactl(cmds, type, id, sb);
211}
212
213int security_quota_on(struct dentry *dentry)
214{
215	return security_ops->quota_on(dentry);
216}
217
218int security_syslog(int type)
219{
220	return security_ops->syslog(type);
221}
222
223int security_settime(struct timespec *ts, struct timezone *tz)
224{
225	return security_ops->settime(ts, tz);
226}
227
228int security_vm_enough_memory(long pages)
229{
230	return security_ops->vm_enough_memory(current->mm, pages);
231}
232
233int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
234{
235	return security_ops->vm_enough_memory(mm, pages);
236}
237
238int security_bprm_alloc(struct linux_binprm *bprm)
239{
240	return security_ops->bprm_alloc_security(bprm);
241}
242
243void security_bprm_free(struct linux_binprm *bprm)
244{
245	security_ops->bprm_free_security(bprm);
246}
247
248void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
249{
250	security_ops->bprm_apply_creds(bprm, unsafe);
251}
252
253void security_bprm_post_apply_creds(struct linux_binprm *bprm)
254{
255	security_ops->bprm_post_apply_creds(bprm);
256}
257
258int security_bprm_set(struct linux_binprm *bprm)
259{
260	return security_ops->bprm_set_security(bprm);
261}
262
263int security_bprm_check(struct linux_binprm *bprm)
264{
265	return security_ops->bprm_check_security(bprm);
266}
267
268int security_bprm_secureexec(struct linux_binprm *bprm)
269{
270	return security_ops->bprm_secureexec(bprm);
271}
272
273int security_sb_alloc(struct super_block *sb)
274{
275	return security_ops->sb_alloc_security(sb);
276}
277
278void security_sb_free(struct super_block *sb)
279{
280	security_ops->sb_free_security(sb);
281}
282
283int security_sb_copy_data(char *orig, char *copy)
284{
285	return security_ops->sb_copy_data(orig, copy);
286}
287EXPORT_SYMBOL(security_sb_copy_data);
288
289int security_sb_kern_mount(struct super_block *sb, void *data)
290{
291	return security_ops->sb_kern_mount(sb, data);
292}
293
294int security_sb_statfs(struct dentry *dentry)
295{
296	return security_ops->sb_statfs(dentry);
297}
298
299int security_sb_mount(char *dev_name, struct path *path,
300                       char *type, unsigned long flags, void *data)
301{
302	return security_ops->sb_mount(dev_name, path, type, flags, data);
303}
304
305int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
306{
307	return security_ops->sb_check_sb(mnt, path);
308}
309
310int security_sb_umount(struct vfsmount *mnt, int flags)
311{
312	return security_ops->sb_umount(mnt, flags);
313}
314
315void security_sb_umount_close(struct vfsmount *mnt)
316{
317	security_ops->sb_umount_close(mnt);
318}
319
320void security_sb_umount_busy(struct vfsmount *mnt)
321{
322	security_ops->sb_umount_busy(mnt);
323}
324
325void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
326{
327	security_ops->sb_post_remount(mnt, flags, data);
328}
329
330void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
331{
332	security_ops->sb_post_addmount(mnt, mountpoint);
333}
334
335int security_sb_pivotroot(struct path *old_path, struct path *new_path)
336{
337	return security_ops->sb_pivotroot(old_path, new_path);
338}
339
340void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
341{
342	security_ops->sb_post_pivotroot(old_path, new_path);
343}
344
345int security_sb_get_mnt_opts(const struct super_block *sb,
346				struct security_mnt_opts *opts)
347{
348	return security_ops->sb_get_mnt_opts(sb, opts);
349}
350
351int security_sb_set_mnt_opts(struct super_block *sb,
352				struct security_mnt_opts *opts)
353{
354	return security_ops->sb_set_mnt_opts(sb, opts);
355}
356EXPORT_SYMBOL(security_sb_set_mnt_opts);
357
358void security_sb_clone_mnt_opts(const struct super_block *oldsb,
359				struct super_block *newsb)
360{
361	security_ops->sb_clone_mnt_opts(oldsb, newsb);
362}
363EXPORT_SYMBOL(security_sb_clone_mnt_opts);
364
365int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
366{
367	return security_ops->sb_parse_opts_str(options, opts);
368}
369EXPORT_SYMBOL(security_sb_parse_opts_str);
370
371int security_inode_alloc(struct inode *inode)
372{
373	inode->i_security = NULL;
374	return security_ops->inode_alloc_security(inode);
375}
376
377void security_inode_free(struct inode *inode)
378{
379	security_ops->inode_free_security(inode);
380}
381
382int security_inode_init_security(struct inode *inode, struct inode *dir,
383				  char **name, void **value, size_t *len)
384{
385	if (unlikely(IS_PRIVATE(inode)))
386		return -EOPNOTSUPP;
387	return security_ops->inode_init_security(inode, dir, name, value, len);
388}
389EXPORT_SYMBOL(security_inode_init_security);
390
391int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
392{
393	if (unlikely(IS_PRIVATE(dir)))
394		return 0;
395	return security_ops->inode_create(dir, dentry, mode);
396}
397
398int security_inode_link(struct dentry *old_dentry, struct inode *dir,
399			 struct dentry *new_dentry)
400{
401	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
402		return 0;
403	return security_ops->inode_link(old_dentry, dir, new_dentry);
404}
405
406int security_inode_unlink(struct inode *dir, struct dentry *dentry)
407{
408	if (unlikely(IS_PRIVATE(dentry->d_inode)))
409		return 0;
410	return security_ops->inode_unlink(dir, dentry);
411}
412
413int security_inode_symlink(struct inode *dir, struct dentry *dentry,
414			    const char *old_name)
415{
416	if (unlikely(IS_PRIVATE(dir)))
417		return 0;
418	return security_ops->inode_symlink(dir, dentry, old_name);
419}
420
421int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
422{
423	if (unlikely(IS_PRIVATE(dir)))
424		return 0;
425	return security_ops->inode_mkdir(dir, dentry, mode);
426}
427
428int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
429{
430	if (unlikely(IS_PRIVATE(dentry->d_inode)))
431		return 0;
432	return security_ops->inode_rmdir(dir, dentry);
433}
434
435int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
436{
437	if (unlikely(IS_PRIVATE(dir)))
438		return 0;
439	return security_ops->inode_mknod(dir, dentry, mode, dev);
440}
441
442int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
443			   struct inode *new_dir, struct dentry *new_dentry)
444{
445        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
446            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
447		return 0;
448	return security_ops->inode_rename(old_dir, old_dentry,
449					   new_dir, new_dentry);
450}
451
452int security_inode_readlink(struct dentry *dentry)
453{
454	if (unlikely(IS_PRIVATE(dentry->d_inode)))
455		return 0;
456	return security_ops->inode_readlink(dentry);
457}
458
459int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
460{
461	if (unlikely(IS_PRIVATE(dentry->d_inode)))
462		return 0;
463	return security_ops->inode_follow_link(dentry, nd);
464}
465
466int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
467{
468	if (unlikely(IS_PRIVATE(inode)))
469		return 0;
470	return security_ops->inode_permission(inode, mask, nd);
471}
472
473int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
474{
475	if (unlikely(IS_PRIVATE(dentry->d_inode)))
476		return 0;
477	return security_ops->inode_setattr(dentry, attr);
478}
479
480int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
481{
482	if (unlikely(IS_PRIVATE(dentry->d_inode)))
483		return 0;
484	return security_ops->inode_getattr(mnt, dentry);
485}
486
487void security_inode_delete(struct inode *inode)
488{
489	if (unlikely(IS_PRIVATE(inode)))
490		return;
491	security_ops->inode_delete(inode);
492}
493
494int security_inode_setxattr(struct dentry *dentry, const char *name,
495			    const void *value, size_t size, int flags)
496{
497	if (unlikely(IS_PRIVATE(dentry->d_inode)))
498		return 0;
499	return security_ops->inode_setxattr(dentry, name, value, size, flags);
500}
501
502void security_inode_post_setxattr(struct dentry *dentry, const char *name,
503				  const void *value, size_t size, int flags)
504{
505	if (unlikely(IS_PRIVATE(dentry->d_inode)))
506		return;
507	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
508}
509
510int security_inode_getxattr(struct dentry *dentry, const char *name)
511{
512	if (unlikely(IS_PRIVATE(dentry->d_inode)))
513		return 0;
514	return security_ops->inode_getxattr(dentry, name);
515}
516
517int security_inode_listxattr(struct dentry *dentry)
518{
519	if (unlikely(IS_PRIVATE(dentry->d_inode)))
520		return 0;
521	return security_ops->inode_listxattr(dentry);
522}
523
524int security_inode_removexattr(struct dentry *dentry, const char *name)
525{
526	if (unlikely(IS_PRIVATE(dentry->d_inode)))
527		return 0;
528	return security_ops->inode_removexattr(dentry, name);
529}
530
531int security_inode_need_killpriv(struct dentry *dentry)
532{
533	return security_ops->inode_need_killpriv(dentry);
534}
535
536int security_inode_killpriv(struct dentry *dentry)
537{
538	return security_ops->inode_killpriv(dentry);
539}
540
541int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
542{
543	if (unlikely(IS_PRIVATE(inode)))
544		return 0;
545	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
546}
547
548int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
549{
550	if (unlikely(IS_PRIVATE(inode)))
551		return 0;
552	return security_ops->inode_setsecurity(inode, name, value, size, flags);
553}
554
555int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
556{
557	if (unlikely(IS_PRIVATE(inode)))
558		return 0;
559	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
560}
561
562void security_inode_getsecid(const struct inode *inode, u32 *secid)
563{
564	security_ops->inode_getsecid(inode, secid);
565}
566
567int security_file_permission(struct file *file, int mask)
568{
569	return security_ops->file_permission(file, mask);
570}
571
572int security_file_alloc(struct file *file)
573{
574	return security_ops->file_alloc_security(file);
575}
576
577void security_file_free(struct file *file)
578{
579	security_ops->file_free_security(file);
580}
581
582int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
583{
584	return security_ops->file_ioctl(file, cmd, arg);
585}
586
587int security_file_mmap(struct file *file, unsigned long reqprot,
588			unsigned long prot, unsigned long flags,
589			unsigned long addr, unsigned long addr_only)
590{
591	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
592}
593
594int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
595			    unsigned long prot)
596{
597	return security_ops->file_mprotect(vma, reqprot, prot);
598}
599
600int security_file_lock(struct file *file, unsigned int cmd)
601{
602	return security_ops->file_lock(file, cmd);
603}
604
605int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
606{
607	return security_ops->file_fcntl(file, cmd, arg);
608}
609
610int security_file_set_fowner(struct file *file)
611{
612	return security_ops->file_set_fowner(file);
613}
614
615int security_file_send_sigiotask(struct task_struct *tsk,
616				  struct fown_struct *fown, int sig)
617{
618	return security_ops->file_send_sigiotask(tsk, fown, sig);
619}
620
621int security_file_receive(struct file *file)
622{
623	return security_ops->file_receive(file);
624}
625
626int security_dentry_open(struct file *file)
627{
628	return security_ops->dentry_open(file);
629}
630
631int security_task_create(unsigned long clone_flags)
632{
633	return security_ops->task_create(clone_flags);
634}
635
636int security_task_alloc(struct task_struct *p)
637{
638	return security_ops->task_alloc_security(p);
639}
640
641void security_task_free(struct task_struct *p)
642{
643	security_ops->task_free_security(p);
644}
645
646int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
647{
648	return security_ops->task_setuid(id0, id1, id2, flags);
649}
650
651int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
652			       uid_t old_suid, int flags)
653{
654	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
655}
656
657int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
658{
659	return security_ops->task_setgid(id0, id1, id2, flags);
660}
661
662int security_task_setpgid(struct task_struct *p, pid_t pgid)
663{
664	return security_ops->task_setpgid(p, pgid);
665}
666
667int security_task_getpgid(struct task_struct *p)
668{
669	return security_ops->task_getpgid(p);
670}
671
672int security_task_getsid(struct task_struct *p)
673{
674	return security_ops->task_getsid(p);
675}
676
677void security_task_getsecid(struct task_struct *p, u32 *secid)
678{
679	security_ops->task_getsecid(p, secid);
680}
681EXPORT_SYMBOL(security_task_getsecid);
682
683int security_task_setgroups(struct group_info *group_info)
684{
685	return security_ops->task_setgroups(group_info);
686}
687
688int security_task_setnice(struct task_struct *p, int nice)
689{
690	return security_ops->task_setnice(p, nice);
691}
692
693int security_task_setioprio(struct task_struct *p, int ioprio)
694{
695	return security_ops->task_setioprio(p, ioprio);
696}
697
698int security_task_getioprio(struct task_struct *p)
699{
700	return security_ops->task_getioprio(p);
701}
702
703int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
704{
705	return security_ops->task_setrlimit(resource, new_rlim);
706}
707
708int security_task_setscheduler(struct task_struct *p,
709				int policy, struct sched_param *lp)
710{
711	return security_ops->task_setscheduler(p, policy, lp);
712}
713
714int security_task_getscheduler(struct task_struct *p)
715{
716	return security_ops->task_getscheduler(p);
717}
718
719int security_task_movememory(struct task_struct *p)
720{
721	return security_ops->task_movememory(p);
722}
723
724int security_task_kill(struct task_struct *p, struct siginfo *info,
725			int sig, u32 secid)
726{
727	return security_ops->task_kill(p, info, sig, secid);
728}
729
730int security_task_wait(struct task_struct *p)
731{
732	return security_ops->task_wait(p);
733}
734
735int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
736			 unsigned long arg4, unsigned long arg5, long *rc_p)
737{
738	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
739}
740
741void security_task_reparent_to_init(struct task_struct *p)
742{
743	security_ops->task_reparent_to_init(p);
744}
745
746void security_task_to_inode(struct task_struct *p, struct inode *inode)
747{
748	security_ops->task_to_inode(p, inode);
749}
750
751int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
752{
753	return security_ops->ipc_permission(ipcp, flag);
754}
755
756void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
757{
758	security_ops->ipc_getsecid(ipcp, secid);
759}
760
761int security_msg_msg_alloc(struct msg_msg *msg)
762{
763	return security_ops->msg_msg_alloc_security(msg);
764}
765
766void security_msg_msg_free(struct msg_msg *msg)
767{
768	security_ops->msg_msg_free_security(msg);
769}
770
771int security_msg_queue_alloc(struct msg_queue *msq)
772{
773	return security_ops->msg_queue_alloc_security(msq);
774}
775
776void security_msg_queue_free(struct msg_queue *msq)
777{
778	security_ops->msg_queue_free_security(msq);
779}
780
781int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
782{
783	return security_ops->msg_queue_associate(msq, msqflg);
784}
785
786int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
787{
788	return security_ops->msg_queue_msgctl(msq, cmd);
789}
790
791int security_msg_queue_msgsnd(struct msg_queue *msq,
792			       struct msg_msg *msg, int msqflg)
793{
794	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
795}
796
797int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
798			       struct task_struct *target, long type, int mode)
799{
800	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
801}
802
803int security_shm_alloc(struct shmid_kernel *shp)
804{
805	return security_ops->shm_alloc_security(shp);
806}
807
808void security_shm_free(struct shmid_kernel *shp)
809{
810	security_ops->shm_free_security(shp);
811}
812
813int security_shm_associate(struct shmid_kernel *shp, int shmflg)
814{
815	return security_ops->shm_associate(shp, shmflg);
816}
817
818int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
819{
820	return security_ops->shm_shmctl(shp, cmd);
821}
822
823int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
824{
825	return security_ops->shm_shmat(shp, shmaddr, shmflg);
826}
827
828int security_sem_alloc(struct sem_array *sma)
829{
830	return security_ops->sem_alloc_security(sma);
831}
832
833void security_sem_free(struct sem_array *sma)
834{
835	security_ops->sem_free_security(sma);
836}
837
838int security_sem_associate(struct sem_array *sma, int semflg)
839{
840	return security_ops->sem_associate(sma, semflg);
841}
842
843int security_sem_semctl(struct sem_array *sma, int cmd)
844{
845	return security_ops->sem_semctl(sma, cmd);
846}
847
848int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
849			unsigned nsops, int alter)
850{
851	return security_ops->sem_semop(sma, sops, nsops, alter);
852}
853
854void security_d_instantiate(struct dentry *dentry, struct inode *inode)
855{
856	if (unlikely(inode && IS_PRIVATE(inode)))
857		return;
858	security_ops->d_instantiate(dentry, inode);
859}
860EXPORT_SYMBOL(security_d_instantiate);
861
862int security_getprocattr(struct task_struct *p, char *name, char **value)
863{
864	return security_ops->getprocattr(p, name, value);
865}
866
867int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
868{
869	return security_ops->setprocattr(p, name, value, size);
870}
871
872int security_netlink_send(struct sock *sk, struct sk_buff *skb)
873{
874	return security_ops->netlink_send(sk, skb);
875}
876
877int security_netlink_recv(struct sk_buff *skb, int cap)
878{
879	return security_ops->netlink_recv(skb, cap);
880}
881EXPORT_SYMBOL(security_netlink_recv);
882
883int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
884{
885	return security_ops->secid_to_secctx(secid, secdata, seclen);
886}
887EXPORT_SYMBOL(security_secid_to_secctx);
888
889int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
890{
891	return security_ops->secctx_to_secid(secdata, seclen, secid);
892}
893EXPORT_SYMBOL(security_secctx_to_secid);
894
895void security_release_secctx(char *secdata, u32 seclen)
896{
897	return security_ops->release_secctx(secdata, seclen);
898}
899EXPORT_SYMBOL(security_release_secctx);
900
901#ifdef CONFIG_SECURITY_NETWORK
902
903int security_unix_stream_connect(struct socket *sock, struct socket *other,
904				 struct sock *newsk)
905{
906	return security_ops->unix_stream_connect(sock, other, newsk);
907}
908EXPORT_SYMBOL(security_unix_stream_connect);
909
910int security_unix_may_send(struct socket *sock,  struct socket *other)
911{
912	return security_ops->unix_may_send(sock, other);
913}
914EXPORT_SYMBOL(security_unix_may_send);
915
916int security_socket_create(int family, int type, int protocol, int kern)
917{
918	return security_ops->socket_create(family, type, protocol, kern);
919}
920
921int security_socket_post_create(struct socket *sock, int family,
922				int type, int protocol, int kern)
923{
924	return security_ops->socket_post_create(sock, family, type,
925						protocol, kern);
926}
927
928int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
929{
930	return security_ops->socket_bind(sock, address, addrlen);
931}
932
933int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
934{
935	return security_ops->socket_connect(sock, address, addrlen);
936}
937
938int security_socket_listen(struct socket *sock, int backlog)
939{
940	return security_ops->socket_listen(sock, backlog);
941}
942
943int security_socket_accept(struct socket *sock, struct socket *newsock)
944{
945	return security_ops->socket_accept(sock, newsock);
946}
947
948void security_socket_post_accept(struct socket *sock, struct socket *newsock)
949{
950	security_ops->socket_post_accept(sock, newsock);
951}
952
953int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
954{
955	return security_ops->socket_sendmsg(sock, msg, size);
956}
957
958int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
959			    int size, int flags)
960{
961	return security_ops->socket_recvmsg(sock, msg, size, flags);
962}
963
964int security_socket_getsockname(struct socket *sock)
965{
966	return security_ops->socket_getsockname(sock);
967}
968
969int security_socket_getpeername(struct socket *sock)
970{
971	return security_ops->socket_getpeername(sock);
972}
973
974int security_socket_getsockopt(struct socket *sock, int level, int optname)
975{
976	return security_ops->socket_getsockopt(sock, level, optname);
977}
978
979int security_socket_setsockopt(struct socket *sock, int level, int optname)
980{
981	return security_ops->socket_setsockopt(sock, level, optname);
982}
983
984int security_socket_shutdown(struct socket *sock, int how)
985{
986	return security_ops->socket_shutdown(sock, how);
987}
988
989int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
990{
991	return security_ops->socket_sock_rcv_skb(sk, skb);
992}
993EXPORT_SYMBOL(security_sock_rcv_skb);
994
995int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
996				      int __user *optlen, unsigned len)
997{
998	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
999}
1000
1001int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1002{
1003	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1004}
1005EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1006
1007int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1008{
1009	return security_ops->sk_alloc_security(sk, family, priority);
1010}
1011
1012void security_sk_free(struct sock *sk)
1013{
1014	return security_ops->sk_free_security(sk);
1015}
1016
1017void security_sk_clone(const struct sock *sk, struct sock *newsk)
1018{
1019	return security_ops->sk_clone_security(sk, newsk);
1020}
1021
1022void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1023{
1024	security_ops->sk_getsecid(sk, &fl->secid);
1025}
1026EXPORT_SYMBOL(security_sk_classify_flow);
1027
1028void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1029{
1030	security_ops->req_classify_flow(req, fl);
1031}
1032EXPORT_SYMBOL(security_req_classify_flow);
1033
1034void security_sock_graft(struct sock *sk, struct socket *parent)
1035{
1036	security_ops->sock_graft(sk, parent);
1037}
1038EXPORT_SYMBOL(security_sock_graft);
1039
1040int security_inet_conn_request(struct sock *sk,
1041			struct sk_buff *skb, struct request_sock *req)
1042{
1043	return security_ops->inet_conn_request(sk, skb, req);
1044}
1045EXPORT_SYMBOL(security_inet_conn_request);
1046
1047void security_inet_csk_clone(struct sock *newsk,
1048			const struct request_sock *req)
1049{
1050	security_ops->inet_csk_clone(newsk, req);
1051}
1052
1053void security_inet_conn_established(struct sock *sk,
1054			struct sk_buff *skb)
1055{
1056	security_ops->inet_conn_established(sk, skb);
1057}
1058
1059#endif	/* CONFIG_SECURITY_NETWORK */
1060
1061#ifdef CONFIG_SECURITY_NETWORK_XFRM
1062
1063int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1064{
1065	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1066}
1067EXPORT_SYMBOL(security_xfrm_policy_alloc);
1068
1069int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1070			      struct xfrm_sec_ctx **new_ctxp)
1071{
1072	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1073}
1074
1075void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1076{
1077	security_ops->xfrm_policy_free_security(ctx);
1078}
1079EXPORT_SYMBOL(security_xfrm_policy_free);
1080
1081int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1082{
1083	return security_ops->xfrm_policy_delete_security(ctx);
1084}
1085
1086int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1087{
1088	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1089}
1090EXPORT_SYMBOL(security_xfrm_state_alloc);
1091
1092int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1093				      struct xfrm_sec_ctx *polsec, u32 secid)
1094{
1095	if (!polsec)
1096		return 0;
1097	/*
1098	 * We want the context to be taken from secid which is usually
1099	 * from the sock.
1100	 */
1101	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1102}
1103
1104int security_xfrm_state_delete(struct xfrm_state *x)
1105{
1106	return security_ops->xfrm_state_delete_security(x);
1107}
1108EXPORT_SYMBOL(security_xfrm_state_delete);
1109
1110void security_xfrm_state_free(struct xfrm_state *x)
1111{
1112	security_ops->xfrm_state_free_security(x);
1113}
1114
1115int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1116{
1117	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1118}
1119
1120int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1121				       struct xfrm_policy *xp, struct flowi *fl)
1122{
1123	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1124}
1125
1126int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1127{
1128	return security_ops->xfrm_decode_session(skb, secid, 1);
1129}
1130
1131void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1132{
1133	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1134
1135	BUG_ON(rc);
1136}
1137EXPORT_SYMBOL(security_skb_classify_flow);
1138
1139#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1140
1141#ifdef CONFIG_KEYS
1142
1143int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1144{
1145	return security_ops->key_alloc(key, tsk, flags);
1146}
1147
1148void security_key_free(struct key *key)
1149{
1150	security_ops->key_free(key);
1151}
1152
1153int security_key_permission(key_ref_t key_ref,
1154			    struct task_struct *context, key_perm_t perm)
1155{
1156	return security_ops->key_permission(key_ref, context, perm);
1157}
1158
1159int security_key_getsecurity(struct key *key, char **_buffer)
1160{
1161	return security_ops->key_getsecurity(key, _buffer);
1162}
1163
1164#endif	/* CONFIG_KEYS */
1165
1166#ifdef CONFIG_AUDIT
1167
1168int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1169{
1170	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1171}
1172
1173int security_audit_rule_known(struct audit_krule *krule)
1174{
1175	return security_ops->audit_rule_known(krule);
1176}
1177
1178void security_audit_rule_free(void *lsmrule)
1179{
1180	security_ops->audit_rule_free(lsmrule);
1181}
1182
1183int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1184			      struct audit_context *actx)
1185{
1186	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1187}
1188
1189#endif /* CONFIG_AUDIT */
1190