avc.c revision 89c86576ecde504da1eeb4f4882b2189ac2f9c4a
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5 *	     James Morris <jmorris@redhat.com>
6 *
7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 *	Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 *	This program is free software; you can redistribute it and/or modify
13 *	it under the terms of the GNU General Public License version 2,
14 *	as published by the Free Software Foundation.
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34
35static const struct av_perm_to_string av_perm_to_string[] = {
36#define S_(c, v, s) { c, v, s },
37#include "av_perm_to_string.h"
38#undef S_
39};
40
41static const char *class_to_string[] = {
42#define S_(s) s,
43#include "class_to_string.h"
44#undef S_
45};
46
47#define TB_(s) static const char *s[] = {
48#define TE_(s) };
49#define S_(s) s,
50#include "common_perm_to_string.h"
51#undef TB_
52#undef TE_
53#undef S_
54
55static const struct av_inherit av_inherit[] = {
56#define S_(c, i, b) {	.tclass = c,\
57			.common_pts = common_##i##_perm_to_string,\
58			.common_base =  b },
59#include "av_inherit.h"
60#undef S_
61};
62
63const struct selinux_class_perm selinux_class_perm = {
64	.av_perm_to_string = av_perm_to_string,
65	.av_pts_len = ARRAY_SIZE(av_perm_to_string),
66	.class_to_string = class_to_string,
67	.cts_len = ARRAY_SIZE(class_to_string),
68	.av_inherit = av_inherit,
69	.av_inherit_len = ARRAY_SIZE(av_inherit)
70};
71
72#define AVC_CACHE_SLOTS			512
73#define AVC_DEF_CACHE_THRESHOLD		512
74#define AVC_CACHE_RECLAIM		16
75
76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77#define avc_cache_stats_incr(field)				\
78do {								\
79	per_cpu(avc_cache_stats, get_cpu()).field++;		\
80	put_cpu();						\
81} while (0)
82#else
83#define avc_cache_stats_incr(field)	do {} while (0)
84#endif
85
86struct avc_entry {
87	u32			ssid;
88	u32			tsid;
89	u16			tclass;
90	struct av_decision	avd;
91};
92
93struct avc_node {
94	struct avc_entry	ae;
95	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
96	struct rcu_head		rhead;
97};
98
99struct avc_cache {
100	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
101	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
102	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
103	atomic_t		active_nodes;
104	u32			latest_notif;	/* latest revocation notification */
105};
106
107struct avc_callback_node {
108	int (*callback) (u32 event, u32 ssid, u32 tsid,
109			 u16 tclass, u32 perms,
110			 u32 *out_retained);
111	u32 events;
112	u32 ssid;
113	u32 tsid;
114	u16 tclass;
115	u32 perms;
116	struct avc_callback_node *next;
117};
118
119/* Exported via selinufs */
120unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
121
122#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
123DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
124#endif
125
126static struct avc_cache avc_cache;
127static struct avc_callback_node *avc_callbacks;
128static struct kmem_cache *avc_node_cachep;
129
130static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
131{
132	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
133}
134
135/**
136 * avc_dump_av - Display an access vector in human-readable form.
137 * @tclass: target security class
138 * @av: access vector
139 */
140static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
141{
142	const char **common_pts = NULL;
143	u32 common_base = 0;
144	int i, i2, perm;
145
146	if (av == 0) {
147		audit_log_format(ab, " null");
148		return;
149	}
150
151	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
152		if (av_inherit[i].tclass == tclass) {
153			common_pts = av_inherit[i].common_pts;
154			common_base = av_inherit[i].common_base;
155			break;
156		}
157	}
158
159	audit_log_format(ab, " {");
160	i = 0;
161	perm = 1;
162	while (perm < common_base) {
163		if (perm & av) {
164			audit_log_format(ab, " %s", common_pts[i]);
165			av &= ~perm;
166		}
167		i++;
168		perm <<= 1;
169	}
170
171	while (i < sizeof(av) * 8) {
172		if (perm & av) {
173			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
174				if ((av_perm_to_string[i2].tclass == tclass) &&
175				    (av_perm_to_string[i2].value == perm))
176					break;
177			}
178			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
179				audit_log_format(ab, " %s",
180						 av_perm_to_string[i2].name);
181				av &= ~perm;
182			}
183		}
184		i++;
185		perm <<= 1;
186	}
187
188	if (av)
189		audit_log_format(ab, " 0x%x", av);
190
191	audit_log_format(ab, " }");
192}
193
194/**
195 * avc_dump_query - Display a SID pair and a class in human-readable form.
196 * @ssid: source security identifier
197 * @tsid: target security identifier
198 * @tclass: target security class
199 */
200static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
201{
202	int rc;
203	char *scontext;
204	u32 scontext_len;
205
206	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
207	if (rc)
208		audit_log_format(ab, "ssid=%d", ssid);
209	else {
210		audit_log_format(ab, "scontext=%s", scontext);
211		kfree(scontext);
212	}
213
214	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
215	if (rc)
216		audit_log_format(ab, " tsid=%d", tsid);
217	else {
218		audit_log_format(ab, " tcontext=%s", scontext);
219		kfree(scontext);
220	}
221
222	BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
223	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
224}
225
226/**
227 * avc_init - Initialize the AVC.
228 *
229 * Initialize the access vector cache.
230 */
231void __init avc_init(void)
232{
233	int i;
234
235	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236		INIT_HLIST_HEAD(&avc_cache.slots[i]);
237		spin_lock_init(&avc_cache.slots_lock[i]);
238	}
239	atomic_set(&avc_cache.active_nodes, 0);
240	atomic_set(&avc_cache.lru_hint, 0);
241
242	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
243					     0, SLAB_PANIC, NULL);
244
245	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
246}
247
248int avc_get_hash_stats(char *page)
249{
250	int i, chain_len, max_chain_len, slots_used;
251	struct avc_node *node;
252	struct hlist_head *head;
253
254	rcu_read_lock();
255
256	slots_used = 0;
257	max_chain_len = 0;
258	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
259		head = &avc_cache.slots[i];
260		if (!hlist_empty(head)) {
261			struct hlist_node *next;
262
263			slots_used++;
264			chain_len = 0;
265			hlist_for_each_entry_rcu(node, next, head, list)
266				chain_len++;
267			if (chain_len > max_chain_len)
268				max_chain_len = chain_len;
269		}
270	}
271
272	rcu_read_unlock();
273
274	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
275			 "longest chain: %d\n",
276			 atomic_read(&avc_cache.active_nodes),
277			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
278}
279
280static void avc_node_free(struct rcu_head *rhead)
281{
282	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
283	kmem_cache_free(avc_node_cachep, node);
284	avc_cache_stats_incr(frees);
285}
286
287static void avc_node_delete(struct avc_node *node)
288{
289	hlist_del_rcu(&node->list);
290	call_rcu(&node->rhead, avc_node_free);
291	atomic_dec(&avc_cache.active_nodes);
292}
293
294static void avc_node_kill(struct avc_node *node)
295{
296	kmem_cache_free(avc_node_cachep, node);
297	avc_cache_stats_incr(frees);
298	atomic_dec(&avc_cache.active_nodes);
299}
300
301static void avc_node_replace(struct avc_node *new, struct avc_node *old)
302{
303	hlist_replace_rcu(&old->list, &new->list);
304	call_rcu(&old->rhead, avc_node_free);
305	atomic_dec(&avc_cache.active_nodes);
306}
307
308static inline int avc_reclaim_node(void)
309{
310	struct avc_node *node;
311	int hvalue, try, ecx;
312	unsigned long flags;
313	struct hlist_head *head;
314	struct hlist_node *next;
315	spinlock_t *lock;
316
317	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
318		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
319		head = &avc_cache.slots[hvalue];
320		lock = &avc_cache.slots_lock[hvalue];
321
322		if (!spin_trylock_irqsave(lock, flags))
323			continue;
324
325		rcu_read_lock();
326		hlist_for_each_entry(node, next, head, list) {
327			avc_node_delete(node);
328			avc_cache_stats_incr(reclaims);
329			ecx++;
330			if (ecx >= AVC_CACHE_RECLAIM) {
331				rcu_read_unlock();
332				spin_unlock_irqrestore(lock, flags);
333				goto out;
334			}
335		}
336		rcu_read_unlock();
337		spin_unlock_irqrestore(lock, flags);
338	}
339out:
340	return ecx;
341}
342
343static struct avc_node *avc_alloc_node(void)
344{
345	struct avc_node *node;
346
347	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
348	if (!node)
349		goto out;
350
351	INIT_RCU_HEAD(&node->rhead);
352	INIT_HLIST_NODE(&node->list);
353	avc_cache_stats_incr(allocations);
354
355	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
356		avc_reclaim_node();
357
358out:
359	return node;
360}
361
362static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
363{
364	node->ae.ssid = ssid;
365	node->ae.tsid = tsid;
366	node->ae.tclass = tclass;
367	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
368}
369
370static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
371{
372	struct avc_node *node, *ret = NULL;
373	int hvalue;
374	struct hlist_head *head;
375	struct hlist_node *next;
376
377	hvalue = avc_hash(ssid, tsid, tclass);
378	head = &avc_cache.slots[hvalue];
379	hlist_for_each_entry_rcu(node, next, head, list) {
380		if (ssid == node->ae.ssid &&
381		    tclass == node->ae.tclass &&
382		    tsid == node->ae.tsid) {
383			ret = node;
384			break;
385		}
386	}
387
388	return ret;
389}
390
391/**
392 * avc_lookup - Look up an AVC entry.
393 * @ssid: source security identifier
394 * @tsid: target security identifier
395 * @tclass: target security class
396 *
397 * Look up an AVC entry that is valid for the
398 * (@ssid, @tsid), interpreting the permissions
399 * based on @tclass.  If a valid AVC entry exists,
400 * then this function return the avc_node.
401 * Otherwise, this function returns NULL.
402 */
403static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
404{
405	struct avc_node *node;
406
407	avc_cache_stats_incr(lookups);
408	node = avc_search_node(ssid, tsid, tclass);
409
410	if (node)
411		avc_cache_stats_incr(hits);
412	else
413		avc_cache_stats_incr(misses);
414
415	return node;
416}
417
418static int avc_latest_notif_update(int seqno, int is_insert)
419{
420	int ret = 0;
421	static DEFINE_SPINLOCK(notif_lock);
422	unsigned long flag;
423
424	spin_lock_irqsave(&notif_lock, flag);
425	if (is_insert) {
426		if (seqno < avc_cache.latest_notif) {
427			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
428			       seqno, avc_cache.latest_notif);
429			ret = -EAGAIN;
430		}
431	} else {
432		if (seqno > avc_cache.latest_notif)
433			avc_cache.latest_notif = seqno;
434	}
435	spin_unlock_irqrestore(&notif_lock, flag);
436
437	return ret;
438}
439
440/**
441 * avc_insert - Insert an AVC entry.
442 * @ssid: source security identifier
443 * @tsid: target security identifier
444 * @tclass: target security class
445 * @avd: resulting av decision
446 *
447 * Insert an AVC entry for the SID pair
448 * (@ssid, @tsid) and class @tclass.
449 * The access vectors and the sequence number are
450 * normally provided by the security server in
451 * response to a security_compute_av() call.  If the
452 * sequence number @avd->seqno is not less than the latest
453 * revocation notification, then the function copies
454 * the access vectors into a cache entry, returns
455 * avc_node inserted. Otherwise, this function returns NULL.
456 */
457static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
458{
459	struct avc_node *pos, *node = NULL;
460	int hvalue;
461	unsigned long flag;
462
463	if (avc_latest_notif_update(avd->seqno, 1))
464		goto out;
465
466	node = avc_alloc_node();
467	if (node) {
468		struct hlist_head *head;
469		struct hlist_node *next;
470		spinlock_t *lock;
471
472		hvalue = avc_hash(ssid, tsid, tclass);
473		avc_node_populate(node, ssid, tsid, tclass, avd);
474
475		head = &avc_cache.slots[hvalue];
476		lock = &avc_cache.slots_lock[hvalue];
477
478		spin_lock_irqsave(lock, flag);
479		hlist_for_each_entry(pos, next, head, list) {
480			if (pos->ae.ssid == ssid &&
481			    pos->ae.tsid == tsid &&
482			    pos->ae.tclass == tclass) {
483				avc_node_replace(node, pos);
484				goto found;
485			}
486		}
487		hlist_add_head_rcu(&node->list, head);
488found:
489		spin_unlock_irqrestore(lock, flag);
490	}
491out:
492	return node;
493}
494
495static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
496				       struct in6_addr *addr, __be16 port,
497				       char *name1, char *name2)
498{
499	if (!ipv6_addr_any(addr))
500		audit_log_format(ab, " %s=%pI6", name1, addr);
501	if (port)
502		audit_log_format(ab, " %s=%d", name2, ntohs(port));
503}
504
505static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
506				       __be16 port, char *name1, char *name2)
507{
508	if (addr)
509		audit_log_format(ab, " %s=%pI4", name1, &addr);
510	if (port)
511		audit_log_format(ab, " %s=%d", name2, ntohs(port));
512}
513
514/**
515 * avc_audit - Audit the granting or denial of permissions.
516 * @ssid: source security identifier
517 * @tsid: target security identifier
518 * @tclass: target security class
519 * @requested: requested permissions
520 * @avd: access vector decisions
521 * @result: result from avc_has_perm_noaudit
522 * @a:  auxiliary audit data
523 *
524 * Audit the granting or denial of permissions in accordance
525 * with the policy.  This function is typically called by
526 * avc_has_perm() after a permission check, but can also be
527 * called directly by callers who use avc_has_perm_noaudit()
528 * in order to separate the permission check from the auditing.
529 * For example, this separation is useful when the permission check must
530 * be performed under a lock, to allow the lock to be released
531 * before calling the auditing code.
532 */
533void avc_audit(u32 ssid, u32 tsid,
534	       u16 tclass, u32 requested,
535	       struct av_decision *avd, int result, struct avc_audit_data *a)
536{
537	struct task_struct *tsk = current;
538	struct inode *inode = NULL;
539	u32 denied, audited;
540	struct audit_buffer *ab;
541
542	denied = requested & ~avd->allowed;
543	if (denied) {
544		audited = denied;
545		if (!(audited & avd->auditdeny))
546			return;
547	} else if (result) {
548		audited = denied = requested;
549	} else {
550		audited = requested;
551		if (!(audited & avd->auditallow))
552			return;
553	}
554
555	ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
556	if (!ab)
557		return;		/* audit_panic has been called */
558	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
559	avc_dump_av(ab, tclass, audited);
560	audit_log_format(ab, " for ");
561	if (a && a->tsk)
562		tsk = a->tsk;
563	if (tsk && tsk->pid) {
564		audit_log_format(ab, " pid=%d comm=", tsk->pid);
565		audit_log_untrustedstring(ab, tsk->comm);
566	}
567	if (a) {
568		switch (a->type) {
569		case AVC_AUDIT_DATA_IPC:
570			audit_log_format(ab, " key=%d", a->u.ipc_id);
571			break;
572		case AVC_AUDIT_DATA_CAP:
573			audit_log_format(ab, " capability=%d", a->u.cap);
574			break;
575		case AVC_AUDIT_DATA_FS:
576			if (a->u.fs.path.dentry) {
577				struct dentry *dentry = a->u.fs.path.dentry;
578				if (a->u.fs.path.mnt) {
579					audit_log_d_path(ab, "path=",
580							 &a->u.fs.path);
581				} else {
582					audit_log_format(ab, " name=");
583					audit_log_untrustedstring(ab, dentry->d_name.name);
584				}
585				inode = dentry->d_inode;
586			} else if (a->u.fs.inode) {
587				struct dentry *dentry;
588				inode = a->u.fs.inode;
589				dentry = d_find_alias(inode);
590				if (dentry) {
591					audit_log_format(ab, " name=");
592					audit_log_untrustedstring(ab, dentry->d_name.name);
593					dput(dentry);
594				}
595			}
596			if (inode)
597				audit_log_format(ab, " dev=%s ino=%lu",
598						 inode->i_sb->s_id,
599						 inode->i_ino);
600			break;
601		case AVC_AUDIT_DATA_NET:
602			if (a->u.net.sk) {
603				struct sock *sk = a->u.net.sk;
604				struct unix_sock *u;
605				int len = 0;
606				char *p = NULL;
607
608				switch (sk->sk_family) {
609				case AF_INET: {
610					struct inet_sock *inet = inet_sk(sk);
611
612					avc_print_ipv4_addr(ab, inet->rcv_saddr,
613							    inet->sport,
614							    "laddr", "lport");
615					avc_print_ipv4_addr(ab, inet->daddr,
616							    inet->dport,
617							    "faddr", "fport");
618					break;
619				}
620				case AF_INET6: {
621					struct inet_sock *inet = inet_sk(sk);
622					struct ipv6_pinfo *inet6 = inet6_sk(sk);
623
624					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
625							    inet->sport,
626							    "laddr", "lport");
627					avc_print_ipv6_addr(ab, &inet6->daddr,
628							    inet->dport,
629							    "faddr", "fport");
630					break;
631				}
632				case AF_UNIX:
633					u = unix_sk(sk);
634					if (u->dentry) {
635						struct path path = {
636							.dentry = u->dentry,
637							.mnt = u->mnt
638						};
639						audit_log_d_path(ab, "path=",
640								 &path);
641						break;
642					}
643					if (!u->addr)
644						break;
645					len = u->addr->len-sizeof(short);
646					p = &u->addr->name->sun_path[0];
647					audit_log_format(ab, " path=");
648					if (*p)
649						audit_log_untrustedstring(ab, p);
650					else
651						audit_log_n_hex(ab, p, len);
652					break;
653				}
654			}
655
656			switch (a->u.net.family) {
657			case AF_INET:
658				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
659						    a->u.net.sport,
660						    "saddr", "src");
661				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
662						    a->u.net.dport,
663						    "daddr", "dest");
664				break;
665			case AF_INET6:
666				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
667						    a->u.net.sport,
668						    "saddr", "src");
669				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
670						    a->u.net.dport,
671						    "daddr", "dest");
672				break;
673			}
674			if (a->u.net.netif > 0) {
675				struct net_device *dev;
676
677				/* NOTE: we always use init's namespace */
678				dev = dev_get_by_index(&init_net,
679						       a->u.net.netif);
680				if (dev) {
681					audit_log_format(ab, " netif=%s",
682							 dev->name);
683					dev_put(dev);
684				}
685			}
686			break;
687		}
688	}
689	audit_log_format(ab, " ");
690	avc_dump_query(ab, ssid, tsid, tclass);
691	audit_log_end(ab);
692}
693
694/**
695 * avc_add_callback - Register a callback for security events.
696 * @callback: callback function
697 * @events: security events
698 * @ssid: source security identifier or %SECSID_WILD
699 * @tsid: target security identifier or %SECSID_WILD
700 * @tclass: target security class
701 * @perms: permissions
702 *
703 * Register a callback function for events in the set @events
704 * related to the SID pair (@ssid, @tsid) and
705 * and the permissions @perms, interpreting
706 * @perms based on @tclass.  Returns %0 on success or
707 * -%ENOMEM if insufficient memory exists to add the callback.
708 */
709int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
710				     u16 tclass, u32 perms,
711				     u32 *out_retained),
712		     u32 events, u32 ssid, u32 tsid,
713		     u16 tclass, u32 perms)
714{
715	struct avc_callback_node *c;
716	int rc = 0;
717
718	c = kmalloc(sizeof(*c), GFP_ATOMIC);
719	if (!c) {
720		rc = -ENOMEM;
721		goto out;
722	}
723
724	c->callback = callback;
725	c->events = events;
726	c->ssid = ssid;
727	c->tsid = tsid;
728	c->perms = perms;
729	c->next = avc_callbacks;
730	avc_callbacks = c;
731out:
732	return rc;
733}
734
735static inline int avc_sidcmp(u32 x, u32 y)
736{
737	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
738}
739
740/**
741 * avc_update_node Update an AVC entry
742 * @event : Updating event
743 * @perms : Permission mask bits
744 * @ssid,@tsid,@tclass : identifier of an AVC entry
745 * @seqno : sequence number when decision was made
746 *
747 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
748 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
749 * otherwise, this function update the AVC entry. The original AVC-entry object
750 * will release later by RCU.
751 */
752static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
753			   u32 seqno)
754{
755	int hvalue, rc = 0;
756	unsigned long flag;
757	struct avc_node *pos, *node, *orig = NULL;
758	struct hlist_head *head;
759	struct hlist_node *next;
760	spinlock_t *lock;
761
762	node = avc_alloc_node();
763	if (!node) {
764		rc = -ENOMEM;
765		goto out;
766	}
767
768	/* Lock the target slot */
769	hvalue = avc_hash(ssid, tsid, tclass);
770
771	head = &avc_cache.slots[hvalue];
772	lock = &avc_cache.slots_lock[hvalue];
773
774	spin_lock_irqsave(lock, flag);
775
776	hlist_for_each_entry(pos, next, head, list) {
777		if (ssid == pos->ae.ssid &&
778		    tsid == pos->ae.tsid &&
779		    tclass == pos->ae.tclass &&
780		    seqno == pos->ae.avd.seqno){
781			orig = pos;
782			break;
783		}
784	}
785
786	if (!orig) {
787		rc = -ENOENT;
788		avc_node_kill(node);
789		goto out_unlock;
790	}
791
792	/*
793	 * Copy and replace original node.
794	 */
795
796	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
797
798	switch (event) {
799	case AVC_CALLBACK_GRANT:
800		node->ae.avd.allowed |= perms;
801		break;
802	case AVC_CALLBACK_TRY_REVOKE:
803	case AVC_CALLBACK_REVOKE:
804		node->ae.avd.allowed &= ~perms;
805		break;
806	case AVC_CALLBACK_AUDITALLOW_ENABLE:
807		node->ae.avd.auditallow |= perms;
808		break;
809	case AVC_CALLBACK_AUDITALLOW_DISABLE:
810		node->ae.avd.auditallow &= ~perms;
811		break;
812	case AVC_CALLBACK_AUDITDENY_ENABLE:
813		node->ae.avd.auditdeny |= perms;
814		break;
815	case AVC_CALLBACK_AUDITDENY_DISABLE:
816		node->ae.avd.auditdeny &= ~perms;
817		break;
818	}
819	avc_node_replace(node, orig);
820out_unlock:
821	spin_unlock_irqrestore(lock, flag);
822out:
823	return rc;
824}
825
826/**
827 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
828 * @seqno: policy sequence number
829 */
830int avc_ss_reset(u32 seqno)
831{
832	struct avc_callback_node *c;
833	int i, rc = 0, tmprc;
834	unsigned long flag;
835	struct avc_node *node;
836	struct hlist_head *head;
837	struct hlist_node *next;
838	spinlock_t *lock;
839
840	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
841		head = &avc_cache.slots[i];
842		lock = &avc_cache.slots_lock[i];
843
844		spin_lock_irqsave(lock, flag);
845		/*
846		 * With preemptable RCU, the outer spinlock does not
847		 * prevent RCU grace periods from ending.
848		 */
849		rcu_read_lock();
850		hlist_for_each_entry(node, next, head, list)
851			avc_node_delete(node);
852		rcu_read_unlock();
853		spin_unlock_irqrestore(lock, flag);
854	}
855
856	for (c = avc_callbacks; c; c = c->next) {
857		if (c->events & AVC_CALLBACK_RESET) {
858			tmprc = c->callback(AVC_CALLBACK_RESET,
859					    0, 0, 0, 0, NULL);
860			/* save the first error encountered for the return
861			   value and continue processing the callbacks */
862			if (!rc)
863				rc = tmprc;
864		}
865	}
866
867	avc_latest_notif_update(seqno, 0);
868	return rc;
869}
870
871/**
872 * avc_has_perm_noaudit - Check permissions but perform no auditing.
873 * @ssid: source security identifier
874 * @tsid: target security identifier
875 * @tclass: target security class
876 * @requested: requested permissions, interpreted based on @tclass
877 * @flags:  AVC_STRICT or 0
878 * @avd: access vector decisions
879 *
880 * Check the AVC to determine whether the @requested permissions are granted
881 * for the SID pair (@ssid, @tsid), interpreting the permissions
882 * based on @tclass, and call the security server on a cache miss to obtain
883 * a new decision and add it to the cache.  Return a copy of the decisions
884 * in @avd.  Return %0 if all @requested permissions are granted,
885 * -%EACCES if any permissions are denied, or another -errno upon
886 * other errors.  This function is typically called by avc_has_perm(),
887 * but may also be called directly to separate permission checking from
888 * auditing, e.g. in cases where a lock must be held for the check but
889 * should be released for the auditing.
890 */
891int avc_has_perm_noaudit(u32 ssid, u32 tsid,
892			 u16 tclass, u32 requested,
893			 unsigned flags,
894			 struct av_decision *in_avd)
895{
896	struct avc_node *node;
897	struct av_decision avd_entry, *avd;
898	int rc = 0;
899	u32 denied;
900
901	BUG_ON(!requested);
902
903	rcu_read_lock();
904
905	node = avc_lookup(ssid, tsid, tclass);
906	if (!node) {
907		rcu_read_unlock();
908
909		if (in_avd)
910			avd = in_avd;
911		else
912			avd = &avd_entry;
913
914		rc = security_compute_av(ssid, tsid, tclass, requested, avd);
915		if (rc)
916			goto out;
917		rcu_read_lock();
918		node = avc_insert(ssid, tsid, tclass, avd);
919	} else {
920		if (in_avd)
921			memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
922		avd = &node->ae.avd;
923	}
924
925	denied = requested & ~(avd->allowed);
926
927	if (denied) {
928		if (flags & AVC_STRICT)
929			rc = -EACCES;
930		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
931			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
932					tsid, tclass, avd->seqno);
933		else
934			rc = -EACCES;
935	}
936
937	rcu_read_unlock();
938out:
939	return rc;
940}
941
942/**
943 * avc_has_perm - Check permissions and perform any appropriate auditing.
944 * @ssid: source security identifier
945 * @tsid: target security identifier
946 * @tclass: target security class
947 * @requested: requested permissions, interpreted based on @tclass
948 * @auditdata: auxiliary audit data
949 *
950 * Check the AVC to determine whether the @requested permissions are granted
951 * for the SID pair (@ssid, @tsid), interpreting the permissions
952 * based on @tclass, and call the security server on a cache miss to obtain
953 * a new decision and add it to the cache.  Audit the granting or denial of
954 * permissions in accordance with the policy.  Return %0 if all @requested
955 * permissions are granted, -%EACCES if any permissions are denied, or
956 * another -errno upon other errors.
957 */
958int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
959		 u32 requested, struct avc_audit_data *auditdata)
960{
961	struct av_decision avd;
962	int rc;
963
964	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
965	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
966	return rc;
967}
968
969u32 avc_policy_seqno(void)
970{
971	return avc_cache.latest_notif;
972}
973
974void avc_disable(void)
975{
976	if (avc_node_cachep)
977		kmem_cache_destroy(avc_node_cachep);
978}
979