avc.c revision cd77b8212d5473b800ac865364981d334ff564ea
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5 *           James Morris <jmorris@redhat.com>
6 *
7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 *     Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 *	This program is free software; you can redistribute it and/or modify
13 *	it under the terms of the GNU General Public License version 2,
14 *      as published by the Free Software Foundation.
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34
35static const struct av_perm_to_string
36{
37  u16 tclass;
38  u32 value;
39  const char *name;
40} av_perm_to_string[] = {
41#define S_(c, v, s) { c, v, s },
42#include "av_perm_to_string.h"
43#undef S_
44};
45
46#ifdef CONFIG_AUDIT
47static const char *class_to_string[] = {
48#define S_(s) s,
49#include "class_to_string.h"
50#undef S_
51};
52#endif
53
54#define TB_(s) static const char * s [] = {
55#define TE_(s) };
56#define S_(s) s,
57#include "common_perm_to_string.h"
58#undef TB_
59#undef TE_
60#undef S_
61
62static const struct av_inherit
63{
64    u16 tclass;
65    const char **common_pts;
66    u32 common_base;
67} av_inherit[] = {
68#define S_(c, i, b) { c, common_##i##_perm_to_string, b },
69#include "av_inherit.h"
70#undef S_
71};
72
73#define AVC_CACHE_SLOTS			512
74#define AVC_DEF_CACHE_THRESHOLD		512
75#define AVC_CACHE_RECLAIM		16
76
77#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
78#define avc_cache_stats_incr(field) 				\
79do {								\
80	per_cpu(avc_cache_stats, get_cpu()).field++;		\
81	put_cpu();						\
82} while (0)
83#else
84#define avc_cache_stats_incr(field)	do {} while (0)
85#endif
86
87struct avc_entry {
88	u32			ssid;
89	u32			tsid;
90	u16			tclass;
91	struct av_decision	avd;
92	atomic_t		used;	/* used recently */
93};
94
95struct avc_node {
96	struct avc_entry	ae;
97	struct list_head	list;
98	struct rcu_head         rhead;
99};
100
101struct avc_cache {
102	struct list_head	slots[AVC_CACHE_SLOTS];
103	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
104	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
105	atomic_t		active_nodes;
106	u32			latest_notif;	/* latest revocation notification */
107};
108
109struct avc_callback_node {
110	int (*callback) (u32 event, u32 ssid, u32 tsid,
111	                 u16 tclass, u32 perms,
112	                 u32 *out_retained);
113	u32 events;
114	u32 ssid;
115	u32 tsid;
116	u16 tclass;
117	u32 perms;
118	struct avc_callback_node *next;
119};
120
121/* Exported via selinufs */
122unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
123
124#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
125DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
126#endif
127
128static struct avc_cache avc_cache;
129static struct avc_callback_node *avc_callbacks;
130static kmem_cache_t *avc_node_cachep;
131
132static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
133{
134	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
135}
136
137/**
138 * avc_dump_av - Display an access vector in human-readable form.
139 * @tclass: target security class
140 * @av: access vector
141 */
142static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
143{
144	const char **common_pts = NULL;
145	u32 common_base = 0;
146	int i, i2, perm;
147
148	if (av == 0) {
149		audit_log_format(ab, " null");
150		return;
151	}
152
153	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
154		if (av_inherit[i].tclass == tclass) {
155			common_pts = av_inherit[i].common_pts;
156			common_base = av_inherit[i].common_base;
157			break;
158		}
159	}
160
161	audit_log_format(ab, " {");
162	i = 0;
163	perm = 1;
164	while (perm < common_base) {
165		if (perm & av) {
166			audit_log_format(ab, " %s", common_pts[i]);
167			av &= ~perm;
168		}
169		i++;
170		perm <<= 1;
171	}
172
173	while (i < sizeof(av) * 8) {
174		if (perm & av) {
175			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
176				if ((av_perm_to_string[i2].tclass == tclass) &&
177				    (av_perm_to_string[i2].value == perm))
178					break;
179			}
180			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
181				audit_log_format(ab, " %s",
182						 av_perm_to_string[i2].name);
183				av &= ~perm;
184			}
185		}
186		i++;
187		perm <<= 1;
188	}
189
190	if (av)
191		audit_log_format(ab, " 0x%x", av);
192
193	audit_log_format(ab, " }");
194}
195
196/**
197 * avc_dump_query - Display a SID pair and a class in human-readable form.
198 * @ssid: source security identifier
199 * @tsid: target security identifier
200 * @tclass: target security class
201 */
202static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
203{
204	int rc;
205	char *scontext;
206	u32 scontext_len;
207
208 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
209	if (rc)
210		audit_log_format(ab, "ssid=%d", ssid);
211	else {
212		audit_log_format(ab, "scontext=%s", scontext);
213		kfree(scontext);
214	}
215
216	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
217	if (rc)
218		audit_log_format(ab, " tsid=%d", tsid);
219	else {
220		audit_log_format(ab, " tcontext=%s", scontext);
221		kfree(scontext);
222	}
223	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
224}
225
226/**
227 * avc_init - Initialize the AVC.
228 *
229 * Initialize the access vector cache.
230 */
231void __init avc_init(void)
232{
233	int i;
234
235	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236		INIT_LIST_HEAD(&avc_cache.slots[i]);
237		spin_lock_init(&avc_cache.slots_lock[i]);
238	}
239	atomic_set(&avc_cache.active_nodes, 0);
240	atomic_set(&avc_cache.lru_hint, 0);
241
242	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
243					     0, SLAB_PANIC, NULL, NULL);
244
245	audit_log(current->audit_context, AUDIT_KERNEL, "AVC INITIALIZED\n");
246}
247
248int avc_get_hash_stats(char *page)
249{
250	int i, chain_len, max_chain_len, slots_used;
251	struct avc_node *node;
252
253	rcu_read_lock();
254
255	slots_used = 0;
256	max_chain_len = 0;
257	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
258		if (!list_empty(&avc_cache.slots[i])) {
259			slots_used++;
260			chain_len = 0;
261			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
262				chain_len++;
263			if (chain_len > max_chain_len)
264				max_chain_len = chain_len;
265		}
266	}
267
268	rcu_read_unlock();
269
270	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
271			 "longest chain: %d\n",
272			 atomic_read(&avc_cache.active_nodes),
273			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
274}
275
276static void avc_node_free(struct rcu_head *rhead)
277{
278	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
279	kmem_cache_free(avc_node_cachep, node);
280	avc_cache_stats_incr(frees);
281}
282
283static void avc_node_delete(struct avc_node *node)
284{
285	list_del_rcu(&node->list);
286	call_rcu(&node->rhead, avc_node_free);
287	atomic_dec(&avc_cache.active_nodes);
288}
289
290static void avc_node_kill(struct avc_node *node)
291{
292	kmem_cache_free(avc_node_cachep, node);
293	avc_cache_stats_incr(frees);
294	atomic_dec(&avc_cache.active_nodes);
295}
296
297static void avc_node_replace(struct avc_node *new, struct avc_node *old)
298{
299	list_replace_rcu(&old->list, &new->list);
300	call_rcu(&old->rhead, avc_node_free);
301	atomic_dec(&avc_cache.active_nodes);
302}
303
304static inline int avc_reclaim_node(void)
305{
306	struct avc_node *node;
307	int hvalue, try, ecx;
308	unsigned long flags;
309
310	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
311		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
312
313		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
314			continue;
315
316		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
317			if (atomic_dec_and_test(&node->ae.used)) {
318				/* Recently Unused */
319				avc_node_delete(node);
320				avc_cache_stats_incr(reclaims);
321				ecx++;
322				if (ecx >= AVC_CACHE_RECLAIM) {
323					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
324					goto out;
325				}
326			}
327		}
328		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
329	}
330out:
331	return ecx;
332}
333
334static struct avc_node *avc_alloc_node(void)
335{
336	struct avc_node *node;
337
338	node = kmem_cache_alloc(avc_node_cachep, SLAB_ATOMIC);
339	if (!node)
340		goto out;
341
342	memset(node, 0, sizeof(*node));
343	INIT_RCU_HEAD(&node->rhead);
344	INIT_LIST_HEAD(&node->list);
345	atomic_set(&node->ae.used, 1);
346	avc_cache_stats_incr(allocations);
347
348	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
349		avc_reclaim_node();
350
351out:
352	return node;
353}
354
355static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
356{
357	node->ae.ssid = ssid;
358	node->ae.tsid = tsid;
359	node->ae.tclass = tclass;
360	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
361}
362
363static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
364{
365	struct avc_node *node, *ret = NULL;
366	int hvalue;
367
368	hvalue = avc_hash(ssid, tsid, tclass);
369	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
370		if (ssid == node->ae.ssid &&
371		    tclass == node->ae.tclass &&
372		    tsid == node->ae.tsid) {
373			ret = node;
374			break;
375		}
376	}
377
378	if (ret == NULL) {
379		/* cache miss */
380		goto out;
381	}
382
383	/* cache hit */
384	if (atomic_read(&ret->ae.used) != 1)
385		atomic_set(&ret->ae.used, 1);
386out:
387	return ret;
388}
389
390/**
391 * avc_lookup - Look up an AVC entry.
392 * @ssid: source security identifier
393 * @tsid: target security identifier
394 * @tclass: target security class
395 * @requested: requested permissions, interpreted based on @tclass
396 *
397 * Look up an AVC entry that is valid for the
398 * @requested permissions between the SID pair
399 * (@ssid, @tsid), interpreting the permissions
400 * based on @tclass.  If a valid AVC entry exists,
401 * then this function return the avc_node.
402 * Otherwise, this function returns NULL.
403 */
404static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
405{
406	struct avc_node *node;
407
408	avc_cache_stats_incr(lookups);
409	node = avc_search_node(ssid, tsid, tclass);
410
411	if (node && ((node->ae.avd.decided & requested) == requested)) {
412		avc_cache_stats_incr(hits);
413		goto out;
414	}
415
416	node = NULL;
417	avc_cache_stats_incr(misses);
418out:
419	return node;
420}
421
422static int avc_latest_notif_update(int seqno, int is_insert)
423{
424	int ret = 0;
425	static DEFINE_SPINLOCK(notif_lock);
426	unsigned long flag;
427
428	spin_lock_irqsave(&notif_lock, flag);
429	if (is_insert) {
430		if (seqno < avc_cache.latest_notif) {
431			printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n",
432			       seqno, avc_cache.latest_notif);
433			ret = -EAGAIN;
434		}
435	} else {
436		if (seqno > avc_cache.latest_notif)
437			avc_cache.latest_notif = seqno;
438	}
439	spin_unlock_irqrestore(&notif_lock, flag);
440
441	return ret;
442}
443
444/**
445 * avc_insert - Insert an AVC entry.
446 * @ssid: source security identifier
447 * @tsid: target security identifier
448 * @tclass: target security class
449 * @ae: AVC entry
450 *
451 * Insert an AVC entry for the SID pair
452 * (@ssid, @tsid) and class @tclass.
453 * The access vectors and the sequence number are
454 * normally provided by the security server in
455 * response to a security_compute_av() call.  If the
456 * sequence number @ae->avd.seqno is not less than the latest
457 * revocation notification, then the function copies
458 * the access vectors into a cache entry, returns
459 * avc_node inserted. Otherwise, this function returns NULL.
460 */
461static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
462{
463	struct avc_node *pos, *node = NULL;
464	int hvalue;
465	unsigned long flag;
466
467	if (avc_latest_notif_update(ae->avd.seqno, 1))
468		goto out;
469
470	node = avc_alloc_node();
471	if (node) {
472		hvalue = avc_hash(ssid, tsid, tclass);
473		avc_node_populate(node, ssid, tsid, tclass, ae);
474
475		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
476		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
477			if (pos->ae.ssid == ssid &&
478			    pos->ae.tsid == tsid &&
479			    pos->ae.tclass == tclass) {
480			    	avc_node_replace(node, pos);
481				goto found;
482			}
483		}
484		list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
485found:
486		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
487	}
488out:
489	return node;
490}
491
492static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
493				       struct in6_addr *addr, u16 port,
494				       char *name1, char *name2)
495{
496	if (!ipv6_addr_any(addr))
497		audit_log_format(ab, " %s=%04x:%04x:%04x:%04x:%04x:"
498				 "%04x:%04x:%04x", name1, NIP6(*addr));
499	if (port)
500		audit_log_format(ab, " %s=%d", name2, ntohs(port));
501}
502
503static inline void avc_print_ipv4_addr(struct audit_buffer *ab, u32 addr,
504				       u16 port, char *name1, char *name2)
505{
506	if (addr)
507		audit_log_format(ab, " %s=%d.%d.%d.%d", name1, NIPQUAD(addr));
508	if (port)
509		audit_log_format(ab, " %s=%d", name2, ntohs(port));
510}
511
512/**
513 * avc_audit - Audit the granting or denial of permissions.
514 * @ssid: source security identifier
515 * @tsid: target security identifier
516 * @tclass: target security class
517 * @requested: requested permissions
518 * @avd: access vector decisions
519 * @result: result from avc_has_perm_noaudit
520 * @a:  auxiliary audit data
521 *
522 * Audit the granting or denial of permissions in accordance
523 * with the policy.  This function is typically called by
524 * avc_has_perm() after a permission check, but can also be
525 * called directly by callers who use avc_has_perm_noaudit()
526 * in order to separate the permission check from the auditing.
527 * For example, this separation is useful when the permission check must
528 * be performed under a lock, to allow the lock to be released
529 * before calling the auditing code.
530 */
531void avc_audit(u32 ssid, u32 tsid,
532               u16 tclass, u32 requested,
533               struct av_decision *avd, int result, struct avc_audit_data *a)
534{
535	struct task_struct *tsk = current;
536	struct inode *inode = NULL;
537	u32 denied, audited;
538	struct audit_buffer *ab;
539
540	denied = requested & ~avd->allowed;
541	if (denied) {
542		audited = denied;
543		if (!(audited & avd->auditdeny))
544			return;
545	} else if (result) {
546		audited = denied = requested;
547        } else {
548		audited = requested;
549		if (!(audited & avd->auditallow))
550			return;
551	}
552
553	ab = audit_log_start(current->audit_context, AUDIT_AVC);
554	if (!ab)
555		return;		/* audit_panic has been called */
556	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
557	avc_dump_av(ab, tclass,audited);
558	audit_log_format(ab, " for ");
559	if (a && a->tsk)
560		tsk = a->tsk;
561	if (a->tsk && a->tsk->pid) {
562		audit_log_format(ab, " pid=%d comm=", tsk->pid);
563		audit_log_untrustedstring(ab, tsk->comm);
564	}
565	if (a) {
566		switch (a->type) {
567		case AVC_AUDIT_DATA_IPC:
568			audit_log_format(ab, " key=%d", a->u.ipc_id);
569			break;
570		case AVC_AUDIT_DATA_CAP:
571			audit_log_format(ab, " capability=%d", a->u.cap);
572			break;
573		case AVC_AUDIT_DATA_FS:
574			if (a->u.fs.dentry) {
575				struct dentry *dentry = a->u.fs.dentry;
576				if (a->u.fs.mnt) {
577					audit_log_d_path(ab, "path=", dentry,
578							a->u.fs.mnt);
579				} else {
580					audit_log_format(ab, " name=%s",
581							 dentry->d_name.name);
582				}
583				inode = dentry->d_inode;
584			} else if (a->u.fs.inode) {
585				struct dentry *dentry;
586				inode = a->u.fs.inode;
587				dentry = d_find_alias(inode);
588				if (dentry) {
589					audit_log_format(ab, " name=%s",
590							 dentry->d_name.name);
591					dput(dentry);
592				}
593			}
594			if (inode)
595				audit_log_format(ab, " dev=%s ino=%ld",
596						 inode->i_sb->s_id,
597						 inode->i_ino);
598			break;
599		case AVC_AUDIT_DATA_NET:
600			if (a->u.net.sk) {
601				struct sock *sk = a->u.net.sk;
602				struct unix_sock *u;
603				int len = 0;
604				char *p = NULL;
605
606				switch (sk->sk_family) {
607				case AF_INET: {
608					struct inet_sock *inet = inet_sk(sk);
609
610					avc_print_ipv4_addr(ab, inet->rcv_saddr,
611							    inet->sport,
612							    "laddr", "lport");
613					avc_print_ipv4_addr(ab, inet->daddr,
614							    inet->dport,
615							    "faddr", "fport");
616					break;
617				}
618				case AF_INET6: {
619					struct inet_sock *inet = inet_sk(sk);
620					struct ipv6_pinfo *inet6 = inet6_sk(sk);
621
622					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
623							    inet->sport,
624							    "laddr", "lport");
625					avc_print_ipv6_addr(ab, &inet6->daddr,
626							    inet->dport,
627							    "faddr", "fport");
628					break;
629				}
630				case AF_UNIX:
631					u = unix_sk(sk);
632					if (u->dentry) {
633						audit_log_d_path(ab, "path=",
634							u->dentry, u->mnt);
635						break;
636					}
637					if (!u->addr)
638						break;
639					len = u->addr->len-sizeof(short);
640					p = &u->addr->name->sun_path[0];
641					if (*p)
642						audit_log_format(ab,
643							"path=%*.*s", len,
644							len, p);
645					else
646						audit_log_format(ab,
647							"path=@%*.*s", len-1,
648							len-1, p+1);
649					break;
650				}
651			}
652
653			switch (a->u.net.family) {
654			case AF_INET:
655				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
656						    a->u.net.sport,
657						    "saddr", "src");
658				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
659						    a->u.net.dport,
660						    "daddr", "dest");
661				break;
662			case AF_INET6:
663				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
664						    a->u.net.sport,
665						    "saddr", "src");
666				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
667						    a->u.net.dport,
668						    "daddr", "dest");
669				break;
670			}
671			if (a->u.net.netif)
672				audit_log_format(ab, " netif=%s",
673					a->u.net.netif);
674			break;
675		}
676	}
677	audit_log_format(ab, " ");
678	avc_dump_query(ab, ssid, tsid, tclass);
679	audit_log_end(ab);
680}
681
682/**
683 * avc_add_callback - Register a callback for security events.
684 * @callback: callback function
685 * @events: security events
686 * @ssid: source security identifier or %SECSID_WILD
687 * @tsid: target security identifier or %SECSID_WILD
688 * @tclass: target security class
689 * @perms: permissions
690 *
691 * Register a callback function for events in the set @events
692 * related to the SID pair (@ssid, @tsid) and
693 * and the permissions @perms, interpreting
694 * @perms based on @tclass.  Returns %0 on success or
695 * -%ENOMEM if insufficient memory exists to add the callback.
696 */
697int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
698                                     u16 tclass, u32 perms,
699                                     u32 *out_retained),
700                     u32 events, u32 ssid, u32 tsid,
701                     u16 tclass, u32 perms)
702{
703	struct avc_callback_node *c;
704	int rc = 0;
705
706	c = kmalloc(sizeof(*c), GFP_ATOMIC);
707	if (!c) {
708		rc = -ENOMEM;
709		goto out;
710	}
711
712	c->callback = callback;
713	c->events = events;
714	c->ssid = ssid;
715	c->tsid = tsid;
716	c->perms = perms;
717	c->next = avc_callbacks;
718	avc_callbacks = c;
719out:
720	return rc;
721}
722
723static inline int avc_sidcmp(u32 x, u32 y)
724{
725	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
726}
727
728/**
729 * avc_update_node Update an AVC entry
730 * @event : Updating event
731 * @perms : Permission mask bits
732 * @ssid,@tsid,@tclass : identifier of an AVC entry
733 *
734 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
735 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
736 * otherwise, this function update the AVC entry. The original AVC-entry object
737 * will release later by RCU.
738 */
739static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
740{
741	int hvalue, rc = 0;
742	unsigned long flag;
743	struct avc_node *pos, *node, *orig = NULL;
744
745	node = avc_alloc_node();
746	if (!node) {
747		rc = -ENOMEM;
748		goto out;
749	}
750
751	/* Lock the target slot */
752	hvalue = avc_hash(ssid, tsid, tclass);
753	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
754
755	list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
756		if ( ssid==pos->ae.ssid &&
757		     tsid==pos->ae.tsid &&
758		     tclass==pos->ae.tclass ){
759			orig = pos;
760			break;
761		}
762	}
763
764	if (!orig) {
765		rc = -ENOENT;
766		avc_node_kill(node);
767		goto out_unlock;
768	}
769
770	/*
771	 * Copy and replace original node.
772	 */
773
774	avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
775
776	switch (event) {
777	case AVC_CALLBACK_GRANT:
778		node->ae.avd.allowed |= perms;
779		break;
780	case AVC_CALLBACK_TRY_REVOKE:
781	case AVC_CALLBACK_REVOKE:
782		node->ae.avd.allowed &= ~perms;
783		break;
784	case AVC_CALLBACK_AUDITALLOW_ENABLE:
785		node->ae.avd.auditallow |= perms;
786		break;
787	case AVC_CALLBACK_AUDITALLOW_DISABLE:
788		node->ae.avd.auditallow &= ~perms;
789		break;
790	case AVC_CALLBACK_AUDITDENY_ENABLE:
791		node->ae.avd.auditdeny |= perms;
792		break;
793	case AVC_CALLBACK_AUDITDENY_DISABLE:
794		node->ae.avd.auditdeny &= ~perms;
795		break;
796	}
797	avc_node_replace(node, orig);
798out_unlock:
799	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
800out:
801	return rc;
802}
803
804/**
805 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
806 * @seqno: policy sequence number
807 */
808int avc_ss_reset(u32 seqno)
809{
810	struct avc_callback_node *c;
811	int i, rc = 0;
812	unsigned long flag;
813	struct avc_node *node;
814
815	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
816		spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
817		list_for_each_entry(node, &avc_cache.slots[i], list)
818			avc_node_delete(node);
819		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
820	}
821
822	for (c = avc_callbacks; c; c = c->next) {
823		if (c->events & AVC_CALLBACK_RESET) {
824			rc = c->callback(AVC_CALLBACK_RESET,
825					 0, 0, 0, 0, NULL);
826			if (rc)
827				goto out;
828		}
829	}
830
831	avc_latest_notif_update(seqno, 0);
832out:
833	return rc;
834}
835
836/**
837 * avc_has_perm_noaudit - Check permissions but perform no auditing.
838 * @ssid: source security identifier
839 * @tsid: target security identifier
840 * @tclass: target security class
841 * @requested: requested permissions, interpreted based on @tclass
842 * @avd: access vector decisions
843 *
844 * Check the AVC to determine whether the @requested permissions are granted
845 * for the SID pair (@ssid, @tsid), interpreting the permissions
846 * based on @tclass, and call the security server on a cache miss to obtain
847 * a new decision and add it to the cache.  Return a copy of the decisions
848 * in @avd.  Return %0 if all @requested permissions are granted,
849 * -%EACCES if any permissions are denied, or another -errno upon
850 * other errors.  This function is typically called by avc_has_perm(),
851 * but may also be called directly to separate permission checking from
852 * auditing, e.g. in cases where a lock must be held for the check but
853 * should be released for the auditing.
854 */
855int avc_has_perm_noaudit(u32 ssid, u32 tsid,
856                         u16 tclass, u32 requested,
857                         struct av_decision *avd)
858{
859	struct avc_node *node;
860	struct avc_entry entry, *p_ae;
861	int rc = 0;
862	u32 denied;
863
864	rcu_read_lock();
865
866	node = avc_lookup(ssid, tsid, tclass, requested);
867	if (!node) {
868		rcu_read_unlock();
869		rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
870		if (rc)
871			goto out;
872		rcu_read_lock();
873		node = avc_insert(ssid,tsid,tclass,&entry);
874	}
875
876	p_ae = node ? &node->ae : &entry;
877
878	if (avd)
879		memcpy(avd, &p_ae->avd, sizeof(*avd));
880
881	denied = requested & ~(p_ae->avd.allowed);
882
883	if (!requested || denied) {
884		if (selinux_enforcing)
885			rc = -EACCES;
886		else
887			if (node)
888				avc_update_node(AVC_CALLBACK_GRANT,requested,
889						ssid,tsid,tclass);
890	}
891
892	rcu_read_unlock();
893out:
894	return rc;
895}
896
897/**
898 * avc_has_perm - Check permissions and perform any appropriate auditing.
899 * @ssid: source security identifier
900 * @tsid: target security identifier
901 * @tclass: target security class
902 * @requested: requested permissions, interpreted based on @tclass
903 * @auditdata: auxiliary audit data
904 *
905 * Check the AVC to determine whether the @requested permissions are granted
906 * for the SID pair (@ssid, @tsid), interpreting the permissions
907 * based on @tclass, and call the security server on a cache miss to obtain
908 * a new decision and add it to the cache.  Audit the granting or denial of
909 * permissions in accordance with the policy.  Return %0 if all @requested
910 * permissions are granted, -%EACCES if any permissions are denied, or
911 * another -errno upon other errors.
912 */
913int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
914                 u32 requested, struct avc_audit_data *auditdata)
915{
916	struct av_decision avd;
917	int rc;
918
919	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd);
920	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
921	return rc;
922}
923