avc.c revision f01e1af445fac107e91d62a2d59dd535f633810b
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5 *	     James Morris <jmorris@redhat.com>
6 *
7 * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 *	Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 *	This program is free software; you can redistribute it and/or modify
13 *	it under the terms of the GNU General Public License version 2,
14 *	as published by the Free Software Foundation.
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34#include "classmap.h"
35
36#define AVC_CACHE_SLOTS			512
37#define AVC_DEF_CACHE_THRESHOLD		512
38#define AVC_CACHE_RECLAIM		16
39
40#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41#define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
42#else
43#define avc_cache_stats_incr(field)	do {} while (0)
44#endif
45
46struct avc_entry {
47	u32			ssid;
48	u32			tsid;
49	u16			tclass;
50	struct av_decision	avd;
51};
52
53struct avc_node {
54	struct avc_entry	ae;
55	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
56	struct rcu_head		rhead;
57};
58
59struct avc_cache {
60	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
63	atomic_t		active_nodes;
64	u32			latest_notif;	/* latest revocation notification */
65};
66
67struct avc_callback_node {
68	int (*callback) (u32 event, u32 ssid, u32 tsid,
69			 u16 tclass, u32 perms,
70			 u32 *out_retained);
71	u32 events;
72	u32 ssid;
73	u32 tsid;
74	u16 tclass;
75	u32 perms;
76	struct avc_callback_node *next;
77};
78
79/* Exported via selinufs */
80unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
81
82#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84#endif
85
86static struct avc_cache avc_cache;
87static struct avc_callback_node *avc_callbacks;
88static struct kmem_cache *avc_node_cachep;
89
90static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
91{
92	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
93}
94
95/**
96 * avc_dump_av - Display an access vector in human-readable form.
97 * @tclass: target security class
98 * @av: access vector
99 */
100static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101{
102	const char **perms;
103	int i, perm;
104
105	if (av == 0) {
106		audit_log_format(ab, " null");
107		return;
108	}
109
110	perms = secclass_map[tclass-1].perms;
111
112	audit_log_format(ab, " {");
113	i = 0;
114	perm = 1;
115	while (i < (sizeof(av) * 8)) {
116		if ((perm & av) && perms[i]) {
117			audit_log_format(ab, " %s", perms[i]);
118			av &= ~perm;
119		}
120		i++;
121		perm <<= 1;
122	}
123
124	if (av)
125		audit_log_format(ab, " 0x%x", av);
126
127	audit_log_format(ab, " }");
128}
129
130/**
131 * avc_dump_query - Display a SID pair and a class in human-readable form.
132 * @ssid: source security identifier
133 * @tsid: target security identifier
134 * @tclass: target security class
135 */
136static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137{
138	int rc;
139	char *scontext;
140	u32 scontext_len;
141
142	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143	if (rc)
144		audit_log_format(ab, "ssid=%d", ssid);
145	else {
146		audit_log_format(ab, "scontext=%s", scontext);
147		kfree(scontext);
148	}
149
150	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151	if (rc)
152		audit_log_format(ab, " tsid=%d", tsid);
153	else {
154		audit_log_format(ab, " tcontext=%s", scontext);
155		kfree(scontext);
156	}
157
158	BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160}
161
162/**
163 * avc_init - Initialize the AVC.
164 *
165 * Initialize the access vector cache.
166 */
167void __init avc_init(void)
168{
169	int i;
170
171	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172		INIT_HLIST_HEAD(&avc_cache.slots[i]);
173		spin_lock_init(&avc_cache.slots_lock[i]);
174	}
175	atomic_set(&avc_cache.active_nodes, 0);
176	atomic_set(&avc_cache.lru_hint, 0);
177
178	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179					     0, SLAB_PANIC, NULL);
180
181	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
182}
183
184int avc_get_hash_stats(char *page)
185{
186	int i, chain_len, max_chain_len, slots_used;
187	struct avc_node *node;
188	struct hlist_head *head;
189
190	rcu_read_lock();
191
192	slots_used = 0;
193	max_chain_len = 0;
194	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195		head = &avc_cache.slots[i];
196		if (!hlist_empty(head)) {
197			struct hlist_node *next;
198
199			slots_used++;
200			chain_len = 0;
201			hlist_for_each_entry_rcu(node, next, head, list)
202				chain_len++;
203			if (chain_len > max_chain_len)
204				max_chain_len = chain_len;
205		}
206	}
207
208	rcu_read_unlock();
209
210	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211			 "longest chain: %d\n",
212			 atomic_read(&avc_cache.active_nodes),
213			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
214}
215
216static void avc_node_free(struct rcu_head *rhead)
217{
218	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
219	kmem_cache_free(avc_node_cachep, node);
220	avc_cache_stats_incr(frees);
221}
222
223static void avc_node_delete(struct avc_node *node)
224{
225	hlist_del_rcu(&node->list);
226	call_rcu(&node->rhead, avc_node_free);
227	atomic_dec(&avc_cache.active_nodes);
228}
229
230static void avc_node_kill(struct avc_node *node)
231{
232	kmem_cache_free(avc_node_cachep, node);
233	avc_cache_stats_incr(frees);
234	atomic_dec(&avc_cache.active_nodes);
235}
236
237static void avc_node_replace(struct avc_node *new, struct avc_node *old)
238{
239	hlist_replace_rcu(&old->list, &new->list);
240	call_rcu(&old->rhead, avc_node_free);
241	atomic_dec(&avc_cache.active_nodes);
242}
243
244static inline int avc_reclaim_node(void)
245{
246	struct avc_node *node;
247	int hvalue, try, ecx;
248	unsigned long flags;
249	struct hlist_head *head;
250	struct hlist_node *next;
251	spinlock_t *lock;
252
253	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255		head = &avc_cache.slots[hvalue];
256		lock = &avc_cache.slots_lock[hvalue];
257
258		if (!spin_trylock_irqsave(lock, flags))
259			continue;
260
261		rcu_read_lock();
262		hlist_for_each_entry(node, next, head, list) {
263			avc_node_delete(node);
264			avc_cache_stats_incr(reclaims);
265			ecx++;
266			if (ecx >= AVC_CACHE_RECLAIM) {
267				rcu_read_unlock();
268				spin_unlock_irqrestore(lock, flags);
269				goto out;
270			}
271		}
272		rcu_read_unlock();
273		spin_unlock_irqrestore(lock, flags);
274	}
275out:
276	return ecx;
277}
278
279static struct avc_node *avc_alloc_node(void)
280{
281	struct avc_node *node;
282
283	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284	if (!node)
285		goto out;
286
287	INIT_HLIST_NODE(&node->list);
288	avc_cache_stats_incr(allocations);
289
290	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291		avc_reclaim_node();
292
293out:
294	return node;
295}
296
297static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298{
299	node->ae.ssid = ssid;
300	node->ae.tsid = tsid;
301	node->ae.tclass = tclass;
302	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303}
304
305static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
306{
307	struct avc_node *node, *ret = NULL;
308	int hvalue;
309	struct hlist_head *head;
310	struct hlist_node *next;
311
312	hvalue = avc_hash(ssid, tsid, tclass);
313	head = &avc_cache.slots[hvalue];
314	hlist_for_each_entry_rcu(node, next, head, list) {
315		if (ssid == node->ae.ssid &&
316		    tclass == node->ae.tclass &&
317		    tsid == node->ae.tsid) {
318			ret = node;
319			break;
320		}
321	}
322
323	return ret;
324}
325
326/**
327 * avc_lookup - Look up an AVC entry.
328 * @ssid: source security identifier
329 * @tsid: target security identifier
330 * @tclass: target security class
331 *
332 * Look up an AVC entry that is valid for the
333 * (@ssid, @tsid), interpreting the permissions
334 * based on @tclass.  If a valid AVC entry exists,
335 * then this function returns the avc_node.
336 * Otherwise, this function returns NULL.
337 */
338static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
339{
340	struct avc_node *node;
341
342	avc_cache_stats_incr(lookups);
343	node = avc_search_node(ssid, tsid, tclass);
344
345	if (node)
346		return node;
347
348	avc_cache_stats_incr(misses);
349	return NULL;
350}
351
352static int avc_latest_notif_update(int seqno, int is_insert)
353{
354	int ret = 0;
355	static DEFINE_SPINLOCK(notif_lock);
356	unsigned long flag;
357
358	spin_lock_irqsave(&notif_lock, flag);
359	if (is_insert) {
360		if (seqno < avc_cache.latest_notif) {
361			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
362			       seqno, avc_cache.latest_notif);
363			ret = -EAGAIN;
364		}
365	} else {
366		if (seqno > avc_cache.latest_notif)
367			avc_cache.latest_notif = seqno;
368	}
369	spin_unlock_irqrestore(&notif_lock, flag);
370
371	return ret;
372}
373
374/**
375 * avc_insert - Insert an AVC entry.
376 * @ssid: source security identifier
377 * @tsid: target security identifier
378 * @tclass: target security class
379 * @avd: resulting av decision
380 *
381 * Insert an AVC entry for the SID pair
382 * (@ssid, @tsid) and class @tclass.
383 * The access vectors and the sequence number are
384 * normally provided by the security server in
385 * response to a security_compute_av() call.  If the
386 * sequence number @avd->seqno is not less than the latest
387 * revocation notification, then the function copies
388 * the access vectors into a cache entry, returns
389 * avc_node inserted. Otherwise, this function returns NULL.
390 */
391static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
392{
393	struct avc_node *pos, *node = NULL;
394	int hvalue;
395	unsigned long flag;
396
397	if (avc_latest_notif_update(avd->seqno, 1))
398		goto out;
399
400	node = avc_alloc_node();
401	if (node) {
402		struct hlist_head *head;
403		struct hlist_node *next;
404		spinlock_t *lock;
405
406		hvalue = avc_hash(ssid, tsid, tclass);
407		avc_node_populate(node, ssid, tsid, tclass, avd);
408
409		head = &avc_cache.slots[hvalue];
410		lock = &avc_cache.slots_lock[hvalue];
411
412		spin_lock_irqsave(lock, flag);
413		hlist_for_each_entry(pos, next, head, list) {
414			if (pos->ae.ssid == ssid &&
415			    pos->ae.tsid == tsid &&
416			    pos->ae.tclass == tclass) {
417				avc_node_replace(node, pos);
418				goto found;
419			}
420		}
421		hlist_add_head_rcu(&node->list, head);
422found:
423		spin_unlock_irqrestore(lock, flag);
424	}
425out:
426	return node;
427}
428
429/**
430 * avc_audit_pre_callback - SELinux specific information
431 * will be called by generic audit code
432 * @ab: the audit buffer
433 * @a: audit_data
434 */
435static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436{
437	struct common_audit_data *ad = a;
438	audit_log_format(ab, "avc:  %s ",
439			 ad->selinux_audit_data.denied ? "denied" : "granted");
440	avc_dump_av(ab, ad->selinux_audit_data.tclass,
441			ad->selinux_audit_data.audited);
442	audit_log_format(ab, " for ");
443}
444
445/**
446 * avc_audit_post_callback - SELinux specific information
447 * will be called by generic audit code
448 * @ab: the audit buffer
449 * @a: audit_data
450 */
451static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452{
453	struct common_audit_data *ad = a;
454	audit_log_format(ab, " ");
455	avc_dump_query(ab, ad->selinux_audit_data.ssid,
456			   ad->selinux_audit_data.tsid,
457			   ad->selinux_audit_data.tclass);
458}
459
460/**
461 * avc_audit - Audit the granting or denial of permissions.
462 * @ssid: source security identifier
463 * @tsid: target security identifier
464 * @tclass: target security class
465 * @requested: requested permissions
466 * @avd: access vector decisions
467 * @result: result from avc_has_perm_noaudit
468 * @a:  auxiliary audit data
469 * @flags: VFS walk flags
470 *
471 * Audit the granting or denial of permissions in accordance
472 * with the policy.  This function is typically called by
473 * avc_has_perm() after a permission check, but can also be
474 * called directly by callers who use avc_has_perm_noaudit()
475 * in order to separate the permission check from the auditing.
476 * For example, this separation is useful when the permission check must
477 * be performed under a lock, to allow the lock to be released
478 * before calling the auditing code.
479 */
480int avc_audit(u32 ssid, u32 tsid,
481	       u16 tclass, u32 requested,
482	       struct av_decision *avd, int result, struct common_audit_data *a,
483	       unsigned flags)
484{
485	struct common_audit_data stack_data;
486	u32 denied, audited;
487	denied = requested & ~avd->allowed;
488	if (denied) {
489		audited = denied & avd->auditdeny;
490		/*
491		 * a->selinux_audit_data.auditdeny is TRICKY!  Setting a bit in
492		 * this field means that ANY denials should NOT be audited if
493		 * the policy contains an explicit dontaudit rule for that
494		 * permission.  Take notice that this is unrelated to the
495		 * actual permissions that were denied.  As an example lets
496		 * assume:
497		 *
498		 * denied == READ
499		 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
500		 * selinux_audit_data.auditdeny & ACCESS == 1
501		 *
502		 * We will NOT audit the denial even though the denied
503		 * permission was READ and the auditdeny checks were for
504		 * ACCESS
505		 */
506		if (a &&
507		    a->selinux_audit_data.auditdeny &&
508		    !(a->selinux_audit_data.auditdeny & avd->auditdeny))
509			audited = 0;
510	} else if (result)
511		audited = denied = requested;
512	else
513		audited = requested & avd->auditallow;
514	if (!audited)
515		return 0;
516
517	if (!a) {
518		a = &stack_data;
519		COMMON_AUDIT_DATA_INIT(a, NONE);
520	}
521
522	/*
523	 * When in a RCU walk do the audit on the RCU retry.  This is because
524	 * the collection of the dname in an inode audit message is not RCU
525	 * safe.  Note this may drop some audits when the situation changes
526	 * during retry. However this is logically just as if the operation
527	 * happened a little later.
528	 */
529	if ((a->type == LSM_AUDIT_DATA_INODE) &&
530	    (flags & IPERM_FLAG_RCU))
531		return -ECHILD;
532
533	a->selinux_audit_data.tclass = tclass;
534	a->selinux_audit_data.requested = requested;
535	a->selinux_audit_data.ssid = ssid;
536	a->selinux_audit_data.tsid = tsid;
537	a->selinux_audit_data.audited = audited;
538	a->selinux_audit_data.denied = denied;
539	a->lsm_pre_audit = avc_audit_pre_callback;
540	a->lsm_post_audit = avc_audit_post_callback;
541	common_lsm_audit(a);
542	return 0;
543}
544
545/**
546 * avc_add_callback - Register a callback for security events.
547 * @callback: callback function
548 * @events: security events
549 * @ssid: source security identifier or %SECSID_WILD
550 * @tsid: target security identifier or %SECSID_WILD
551 * @tclass: target security class
552 * @perms: permissions
553 *
554 * Register a callback function for events in the set @events
555 * related to the SID pair (@ssid, @tsid)
556 * and the permissions @perms, interpreting
557 * @perms based on @tclass.  Returns %0 on success or
558 * -%ENOMEM if insufficient memory exists to add the callback.
559 */
560int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
561				     u16 tclass, u32 perms,
562				     u32 *out_retained),
563		     u32 events, u32 ssid, u32 tsid,
564		     u16 tclass, u32 perms)
565{
566	struct avc_callback_node *c;
567	int rc = 0;
568
569	c = kmalloc(sizeof(*c), GFP_ATOMIC);
570	if (!c) {
571		rc = -ENOMEM;
572		goto out;
573	}
574
575	c->callback = callback;
576	c->events = events;
577	c->ssid = ssid;
578	c->tsid = tsid;
579	c->perms = perms;
580	c->next = avc_callbacks;
581	avc_callbacks = c;
582out:
583	return rc;
584}
585
586static inline int avc_sidcmp(u32 x, u32 y)
587{
588	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
589}
590
591/**
592 * avc_update_node Update an AVC entry
593 * @event : Updating event
594 * @perms : Permission mask bits
595 * @ssid,@tsid,@tclass : identifier of an AVC entry
596 * @seqno : sequence number when decision was made
597 *
598 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
599 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
600 * otherwise, this function updates the AVC entry. The original AVC-entry object
601 * will release later by RCU.
602 */
603static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
604			   u32 seqno)
605{
606	int hvalue, rc = 0;
607	unsigned long flag;
608	struct avc_node *pos, *node, *orig = NULL;
609	struct hlist_head *head;
610	struct hlist_node *next;
611	spinlock_t *lock;
612
613	node = avc_alloc_node();
614	if (!node) {
615		rc = -ENOMEM;
616		goto out;
617	}
618
619	/* Lock the target slot */
620	hvalue = avc_hash(ssid, tsid, tclass);
621
622	head = &avc_cache.slots[hvalue];
623	lock = &avc_cache.slots_lock[hvalue];
624
625	spin_lock_irqsave(lock, flag);
626
627	hlist_for_each_entry(pos, next, head, list) {
628		if (ssid == pos->ae.ssid &&
629		    tsid == pos->ae.tsid &&
630		    tclass == pos->ae.tclass &&
631		    seqno == pos->ae.avd.seqno){
632			orig = pos;
633			break;
634		}
635	}
636
637	if (!orig) {
638		rc = -ENOENT;
639		avc_node_kill(node);
640		goto out_unlock;
641	}
642
643	/*
644	 * Copy and replace original node.
645	 */
646
647	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
648
649	switch (event) {
650	case AVC_CALLBACK_GRANT:
651		node->ae.avd.allowed |= perms;
652		break;
653	case AVC_CALLBACK_TRY_REVOKE:
654	case AVC_CALLBACK_REVOKE:
655		node->ae.avd.allowed &= ~perms;
656		break;
657	case AVC_CALLBACK_AUDITALLOW_ENABLE:
658		node->ae.avd.auditallow |= perms;
659		break;
660	case AVC_CALLBACK_AUDITALLOW_DISABLE:
661		node->ae.avd.auditallow &= ~perms;
662		break;
663	case AVC_CALLBACK_AUDITDENY_ENABLE:
664		node->ae.avd.auditdeny |= perms;
665		break;
666	case AVC_CALLBACK_AUDITDENY_DISABLE:
667		node->ae.avd.auditdeny &= ~perms;
668		break;
669	}
670	avc_node_replace(node, orig);
671out_unlock:
672	spin_unlock_irqrestore(lock, flag);
673out:
674	return rc;
675}
676
677/**
678 * avc_flush - Flush the cache
679 */
680static void avc_flush(void)
681{
682	struct hlist_head *head;
683	struct hlist_node *next;
684	struct avc_node *node;
685	spinlock_t *lock;
686	unsigned long flag;
687	int i;
688
689	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
690		head = &avc_cache.slots[i];
691		lock = &avc_cache.slots_lock[i];
692
693		spin_lock_irqsave(lock, flag);
694		/*
695		 * With preemptable RCU, the outer spinlock does not
696		 * prevent RCU grace periods from ending.
697		 */
698		rcu_read_lock();
699		hlist_for_each_entry(node, next, head, list)
700			avc_node_delete(node);
701		rcu_read_unlock();
702		spin_unlock_irqrestore(lock, flag);
703	}
704}
705
706/**
707 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
708 * @seqno: policy sequence number
709 */
710int avc_ss_reset(u32 seqno)
711{
712	struct avc_callback_node *c;
713	int rc = 0, tmprc;
714
715	avc_flush();
716
717	for (c = avc_callbacks; c; c = c->next) {
718		if (c->events & AVC_CALLBACK_RESET) {
719			tmprc = c->callback(AVC_CALLBACK_RESET,
720					    0, 0, 0, 0, NULL);
721			/* save the first error encountered for the return
722			   value and continue processing the callbacks */
723			if (!rc)
724				rc = tmprc;
725		}
726	}
727
728	avc_latest_notif_update(seqno, 0);
729	return rc;
730}
731
732/**
733 * avc_has_perm_noaudit - Check permissions but perform no auditing.
734 * @ssid: source security identifier
735 * @tsid: target security identifier
736 * @tclass: target security class
737 * @requested: requested permissions, interpreted based on @tclass
738 * @flags:  AVC_STRICT or 0
739 * @avd: access vector decisions
740 *
741 * Check the AVC to determine whether the @requested permissions are granted
742 * for the SID pair (@ssid, @tsid), interpreting the permissions
743 * based on @tclass, and call the security server on a cache miss to obtain
744 * a new decision and add it to the cache.  Return a copy of the decisions
745 * in @avd.  Return %0 if all @requested permissions are granted,
746 * -%EACCES if any permissions are denied, or another -errno upon
747 * other errors.  This function is typically called by avc_has_perm(),
748 * but may also be called directly to separate permission checking from
749 * auditing, e.g. in cases where a lock must be held for the check but
750 * should be released for the auditing.
751 */
752int avc_has_perm_noaudit(u32 ssid, u32 tsid,
753			 u16 tclass, u32 requested,
754			 unsigned flags,
755			 struct av_decision *avd)
756{
757	struct avc_node *node;
758	int rc = 0;
759	u32 denied;
760
761	BUG_ON(!requested);
762
763	rcu_read_lock();
764
765	node = avc_lookup(ssid, tsid, tclass);
766	if (unlikely(!node)) {
767		rcu_read_unlock();
768		security_compute_av(ssid, tsid, tclass, avd);
769		rcu_read_lock();
770		node = avc_insert(ssid, tsid, tclass, avd);
771	} else {
772		memcpy(avd, &node->ae.avd, sizeof(*avd));
773		avd = &node->ae.avd;
774	}
775
776	denied = requested & ~(avd->allowed);
777
778	if (denied) {
779		if (flags & AVC_STRICT)
780			rc = -EACCES;
781		else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
782			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
783					tsid, tclass, avd->seqno);
784		else
785			rc = -EACCES;
786	}
787
788	rcu_read_unlock();
789	return rc;
790}
791
792/**
793 * avc_has_perm - Check permissions and perform any appropriate auditing.
794 * @ssid: source security identifier
795 * @tsid: target security identifier
796 * @tclass: target security class
797 * @requested: requested permissions, interpreted based on @tclass
798 * @auditdata: auxiliary audit data
799 * @flags: VFS walk flags
800 *
801 * Check the AVC to determine whether the @requested permissions are granted
802 * for the SID pair (@ssid, @tsid), interpreting the permissions
803 * based on @tclass, and call the security server on a cache miss to obtain
804 * a new decision and add it to the cache.  Audit the granting or denial of
805 * permissions in accordance with the policy.  Return %0 if all @requested
806 * permissions are granted, -%EACCES if any permissions are denied, or
807 * another -errno upon other errors.
808 */
809int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
810		       u32 requested, struct common_audit_data *auditdata,
811		       unsigned flags)
812{
813	struct av_decision avd;
814	int rc, rc2;
815
816	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
817
818	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
819			flags);
820	if (rc2)
821		return rc2;
822	return rc;
823}
824
825u32 avc_policy_seqno(void)
826{
827	return avc_cache.latest_notif;
828}
829
830void avc_disable(void)
831{
832	/*
833	 * If you are looking at this because you have realized that we are
834	 * not destroying the avc_node_cachep it might be easy to fix, but
835	 * I don't know the memory barrier semantics well enough to know.  It's
836	 * possible that some other task dereferenced security_ops when
837	 * it still pointed to selinux operations.  If that is the case it's
838	 * possible that it is about to use the avc and is about to need the
839	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
840	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
841	 * the cache and get that memory back.
842	 */
843	if (avc_node_cachep) {
844		avc_flush();
845		/* kmem_cache_destroy(avc_node_cachep); */
846	}
847}
848