cciss.c revision 13049537007dee73a76f0a30fcbc24d02c6fa9e4
1/*
2 *    Disk Array driver for HP Smart Array controllers.
3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; version 2 of the License.
8 *
9 *    This program is distributed in the hope that it will be useful,
10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 *    General Public License for more details.
13 *
14 *    You should have received a copy of the GNU General Public License
15 *    along with this program; if not, write to the Free Software
16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 *    02111-1307, USA.
18 *
19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/bio.h>
33#include <linux/blkpg.h>
34#include <linux/timer.h>
35#include <linux/proc_fs.h>
36#include <linux/seq_file.h>
37#include <linux/init.h>
38#include <linux/jiffies.h>
39#include <linux/hdreg.h>
40#include <linux/spinlock.h>
41#include <linux/compat.h>
42#include <linux/mutex.h>
43#include <asm/uaccess.h>
44#include <asm/io.h>
45
46#include <linux/dma-mapping.h>
47#include <linux/blkdev.h>
48#include <linux/genhd.h>
49#include <linux/completion.h>
50#include <scsi/scsi.h>
51#include <scsi/sg.h>
52#include <scsi/scsi_ioctl.h>
53#include <linux/cdrom.h>
54#include <linux/scatterlist.h>
55#include <linux/kthread.h>
56
57#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
60
61/* Embedded module documentation macros - see modules.h */
62MODULE_AUTHOR("Hewlett-Packard Company");
63MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65MODULE_VERSION("3.6.26");
66MODULE_LICENSE("GPL");
67static int cciss_tape_cmds = 6;
68module_param(cciss_tape_cmds, int, 0644);
69MODULE_PARM_DESC(cciss_tape_cmds,
70	"number of commands to allocate for tape devices (default: 6)");
71static int cciss_simple_mode;
72module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
73MODULE_PARM_DESC(cciss_simple_mode,
74	"Use 'simple mode' rather than 'performant mode'");
75
76static DEFINE_MUTEX(cciss_mutex);
77static struct proc_dir_entry *proc_cciss;
78
79#include "cciss_cmd.h"
80#include "cciss.h"
81#include <linux/cciss_ioctl.h>
82
83/* define the PCI info for the cards we can control */
84static const struct pci_device_id cciss_pci_device_id[] = {
85	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
86	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
87	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
88	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
89	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
90	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
91	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
92	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
93	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
105	{0,}
106};
107
108MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
109
110/*  board_id = Subsystem Device ID & Vendor ID
111 *  product = Marketing Name for the board
112 *  access = Address of the struct of function pointers
113 */
114static struct board_type products[] = {
115	{0x40700E11, "Smart Array 5300", &SA5_access},
116	{0x40800E11, "Smart Array 5i", &SA5B_access},
117	{0x40820E11, "Smart Array 532", &SA5B_access},
118	{0x40830E11, "Smart Array 5312", &SA5B_access},
119	{0x409A0E11, "Smart Array 641", &SA5_access},
120	{0x409B0E11, "Smart Array 642", &SA5_access},
121	{0x409C0E11, "Smart Array 6400", &SA5_access},
122	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
123	{0x40910E11, "Smart Array 6i", &SA5_access},
124	{0x3225103C, "Smart Array P600", &SA5_access},
125	{0x3223103C, "Smart Array P800", &SA5_access},
126	{0x3234103C, "Smart Array P400", &SA5_access},
127	{0x3235103C, "Smart Array P400i", &SA5_access},
128	{0x3211103C, "Smart Array E200i", &SA5_access},
129	{0x3212103C, "Smart Array E200", &SA5_access},
130	{0x3213103C, "Smart Array E200i", &SA5_access},
131	{0x3214103C, "Smart Array E200i", &SA5_access},
132	{0x3215103C, "Smart Array E200i", &SA5_access},
133	{0x3237103C, "Smart Array E500", &SA5_access},
134	{0x3223103C, "Smart Array P800", &SA5_access},
135	{0x3234103C, "Smart Array P400", &SA5_access},
136	{0x323D103C, "Smart Array P700m", &SA5_access},
137};
138
139/* How long to wait (in milliseconds) for board to go into simple mode */
140#define MAX_CONFIG_WAIT 30000
141#define MAX_IOCTL_CONFIG_WAIT 1000
142
143/*define how many times we will try a command because of bus resets */
144#define MAX_CMD_RETRIES 3
145
146#define MAX_CTLR	32
147
148/* Originally cciss driver only supports 8 major numbers */
149#define MAX_CTLR_ORIG 	8
150
151static ctlr_info_t *hba[MAX_CTLR];
152
153static struct task_struct *cciss_scan_thread;
154static DEFINE_MUTEX(scan_mutex);
155static LIST_HEAD(scan_q);
156
157static void do_cciss_request(struct request_queue *q);
158static irqreturn_t do_cciss_intx(int irq, void *dev_id);
159static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
160static int cciss_open(struct block_device *bdev, fmode_t mode);
161static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
162static int cciss_release(struct gendisk *disk, fmode_t mode);
163static int do_ioctl(struct block_device *bdev, fmode_t mode,
164		    unsigned int cmd, unsigned long arg);
165static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
166		       unsigned int cmd, unsigned long arg);
167static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
168
169static int cciss_revalidate(struct gendisk *disk);
170static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
171static int deregister_disk(ctlr_info_t *h, int drv_index,
172			   int clear_all, int via_ioctl);
173
174static void cciss_read_capacity(ctlr_info_t *h, int logvol,
175			sector_t *total_size, unsigned int *block_size);
176static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
177			sector_t *total_size, unsigned int *block_size);
178static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
179			sector_t total_size,
180			unsigned int block_size, InquiryData_struct *inq_buff,
181				   drive_info_struct *drv);
182static void __devinit cciss_interrupt_mode(ctlr_info_t *);
183static int __devinit cciss_enter_simple_mode(struct ctlr_info *h);
184static void start_io(ctlr_info_t *h);
185static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
186			__u8 page_code, unsigned char scsi3addr[],
187			int cmd_type);
188static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
189	int attempt_retry);
190static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
191
192static int add_to_scan_list(struct ctlr_info *h);
193static int scan_thread(void *data);
194static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
195static void cciss_hba_release(struct device *dev);
196static void cciss_device_release(struct device *dev);
197static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
198static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
199static inline u32 next_command(ctlr_info_t *h);
200static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
201	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
202	u64 *cfg_offset);
203static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
204	unsigned long *memory_bar);
205static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
206static __devinit int write_driver_ver_to_cfgtable(
207	CfgTable_struct __iomem *cfgtable);
208
209/* performant mode helper functions */
210static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
211				int *bucket_map);
212static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
213
214#ifdef CONFIG_PROC_FS
215static void cciss_procinit(ctlr_info_t *h);
216#else
217static void cciss_procinit(ctlr_info_t *h)
218{
219}
220#endif				/* CONFIG_PROC_FS */
221
222#ifdef CONFIG_COMPAT
223static int cciss_compat_ioctl(struct block_device *, fmode_t,
224			      unsigned, unsigned long);
225#endif
226
227static const struct block_device_operations cciss_fops = {
228	.owner = THIS_MODULE,
229	.open = cciss_unlocked_open,
230	.release = cciss_release,
231	.ioctl = do_ioctl,
232	.getgeo = cciss_getgeo,
233#ifdef CONFIG_COMPAT
234	.compat_ioctl = cciss_compat_ioctl,
235#endif
236	.revalidate_disk = cciss_revalidate,
237};
238
239/* set_performant_mode: Modify the tag for cciss performant
240 * set bit 0 for pull model, bits 3-1 for block fetch
241 * register number
242 */
243static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
244{
245	if (likely(h->transMethod & CFGTBL_Trans_Performant))
246		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
247}
248
249/*
250 * Enqueuing and dequeuing functions for cmdlists.
251 */
252static inline void addQ(struct list_head *list, CommandList_struct *c)
253{
254	list_add_tail(&c->list, list);
255}
256
257static inline void removeQ(CommandList_struct *c)
258{
259	/*
260	 * After kexec/dump some commands might still
261	 * be in flight, which the firmware will try
262	 * to complete. Resetting the firmware doesn't work
263	 * with old fw revisions, so we have to mark
264	 * them off as 'stale' to prevent the driver from
265	 * falling over.
266	 */
267	if (WARN_ON(list_empty(&c->list))) {
268		c->cmd_type = CMD_MSG_STALE;
269		return;
270	}
271
272	list_del_init(&c->list);
273}
274
275static void enqueue_cmd_and_start_io(ctlr_info_t *h,
276	CommandList_struct *c)
277{
278	unsigned long flags;
279	set_performant_mode(h, c);
280	spin_lock_irqsave(&h->lock, flags);
281	addQ(&h->reqQ, c);
282	h->Qdepth++;
283	if (h->Qdepth > h->maxQsinceinit)
284		h->maxQsinceinit = h->Qdepth;
285	start_io(h);
286	spin_unlock_irqrestore(&h->lock, flags);
287}
288
289static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
290	int nr_cmds)
291{
292	int i;
293
294	if (!cmd_sg_list)
295		return;
296	for (i = 0; i < nr_cmds; i++) {
297		kfree(cmd_sg_list[i]);
298		cmd_sg_list[i] = NULL;
299	}
300	kfree(cmd_sg_list);
301}
302
303static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
304	ctlr_info_t *h, int chainsize, int nr_cmds)
305{
306	int j;
307	SGDescriptor_struct **cmd_sg_list;
308
309	if (chainsize <= 0)
310		return NULL;
311
312	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
313	if (!cmd_sg_list)
314		return NULL;
315
316	/* Build up chain blocks for each command */
317	for (j = 0; j < nr_cmds; j++) {
318		/* Need a block of chainsized s/g elements. */
319		cmd_sg_list[j] = kmalloc((chainsize *
320			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
321		if (!cmd_sg_list[j]) {
322			dev_err(&h->pdev->dev, "Cannot get memory "
323				"for s/g chains.\n");
324			goto clean;
325		}
326	}
327	return cmd_sg_list;
328clean:
329	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
330	return NULL;
331}
332
333static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
334{
335	SGDescriptor_struct *chain_sg;
336	u64bit temp64;
337
338	if (c->Header.SGTotal <= h->max_cmd_sgentries)
339		return;
340
341	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
342	temp64.val32.lower = chain_sg->Addr.lower;
343	temp64.val32.upper = chain_sg->Addr.upper;
344	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
345}
346
347static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
348	SGDescriptor_struct *chain_block, int len)
349{
350	SGDescriptor_struct *chain_sg;
351	u64bit temp64;
352
353	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
354	chain_sg->Ext = CCISS_SG_CHAIN;
355	chain_sg->Len = len;
356	temp64.val = pci_map_single(h->pdev, chain_block, len,
357				PCI_DMA_TODEVICE);
358	chain_sg->Addr.lower = temp64.val32.lower;
359	chain_sg->Addr.upper = temp64.val32.upper;
360}
361
362#include "cciss_scsi.c"		/* For SCSI tape support */
363
364static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
365	"UNKNOWN"
366};
367#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
368
369#ifdef CONFIG_PROC_FS
370
371/*
372 * Report information about this controller.
373 */
374#define ENG_GIG 1000000000
375#define ENG_GIG_FACTOR (ENG_GIG/512)
376#define ENGAGE_SCSI	"engage scsi"
377
378static void cciss_seq_show_header(struct seq_file *seq)
379{
380	ctlr_info_t *h = seq->private;
381
382	seq_printf(seq, "%s: HP %s Controller\n"
383		"Board ID: 0x%08lx\n"
384		"Firmware Version: %c%c%c%c\n"
385		"IRQ: %d\n"
386		"Logical drives: %d\n"
387		"Current Q depth: %d\n"
388		"Current # commands on controller: %d\n"
389		"Max Q depth since init: %d\n"
390		"Max # commands on controller since init: %d\n"
391		"Max SG entries since init: %d\n",
392		h->devname,
393		h->product_name,
394		(unsigned long)h->board_id,
395		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
396		h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
397		h->num_luns,
398		h->Qdepth, h->commands_outstanding,
399		h->maxQsinceinit, h->max_outstanding, h->maxSG);
400
401#ifdef CONFIG_CISS_SCSI_TAPE
402	cciss_seq_tape_report(seq, h);
403#endif /* CONFIG_CISS_SCSI_TAPE */
404}
405
406static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
407{
408	ctlr_info_t *h = seq->private;
409	unsigned long flags;
410
411	/* prevent displaying bogus info during configuration
412	 * or deconfiguration of a logical volume
413	 */
414	spin_lock_irqsave(&h->lock, flags);
415	if (h->busy_configuring) {
416		spin_unlock_irqrestore(&h->lock, flags);
417		return ERR_PTR(-EBUSY);
418	}
419	h->busy_configuring = 1;
420	spin_unlock_irqrestore(&h->lock, flags);
421
422	if (*pos == 0)
423		cciss_seq_show_header(seq);
424
425	return pos;
426}
427
428static int cciss_seq_show(struct seq_file *seq, void *v)
429{
430	sector_t vol_sz, vol_sz_frac;
431	ctlr_info_t *h = seq->private;
432	unsigned ctlr = h->ctlr;
433	loff_t *pos = v;
434	drive_info_struct *drv = h->drv[*pos];
435
436	if (*pos > h->highest_lun)
437		return 0;
438
439	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
440		return 0;
441
442	if (drv->heads == 0)
443		return 0;
444
445	vol_sz = drv->nr_blocks;
446	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
447	vol_sz_frac *= 100;
448	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
449
450	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
451		drv->raid_level = RAID_UNKNOWN;
452	seq_printf(seq, "cciss/c%dd%d:"
453			"\t%4u.%02uGB\tRAID %s\n",
454			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
455			raid_label[drv->raid_level]);
456	return 0;
457}
458
459static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
460{
461	ctlr_info_t *h = seq->private;
462
463	if (*pos > h->highest_lun)
464		return NULL;
465	*pos += 1;
466
467	return pos;
468}
469
470static void cciss_seq_stop(struct seq_file *seq, void *v)
471{
472	ctlr_info_t *h = seq->private;
473
474	/* Only reset h->busy_configuring if we succeeded in setting
475	 * it during cciss_seq_start. */
476	if (v == ERR_PTR(-EBUSY))
477		return;
478
479	h->busy_configuring = 0;
480}
481
482static const struct seq_operations cciss_seq_ops = {
483	.start = cciss_seq_start,
484	.show  = cciss_seq_show,
485	.next  = cciss_seq_next,
486	.stop  = cciss_seq_stop,
487};
488
489static int cciss_seq_open(struct inode *inode, struct file *file)
490{
491	int ret = seq_open(file, &cciss_seq_ops);
492	struct seq_file *seq = file->private_data;
493
494	if (!ret)
495		seq->private = PDE(inode)->data;
496
497	return ret;
498}
499
500static ssize_t
501cciss_proc_write(struct file *file, const char __user *buf,
502		 size_t length, loff_t *ppos)
503{
504	int err;
505	char *buffer;
506
507#ifndef CONFIG_CISS_SCSI_TAPE
508	return -EINVAL;
509#endif
510
511	if (!buf || length > PAGE_SIZE - 1)
512		return -EINVAL;
513
514	buffer = (char *)__get_free_page(GFP_KERNEL);
515	if (!buffer)
516		return -ENOMEM;
517
518	err = -EFAULT;
519	if (copy_from_user(buffer, buf, length))
520		goto out;
521	buffer[length] = '\0';
522
523#ifdef CONFIG_CISS_SCSI_TAPE
524	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
525		struct seq_file *seq = file->private_data;
526		ctlr_info_t *h = seq->private;
527
528		err = cciss_engage_scsi(h);
529		if (err == 0)
530			err = length;
531	} else
532#endif /* CONFIG_CISS_SCSI_TAPE */
533		err = -EINVAL;
534	/* might be nice to have "disengage" too, but it's not
535	   safely possible. (only 1 module use count, lock issues.) */
536
537out:
538	free_page((unsigned long)buffer);
539	return err;
540}
541
542static const struct file_operations cciss_proc_fops = {
543	.owner	 = THIS_MODULE,
544	.open    = cciss_seq_open,
545	.read    = seq_read,
546	.llseek  = seq_lseek,
547	.release = seq_release,
548	.write	 = cciss_proc_write,
549};
550
551static void __devinit cciss_procinit(ctlr_info_t *h)
552{
553	struct proc_dir_entry *pde;
554
555	if (proc_cciss == NULL)
556		proc_cciss = proc_mkdir("driver/cciss", NULL);
557	if (!proc_cciss)
558		return;
559	pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
560					S_IROTH, proc_cciss,
561					&cciss_proc_fops, h);
562}
563#endif				/* CONFIG_PROC_FS */
564
565#define MAX_PRODUCT_NAME_LEN 19
566
567#define to_hba(n) container_of(n, struct ctlr_info, dev)
568#define to_drv(n) container_of(n, drive_info_struct, dev)
569
570/* List of controllers which cannot be hard reset on kexec with reset_devices */
571static u32 unresettable_controller[] = {
572	0x324a103C, /* Smart Array P712m */
573	0x324b103C, /* SmartArray P711m */
574	0x3223103C, /* Smart Array P800 */
575	0x3234103C, /* Smart Array P400 */
576	0x3235103C, /* Smart Array P400i */
577	0x3211103C, /* Smart Array E200i */
578	0x3212103C, /* Smart Array E200 */
579	0x3213103C, /* Smart Array E200i */
580	0x3214103C, /* Smart Array E200i */
581	0x3215103C, /* Smart Array E200i */
582	0x3237103C, /* Smart Array E500 */
583	0x323D103C, /* Smart Array P700m */
584	0x409C0E11, /* Smart Array 6400 */
585	0x409D0E11, /* Smart Array 6400 EM */
586};
587
588/* List of controllers which cannot even be soft reset */
589static u32 soft_unresettable_controller[] = {
590	0x409C0E11, /* Smart Array 6400 */
591	0x409D0E11, /* Smart Array 6400 EM */
592};
593
594static int ctlr_is_hard_resettable(u32 board_id)
595{
596	int i;
597
598	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
599		if (unresettable_controller[i] == board_id)
600			return 0;
601	return 1;
602}
603
604static int ctlr_is_soft_resettable(u32 board_id)
605{
606	int i;
607
608	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
609		if (soft_unresettable_controller[i] == board_id)
610			return 0;
611	return 1;
612}
613
614static int ctlr_is_resettable(u32 board_id)
615{
616	return ctlr_is_hard_resettable(board_id) ||
617		ctlr_is_soft_resettable(board_id);
618}
619
620static ssize_t host_show_resettable(struct device *dev,
621				    struct device_attribute *attr,
622				    char *buf)
623{
624	struct ctlr_info *h = to_hba(dev);
625
626	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
627}
628static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
629
630static ssize_t host_store_rescan(struct device *dev,
631				 struct device_attribute *attr,
632				 const char *buf, size_t count)
633{
634	struct ctlr_info *h = to_hba(dev);
635
636	add_to_scan_list(h);
637	wake_up_process(cciss_scan_thread);
638	wait_for_completion_interruptible(&h->scan_wait);
639
640	return count;
641}
642static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
643
644static ssize_t dev_show_unique_id(struct device *dev,
645				 struct device_attribute *attr,
646				 char *buf)
647{
648	drive_info_struct *drv = to_drv(dev);
649	struct ctlr_info *h = to_hba(drv->dev.parent);
650	__u8 sn[16];
651	unsigned long flags;
652	int ret = 0;
653
654	spin_lock_irqsave(&h->lock, flags);
655	if (h->busy_configuring)
656		ret = -EBUSY;
657	else
658		memcpy(sn, drv->serial_no, sizeof(sn));
659	spin_unlock_irqrestore(&h->lock, flags);
660
661	if (ret)
662		return ret;
663	else
664		return snprintf(buf, 16 * 2 + 2,
665				"%02X%02X%02X%02X%02X%02X%02X%02X"
666				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
667				sn[0], sn[1], sn[2], sn[3],
668				sn[4], sn[5], sn[6], sn[7],
669				sn[8], sn[9], sn[10], sn[11],
670				sn[12], sn[13], sn[14], sn[15]);
671}
672static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
673
674static ssize_t dev_show_vendor(struct device *dev,
675			       struct device_attribute *attr,
676			       char *buf)
677{
678	drive_info_struct *drv = to_drv(dev);
679	struct ctlr_info *h = to_hba(drv->dev.parent);
680	char vendor[VENDOR_LEN + 1];
681	unsigned long flags;
682	int ret = 0;
683
684	spin_lock_irqsave(&h->lock, flags);
685	if (h->busy_configuring)
686		ret = -EBUSY;
687	else
688		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
689	spin_unlock_irqrestore(&h->lock, flags);
690
691	if (ret)
692		return ret;
693	else
694		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
695}
696static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
697
698static ssize_t dev_show_model(struct device *dev,
699			      struct device_attribute *attr,
700			      char *buf)
701{
702	drive_info_struct *drv = to_drv(dev);
703	struct ctlr_info *h = to_hba(drv->dev.parent);
704	char model[MODEL_LEN + 1];
705	unsigned long flags;
706	int ret = 0;
707
708	spin_lock_irqsave(&h->lock, flags);
709	if (h->busy_configuring)
710		ret = -EBUSY;
711	else
712		memcpy(model, drv->model, MODEL_LEN + 1);
713	spin_unlock_irqrestore(&h->lock, flags);
714
715	if (ret)
716		return ret;
717	else
718		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
719}
720static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
721
722static ssize_t dev_show_rev(struct device *dev,
723			    struct device_attribute *attr,
724			    char *buf)
725{
726	drive_info_struct *drv = to_drv(dev);
727	struct ctlr_info *h = to_hba(drv->dev.parent);
728	char rev[REV_LEN + 1];
729	unsigned long flags;
730	int ret = 0;
731
732	spin_lock_irqsave(&h->lock, flags);
733	if (h->busy_configuring)
734		ret = -EBUSY;
735	else
736		memcpy(rev, drv->rev, REV_LEN + 1);
737	spin_unlock_irqrestore(&h->lock, flags);
738
739	if (ret)
740		return ret;
741	else
742		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
743}
744static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
745
746static ssize_t cciss_show_lunid(struct device *dev,
747				struct device_attribute *attr, char *buf)
748{
749	drive_info_struct *drv = to_drv(dev);
750	struct ctlr_info *h = to_hba(drv->dev.parent);
751	unsigned long flags;
752	unsigned char lunid[8];
753
754	spin_lock_irqsave(&h->lock, flags);
755	if (h->busy_configuring) {
756		spin_unlock_irqrestore(&h->lock, flags);
757		return -EBUSY;
758	}
759	if (!drv->heads) {
760		spin_unlock_irqrestore(&h->lock, flags);
761		return -ENOTTY;
762	}
763	memcpy(lunid, drv->LunID, sizeof(lunid));
764	spin_unlock_irqrestore(&h->lock, flags);
765	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
766		lunid[0], lunid[1], lunid[2], lunid[3],
767		lunid[4], lunid[5], lunid[6], lunid[7]);
768}
769static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
770
771static ssize_t cciss_show_raid_level(struct device *dev,
772				     struct device_attribute *attr, char *buf)
773{
774	drive_info_struct *drv = to_drv(dev);
775	struct ctlr_info *h = to_hba(drv->dev.parent);
776	int raid;
777	unsigned long flags;
778
779	spin_lock_irqsave(&h->lock, flags);
780	if (h->busy_configuring) {
781		spin_unlock_irqrestore(&h->lock, flags);
782		return -EBUSY;
783	}
784	raid = drv->raid_level;
785	spin_unlock_irqrestore(&h->lock, flags);
786	if (raid < 0 || raid > RAID_UNKNOWN)
787		raid = RAID_UNKNOWN;
788
789	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
790			raid_label[raid]);
791}
792static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
793
794static ssize_t cciss_show_usage_count(struct device *dev,
795				      struct device_attribute *attr, char *buf)
796{
797	drive_info_struct *drv = to_drv(dev);
798	struct ctlr_info *h = to_hba(drv->dev.parent);
799	unsigned long flags;
800	int count;
801
802	spin_lock_irqsave(&h->lock, flags);
803	if (h->busy_configuring) {
804		spin_unlock_irqrestore(&h->lock, flags);
805		return -EBUSY;
806	}
807	count = drv->usage_count;
808	spin_unlock_irqrestore(&h->lock, flags);
809	return snprintf(buf, 20, "%d\n", count);
810}
811static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
812
813static struct attribute *cciss_host_attrs[] = {
814	&dev_attr_rescan.attr,
815	&dev_attr_resettable.attr,
816	NULL
817};
818
819static struct attribute_group cciss_host_attr_group = {
820	.attrs = cciss_host_attrs,
821};
822
823static const struct attribute_group *cciss_host_attr_groups[] = {
824	&cciss_host_attr_group,
825	NULL
826};
827
828static struct device_type cciss_host_type = {
829	.name		= "cciss_host",
830	.groups		= cciss_host_attr_groups,
831	.release	= cciss_hba_release,
832};
833
834static struct attribute *cciss_dev_attrs[] = {
835	&dev_attr_unique_id.attr,
836	&dev_attr_model.attr,
837	&dev_attr_vendor.attr,
838	&dev_attr_rev.attr,
839	&dev_attr_lunid.attr,
840	&dev_attr_raid_level.attr,
841	&dev_attr_usage_count.attr,
842	NULL
843};
844
845static struct attribute_group cciss_dev_attr_group = {
846	.attrs = cciss_dev_attrs,
847};
848
849static const struct attribute_group *cciss_dev_attr_groups[] = {
850	&cciss_dev_attr_group,
851	NULL
852};
853
854static struct device_type cciss_dev_type = {
855	.name		= "cciss_device",
856	.groups		= cciss_dev_attr_groups,
857	.release	= cciss_device_release,
858};
859
860static struct bus_type cciss_bus_type = {
861	.name		= "cciss",
862};
863
864/*
865 * cciss_hba_release is called when the reference count
866 * of h->dev goes to zero.
867 */
868static void cciss_hba_release(struct device *dev)
869{
870	/*
871	 * nothing to do, but need this to avoid a warning
872	 * about not having a release handler from lib/kref.c.
873	 */
874}
875
876/*
877 * Initialize sysfs entry for each controller.  This sets up and registers
878 * the 'cciss#' directory for each individual controller under
879 * /sys/bus/pci/devices/<dev>/.
880 */
881static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
882{
883	device_initialize(&h->dev);
884	h->dev.type = &cciss_host_type;
885	h->dev.bus = &cciss_bus_type;
886	dev_set_name(&h->dev, "%s", h->devname);
887	h->dev.parent = &h->pdev->dev;
888
889	return device_add(&h->dev);
890}
891
892/*
893 * Remove sysfs entries for an hba.
894 */
895static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
896{
897	device_del(&h->dev);
898	put_device(&h->dev); /* final put. */
899}
900
901/* cciss_device_release is called when the reference count
902 * of h->drv[x]dev goes to zero.
903 */
904static void cciss_device_release(struct device *dev)
905{
906	drive_info_struct *drv = to_drv(dev);
907	kfree(drv);
908}
909
910/*
911 * Initialize sysfs for each logical drive.  This sets up and registers
912 * the 'c#d#' directory for each individual logical drive under
913 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
914 * /sys/block/cciss!c#d# to this entry.
915 */
916static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
917				       int drv_index)
918{
919	struct device *dev;
920
921	if (h->drv[drv_index]->device_initialized)
922		return 0;
923
924	dev = &h->drv[drv_index]->dev;
925	device_initialize(dev);
926	dev->type = &cciss_dev_type;
927	dev->bus = &cciss_bus_type;
928	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
929	dev->parent = &h->dev;
930	h->drv[drv_index]->device_initialized = 1;
931	return device_add(dev);
932}
933
934/*
935 * Remove sysfs entries for a logical drive.
936 */
937static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
938	int ctlr_exiting)
939{
940	struct device *dev = &h->drv[drv_index]->dev;
941
942	/* special case for c*d0, we only destroy it on controller exit */
943	if (drv_index == 0 && !ctlr_exiting)
944		return;
945
946	device_del(dev);
947	put_device(dev); /* the "final" put. */
948	h->drv[drv_index] = NULL;
949}
950
951/*
952 * For operations that cannot sleep, a command block is allocated at init,
953 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
954 * which ones are free or in use.
955 */
956static CommandList_struct *cmd_alloc(ctlr_info_t *h)
957{
958	CommandList_struct *c;
959	int i;
960	u64bit temp64;
961	dma_addr_t cmd_dma_handle, err_dma_handle;
962
963	do {
964		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
965		if (i == h->nr_cmds)
966			return NULL;
967	} while (test_and_set_bit(i & (BITS_PER_LONG - 1),
968		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
969	c = h->cmd_pool + i;
970	memset(c, 0, sizeof(CommandList_struct));
971	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
972	c->err_info = h->errinfo_pool + i;
973	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
974	err_dma_handle = h->errinfo_pool_dhandle
975	    + i * sizeof(ErrorInfo_struct);
976	h->nr_allocs++;
977
978	c->cmdindex = i;
979
980	INIT_LIST_HEAD(&c->list);
981	c->busaddr = (__u32) cmd_dma_handle;
982	temp64.val = (__u64) err_dma_handle;
983	c->ErrDesc.Addr.lower = temp64.val32.lower;
984	c->ErrDesc.Addr.upper = temp64.val32.upper;
985	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
986
987	c->ctlr = h->ctlr;
988	return c;
989}
990
991/* allocate a command using pci_alloc_consistent, used for ioctls,
992 * etc., not for the main i/o path.
993 */
994static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
995{
996	CommandList_struct *c;
997	u64bit temp64;
998	dma_addr_t cmd_dma_handle, err_dma_handle;
999
1000	c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1001		sizeof(CommandList_struct), &cmd_dma_handle);
1002	if (c == NULL)
1003		return NULL;
1004	memset(c, 0, sizeof(CommandList_struct));
1005
1006	c->cmdindex = -1;
1007
1008	c->err_info = (ErrorInfo_struct *)
1009	    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1010		    &err_dma_handle);
1011
1012	if (c->err_info == NULL) {
1013		pci_free_consistent(h->pdev,
1014			sizeof(CommandList_struct), c, cmd_dma_handle);
1015		return NULL;
1016	}
1017	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1018
1019	INIT_LIST_HEAD(&c->list);
1020	c->busaddr = (__u32) cmd_dma_handle;
1021	temp64.val = (__u64) err_dma_handle;
1022	c->ErrDesc.Addr.lower = temp64.val32.lower;
1023	c->ErrDesc.Addr.upper = temp64.val32.upper;
1024	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1025
1026	c->ctlr = h->ctlr;
1027	return c;
1028}
1029
1030static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1031{
1032	int i;
1033
1034	i = c - h->cmd_pool;
1035	clear_bit(i & (BITS_PER_LONG - 1),
1036		  h->cmd_pool_bits + (i / BITS_PER_LONG));
1037	h->nr_frees++;
1038}
1039
1040static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1041{
1042	u64bit temp64;
1043
1044	temp64.val32.lower = c->ErrDesc.Addr.lower;
1045	temp64.val32.upper = c->ErrDesc.Addr.upper;
1046	pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1047			    c->err_info, (dma_addr_t) temp64.val);
1048	pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1049		(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1050}
1051
1052static inline ctlr_info_t *get_host(struct gendisk *disk)
1053{
1054	return disk->queue->queuedata;
1055}
1056
1057static inline drive_info_struct *get_drv(struct gendisk *disk)
1058{
1059	return disk->private_data;
1060}
1061
1062/*
1063 * Open.  Make sure the device is really there.
1064 */
1065static int cciss_open(struct block_device *bdev, fmode_t mode)
1066{
1067	ctlr_info_t *h = get_host(bdev->bd_disk);
1068	drive_info_struct *drv = get_drv(bdev->bd_disk);
1069
1070	dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1071	if (drv->busy_configuring)
1072		return -EBUSY;
1073	/*
1074	 * Root is allowed to open raw volume zero even if it's not configured
1075	 * so array config can still work. Root is also allowed to open any
1076	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1077	 * disk information.  I don't think I really like this
1078	 * but I'm already using way to many device nodes to claim another one
1079	 * for "raw controller".
1080	 */
1081	if (drv->heads == 0) {
1082		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1083			/* if not node 0 make sure it is a partition = 0 */
1084			if (MINOR(bdev->bd_dev) & 0x0f) {
1085				return -ENXIO;
1086				/* if it is, make sure we have a LUN ID */
1087			} else if (memcmp(drv->LunID, CTLR_LUNID,
1088				sizeof(drv->LunID))) {
1089				return -ENXIO;
1090			}
1091		}
1092		if (!capable(CAP_SYS_ADMIN))
1093			return -EPERM;
1094	}
1095	drv->usage_count++;
1096	h->usage_count++;
1097	return 0;
1098}
1099
1100static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1101{
1102	int ret;
1103
1104	mutex_lock(&cciss_mutex);
1105	ret = cciss_open(bdev, mode);
1106	mutex_unlock(&cciss_mutex);
1107
1108	return ret;
1109}
1110
1111/*
1112 * Close.  Sync first.
1113 */
1114static int cciss_release(struct gendisk *disk, fmode_t mode)
1115{
1116	ctlr_info_t *h;
1117	drive_info_struct *drv;
1118
1119	mutex_lock(&cciss_mutex);
1120	h = get_host(disk);
1121	drv = get_drv(disk);
1122	dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1123	drv->usage_count--;
1124	h->usage_count--;
1125	mutex_unlock(&cciss_mutex);
1126	return 0;
1127}
1128
1129static int do_ioctl(struct block_device *bdev, fmode_t mode,
1130		    unsigned cmd, unsigned long arg)
1131{
1132	int ret;
1133	mutex_lock(&cciss_mutex);
1134	ret = cciss_ioctl(bdev, mode, cmd, arg);
1135	mutex_unlock(&cciss_mutex);
1136	return ret;
1137}
1138
1139#ifdef CONFIG_COMPAT
1140
1141static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1142				  unsigned cmd, unsigned long arg);
1143static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1144				      unsigned cmd, unsigned long arg);
1145
1146static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1147			      unsigned cmd, unsigned long arg)
1148{
1149	switch (cmd) {
1150	case CCISS_GETPCIINFO:
1151	case CCISS_GETINTINFO:
1152	case CCISS_SETINTINFO:
1153	case CCISS_GETNODENAME:
1154	case CCISS_SETNODENAME:
1155	case CCISS_GETHEARTBEAT:
1156	case CCISS_GETBUSTYPES:
1157	case CCISS_GETFIRMVER:
1158	case CCISS_GETDRIVVER:
1159	case CCISS_REVALIDVOLS:
1160	case CCISS_DEREGDISK:
1161	case CCISS_REGNEWDISK:
1162	case CCISS_REGNEWD:
1163	case CCISS_RESCANDISK:
1164	case CCISS_GETLUNINFO:
1165		return do_ioctl(bdev, mode, cmd, arg);
1166
1167	case CCISS_PASSTHRU32:
1168		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1169	case CCISS_BIG_PASSTHRU32:
1170		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1171
1172	default:
1173		return -ENOIOCTLCMD;
1174	}
1175}
1176
1177static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1178				  unsigned cmd, unsigned long arg)
1179{
1180	IOCTL32_Command_struct __user *arg32 =
1181	    (IOCTL32_Command_struct __user *) arg;
1182	IOCTL_Command_struct arg64;
1183	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1184	int err;
1185	u32 cp;
1186
1187	err = 0;
1188	err |=
1189	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1190			   sizeof(arg64.LUN_info));
1191	err |=
1192	    copy_from_user(&arg64.Request, &arg32->Request,
1193			   sizeof(arg64.Request));
1194	err |=
1195	    copy_from_user(&arg64.error_info, &arg32->error_info,
1196			   sizeof(arg64.error_info));
1197	err |= get_user(arg64.buf_size, &arg32->buf_size);
1198	err |= get_user(cp, &arg32->buf);
1199	arg64.buf = compat_ptr(cp);
1200	err |= copy_to_user(p, &arg64, sizeof(arg64));
1201
1202	if (err)
1203		return -EFAULT;
1204
1205	err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1206	if (err)
1207		return err;
1208	err |=
1209	    copy_in_user(&arg32->error_info, &p->error_info,
1210			 sizeof(arg32->error_info));
1211	if (err)
1212		return -EFAULT;
1213	return err;
1214}
1215
1216static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1217				      unsigned cmd, unsigned long arg)
1218{
1219	BIG_IOCTL32_Command_struct __user *arg32 =
1220	    (BIG_IOCTL32_Command_struct __user *) arg;
1221	BIG_IOCTL_Command_struct arg64;
1222	BIG_IOCTL_Command_struct __user *p =
1223	    compat_alloc_user_space(sizeof(arg64));
1224	int err;
1225	u32 cp;
1226
1227	memset(&arg64, 0, sizeof(arg64));
1228	err = 0;
1229	err |=
1230	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1231			   sizeof(arg64.LUN_info));
1232	err |=
1233	    copy_from_user(&arg64.Request, &arg32->Request,
1234			   sizeof(arg64.Request));
1235	err |=
1236	    copy_from_user(&arg64.error_info, &arg32->error_info,
1237			   sizeof(arg64.error_info));
1238	err |= get_user(arg64.buf_size, &arg32->buf_size);
1239	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1240	err |= get_user(cp, &arg32->buf);
1241	arg64.buf = compat_ptr(cp);
1242	err |= copy_to_user(p, &arg64, sizeof(arg64));
1243
1244	if (err)
1245		return -EFAULT;
1246
1247	err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1248	if (err)
1249		return err;
1250	err |=
1251	    copy_in_user(&arg32->error_info, &p->error_info,
1252			 sizeof(arg32->error_info));
1253	if (err)
1254		return -EFAULT;
1255	return err;
1256}
1257#endif
1258
1259static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1260{
1261	drive_info_struct *drv = get_drv(bdev->bd_disk);
1262
1263	if (!drv->cylinders)
1264		return -ENXIO;
1265
1266	geo->heads = drv->heads;
1267	geo->sectors = drv->sectors;
1268	geo->cylinders = drv->cylinders;
1269	return 0;
1270}
1271
1272static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1273{
1274	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1275			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1276		(void)check_for_unit_attention(h, c);
1277}
1278
1279static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1280{
1281	cciss_pci_info_struct pciinfo;
1282
1283	if (!argp)
1284		return -EINVAL;
1285	pciinfo.domain = pci_domain_nr(h->pdev->bus);
1286	pciinfo.bus = h->pdev->bus->number;
1287	pciinfo.dev_fn = h->pdev->devfn;
1288	pciinfo.board_id = h->board_id;
1289	if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1290		return -EFAULT;
1291	return 0;
1292}
1293
1294static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1295{
1296	cciss_coalint_struct intinfo;
1297
1298	if (!argp)
1299		return -EINVAL;
1300	intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1301	intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1302	if (copy_to_user
1303	    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1304		return -EFAULT;
1305	return 0;
1306}
1307
1308static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1309{
1310	cciss_coalint_struct intinfo;
1311	unsigned long flags;
1312	int i;
1313
1314	if (!argp)
1315		return -EINVAL;
1316	if (!capable(CAP_SYS_ADMIN))
1317		return -EPERM;
1318	if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1319		return -EFAULT;
1320	if ((intinfo.delay == 0) && (intinfo.count == 0))
1321		return -EINVAL;
1322	spin_lock_irqsave(&h->lock, flags);
1323	/* Update the field, and then ring the doorbell */
1324	writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1325	writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1326	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1327
1328	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1329		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1330			break;
1331		udelay(1000); /* delay and try again */
1332	}
1333	spin_unlock_irqrestore(&h->lock, flags);
1334	if (i >= MAX_IOCTL_CONFIG_WAIT)
1335		return -EAGAIN;
1336	return 0;
1337}
1338
1339static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1340{
1341	NodeName_type NodeName;
1342	int i;
1343
1344	if (!argp)
1345		return -EINVAL;
1346	for (i = 0; i < 16; i++)
1347		NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1348	if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1349		return -EFAULT;
1350	return 0;
1351}
1352
1353static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1354{
1355	NodeName_type NodeName;
1356	unsigned long flags;
1357	int i;
1358
1359	if (!argp)
1360		return -EINVAL;
1361	if (!capable(CAP_SYS_ADMIN))
1362		return -EPERM;
1363	if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1364		return -EFAULT;
1365	spin_lock_irqsave(&h->lock, flags);
1366	/* Update the field, and then ring the doorbell */
1367	for (i = 0; i < 16; i++)
1368		writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1369	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1370	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1371		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1372			break;
1373		udelay(1000); /* delay and try again */
1374	}
1375	spin_unlock_irqrestore(&h->lock, flags);
1376	if (i >= MAX_IOCTL_CONFIG_WAIT)
1377		return -EAGAIN;
1378	return 0;
1379}
1380
1381static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1382{
1383	Heartbeat_type heartbeat;
1384
1385	if (!argp)
1386		return -EINVAL;
1387	heartbeat = readl(&h->cfgtable->HeartBeat);
1388	if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1389		return -EFAULT;
1390	return 0;
1391}
1392
1393static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1394{
1395	BusTypes_type BusTypes;
1396
1397	if (!argp)
1398		return -EINVAL;
1399	BusTypes = readl(&h->cfgtable->BusTypes);
1400	if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1401		return -EFAULT;
1402	return 0;
1403}
1404
1405static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1406{
1407	FirmwareVer_type firmware;
1408
1409	if (!argp)
1410		return -EINVAL;
1411	memcpy(firmware, h->firm_ver, 4);
1412
1413	if (copy_to_user
1414	    (argp, firmware, sizeof(FirmwareVer_type)))
1415		return -EFAULT;
1416	return 0;
1417}
1418
1419static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1420{
1421	DriverVer_type DriverVer = DRIVER_VERSION;
1422
1423	if (!argp)
1424		return -EINVAL;
1425	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1426		return -EFAULT;
1427	return 0;
1428}
1429
1430static int cciss_getluninfo(ctlr_info_t *h,
1431	struct gendisk *disk, void __user *argp)
1432{
1433	LogvolInfo_struct luninfo;
1434	drive_info_struct *drv = get_drv(disk);
1435
1436	if (!argp)
1437		return -EINVAL;
1438	memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1439	luninfo.num_opens = drv->usage_count;
1440	luninfo.num_parts = 0;
1441	if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1442		return -EFAULT;
1443	return 0;
1444}
1445
1446static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1447{
1448	IOCTL_Command_struct iocommand;
1449	CommandList_struct *c;
1450	char *buff = NULL;
1451	u64bit temp64;
1452	DECLARE_COMPLETION_ONSTACK(wait);
1453
1454	if (!argp)
1455		return -EINVAL;
1456
1457	if (!capable(CAP_SYS_RAWIO))
1458		return -EPERM;
1459
1460	if (copy_from_user
1461	    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1462		return -EFAULT;
1463	if ((iocommand.buf_size < 1) &&
1464	    (iocommand.Request.Type.Direction != XFER_NONE)) {
1465		return -EINVAL;
1466	}
1467	if (iocommand.buf_size > 0) {
1468		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1469		if (buff == NULL)
1470			return -EFAULT;
1471	}
1472	if (iocommand.Request.Type.Direction == XFER_WRITE) {
1473		/* Copy the data into the buffer we created */
1474		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1475			kfree(buff);
1476			return -EFAULT;
1477		}
1478	} else {
1479		memset(buff, 0, iocommand.buf_size);
1480	}
1481	c = cmd_special_alloc(h);
1482	if (!c) {
1483		kfree(buff);
1484		return -ENOMEM;
1485	}
1486	/* Fill in the command type */
1487	c->cmd_type = CMD_IOCTL_PEND;
1488	/* Fill in Command Header */
1489	c->Header.ReplyQueue = 0;   /* unused in simple mode */
1490	if (iocommand.buf_size > 0) { /* buffer to fill */
1491		c->Header.SGList = 1;
1492		c->Header.SGTotal = 1;
1493	} else { /* no buffers to fill */
1494		c->Header.SGList = 0;
1495		c->Header.SGTotal = 0;
1496	}
1497	c->Header.LUN = iocommand.LUN_info;
1498	/* use the kernel address the cmd block for tag */
1499	c->Header.Tag.lower = c->busaddr;
1500
1501	/* Fill in Request block */
1502	c->Request = iocommand.Request;
1503
1504	/* Fill in the scatter gather information */
1505	if (iocommand.buf_size > 0) {
1506		temp64.val = pci_map_single(h->pdev, buff,
1507			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1508		c->SG[0].Addr.lower = temp64.val32.lower;
1509		c->SG[0].Addr.upper = temp64.val32.upper;
1510		c->SG[0].Len = iocommand.buf_size;
1511		c->SG[0].Ext = 0;  /* we are not chaining */
1512	}
1513	c->waiting = &wait;
1514
1515	enqueue_cmd_and_start_io(h, c);
1516	wait_for_completion(&wait);
1517
1518	/* unlock the buffers from DMA */
1519	temp64.val32.lower = c->SG[0].Addr.lower;
1520	temp64.val32.upper = c->SG[0].Addr.upper;
1521	pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1522			 PCI_DMA_BIDIRECTIONAL);
1523	check_ioctl_unit_attention(h, c);
1524
1525	/* Copy the error information out */
1526	iocommand.error_info = *(c->err_info);
1527	if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1528		kfree(buff);
1529		cmd_special_free(h, c);
1530		return -EFAULT;
1531	}
1532
1533	if (iocommand.Request.Type.Direction == XFER_READ) {
1534		/* Copy the data out of the buffer we created */
1535		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1536			kfree(buff);
1537			cmd_special_free(h, c);
1538			return -EFAULT;
1539		}
1540	}
1541	kfree(buff);
1542	cmd_special_free(h, c);
1543	return 0;
1544}
1545
1546static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1547{
1548	BIG_IOCTL_Command_struct *ioc;
1549	CommandList_struct *c;
1550	unsigned char **buff = NULL;
1551	int *buff_size = NULL;
1552	u64bit temp64;
1553	BYTE sg_used = 0;
1554	int status = 0;
1555	int i;
1556	DECLARE_COMPLETION_ONSTACK(wait);
1557	__u32 left;
1558	__u32 sz;
1559	BYTE __user *data_ptr;
1560
1561	if (!argp)
1562		return -EINVAL;
1563	if (!capable(CAP_SYS_RAWIO))
1564		return -EPERM;
1565	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1566	if (!ioc) {
1567		status = -ENOMEM;
1568		goto cleanup1;
1569	}
1570	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1571		status = -EFAULT;
1572		goto cleanup1;
1573	}
1574	if ((ioc->buf_size < 1) &&
1575	    (ioc->Request.Type.Direction != XFER_NONE)) {
1576		status = -EINVAL;
1577		goto cleanup1;
1578	}
1579	/* Check kmalloc limits  using all SGs */
1580	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1581		status = -EINVAL;
1582		goto cleanup1;
1583	}
1584	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1585		status = -EINVAL;
1586		goto cleanup1;
1587	}
1588	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1589	if (!buff) {
1590		status = -ENOMEM;
1591		goto cleanup1;
1592	}
1593	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1594	if (!buff_size) {
1595		status = -ENOMEM;
1596		goto cleanup1;
1597	}
1598	left = ioc->buf_size;
1599	data_ptr = ioc->buf;
1600	while (left) {
1601		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1602		buff_size[sg_used] = sz;
1603		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1604		if (buff[sg_used] == NULL) {
1605			status = -ENOMEM;
1606			goto cleanup1;
1607		}
1608		if (ioc->Request.Type.Direction == XFER_WRITE) {
1609			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1610				status = -EFAULT;
1611				goto cleanup1;
1612			}
1613		} else {
1614			memset(buff[sg_used], 0, sz);
1615		}
1616		left -= sz;
1617		data_ptr += sz;
1618		sg_used++;
1619	}
1620	c = cmd_special_alloc(h);
1621	if (!c) {
1622		status = -ENOMEM;
1623		goto cleanup1;
1624	}
1625	c->cmd_type = CMD_IOCTL_PEND;
1626	c->Header.ReplyQueue = 0;
1627	c->Header.SGList = sg_used;
1628	c->Header.SGTotal = sg_used;
1629	c->Header.LUN = ioc->LUN_info;
1630	c->Header.Tag.lower = c->busaddr;
1631
1632	c->Request = ioc->Request;
1633	for (i = 0; i < sg_used; i++) {
1634		temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1635				    PCI_DMA_BIDIRECTIONAL);
1636		c->SG[i].Addr.lower = temp64.val32.lower;
1637		c->SG[i].Addr.upper = temp64.val32.upper;
1638		c->SG[i].Len = buff_size[i];
1639		c->SG[i].Ext = 0;	/* we are not chaining */
1640	}
1641	c->waiting = &wait;
1642	enqueue_cmd_and_start_io(h, c);
1643	wait_for_completion(&wait);
1644	/* unlock the buffers from DMA */
1645	for (i = 0; i < sg_used; i++) {
1646		temp64.val32.lower = c->SG[i].Addr.lower;
1647		temp64.val32.upper = c->SG[i].Addr.upper;
1648		pci_unmap_single(h->pdev,
1649			(dma_addr_t) temp64.val, buff_size[i],
1650			PCI_DMA_BIDIRECTIONAL);
1651	}
1652	check_ioctl_unit_attention(h, c);
1653	/* Copy the error information out */
1654	ioc->error_info = *(c->err_info);
1655	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1656		cmd_special_free(h, c);
1657		status = -EFAULT;
1658		goto cleanup1;
1659	}
1660	if (ioc->Request.Type.Direction == XFER_READ) {
1661		/* Copy the data out of the buffer we created */
1662		BYTE __user *ptr = ioc->buf;
1663		for (i = 0; i < sg_used; i++) {
1664			if (copy_to_user(ptr, buff[i], buff_size[i])) {
1665				cmd_special_free(h, c);
1666				status = -EFAULT;
1667				goto cleanup1;
1668			}
1669			ptr += buff_size[i];
1670		}
1671	}
1672	cmd_special_free(h, c);
1673	status = 0;
1674cleanup1:
1675	if (buff) {
1676		for (i = 0; i < sg_used; i++)
1677			kfree(buff[i]);
1678		kfree(buff);
1679	}
1680	kfree(buff_size);
1681	kfree(ioc);
1682	return status;
1683}
1684
1685static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1686	unsigned int cmd, unsigned long arg)
1687{
1688	struct gendisk *disk = bdev->bd_disk;
1689	ctlr_info_t *h = get_host(disk);
1690	void __user *argp = (void __user *)arg;
1691
1692	dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1693		cmd, arg);
1694	switch (cmd) {
1695	case CCISS_GETPCIINFO:
1696		return cciss_getpciinfo(h, argp);
1697	case CCISS_GETINTINFO:
1698		return cciss_getintinfo(h, argp);
1699	case CCISS_SETINTINFO:
1700		return cciss_setintinfo(h, argp);
1701	case CCISS_GETNODENAME:
1702		return cciss_getnodename(h, argp);
1703	case CCISS_SETNODENAME:
1704		return cciss_setnodename(h, argp);
1705	case CCISS_GETHEARTBEAT:
1706		return cciss_getheartbeat(h, argp);
1707	case CCISS_GETBUSTYPES:
1708		return cciss_getbustypes(h, argp);
1709	case CCISS_GETFIRMVER:
1710		return cciss_getfirmver(h, argp);
1711	case CCISS_GETDRIVVER:
1712		return cciss_getdrivver(h, argp);
1713	case CCISS_DEREGDISK:
1714	case CCISS_REGNEWD:
1715	case CCISS_REVALIDVOLS:
1716		return rebuild_lun_table(h, 0, 1);
1717	case CCISS_GETLUNINFO:
1718		return cciss_getluninfo(h, disk, argp);
1719	case CCISS_PASSTHRU:
1720		return cciss_passthru(h, argp);
1721	case CCISS_BIG_PASSTHRU:
1722		return cciss_bigpassthru(h, argp);
1723
1724	/* scsi_cmd_ioctl handles these, below, though some are not */
1725	/* very meaningful for cciss.  SG_IO is the main one people want. */
1726
1727	case SG_GET_VERSION_NUM:
1728	case SG_SET_TIMEOUT:
1729	case SG_GET_TIMEOUT:
1730	case SG_GET_RESERVED_SIZE:
1731	case SG_SET_RESERVED_SIZE:
1732	case SG_EMULATED_HOST:
1733	case SG_IO:
1734	case SCSI_IOCTL_SEND_COMMAND:
1735		return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1736
1737	/* scsi_cmd_ioctl would normally handle these, below, but */
1738	/* they aren't a good fit for cciss, as CD-ROMs are */
1739	/* not supported, and we don't have any bus/target/lun */
1740	/* which we present to the kernel. */
1741
1742	case CDROM_SEND_PACKET:
1743	case CDROMCLOSETRAY:
1744	case CDROMEJECT:
1745	case SCSI_IOCTL_GET_IDLUN:
1746	case SCSI_IOCTL_GET_BUS_NUMBER:
1747	default:
1748		return -ENOTTY;
1749	}
1750}
1751
1752static void cciss_check_queues(ctlr_info_t *h)
1753{
1754	int start_queue = h->next_to_run;
1755	int i;
1756
1757	/* check to see if we have maxed out the number of commands that can
1758	 * be placed on the queue.  If so then exit.  We do this check here
1759	 * in case the interrupt we serviced was from an ioctl and did not
1760	 * free any new commands.
1761	 */
1762	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1763		return;
1764
1765	/* We have room on the queue for more commands.  Now we need to queue
1766	 * them up.  We will also keep track of the next queue to run so
1767	 * that every queue gets a chance to be started first.
1768	 */
1769	for (i = 0; i < h->highest_lun + 1; i++) {
1770		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1771		/* make sure the disk has been added and the drive is real
1772		 * because this can be called from the middle of init_one.
1773		 */
1774		if (!h->drv[curr_queue])
1775			continue;
1776		if (!(h->drv[curr_queue]->queue) ||
1777			!(h->drv[curr_queue]->heads))
1778			continue;
1779		blk_start_queue(h->gendisk[curr_queue]->queue);
1780
1781		/* check to see if we have maxed out the number of commands
1782		 * that can be placed on the queue.
1783		 */
1784		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1785			if (curr_queue == start_queue) {
1786				h->next_to_run =
1787				    (start_queue + 1) % (h->highest_lun + 1);
1788				break;
1789			} else {
1790				h->next_to_run = curr_queue;
1791				break;
1792			}
1793		}
1794	}
1795}
1796
1797static void cciss_softirq_done(struct request *rq)
1798{
1799	CommandList_struct *c = rq->completion_data;
1800	ctlr_info_t *h = hba[c->ctlr];
1801	SGDescriptor_struct *curr_sg = c->SG;
1802	u64bit temp64;
1803	unsigned long flags;
1804	int i, ddir;
1805	int sg_index = 0;
1806
1807	if (c->Request.Type.Direction == XFER_READ)
1808		ddir = PCI_DMA_FROMDEVICE;
1809	else
1810		ddir = PCI_DMA_TODEVICE;
1811
1812	/* command did not need to be retried */
1813	/* unmap the DMA mapping for all the scatter gather elements */
1814	for (i = 0; i < c->Header.SGList; i++) {
1815		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1816			cciss_unmap_sg_chain_block(h, c);
1817			/* Point to the next block */
1818			curr_sg = h->cmd_sg_list[c->cmdindex];
1819			sg_index = 0;
1820		}
1821		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1822		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1823		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1824				ddir);
1825		++sg_index;
1826	}
1827
1828	dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1829
1830	/* set the residual count for pc requests */
1831	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1832		rq->resid_len = c->err_info->ResidualCnt;
1833
1834	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1835
1836	spin_lock_irqsave(&h->lock, flags);
1837	cmd_free(h, c);
1838	cciss_check_queues(h);
1839	spin_unlock_irqrestore(&h->lock, flags);
1840}
1841
1842static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1843	unsigned char scsi3addr[], uint32_t log_unit)
1844{
1845	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1846		sizeof(h->drv[log_unit]->LunID));
1847}
1848
1849/* This function gets the SCSI vendor, model, and revision of a logical drive
1850 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1851 * they cannot be read.
1852 */
1853static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1854				   char *vendor, char *model, char *rev)
1855{
1856	int rc;
1857	InquiryData_struct *inq_buf;
1858	unsigned char scsi3addr[8];
1859
1860	*vendor = '\0';
1861	*model = '\0';
1862	*rev = '\0';
1863
1864	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1865	if (!inq_buf)
1866		return;
1867
1868	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1869	rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1870			scsi3addr, TYPE_CMD);
1871	if (rc == IO_OK) {
1872		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1873		vendor[VENDOR_LEN] = '\0';
1874		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1875		model[MODEL_LEN] = '\0';
1876		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1877		rev[REV_LEN] = '\0';
1878	}
1879
1880	kfree(inq_buf);
1881	return;
1882}
1883
1884/* This function gets the serial number of a logical drive via
1885 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1886 * number cannot be had, for whatever reason, 16 bytes of 0xff
1887 * are returned instead.
1888 */
1889static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1890				unsigned char *serial_no, int buflen)
1891{
1892#define PAGE_83_INQ_BYTES 64
1893	int rc;
1894	unsigned char *buf;
1895	unsigned char scsi3addr[8];
1896
1897	if (buflen > 16)
1898		buflen = 16;
1899	memset(serial_no, 0xff, buflen);
1900	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1901	if (!buf)
1902		return;
1903	memset(serial_no, 0, buflen);
1904	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1905	rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1906		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1907	if (rc == IO_OK)
1908		memcpy(serial_no, &buf[8], buflen);
1909	kfree(buf);
1910	return;
1911}
1912
1913/*
1914 * cciss_add_disk sets up the block device queue for a logical drive
1915 */
1916static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1917				int drv_index)
1918{
1919	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1920	if (!disk->queue)
1921		goto init_queue_failure;
1922	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1923	disk->major = h->major;
1924	disk->first_minor = drv_index << NWD_SHIFT;
1925	disk->fops = &cciss_fops;
1926	if (cciss_create_ld_sysfs_entry(h, drv_index))
1927		goto cleanup_queue;
1928	disk->private_data = h->drv[drv_index];
1929	disk->driverfs_dev = &h->drv[drv_index]->dev;
1930
1931	/* Set up queue information */
1932	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1933
1934	/* This is a hardware imposed limit. */
1935	blk_queue_max_segments(disk->queue, h->maxsgentries);
1936
1937	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1938
1939	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1940
1941	disk->queue->queuedata = h;
1942
1943	blk_queue_logical_block_size(disk->queue,
1944				     h->drv[drv_index]->block_size);
1945
1946	/* Make sure all queue data is written out before */
1947	/* setting h->drv[drv_index]->queue, as setting this */
1948	/* allows the interrupt handler to start the queue */
1949	wmb();
1950	h->drv[drv_index]->queue = disk->queue;
1951	add_disk(disk);
1952	return 0;
1953
1954cleanup_queue:
1955	blk_cleanup_queue(disk->queue);
1956	disk->queue = NULL;
1957init_queue_failure:
1958	return -1;
1959}
1960
1961/* This function will check the usage_count of the drive to be updated/added.
1962 * If the usage_count is zero and it is a heretofore unknown drive, or,
1963 * the drive's capacity, geometry, or serial number has changed,
1964 * then the drive information will be updated and the disk will be
1965 * re-registered with the kernel.  If these conditions don't hold,
1966 * then it will be left alone for the next reboot.  The exception to this
1967 * is disk 0 which will always be left registered with the kernel since it
1968 * is also the controller node.  Any changes to disk 0 will show up on
1969 * the next reboot.
1970 */
1971static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1972	int first_time, int via_ioctl)
1973{
1974	struct gendisk *disk;
1975	InquiryData_struct *inq_buff = NULL;
1976	unsigned int block_size;
1977	sector_t total_size;
1978	unsigned long flags = 0;
1979	int ret = 0;
1980	drive_info_struct *drvinfo;
1981
1982	/* Get information about the disk and modify the driver structure */
1983	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1984	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1985	if (inq_buff == NULL || drvinfo == NULL)
1986		goto mem_msg;
1987
1988	/* testing to see if 16-byte CDBs are already being used */
1989	if (h->cciss_read == CCISS_READ_16) {
1990		cciss_read_capacity_16(h, drv_index,
1991			&total_size, &block_size);
1992
1993	} else {
1994		cciss_read_capacity(h, drv_index, &total_size, &block_size);
1995		/* if read_capacity returns all F's this volume is >2TB */
1996		/* in size so we switch to 16-byte CDB's for all */
1997		/* read/write ops */
1998		if (total_size == 0xFFFFFFFFULL) {
1999			cciss_read_capacity_16(h, drv_index,
2000			&total_size, &block_size);
2001			h->cciss_read = CCISS_READ_16;
2002			h->cciss_write = CCISS_WRITE_16;
2003		} else {
2004			h->cciss_read = CCISS_READ_10;
2005			h->cciss_write = CCISS_WRITE_10;
2006		}
2007	}
2008
2009	cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2010			       inq_buff, drvinfo);
2011	drvinfo->block_size = block_size;
2012	drvinfo->nr_blocks = total_size + 1;
2013
2014	cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2015				drvinfo->model, drvinfo->rev);
2016	cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2017			sizeof(drvinfo->serial_no));
2018	/* Save the lunid in case we deregister the disk, below. */
2019	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2020		sizeof(drvinfo->LunID));
2021
2022	/* Is it the same disk we already know, and nothing's changed? */
2023	if (h->drv[drv_index]->raid_level != -1 &&
2024		((memcmp(drvinfo->serial_no,
2025				h->drv[drv_index]->serial_no, 16) == 0) &&
2026		drvinfo->block_size == h->drv[drv_index]->block_size &&
2027		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2028		drvinfo->heads == h->drv[drv_index]->heads &&
2029		drvinfo->sectors == h->drv[drv_index]->sectors &&
2030		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2031			/* The disk is unchanged, nothing to update */
2032			goto freeret;
2033
2034	/* If we get here it's not the same disk, or something's changed,
2035	 * so we need to * deregister it, and re-register it, if it's not
2036	 * in use.
2037	 * If the disk already exists then deregister it before proceeding
2038	 * (unless it's the first disk (for the controller node).
2039	 */
2040	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2041		dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2042		spin_lock_irqsave(&h->lock, flags);
2043		h->drv[drv_index]->busy_configuring = 1;
2044		spin_unlock_irqrestore(&h->lock, flags);
2045
2046		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2047		 * which keeps the interrupt handler from starting
2048		 * the queue.
2049		 */
2050		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2051	}
2052
2053	/* If the disk is in use return */
2054	if (ret)
2055		goto freeret;
2056
2057	/* Save the new information from cciss_geometry_inquiry
2058	 * and serial number inquiry.  If the disk was deregistered
2059	 * above, then h->drv[drv_index] will be NULL.
2060	 */
2061	if (h->drv[drv_index] == NULL) {
2062		drvinfo->device_initialized = 0;
2063		h->drv[drv_index] = drvinfo;
2064		drvinfo = NULL; /* so it won't be freed below. */
2065	} else {
2066		/* special case for cxd0 */
2067		h->drv[drv_index]->block_size = drvinfo->block_size;
2068		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2069		h->drv[drv_index]->heads = drvinfo->heads;
2070		h->drv[drv_index]->sectors = drvinfo->sectors;
2071		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2072		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2073		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2074		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2075			VENDOR_LEN + 1);
2076		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2077		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2078	}
2079
2080	++h->num_luns;
2081	disk = h->gendisk[drv_index];
2082	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2083
2084	/* If it's not disk 0 (drv_index != 0)
2085	 * or if it was disk 0, but there was previously
2086	 * no actual corresponding configured logical drive
2087	 * (raid_leve == -1) then we want to update the
2088	 * logical drive's information.
2089	 */
2090	if (drv_index || first_time) {
2091		if (cciss_add_disk(h, disk, drv_index) != 0) {
2092			cciss_free_gendisk(h, drv_index);
2093			cciss_free_drive_info(h, drv_index);
2094			dev_warn(&h->pdev->dev, "could not update disk %d\n",
2095				drv_index);
2096			--h->num_luns;
2097		}
2098	}
2099
2100freeret:
2101	kfree(inq_buff);
2102	kfree(drvinfo);
2103	return;
2104mem_msg:
2105	dev_err(&h->pdev->dev, "out of memory\n");
2106	goto freeret;
2107}
2108
2109/* This function will find the first index of the controllers drive array
2110 * that has a null drv pointer and allocate the drive info struct and
2111 * will return that index   This is where new drives will be added.
2112 * If the index to be returned is greater than the highest_lun index for
2113 * the controller then highest_lun is set * to this new index.
2114 * If there are no available indexes or if tha allocation fails, then -1
2115 * is returned.  * "controller_node" is used to know if this is a real
2116 * logical drive, or just the controller node, which determines if this
2117 * counts towards highest_lun.
2118 */
2119static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2120{
2121	int i;
2122	drive_info_struct *drv;
2123
2124	/* Search for an empty slot for our drive info */
2125	for (i = 0; i < CISS_MAX_LUN; i++) {
2126
2127		/* if not cxd0 case, and it's occupied, skip it. */
2128		if (h->drv[i] && i != 0)
2129			continue;
2130		/*
2131		 * If it's cxd0 case, and drv is alloc'ed already, and a
2132		 * disk is configured there, skip it.
2133		 */
2134		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2135			continue;
2136
2137		/*
2138		 * We've found an empty slot.  Update highest_lun
2139		 * provided this isn't just the fake cxd0 controller node.
2140		 */
2141		if (i > h->highest_lun && !controller_node)
2142			h->highest_lun = i;
2143
2144		/* If adding a real disk at cxd0, and it's already alloc'ed */
2145		if (i == 0 && h->drv[i] != NULL)
2146			return i;
2147
2148		/*
2149		 * Found an empty slot, not already alloc'ed.  Allocate it.
2150		 * Mark it with raid_level == -1, so we know it's new later on.
2151		 */
2152		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2153		if (!drv)
2154			return -1;
2155		drv->raid_level = -1; /* so we know it's new */
2156		h->drv[i] = drv;
2157		return i;
2158	}
2159	return -1;
2160}
2161
2162static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2163{
2164	kfree(h->drv[drv_index]);
2165	h->drv[drv_index] = NULL;
2166}
2167
2168static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2169{
2170	put_disk(h->gendisk[drv_index]);
2171	h->gendisk[drv_index] = NULL;
2172}
2173
2174/* cciss_add_gendisk finds a free hba[]->drv structure
2175 * and allocates a gendisk if needed, and sets the lunid
2176 * in the drvinfo structure.   It returns the index into
2177 * the ->drv[] array, or -1 if none are free.
2178 * is_controller_node indicates whether highest_lun should
2179 * count this disk, or if it's only being added to provide
2180 * a means to talk to the controller in case no logical
2181 * drives have yet been configured.
2182 */
2183static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2184	int controller_node)
2185{
2186	int drv_index;
2187
2188	drv_index = cciss_alloc_drive_info(h, controller_node);
2189	if (drv_index == -1)
2190		return -1;
2191
2192	/*Check if the gendisk needs to be allocated */
2193	if (!h->gendisk[drv_index]) {
2194		h->gendisk[drv_index] =
2195			alloc_disk(1 << NWD_SHIFT);
2196		if (!h->gendisk[drv_index]) {
2197			dev_err(&h->pdev->dev,
2198				"could not allocate a new disk %d\n",
2199				drv_index);
2200			goto err_free_drive_info;
2201		}
2202	}
2203	memcpy(h->drv[drv_index]->LunID, lunid,
2204		sizeof(h->drv[drv_index]->LunID));
2205	if (cciss_create_ld_sysfs_entry(h, drv_index))
2206		goto err_free_disk;
2207	/* Don't need to mark this busy because nobody */
2208	/* else knows about this disk yet to contend */
2209	/* for access to it. */
2210	h->drv[drv_index]->busy_configuring = 0;
2211	wmb();
2212	return drv_index;
2213
2214err_free_disk:
2215	cciss_free_gendisk(h, drv_index);
2216err_free_drive_info:
2217	cciss_free_drive_info(h, drv_index);
2218	return -1;
2219}
2220
2221/* This is for the special case of a controller which
2222 * has no logical drives.  In this case, we still need
2223 * to register a disk so the controller can be accessed
2224 * by the Array Config Utility.
2225 */
2226static void cciss_add_controller_node(ctlr_info_t *h)
2227{
2228	struct gendisk *disk;
2229	int drv_index;
2230
2231	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2232		return;
2233
2234	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2235	if (drv_index == -1)
2236		goto error;
2237	h->drv[drv_index]->block_size = 512;
2238	h->drv[drv_index]->nr_blocks = 0;
2239	h->drv[drv_index]->heads = 0;
2240	h->drv[drv_index]->sectors = 0;
2241	h->drv[drv_index]->cylinders = 0;
2242	h->drv[drv_index]->raid_level = -1;
2243	memset(h->drv[drv_index]->serial_no, 0, 16);
2244	disk = h->gendisk[drv_index];
2245	if (cciss_add_disk(h, disk, drv_index) == 0)
2246		return;
2247	cciss_free_gendisk(h, drv_index);
2248	cciss_free_drive_info(h, drv_index);
2249error:
2250	dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2251	return;
2252}
2253
2254/* This function will add and remove logical drives from the Logical
2255 * drive array of the controller and maintain persistency of ordering
2256 * so that mount points are preserved until the next reboot.  This allows
2257 * for the removal of logical drives in the middle of the drive array
2258 * without a re-ordering of those drives.
2259 * INPUT
2260 * h		= The controller to perform the operations on
2261 */
2262static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2263	int via_ioctl)
2264{
2265	int num_luns;
2266	ReportLunData_struct *ld_buff = NULL;
2267	int return_code;
2268	int listlength = 0;
2269	int i;
2270	int drv_found;
2271	int drv_index = 0;
2272	unsigned char lunid[8] = CTLR_LUNID;
2273	unsigned long flags;
2274
2275	if (!capable(CAP_SYS_RAWIO))
2276		return -EPERM;
2277
2278	/* Set busy_configuring flag for this operation */
2279	spin_lock_irqsave(&h->lock, flags);
2280	if (h->busy_configuring) {
2281		spin_unlock_irqrestore(&h->lock, flags);
2282		return -EBUSY;
2283	}
2284	h->busy_configuring = 1;
2285	spin_unlock_irqrestore(&h->lock, flags);
2286
2287	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2288	if (ld_buff == NULL)
2289		goto mem_msg;
2290
2291	return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2292				      sizeof(ReportLunData_struct),
2293				      0, CTLR_LUNID, TYPE_CMD);
2294
2295	if (return_code == IO_OK)
2296		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2297	else {	/* reading number of logical volumes failed */
2298		dev_warn(&h->pdev->dev,
2299			"report logical volume command failed\n");
2300		listlength = 0;
2301		goto freeret;
2302	}
2303
2304	num_luns = listlength / 8;	/* 8 bytes per entry */
2305	if (num_luns > CISS_MAX_LUN) {
2306		num_luns = CISS_MAX_LUN;
2307		dev_warn(&h->pdev->dev, "more luns configured"
2308		       " on controller than can be handled by"
2309		       " this driver.\n");
2310	}
2311
2312	if (num_luns == 0)
2313		cciss_add_controller_node(h);
2314
2315	/* Compare controller drive array to driver's drive array
2316	 * to see if any drives are missing on the controller due
2317	 * to action of Array Config Utility (user deletes drive)
2318	 * and deregister logical drives which have disappeared.
2319	 */
2320	for (i = 0; i <= h->highest_lun; i++) {
2321		int j;
2322		drv_found = 0;
2323
2324		/* skip holes in the array from already deleted drives */
2325		if (h->drv[i] == NULL)
2326			continue;
2327
2328		for (j = 0; j < num_luns; j++) {
2329			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2330			if (memcmp(h->drv[i]->LunID, lunid,
2331				sizeof(lunid)) == 0) {
2332				drv_found = 1;
2333				break;
2334			}
2335		}
2336		if (!drv_found) {
2337			/* Deregister it from the OS, it's gone. */
2338			spin_lock_irqsave(&h->lock, flags);
2339			h->drv[i]->busy_configuring = 1;
2340			spin_unlock_irqrestore(&h->lock, flags);
2341			return_code = deregister_disk(h, i, 1, via_ioctl);
2342			if (h->drv[i] != NULL)
2343				h->drv[i]->busy_configuring = 0;
2344		}
2345	}
2346
2347	/* Compare controller drive array to driver's drive array.
2348	 * Check for updates in the drive information and any new drives
2349	 * on the controller due to ACU adding logical drives, or changing
2350	 * a logical drive's size, etc.  Reregister any new/changed drives
2351	 */
2352	for (i = 0; i < num_luns; i++) {
2353		int j;
2354
2355		drv_found = 0;
2356
2357		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2358		/* Find if the LUN is already in the drive array
2359		 * of the driver.  If so then update its info
2360		 * if not in use.  If it does not exist then find
2361		 * the first free index and add it.
2362		 */
2363		for (j = 0; j <= h->highest_lun; j++) {
2364			if (h->drv[j] != NULL &&
2365				memcmp(h->drv[j]->LunID, lunid,
2366					sizeof(h->drv[j]->LunID)) == 0) {
2367				drv_index = j;
2368				drv_found = 1;
2369				break;
2370			}
2371		}
2372
2373		/* check if the drive was found already in the array */
2374		if (!drv_found) {
2375			drv_index = cciss_add_gendisk(h, lunid, 0);
2376			if (drv_index == -1)
2377				goto freeret;
2378		}
2379		cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2380	}		/* end for */
2381
2382freeret:
2383	kfree(ld_buff);
2384	h->busy_configuring = 0;
2385	/* We return -1 here to tell the ACU that we have registered/updated
2386	 * all of the drives that we can and to keep it from calling us
2387	 * additional times.
2388	 */
2389	return -1;
2390mem_msg:
2391	dev_err(&h->pdev->dev, "out of memory\n");
2392	h->busy_configuring = 0;
2393	goto freeret;
2394}
2395
2396static void cciss_clear_drive_info(drive_info_struct *drive_info)
2397{
2398	/* zero out the disk size info */
2399	drive_info->nr_blocks = 0;
2400	drive_info->block_size = 0;
2401	drive_info->heads = 0;
2402	drive_info->sectors = 0;
2403	drive_info->cylinders = 0;
2404	drive_info->raid_level = -1;
2405	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2406	memset(drive_info->model, 0, sizeof(drive_info->model));
2407	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2408	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2409	/*
2410	 * don't clear the LUNID though, we need to remember which
2411	 * one this one is.
2412	 */
2413}
2414
2415/* This function will deregister the disk and it's queue from the
2416 * kernel.  It must be called with the controller lock held and the
2417 * drv structures busy_configuring flag set.  It's parameters are:
2418 *
2419 * disk = This is the disk to be deregistered
2420 * drv  = This is the drive_info_struct associated with the disk to be
2421 *        deregistered.  It contains information about the disk used
2422 *        by the driver.
2423 * clear_all = This flag determines whether or not the disk information
2424 *             is going to be completely cleared out and the highest_lun
2425 *             reset.  Sometimes we want to clear out information about
2426 *             the disk in preparation for re-adding it.  In this case
2427 *             the highest_lun should be left unchanged and the LunID
2428 *             should not be cleared.
2429 * via_ioctl
2430 *    This indicates whether we've reached this path via ioctl.
2431 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2432 *    If this path is reached via ioctl(), then the max_usage_count will
2433 *    be 1, as the process calling ioctl() has got to have the device open.
2434 *    If we get here via sysfs, then the max usage count will be zero.
2435*/
2436static int deregister_disk(ctlr_info_t *h, int drv_index,
2437			   int clear_all, int via_ioctl)
2438{
2439	int i;
2440	struct gendisk *disk;
2441	drive_info_struct *drv;
2442	int recalculate_highest_lun;
2443
2444	if (!capable(CAP_SYS_RAWIO))
2445		return -EPERM;
2446
2447	drv = h->drv[drv_index];
2448	disk = h->gendisk[drv_index];
2449
2450	/* make sure logical volume is NOT is use */
2451	if (clear_all || (h->gendisk[0] == disk)) {
2452		if (drv->usage_count > via_ioctl)
2453			return -EBUSY;
2454	} else if (drv->usage_count > 0)
2455		return -EBUSY;
2456
2457	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2458
2459	/* invalidate the devices and deregister the disk.  If it is disk
2460	 * zero do not deregister it but just zero out it's values.  This
2461	 * allows us to delete disk zero but keep the controller registered.
2462	 */
2463	if (h->gendisk[0] != disk) {
2464		struct request_queue *q = disk->queue;
2465		if (disk->flags & GENHD_FL_UP) {
2466			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2467			del_gendisk(disk);
2468		}
2469		if (q)
2470			blk_cleanup_queue(q);
2471		/* If clear_all is set then we are deleting the logical
2472		 * drive, not just refreshing its info.  For drives
2473		 * other than disk 0 we will call put_disk.  We do not
2474		 * do this for disk 0 as we need it to be able to
2475		 * configure the controller.
2476		 */
2477		if (clear_all){
2478			/* This isn't pretty, but we need to find the
2479			 * disk in our array and NULL our the pointer.
2480			 * This is so that we will call alloc_disk if
2481			 * this index is used again later.
2482			 */
2483			for (i=0; i < CISS_MAX_LUN; i++){
2484				if (h->gendisk[i] == disk) {
2485					h->gendisk[i] = NULL;
2486					break;
2487				}
2488			}
2489			put_disk(disk);
2490		}
2491	} else {
2492		set_capacity(disk, 0);
2493		cciss_clear_drive_info(drv);
2494	}
2495
2496	--h->num_luns;
2497
2498	/* if it was the last disk, find the new hightest lun */
2499	if (clear_all && recalculate_highest_lun) {
2500		int newhighest = -1;
2501		for (i = 0; i <= h->highest_lun; i++) {
2502			/* if the disk has size > 0, it is available */
2503			if (h->drv[i] && h->drv[i]->heads)
2504				newhighest = i;
2505		}
2506		h->highest_lun = newhighest;
2507	}
2508	return 0;
2509}
2510
2511static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2512		size_t size, __u8 page_code, unsigned char *scsi3addr,
2513		int cmd_type)
2514{
2515	u64bit buff_dma_handle;
2516	int status = IO_OK;
2517
2518	c->cmd_type = CMD_IOCTL_PEND;
2519	c->Header.ReplyQueue = 0;
2520	if (buff != NULL) {
2521		c->Header.SGList = 1;
2522		c->Header.SGTotal = 1;
2523	} else {
2524		c->Header.SGList = 0;
2525		c->Header.SGTotal = 0;
2526	}
2527	c->Header.Tag.lower = c->busaddr;
2528	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2529
2530	c->Request.Type.Type = cmd_type;
2531	if (cmd_type == TYPE_CMD) {
2532		switch (cmd) {
2533		case CISS_INQUIRY:
2534			/* are we trying to read a vital product page */
2535			if (page_code != 0) {
2536				c->Request.CDB[1] = 0x01;
2537				c->Request.CDB[2] = page_code;
2538			}
2539			c->Request.CDBLen = 6;
2540			c->Request.Type.Attribute = ATTR_SIMPLE;
2541			c->Request.Type.Direction = XFER_READ;
2542			c->Request.Timeout = 0;
2543			c->Request.CDB[0] = CISS_INQUIRY;
2544			c->Request.CDB[4] = size & 0xFF;
2545			break;
2546		case CISS_REPORT_LOG:
2547		case CISS_REPORT_PHYS:
2548			/* Talking to controller so It's a physical command
2549			   mode = 00 target = 0.  Nothing to write.
2550			 */
2551			c->Request.CDBLen = 12;
2552			c->Request.Type.Attribute = ATTR_SIMPLE;
2553			c->Request.Type.Direction = XFER_READ;
2554			c->Request.Timeout = 0;
2555			c->Request.CDB[0] = cmd;
2556			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2557			c->Request.CDB[7] = (size >> 16) & 0xFF;
2558			c->Request.CDB[8] = (size >> 8) & 0xFF;
2559			c->Request.CDB[9] = size & 0xFF;
2560			break;
2561
2562		case CCISS_READ_CAPACITY:
2563			c->Request.CDBLen = 10;
2564			c->Request.Type.Attribute = ATTR_SIMPLE;
2565			c->Request.Type.Direction = XFER_READ;
2566			c->Request.Timeout = 0;
2567			c->Request.CDB[0] = cmd;
2568			break;
2569		case CCISS_READ_CAPACITY_16:
2570			c->Request.CDBLen = 16;
2571			c->Request.Type.Attribute = ATTR_SIMPLE;
2572			c->Request.Type.Direction = XFER_READ;
2573			c->Request.Timeout = 0;
2574			c->Request.CDB[0] = cmd;
2575			c->Request.CDB[1] = 0x10;
2576			c->Request.CDB[10] = (size >> 24) & 0xFF;
2577			c->Request.CDB[11] = (size >> 16) & 0xFF;
2578			c->Request.CDB[12] = (size >> 8) & 0xFF;
2579			c->Request.CDB[13] = size & 0xFF;
2580			c->Request.Timeout = 0;
2581			c->Request.CDB[0] = cmd;
2582			break;
2583		case CCISS_CACHE_FLUSH:
2584			c->Request.CDBLen = 12;
2585			c->Request.Type.Attribute = ATTR_SIMPLE;
2586			c->Request.Type.Direction = XFER_WRITE;
2587			c->Request.Timeout = 0;
2588			c->Request.CDB[0] = BMIC_WRITE;
2589			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2590			break;
2591		case TEST_UNIT_READY:
2592			c->Request.CDBLen = 6;
2593			c->Request.Type.Attribute = ATTR_SIMPLE;
2594			c->Request.Type.Direction = XFER_NONE;
2595			c->Request.Timeout = 0;
2596			break;
2597		default:
2598			dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2599			return IO_ERROR;
2600		}
2601	} else if (cmd_type == TYPE_MSG) {
2602		switch (cmd) {
2603		case CCISS_ABORT_MSG:
2604			c->Request.CDBLen = 12;
2605			c->Request.Type.Attribute = ATTR_SIMPLE;
2606			c->Request.Type.Direction = XFER_WRITE;
2607			c->Request.Timeout = 0;
2608			c->Request.CDB[0] = cmd;	/* abort */
2609			c->Request.CDB[1] = 0;	/* abort a command */
2610			/* buff contains the tag of the command to abort */
2611			memcpy(&c->Request.CDB[4], buff, 8);
2612			break;
2613		case CCISS_RESET_MSG:
2614			c->Request.CDBLen = 16;
2615			c->Request.Type.Attribute = ATTR_SIMPLE;
2616			c->Request.Type.Direction = XFER_NONE;
2617			c->Request.Timeout = 0;
2618			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2619			c->Request.CDB[0] = cmd;	/* reset */
2620			c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2621			break;
2622		case CCISS_NOOP_MSG:
2623			c->Request.CDBLen = 1;
2624			c->Request.Type.Attribute = ATTR_SIMPLE;
2625			c->Request.Type.Direction = XFER_WRITE;
2626			c->Request.Timeout = 0;
2627			c->Request.CDB[0] = cmd;
2628			break;
2629		default:
2630			dev_warn(&h->pdev->dev,
2631				"unknown message type %d\n", cmd);
2632			return IO_ERROR;
2633		}
2634	} else {
2635		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2636		return IO_ERROR;
2637	}
2638	/* Fill in the scatter gather information */
2639	if (size > 0) {
2640		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2641							     buff, size,
2642							     PCI_DMA_BIDIRECTIONAL);
2643		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2644		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2645		c->SG[0].Len = size;
2646		c->SG[0].Ext = 0;	/* we are not chaining */
2647	}
2648	return status;
2649}
2650
2651static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2652	u8 reset_type)
2653{
2654	CommandList_struct *c;
2655	int return_status;
2656
2657	c = cmd_alloc(h);
2658	if (!c)
2659		return -ENOMEM;
2660	return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2661		CTLR_LUNID, TYPE_MSG);
2662	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2663	if (return_status != IO_OK) {
2664		cmd_special_free(h, c);
2665		return return_status;
2666	}
2667	c->waiting = NULL;
2668	enqueue_cmd_and_start_io(h, c);
2669	/* Don't wait for completion, the reset won't complete.  Don't free
2670	 * the command either.  This is the last command we will send before
2671	 * re-initializing everything, so it doesn't matter and won't leak.
2672	 */
2673	return 0;
2674}
2675
2676static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2677{
2678	switch (c->err_info->ScsiStatus) {
2679	case SAM_STAT_GOOD:
2680		return IO_OK;
2681	case SAM_STAT_CHECK_CONDITION:
2682		switch (0xf & c->err_info->SenseInfo[2]) {
2683		case 0: return IO_OK; /* no sense */
2684		case 1: return IO_OK; /* recovered error */
2685		default:
2686			if (check_for_unit_attention(h, c))
2687				return IO_NEEDS_RETRY;
2688			dev_warn(&h->pdev->dev, "cmd 0x%02x "
2689				"check condition, sense key = 0x%02x\n",
2690				c->Request.CDB[0], c->err_info->SenseInfo[2]);
2691		}
2692		break;
2693	default:
2694		dev_warn(&h->pdev->dev, "cmd 0x%02x"
2695			"scsi status = 0x%02x\n",
2696			c->Request.CDB[0], c->err_info->ScsiStatus);
2697		break;
2698	}
2699	return IO_ERROR;
2700}
2701
2702static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2703{
2704	int return_status = IO_OK;
2705
2706	if (c->err_info->CommandStatus == CMD_SUCCESS)
2707		return IO_OK;
2708
2709	switch (c->err_info->CommandStatus) {
2710	case CMD_TARGET_STATUS:
2711		return_status = check_target_status(h, c);
2712		break;
2713	case CMD_DATA_UNDERRUN:
2714	case CMD_DATA_OVERRUN:
2715		/* expected for inquiry and report lun commands */
2716		break;
2717	case CMD_INVALID:
2718		dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2719		       "reported invalid\n", c->Request.CDB[0]);
2720		return_status = IO_ERROR;
2721		break;
2722	case CMD_PROTOCOL_ERR:
2723		dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2724		       "protocol error\n", c->Request.CDB[0]);
2725		return_status = IO_ERROR;
2726		break;
2727	case CMD_HARDWARE_ERR:
2728		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2729		       " hardware error\n", c->Request.CDB[0]);
2730		return_status = IO_ERROR;
2731		break;
2732	case CMD_CONNECTION_LOST:
2733		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2734		       "connection lost\n", c->Request.CDB[0]);
2735		return_status = IO_ERROR;
2736		break;
2737	case CMD_ABORTED:
2738		dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2739		       "aborted\n", c->Request.CDB[0]);
2740		return_status = IO_ERROR;
2741		break;
2742	case CMD_ABORT_FAILED:
2743		dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2744		       "abort failed\n", c->Request.CDB[0]);
2745		return_status = IO_ERROR;
2746		break;
2747	case CMD_UNSOLICITED_ABORT:
2748		dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2749			c->Request.CDB[0]);
2750		return_status = IO_NEEDS_RETRY;
2751		break;
2752	case CMD_UNABORTABLE:
2753		dev_warn(&h->pdev->dev, "cmd unabortable\n");
2754		return_status = IO_ERROR;
2755		break;
2756	default:
2757		dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2758		       "unknown status %x\n", c->Request.CDB[0],
2759		       c->err_info->CommandStatus);
2760		return_status = IO_ERROR;
2761	}
2762	return return_status;
2763}
2764
2765static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2766	int attempt_retry)
2767{
2768	DECLARE_COMPLETION_ONSTACK(wait);
2769	u64bit buff_dma_handle;
2770	int return_status = IO_OK;
2771
2772resend_cmd2:
2773	c->waiting = &wait;
2774	enqueue_cmd_and_start_io(h, c);
2775
2776	wait_for_completion(&wait);
2777
2778	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2779		goto command_done;
2780
2781	return_status = process_sendcmd_error(h, c);
2782
2783	if (return_status == IO_NEEDS_RETRY &&
2784		c->retry_count < MAX_CMD_RETRIES) {
2785		dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2786			c->Request.CDB[0]);
2787		c->retry_count++;
2788		/* erase the old error information */
2789		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2790		return_status = IO_OK;
2791		INIT_COMPLETION(wait);
2792		goto resend_cmd2;
2793	}
2794
2795command_done:
2796	/* unlock the buffers from DMA */
2797	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2798	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2799	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2800			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2801	return return_status;
2802}
2803
2804static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2805			   __u8 page_code, unsigned char scsi3addr[],
2806			int cmd_type)
2807{
2808	CommandList_struct *c;
2809	int return_status;
2810
2811	c = cmd_special_alloc(h);
2812	if (!c)
2813		return -ENOMEM;
2814	return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2815		scsi3addr, cmd_type);
2816	if (return_status == IO_OK)
2817		return_status = sendcmd_withirq_core(h, c, 1);
2818
2819	cmd_special_free(h, c);
2820	return return_status;
2821}
2822
2823static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2824				   sector_t total_size,
2825				   unsigned int block_size,
2826				   InquiryData_struct *inq_buff,
2827				   drive_info_struct *drv)
2828{
2829	int return_code;
2830	unsigned long t;
2831	unsigned char scsi3addr[8];
2832
2833	memset(inq_buff, 0, sizeof(InquiryData_struct));
2834	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2835	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2836			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2837	if (return_code == IO_OK) {
2838		if (inq_buff->data_byte[8] == 0xFF) {
2839			dev_warn(&h->pdev->dev,
2840			       "reading geometry failed, volume "
2841			       "does not support reading geometry\n");
2842			drv->heads = 255;
2843			drv->sectors = 32;	/* Sectors per track */
2844			drv->cylinders = total_size + 1;
2845			drv->raid_level = RAID_UNKNOWN;
2846		} else {
2847			drv->heads = inq_buff->data_byte[6];
2848			drv->sectors = inq_buff->data_byte[7];
2849			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2850			drv->cylinders += inq_buff->data_byte[5];
2851			drv->raid_level = inq_buff->data_byte[8];
2852		}
2853		drv->block_size = block_size;
2854		drv->nr_blocks = total_size + 1;
2855		t = drv->heads * drv->sectors;
2856		if (t > 1) {
2857			sector_t real_size = total_size + 1;
2858			unsigned long rem = sector_div(real_size, t);
2859			if (rem)
2860				real_size++;
2861			drv->cylinders = real_size;
2862		}
2863	} else {		/* Get geometry failed */
2864		dev_warn(&h->pdev->dev, "reading geometry failed\n");
2865	}
2866}
2867
2868static void
2869cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2870		    unsigned int *block_size)
2871{
2872	ReadCapdata_struct *buf;
2873	int return_code;
2874	unsigned char scsi3addr[8];
2875
2876	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2877	if (!buf) {
2878		dev_warn(&h->pdev->dev, "out of memory\n");
2879		return;
2880	}
2881
2882	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2883	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2884		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2885	if (return_code == IO_OK) {
2886		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2887		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2888	} else {		/* read capacity command failed */
2889		dev_warn(&h->pdev->dev, "read capacity failed\n");
2890		*total_size = 0;
2891		*block_size = BLOCK_SIZE;
2892	}
2893	kfree(buf);
2894}
2895
2896static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2897	sector_t *total_size, unsigned int *block_size)
2898{
2899	ReadCapdata_struct_16 *buf;
2900	int return_code;
2901	unsigned char scsi3addr[8];
2902
2903	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2904	if (!buf) {
2905		dev_warn(&h->pdev->dev, "out of memory\n");
2906		return;
2907	}
2908
2909	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2910	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2911		buf, sizeof(ReadCapdata_struct_16),
2912			0, scsi3addr, TYPE_CMD);
2913	if (return_code == IO_OK) {
2914		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2915		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2916	} else {		/* read capacity command failed */
2917		dev_warn(&h->pdev->dev, "read capacity failed\n");
2918		*total_size = 0;
2919		*block_size = BLOCK_SIZE;
2920	}
2921	dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2922	       (unsigned long long)*total_size+1, *block_size);
2923	kfree(buf);
2924}
2925
2926static int cciss_revalidate(struct gendisk *disk)
2927{
2928	ctlr_info_t *h = get_host(disk);
2929	drive_info_struct *drv = get_drv(disk);
2930	int logvol;
2931	int FOUND = 0;
2932	unsigned int block_size;
2933	sector_t total_size;
2934	InquiryData_struct *inq_buff = NULL;
2935
2936	for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2937		if (!h->drv[logvol])
2938			continue;
2939		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2940			sizeof(drv->LunID)) == 0) {
2941			FOUND = 1;
2942			break;
2943		}
2944	}
2945
2946	if (!FOUND)
2947		return 1;
2948
2949	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2950	if (inq_buff == NULL) {
2951		dev_warn(&h->pdev->dev, "out of memory\n");
2952		return 1;
2953	}
2954	if (h->cciss_read == CCISS_READ_10) {
2955		cciss_read_capacity(h, logvol,
2956					&total_size, &block_size);
2957	} else {
2958		cciss_read_capacity_16(h, logvol,
2959					&total_size, &block_size);
2960	}
2961	cciss_geometry_inquiry(h, logvol, total_size, block_size,
2962			       inq_buff, drv);
2963
2964	blk_queue_logical_block_size(drv->queue, drv->block_size);
2965	set_capacity(disk, drv->nr_blocks);
2966
2967	kfree(inq_buff);
2968	return 0;
2969}
2970
2971/*
2972 * Map (physical) PCI mem into (virtual) kernel space
2973 */
2974static void __iomem *remap_pci_mem(ulong base, ulong size)
2975{
2976	ulong page_base = ((ulong) base) & PAGE_MASK;
2977	ulong page_offs = ((ulong) base) - page_base;
2978	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2979
2980	return page_remapped ? (page_remapped + page_offs) : NULL;
2981}
2982
2983/*
2984 * Takes jobs of the Q and sends them to the hardware, then puts it on
2985 * the Q to wait for completion.
2986 */
2987static void start_io(ctlr_info_t *h)
2988{
2989	CommandList_struct *c;
2990
2991	while (!list_empty(&h->reqQ)) {
2992		c = list_entry(h->reqQ.next, CommandList_struct, list);
2993		/* can't do anything if fifo is full */
2994		if ((h->access.fifo_full(h))) {
2995			dev_warn(&h->pdev->dev, "fifo full\n");
2996			break;
2997		}
2998
2999		/* Get the first entry from the Request Q */
3000		removeQ(c);
3001		h->Qdepth--;
3002
3003		/* Tell the controller execute command */
3004		h->access.submit_command(h, c);
3005
3006		/* Put job onto the completed Q */
3007		addQ(&h->cmpQ, c);
3008	}
3009}
3010
3011/* Assumes that h->lock is held. */
3012/* Zeros out the error record and then resends the command back */
3013/* to the controller */
3014static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3015{
3016	/* erase the old error information */
3017	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3018
3019	/* add it to software queue and then send it to the controller */
3020	addQ(&h->reqQ, c);
3021	h->Qdepth++;
3022	if (h->Qdepth > h->maxQsinceinit)
3023		h->maxQsinceinit = h->Qdepth;
3024
3025	start_io(h);
3026}
3027
3028static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3029	unsigned int msg_byte, unsigned int host_byte,
3030	unsigned int driver_byte)
3031{
3032	/* inverse of macros in scsi.h */
3033	return (scsi_status_byte & 0xff) |
3034		((msg_byte & 0xff) << 8) |
3035		((host_byte & 0xff) << 16) |
3036		((driver_byte & 0xff) << 24);
3037}
3038
3039static inline int evaluate_target_status(ctlr_info_t *h,
3040			CommandList_struct *cmd, int *retry_cmd)
3041{
3042	unsigned char sense_key;
3043	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3044	int error_value;
3045
3046	*retry_cmd = 0;
3047	/* If we get in here, it means we got "target status", that is, scsi status */
3048	status_byte = cmd->err_info->ScsiStatus;
3049	driver_byte = DRIVER_OK;
3050	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3051
3052	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3053		host_byte = DID_PASSTHROUGH;
3054	else
3055		host_byte = DID_OK;
3056
3057	error_value = make_status_bytes(status_byte, msg_byte,
3058		host_byte, driver_byte);
3059
3060	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3061		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3062			dev_warn(&h->pdev->dev, "cmd %p "
3063			       "has SCSI Status 0x%x\n",
3064			       cmd, cmd->err_info->ScsiStatus);
3065		return error_value;
3066	}
3067
3068	/* check the sense key */
3069	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3070	/* no status or recovered error */
3071	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3072	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3073		error_value = 0;
3074
3075	if (check_for_unit_attention(h, cmd)) {
3076		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3077		return 0;
3078	}
3079
3080	/* Not SG_IO or similar? */
3081	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3082		if (error_value != 0)
3083			dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3084			       " sense key = 0x%x\n", cmd, sense_key);
3085		return error_value;
3086	}
3087
3088	/* SG_IO or similar, copy sense data back */
3089	if (cmd->rq->sense) {
3090		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3091			cmd->rq->sense_len = cmd->err_info->SenseLen;
3092		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3093			cmd->rq->sense_len);
3094	} else
3095		cmd->rq->sense_len = 0;
3096
3097	return error_value;
3098}
3099
3100/* checks the status of the job and calls complete buffers to mark all
3101 * buffers for the completed job. Note that this function does not need
3102 * to hold the hba/queue lock.
3103 */
3104static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3105				    int timeout)
3106{
3107	int retry_cmd = 0;
3108	struct request *rq = cmd->rq;
3109
3110	rq->errors = 0;
3111
3112	if (timeout)
3113		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3114
3115	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3116		goto after_error_processing;
3117
3118	switch (cmd->err_info->CommandStatus) {
3119	case CMD_TARGET_STATUS:
3120		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3121		break;
3122	case CMD_DATA_UNDERRUN:
3123		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3124			dev_warn(&h->pdev->dev, "cmd %p has"
3125			       " completed with data underrun "
3126			       "reported\n", cmd);
3127			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3128		}
3129		break;
3130	case CMD_DATA_OVERRUN:
3131		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3132			dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3133			       " completed with data overrun "
3134			       "reported\n", cmd);
3135		break;
3136	case CMD_INVALID:
3137		dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3138		       "reported invalid\n", cmd);
3139		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3140			cmd->err_info->CommandStatus, DRIVER_OK,
3141			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3142				DID_PASSTHROUGH : DID_ERROR);
3143		break;
3144	case CMD_PROTOCOL_ERR:
3145		dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3146		       "protocol error\n", cmd);
3147		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3148			cmd->err_info->CommandStatus, DRIVER_OK,
3149			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3150				DID_PASSTHROUGH : DID_ERROR);
3151		break;
3152	case CMD_HARDWARE_ERR:
3153		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3154		       " hardware error\n", cmd);
3155		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156			cmd->err_info->CommandStatus, DRIVER_OK,
3157			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158				DID_PASSTHROUGH : DID_ERROR);
3159		break;
3160	case CMD_CONNECTION_LOST:
3161		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3162		       "connection lost\n", cmd);
3163		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3164			cmd->err_info->CommandStatus, DRIVER_OK,
3165			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3166				DID_PASSTHROUGH : DID_ERROR);
3167		break;
3168	case CMD_ABORTED:
3169		dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3170		       "aborted\n", cmd);
3171		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3172			cmd->err_info->CommandStatus, DRIVER_OK,
3173			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3174				DID_PASSTHROUGH : DID_ABORT);
3175		break;
3176	case CMD_ABORT_FAILED:
3177		dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3178		       "abort failed\n", cmd);
3179		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3180			cmd->err_info->CommandStatus, DRIVER_OK,
3181			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3182				DID_PASSTHROUGH : DID_ERROR);
3183		break;
3184	case CMD_UNSOLICITED_ABORT:
3185		dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3186		       "abort %p\n", h->ctlr, cmd);
3187		if (cmd->retry_count < MAX_CMD_RETRIES) {
3188			retry_cmd = 1;
3189			dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3190			cmd->retry_count++;
3191		} else
3192			dev_warn(&h->pdev->dev,
3193				"%p retried too many times\n", cmd);
3194		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3195			cmd->err_info->CommandStatus, DRIVER_OK,
3196			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3197				DID_PASSTHROUGH : DID_ABORT);
3198		break;
3199	case CMD_TIMEOUT:
3200		dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3201		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3202			cmd->err_info->CommandStatus, DRIVER_OK,
3203			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3204				DID_PASSTHROUGH : DID_ERROR);
3205		break;
3206	case CMD_UNABORTABLE:
3207		dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3208		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3209			cmd->err_info->CommandStatus, DRIVER_OK,
3210			cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3211				DID_PASSTHROUGH : DID_ERROR);
3212		break;
3213	default:
3214		dev_warn(&h->pdev->dev, "cmd %p returned "
3215		       "unknown status %x\n", cmd,
3216		       cmd->err_info->CommandStatus);
3217		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3218			cmd->err_info->CommandStatus, DRIVER_OK,
3219			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3220				DID_PASSTHROUGH : DID_ERROR);
3221	}
3222
3223after_error_processing:
3224
3225	/* We need to return this command */
3226	if (retry_cmd) {
3227		resend_cciss_cmd(h, cmd);
3228		return;
3229	}
3230	cmd->rq->completion_data = cmd;
3231	blk_complete_request(cmd->rq);
3232}
3233
3234static inline u32 cciss_tag_contains_index(u32 tag)
3235{
3236#define DIRECT_LOOKUP_BIT 0x10
3237	return tag & DIRECT_LOOKUP_BIT;
3238}
3239
3240static inline u32 cciss_tag_to_index(u32 tag)
3241{
3242#define DIRECT_LOOKUP_SHIFT 5
3243	return tag >> DIRECT_LOOKUP_SHIFT;
3244}
3245
3246static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3247{
3248#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3249#define CCISS_SIMPLE_ERROR_BITS 0x03
3250	if (likely(h->transMethod & CFGTBL_Trans_Performant))
3251		return tag & ~CCISS_PERF_ERROR_BITS;
3252	return tag & ~CCISS_SIMPLE_ERROR_BITS;
3253}
3254
3255static inline void cciss_mark_tag_indexed(u32 *tag)
3256{
3257	*tag |= DIRECT_LOOKUP_BIT;
3258}
3259
3260static inline void cciss_set_tag_index(u32 *tag, u32 index)
3261{
3262	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3263}
3264
3265/*
3266 * Get a request and submit it to the controller.
3267 */
3268static void do_cciss_request(struct request_queue *q)
3269{
3270	ctlr_info_t *h = q->queuedata;
3271	CommandList_struct *c;
3272	sector_t start_blk;
3273	int seg;
3274	struct request *creq;
3275	u64bit temp64;
3276	struct scatterlist *tmp_sg;
3277	SGDescriptor_struct *curr_sg;
3278	drive_info_struct *drv;
3279	int i, dir;
3280	int sg_index = 0;
3281	int chained = 0;
3282
3283      queue:
3284	creq = blk_peek_request(q);
3285	if (!creq)
3286		goto startio;
3287
3288	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3289
3290	c = cmd_alloc(h);
3291	if (!c)
3292		goto full;
3293
3294	blk_start_request(creq);
3295
3296	tmp_sg = h->scatter_list[c->cmdindex];
3297	spin_unlock_irq(q->queue_lock);
3298
3299	c->cmd_type = CMD_RWREQ;
3300	c->rq = creq;
3301
3302	/* fill in the request */
3303	drv = creq->rq_disk->private_data;
3304	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3305	/* got command from pool, so use the command block index instead */
3306	/* for direct lookups. */
3307	/* The first 2 bits are reserved for controller error reporting. */
3308	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3309	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3310	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3311	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3312	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3313	c->Request.Type.Attribute = ATTR_SIMPLE;
3314	c->Request.Type.Direction =
3315	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3316	c->Request.Timeout = 0;	/* Don't time out */
3317	c->Request.CDB[0] =
3318	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3319	start_blk = blk_rq_pos(creq);
3320	dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3321	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3322	sg_init_table(tmp_sg, h->maxsgentries);
3323	seg = blk_rq_map_sg(q, creq, tmp_sg);
3324
3325	/* get the DMA records for the setup */
3326	if (c->Request.Type.Direction == XFER_READ)
3327		dir = PCI_DMA_FROMDEVICE;
3328	else
3329		dir = PCI_DMA_TODEVICE;
3330
3331	curr_sg = c->SG;
3332	sg_index = 0;
3333	chained = 0;
3334
3335	for (i = 0; i < seg; i++) {
3336		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3337			!chained && ((seg - i) > 1)) {
3338			/* Point to next chain block. */
3339			curr_sg = h->cmd_sg_list[c->cmdindex];
3340			sg_index = 0;
3341			chained = 1;
3342		}
3343		curr_sg[sg_index].Len = tmp_sg[i].length;
3344		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3345						tmp_sg[i].offset,
3346						tmp_sg[i].length, dir);
3347		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3348		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3349		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3350		++sg_index;
3351	}
3352	if (chained)
3353		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3354			(seg - (h->max_cmd_sgentries - 1)) *
3355				sizeof(SGDescriptor_struct));
3356
3357	/* track how many SG entries we are using */
3358	if (seg > h->maxSG)
3359		h->maxSG = seg;
3360
3361	dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3362			"chained[%d]\n",
3363			blk_rq_sectors(creq), seg, chained);
3364
3365	c->Header.SGTotal = seg + chained;
3366	if (seg <= h->max_cmd_sgentries)
3367		c->Header.SGList = c->Header.SGTotal;
3368	else
3369		c->Header.SGList = h->max_cmd_sgentries;
3370	set_performant_mode(h, c);
3371
3372	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3373		if(h->cciss_read == CCISS_READ_10) {
3374			c->Request.CDB[1] = 0;
3375			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3376			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3377			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3378			c->Request.CDB[5] = start_blk & 0xff;
3379			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3380			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3381			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3382			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3383		} else {
3384			u32 upper32 = upper_32_bits(start_blk);
3385
3386			c->Request.CDBLen = 16;
3387			c->Request.CDB[1]= 0;
3388			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3389			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3390			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3391			c->Request.CDB[5]= upper32 & 0xff;
3392			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3393			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3394			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3395			c->Request.CDB[9]= start_blk & 0xff;
3396			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3397			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3398			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3399			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3400			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3401		}
3402	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3403		c->Request.CDBLen = creq->cmd_len;
3404		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3405	} else {
3406		dev_warn(&h->pdev->dev, "bad request type %d\n",
3407			creq->cmd_type);
3408		BUG();
3409	}
3410
3411	spin_lock_irq(q->queue_lock);
3412
3413	addQ(&h->reqQ, c);
3414	h->Qdepth++;
3415	if (h->Qdepth > h->maxQsinceinit)
3416		h->maxQsinceinit = h->Qdepth;
3417
3418	goto queue;
3419full:
3420	blk_stop_queue(q);
3421startio:
3422	/* We will already have the driver lock here so not need
3423	 * to lock it.
3424	 */
3425	start_io(h);
3426}
3427
3428static inline unsigned long get_next_completion(ctlr_info_t *h)
3429{
3430	return h->access.command_completed(h);
3431}
3432
3433static inline int interrupt_pending(ctlr_info_t *h)
3434{
3435	return h->access.intr_pending(h);
3436}
3437
3438static inline long interrupt_not_for_us(ctlr_info_t *h)
3439{
3440	return ((h->access.intr_pending(h) == 0) ||
3441		(h->interrupts_enabled == 0));
3442}
3443
3444static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3445			u32 raw_tag)
3446{
3447	if (unlikely(tag_index >= h->nr_cmds)) {
3448		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3449		return 1;
3450	}
3451	return 0;
3452}
3453
3454static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3455				u32 raw_tag)
3456{
3457	removeQ(c);
3458	if (likely(c->cmd_type == CMD_RWREQ))
3459		complete_command(h, c, 0);
3460	else if (c->cmd_type == CMD_IOCTL_PEND)
3461		complete(c->waiting);
3462#ifdef CONFIG_CISS_SCSI_TAPE
3463	else if (c->cmd_type == CMD_SCSI)
3464		complete_scsi_command(c, 0, raw_tag);
3465#endif
3466}
3467
3468static inline u32 next_command(ctlr_info_t *h)
3469{
3470	u32 a;
3471
3472	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3473		return h->access.command_completed(h);
3474
3475	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3476		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3477		(h->reply_pool_head)++;
3478		h->commands_outstanding--;
3479	} else {
3480		a = FIFO_EMPTY;
3481	}
3482	/* Check for wraparound */
3483	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3484		h->reply_pool_head = h->reply_pool;
3485		h->reply_pool_wraparound ^= 1;
3486	}
3487	return a;
3488}
3489
3490/* process completion of an indexed ("direct lookup") command */
3491static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3492{
3493	u32 tag_index;
3494	CommandList_struct *c;
3495
3496	tag_index = cciss_tag_to_index(raw_tag);
3497	if (bad_tag(h, tag_index, raw_tag))
3498		return next_command(h);
3499	c = h->cmd_pool + tag_index;
3500	finish_cmd(h, c, raw_tag);
3501	return next_command(h);
3502}
3503
3504/* process completion of a non-indexed command */
3505static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3506{
3507	CommandList_struct *c = NULL;
3508	__u32 busaddr_masked, tag_masked;
3509
3510	tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3511	list_for_each_entry(c, &h->cmpQ, list) {
3512		busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3513		if (busaddr_masked == tag_masked) {
3514			finish_cmd(h, c, raw_tag);
3515			return next_command(h);
3516		}
3517	}
3518	bad_tag(h, h->nr_cmds + 1, raw_tag);
3519	return next_command(h);
3520}
3521
3522/* Some controllers, like p400, will give us one interrupt
3523 * after a soft reset, even if we turned interrupts off.
3524 * Only need to check for this in the cciss_xxx_discard_completions
3525 * functions.
3526 */
3527static int ignore_bogus_interrupt(ctlr_info_t *h)
3528{
3529	if (likely(!reset_devices))
3530		return 0;
3531
3532	if (likely(h->interrupts_enabled))
3533		return 0;
3534
3535	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3536		"(known firmware bug.)  Ignoring.\n");
3537
3538	return 1;
3539}
3540
3541static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3542{
3543	ctlr_info_t *h = dev_id;
3544	unsigned long flags;
3545	u32 raw_tag;
3546
3547	if (ignore_bogus_interrupt(h))
3548		return IRQ_NONE;
3549
3550	if (interrupt_not_for_us(h))
3551		return IRQ_NONE;
3552	spin_lock_irqsave(&h->lock, flags);
3553	while (interrupt_pending(h)) {
3554		raw_tag = get_next_completion(h);
3555		while (raw_tag != FIFO_EMPTY)
3556			raw_tag = next_command(h);
3557	}
3558	spin_unlock_irqrestore(&h->lock, flags);
3559	return IRQ_HANDLED;
3560}
3561
3562static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3563{
3564	ctlr_info_t *h = dev_id;
3565	unsigned long flags;
3566	u32 raw_tag;
3567
3568	if (ignore_bogus_interrupt(h))
3569		return IRQ_NONE;
3570
3571	spin_lock_irqsave(&h->lock, flags);
3572	raw_tag = get_next_completion(h);
3573	while (raw_tag != FIFO_EMPTY)
3574		raw_tag = next_command(h);
3575	spin_unlock_irqrestore(&h->lock, flags);
3576	return IRQ_HANDLED;
3577}
3578
3579static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3580{
3581	ctlr_info_t *h = dev_id;
3582	unsigned long flags;
3583	u32 raw_tag;
3584
3585	if (interrupt_not_for_us(h))
3586		return IRQ_NONE;
3587	spin_lock_irqsave(&h->lock, flags);
3588	while (interrupt_pending(h)) {
3589		raw_tag = get_next_completion(h);
3590		while (raw_tag != FIFO_EMPTY) {
3591			if (cciss_tag_contains_index(raw_tag))
3592				raw_tag = process_indexed_cmd(h, raw_tag);
3593			else
3594				raw_tag = process_nonindexed_cmd(h, raw_tag);
3595		}
3596	}
3597	spin_unlock_irqrestore(&h->lock, flags);
3598	return IRQ_HANDLED;
3599}
3600
3601/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3602 * check the interrupt pending register because it is not set.
3603 */
3604static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3605{
3606	ctlr_info_t *h = dev_id;
3607	unsigned long flags;
3608	u32 raw_tag;
3609
3610	spin_lock_irqsave(&h->lock, flags);
3611	raw_tag = get_next_completion(h);
3612	while (raw_tag != FIFO_EMPTY) {
3613		if (cciss_tag_contains_index(raw_tag))
3614			raw_tag = process_indexed_cmd(h, raw_tag);
3615		else
3616			raw_tag = process_nonindexed_cmd(h, raw_tag);
3617	}
3618	spin_unlock_irqrestore(&h->lock, flags);
3619	return IRQ_HANDLED;
3620}
3621
3622/**
3623 * add_to_scan_list() - add controller to rescan queue
3624 * @h:		      Pointer to the controller.
3625 *
3626 * Adds the controller to the rescan queue if not already on the queue.
3627 *
3628 * returns 1 if added to the queue, 0 if skipped (could be on the
3629 * queue already, or the controller could be initializing or shutting
3630 * down).
3631 **/
3632static int add_to_scan_list(struct ctlr_info *h)
3633{
3634	struct ctlr_info *test_h;
3635	int found = 0;
3636	int ret = 0;
3637
3638	if (h->busy_initializing)
3639		return 0;
3640
3641	if (!mutex_trylock(&h->busy_shutting_down))
3642		return 0;
3643
3644	mutex_lock(&scan_mutex);
3645	list_for_each_entry(test_h, &scan_q, scan_list) {
3646		if (test_h == h) {
3647			found = 1;
3648			break;
3649		}
3650	}
3651	if (!found && !h->busy_scanning) {
3652		INIT_COMPLETION(h->scan_wait);
3653		list_add_tail(&h->scan_list, &scan_q);
3654		ret = 1;
3655	}
3656	mutex_unlock(&scan_mutex);
3657	mutex_unlock(&h->busy_shutting_down);
3658
3659	return ret;
3660}
3661
3662/**
3663 * remove_from_scan_list() - remove controller from rescan queue
3664 * @h:			   Pointer to the controller.
3665 *
3666 * Removes the controller from the rescan queue if present. Blocks if
3667 * the controller is currently conducting a rescan.  The controller
3668 * can be in one of three states:
3669 * 1. Doesn't need a scan
3670 * 2. On the scan list, but not scanning yet (we remove it)
3671 * 3. Busy scanning (and not on the list). In this case we want to wait for
3672 *    the scan to complete to make sure the scanning thread for this
3673 *    controller is completely idle.
3674 **/
3675static void remove_from_scan_list(struct ctlr_info *h)
3676{
3677	struct ctlr_info *test_h, *tmp_h;
3678
3679	mutex_lock(&scan_mutex);
3680	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3681		if (test_h == h) { /* state 2. */
3682			list_del(&h->scan_list);
3683			complete_all(&h->scan_wait);
3684			mutex_unlock(&scan_mutex);
3685			return;
3686		}
3687	}
3688	if (h->busy_scanning) { /* state 3. */
3689		mutex_unlock(&scan_mutex);
3690		wait_for_completion(&h->scan_wait);
3691	} else { /* state 1, nothing to do. */
3692		mutex_unlock(&scan_mutex);
3693	}
3694}
3695
3696/**
3697 * scan_thread() - kernel thread used to rescan controllers
3698 * @data:	 Ignored.
3699 *
3700 * A kernel thread used scan for drive topology changes on
3701 * controllers. The thread processes only one controller at a time
3702 * using a queue.  Controllers are added to the queue using
3703 * add_to_scan_list() and removed from the queue either after done
3704 * processing or using remove_from_scan_list().
3705 *
3706 * returns 0.
3707 **/
3708static int scan_thread(void *data)
3709{
3710	struct ctlr_info *h;
3711
3712	while (1) {
3713		set_current_state(TASK_INTERRUPTIBLE);
3714		schedule();
3715		if (kthread_should_stop())
3716			break;
3717
3718		while (1) {
3719			mutex_lock(&scan_mutex);
3720			if (list_empty(&scan_q)) {
3721				mutex_unlock(&scan_mutex);
3722				break;
3723			}
3724
3725			h = list_entry(scan_q.next,
3726				       struct ctlr_info,
3727				       scan_list);
3728			list_del(&h->scan_list);
3729			h->busy_scanning = 1;
3730			mutex_unlock(&scan_mutex);
3731
3732			rebuild_lun_table(h, 0, 0);
3733			complete_all(&h->scan_wait);
3734			mutex_lock(&scan_mutex);
3735			h->busy_scanning = 0;
3736			mutex_unlock(&scan_mutex);
3737		}
3738	}
3739
3740	return 0;
3741}
3742
3743static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3744{
3745	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3746		return 0;
3747
3748	switch (c->err_info->SenseInfo[12]) {
3749	case STATE_CHANGED:
3750		dev_warn(&h->pdev->dev, "a state change "
3751			"detected, command retried\n");
3752		return 1;
3753	break;
3754	case LUN_FAILED:
3755		dev_warn(&h->pdev->dev, "LUN failure "
3756			"detected, action required\n");
3757		return 1;
3758	break;
3759	case REPORT_LUNS_CHANGED:
3760		dev_warn(&h->pdev->dev, "report LUN data changed\n");
3761	/*
3762	 * Here, we could call add_to_scan_list and wake up the scan thread,
3763	 * except that it's quite likely that we will get more than one
3764	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3765	 * that those which occur after the first one will likely happen
3766	 * *during* the scan_thread's rescan.  And the rescan code is not
3767	 * robust enough to restart in the middle, undoing what it has already
3768	 * done, and it's not clear that it's even possible to do this, since
3769	 * part of what it does is notify the block layer, which starts
3770	 * doing it's own i/o to read partition tables and so on, and the
3771	 * driver doesn't have visibility to know what might need undoing.
3772	 * In any event, if possible, it is horribly complicated to get right
3773	 * so we just don't do it for now.
3774	 *
3775	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3776	 */
3777		return 1;
3778	break;
3779	case POWER_OR_RESET:
3780		dev_warn(&h->pdev->dev,
3781			"a power on or device reset detected\n");
3782		return 1;
3783	break;
3784	case UNIT_ATTENTION_CLEARED:
3785		dev_warn(&h->pdev->dev,
3786			"unit attention cleared by another initiator\n");
3787		return 1;
3788	break;
3789	default:
3790		dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3791		return 1;
3792	}
3793}
3794
3795/*
3796 *  We cannot read the structure directly, for portability we must use
3797 *   the io functions.
3798 *   This is for debug only.
3799 */
3800static void print_cfg_table(ctlr_info_t *h)
3801{
3802	int i;
3803	char temp_name[17];
3804	CfgTable_struct *tb = h->cfgtable;
3805
3806	dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3807	dev_dbg(&h->pdev->dev, "------------------------------------\n");
3808	for (i = 0; i < 4; i++)
3809		temp_name[i] = readb(&(tb->Signature[i]));
3810	temp_name[4] = '\0';
3811	dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3812	dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3813		readl(&(tb->SpecValence)));
3814	dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3815	       readl(&(tb->TransportSupport)));
3816	dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3817	       readl(&(tb->TransportActive)));
3818	dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3819	       readl(&(tb->HostWrite.TransportRequest)));
3820	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3821	       readl(&(tb->HostWrite.CoalIntDelay)));
3822	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3823	       readl(&(tb->HostWrite.CoalIntCount)));
3824	dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3825	       readl(&(tb->CmdsOutMax)));
3826	dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3827		readl(&(tb->BusTypes)));
3828	for (i = 0; i < 16; i++)
3829		temp_name[i] = readb(&(tb->ServerName[i]));
3830	temp_name[16] = '\0';
3831	dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3832	dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3833		readl(&(tb->HeartBeat)));
3834}
3835
3836static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3837{
3838	int i, offset, mem_type, bar_type;
3839	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3840		return 0;
3841	offset = 0;
3842	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3843		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3844		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3845			offset += 4;
3846		else {
3847			mem_type = pci_resource_flags(pdev, i) &
3848			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3849			switch (mem_type) {
3850			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3851			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3852				offset += 4;	/* 32 bit */
3853				break;
3854			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3855				offset += 8;
3856				break;
3857			default:	/* reserved in PCI 2.2 */
3858				dev_warn(&pdev->dev,
3859				       "Base address is invalid\n");
3860				return -1;
3861				break;
3862			}
3863		}
3864		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3865			return i + 1;
3866	}
3867	return -1;
3868}
3869
3870/* Fill in bucket_map[], given nsgs (the max number of
3871 * scatter gather elements supported) and bucket[],
3872 * which is an array of 8 integers.  The bucket[] array
3873 * contains 8 different DMA transfer sizes (in 16
3874 * byte increments) which the controller uses to fetch
3875 * commands.  This function fills in bucket_map[], which
3876 * maps a given number of scatter gather elements to one of
3877 * the 8 DMA transfer sizes.  The point of it is to allow the
3878 * controller to only do as much DMA as needed to fetch the
3879 * command, with the DMA transfer size encoded in the lower
3880 * bits of the command address.
3881 */
3882static void  calc_bucket_map(int bucket[], int num_buckets,
3883	int nsgs, int *bucket_map)
3884{
3885	int i, j, b, size;
3886
3887	/* even a command with 0 SGs requires 4 blocks */
3888#define MINIMUM_TRANSFER_BLOCKS 4
3889#define NUM_BUCKETS 8
3890	/* Note, bucket_map must have nsgs+1 entries. */
3891	for (i = 0; i <= nsgs; i++) {
3892		/* Compute size of a command with i SG entries */
3893		size = i + MINIMUM_TRANSFER_BLOCKS;
3894		b = num_buckets; /* Assume the biggest bucket */
3895		/* Find the bucket that is just big enough */
3896		for (j = 0; j < 8; j++) {
3897			if (bucket[j] >= size) {
3898				b = j;
3899				break;
3900			}
3901		}
3902		/* for a command with i SG entries, use bucket b. */
3903		bucket_map[i] = b;
3904	}
3905}
3906
3907static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3908{
3909	int i;
3910
3911	/* under certain very rare conditions, this can take awhile.
3912	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3913	 * as we enter this code.) */
3914	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3915		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3916			break;
3917		usleep_range(10000, 20000);
3918	}
3919}
3920
3921static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3922	u32 use_short_tags)
3923{
3924	/* This is a bit complicated.  There are 8 registers on
3925	 * the controller which we write to to tell it 8 different
3926	 * sizes of commands which there may be.  It's a way of
3927	 * reducing the DMA done to fetch each command.  Encoded into
3928	 * each command's tag are 3 bits which communicate to the controller
3929	 * which of the eight sizes that command fits within.  The size of
3930	 * each command depends on how many scatter gather entries there are.
3931	 * Each SG entry requires 16 bytes.  The eight registers are programmed
3932	 * with the number of 16-byte blocks a command of that size requires.
3933	 * The smallest command possible requires 5 such 16 byte blocks.
3934	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3935	 * blocks.  Note, this only extends to the SG entries contained
3936	 * within the command block, and does not extend to chained blocks
3937	 * of SG elements.   bft[] contains the eight values we write to
3938	 * the registers.  They are not evenly distributed, but have more
3939	 * sizes for small commands, and fewer sizes for larger commands.
3940	 */
3941	__u32 trans_offset;
3942	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3943			/*
3944			 *  5 = 1 s/g entry or 4k
3945			 *  6 = 2 s/g entry or 8k
3946			 *  8 = 4 s/g entry or 16k
3947			 * 10 = 6 s/g entry or 24k
3948			 */
3949	unsigned long register_value;
3950	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3951
3952	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3953
3954	/* Controller spec: zero out this buffer. */
3955	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3956	h->reply_pool_head = h->reply_pool;
3957
3958	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3959	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3960				h->blockFetchTable);
3961	writel(bft[0], &h->transtable->BlockFetch0);
3962	writel(bft[1], &h->transtable->BlockFetch1);
3963	writel(bft[2], &h->transtable->BlockFetch2);
3964	writel(bft[3], &h->transtable->BlockFetch3);
3965	writel(bft[4], &h->transtable->BlockFetch4);
3966	writel(bft[5], &h->transtable->BlockFetch5);
3967	writel(bft[6], &h->transtable->BlockFetch6);
3968	writel(bft[7], &h->transtable->BlockFetch7);
3969
3970	/* size of controller ring buffer */
3971	writel(h->max_commands, &h->transtable->RepQSize);
3972	writel(1, &h->transtable->RepQCount);
3973	writel(0, &h->transtable->RepQCtrAddrLow32);
3974	writel(0, &h->transtable->RepQCtrAddrHigh32);
3975	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3976	writel(0, &h->transtable->RepQAddr0High32);
3977	writel(CFGTBL_Trans_Performant | use_short_tags,
3978			&(h->cfgtable->HostWrite.TransportRequest));
3979
3980	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3981	cciss_wait_for_mode_change_ack(h);
3982	register_value = readl(&(h->cfgtable->TransportActive));
3983	if (!(register_value & CFGTBL_Trans_Performant))
3984		dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3985					" performant mode\n");
3986}
3987
3988static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3989{
3990	__u32 trans_support;
3991
3992	if (cciss_simple_mode)
3993		return;
3994
3995	dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
3996	/* Attempt to put controller into performant mode if supported */
3997	/* Does board support performant mode? */
3998	trans_support = readl(&(h->cfgtable->TransportSupport));
3999	if (!(trans_support & PERFORMANT_MODE))
4000		return;
4001
4002	dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4003	/* Performant mode demands commands on a 32 byte boundary
4004	 * pci_alloc_consistent aligns on page boundarys already.
4005	 * Just need to check if divisible by 32
4006	 */
4007	if ((sizeof(CommandList_struct) % 32) != 0) {
4008		dev_warn(&h->pdev->dev, "%s %d %s\n",
4009			"cciss info: command size[",
4010			(int)sizeof(CommandList_struct),
4011			"] not divisible by 32, no performant mode..\n");
4012		return;
4013	}
4014
4015	/* Performant mode ring buffer and supporting data structures */
4016	h->reply_pool = (__u64 *)pci_alloc_consistent(
4017		h->pdev, h->max_commands * sizeof(__u64),
4018		&(h->reply_pool_dhandle));
4019
4020	/* Need a block fetch table for performant mode */
4021	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4022		sizeof(__u32)), GFP_KERNEL);
4023
4024	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4025		goto clean_up;
4026
4027	cciss_enter_performant_mode(h,
4028		trans_support & CFGTBL_Trans_use_short_tags);
4029
4030	/* Change the access methods to the performant access methods */
4031	h->access = SA5_performant_access;
4032	h->transMethod = CFGTBL_Trans_Performant;
4033
4034	return;
4035clean_up:
4036	kfree(h->blockFetchTable);
4037	if (h->reply_pool)
4038		pci_free_consistent(h->pdev,
4039				h->max_commands * sizeof(__u64),
4040				h->reply_pool,
4041				h->reply_pool_dhandle);
4042	return;
4043
4044} /* cciss_put_controller_into_performant_mode */
4045
4046/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4047 * controllers that are capable. If not, we use IO-APIC mode.
4048 */
4049
4050static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4051{
4052#ifdef CONFIG_PCI_MSI
4053	int err;
4054	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4055	{0, 2}, {0, 3}
4056	};
4057
4058	/* Some boards advertise MSI but don't really support it */
4059	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4060	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4061		goto default_int_mode;
4062
4063	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4064		err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4065		if (!err) {
4066			h->intr[0] = cciss_msix_entries[0].vector;
4067			h->intr[1] = cciss_msix_entries[1].vector;
4068			h->intr[2] = cciss_msix_entries[2].vector;
4069			h->intr[3] = cciss_msix_entries[3].vector;
4070			h->msix_vector = 1;
4071			return;
4072		}
4073		if (err > 0) {
4074			dev_warn(&h->pdev->dev,
4075				"only %d MSI-X vectors available\n", err);
4076			goto default_int_mode;
4077		} else {
4078			dev_warn(&h->pdev->dev,
4079				"MSI-X init failed %d\n", err);
4080			goto default_int_mode;
4081		}
4082	}
4083	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4084		if (!pci_enable_msi(h->pdev))
4085			h->msi_vector = 1;
4086		else
4087			dev_warn(&h->pdev->dev, "MSI init failed\n");
4088	}
4089default_int_mode:
4090#endif				/* CONFIG_PCI_MSI */
4091	/* if we get here we're going to use the default interrupt mode */
4092	h->intr[h->intr_mode] = h->pdev->irq;
4093	return;
4094}
4095
4096static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4097{
4098	int i;
4099	u32 subsystem_vendor_id, subsystem_device_id;
4100
4101	subsystem_vendor_id = pdev->subsystem_vendor;
4102	subsystem_device_id = pdev->subsystem_device;
4103	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4104			subsystem_vendor_id;
4105
4106	for (i = 0; i < ARRAY_SIZE(products); i++)
4107		if (*board_id == products[i].board_id)
4108			return i;
4109	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4110		*board_id);
4111	return -ENODEV;
4112}
4113
4114static inline bool cciss_board_disabled(ctlr_info_t *h)
4115{
4116	u16 command;
4117
4118	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4119	return ((command & PCI_COMMAND_MEMORY) == 0);
4120}
4121
4122static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4123	unsigned long *memory_bar)
4124{
4125	int i;
4126
4127	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4128		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4129			/* addressing mode bits already removed */
4130			*memory_bar = pci_resource_start(pdev, i);
4131			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4132				*memory_bar);
4133			return 0;
4134		}
4135	dev_warn(&pdev->dev, "no memory BAR found\n");
4136	return -ENODEV;
4137}
4138
4139static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4140	void __iomem *vaddr, int wait_for_ready)
4141#define BOARD_READY 1
4142#define BOARD_NOT_READY 0
4143{
4144	int i, iterations;
4145	u32 scratchpad;
4146
4147	if (wait_for_ready)
4148		iterations = CCISS_BOARD_READY_ITERATIONS;
4149	else
4150		iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4151
4152	for (i = 0; i < iterations; i++) {
4153		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4154		if (wait_for_ready) {
4155			if (scratchpad == CCISS_FIRMWARE_READY)
4156				return 0;
4157		} else {
4158			if (scratchpad != CCISS_FIRMWARE_READY)
4159				return 0;
4160		}
4161		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4162	}
4163	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4164	return -ENODEV;
4165}
4166
4167static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4168	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4169	u64 *cfg_offset)
4170{
4171	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4172	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4173	*cfg_base_addr &= (u32) 0x0000ffff;
4174	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4175	if (*cfg_base_addr_index == -1) {
4176		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4177			"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4178		return -ENODEV;
4179	}
4180	return 0;
4181}
4182
4183static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4184{
4185	u64 cfg_offset;
4186	u32 cfg_base_addr;
4187	u64 cfg_base_addr_index;
4188	u32 trans_offset;
4189	int rc;
4190
4191	rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4192		&cfg_base_addr_index, &cfg_offset);
4193	if (rc)
4194		return rc;
4195	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4196		cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4197	if (!h->cfgtable)
4198		return -ENOMEM;
4199	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4200	if (rc)
4201		return rc;
4202	/* Find performant mode table. */
4203	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4204	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4205				cfg_base_addr_index)+cfg_offset+trans_offset,
4206				sizeof(*h->transtable));
4207	if (!h->transtable)
4208		return -ENOMEM;
4209	return 0;
4210}
4211
4212static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4213{
4214	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4215
4216	/* Limit commands in memory limited kdump scenario. */
4217	if (reset_devices && h->max_commands > 32)
4218		h->max_commands = 32;
4219
4220	if (h->max_commands < 16) {
4221		dev_warn(&h->pdev->dev, "Controller reports "
4222			"max supported commands of %d, an obvious lie. "
4223			"Using 16.  Ensure that firmware is up to date.\n",
4224			h->max_commands);
4225		h->max_commands = 16;
4226	}
4227}
4228
4229/* Interrogate the hardware for some limits:
4230 * max commands, max SG elements without chaining, and with chaining,
4231 * SG chain block size, etc.
4232 */
4233static void __devinit cciss_find_board_params(ctlr_info_t *h)
4234{
4235	cciss_get_max_perf_mode_cmds(h);
4236	h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4237	h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4238	/*
4239	 * Limit in-command s/g elements to 32 save dma'able memory.
4240	 * Howvever spec says if 0, use 31
4241	 */
4242	h->max_cmd_sgentries = 31;
4243	if (h->maxsgentries > 512) {
4244		h->max_cmd_sgentries = 32;
4245		h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4246		h->maxsgentries--; /* save one for chain pointer */
4247	} else {
4248		h->maxsgentries = 31; /* default to traditional values */
4249		h->chainsize = 0;
4250	}
4251}
4252
4253static inline bool CISS_signature_present(ctlr_info_t *h)
4254{
4255	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4256	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
4257	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
4258	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
4259		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4260		return false;
4261	}
4262	return true;
4263}
4264
4265/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4266static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4267{
4268#ifdef CONFIG_X86
4269	u32 prefetch;
4270
4271	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4272	prefetch |= 0x100;
4273	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4274#endif
4275}
4276
4277/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4278 * in a prefetch beyond physical memory.
4279 */
4280static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4281{
4282	u32 dma_prefetch;
4283	__u32 dma_refetch;
4284
4285	if (h->board_id != 0x3225103C)
4286		return;
4287	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4288	dma_prefetch |= 0x8000;
4289	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4290	pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4291	dma_refetch |= 0x1;
4292	pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4293}
4294
4295static int __devinit cciss_pci_init(ctlr_info_t *h)
4296{
4297	int prod_index, err;
4298
4299	prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4300	if (prod_index < 0)
4301		return -ENODEV;
4302	h->product_name = products[prod_index].product_name;
4303	h->access = *(products[prod_index].access);
4304
4305	if (cciss_board_disabled(h)) {
4306		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4307		return -ENODEV;
4308	}
4309	err = pci_enable_device(h->pdev);
4310	if (err) {
4311		dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4312		return err;
4313	}
4314
4315	err = pci_request_regions(h->pdev, "cciss");
4316	if (err) {
4317		dev_warn(&h->pdev->dev,
4318			"Cannot obtain PCI resources, aborting\n");
4319		return err;
4320	}
4321
4322	dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4323	dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4324
4325/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4326 * else we use the IO-APIC interrupt assigned to us by system ROM.
4327 */
4328	cciss_interrupt_mode(h);
4329	err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4330	if (err)
4331		goto err_out_free_res;
4332	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4333	if (!h->vaddr) {
4334		err = -ENOMEM;
4335		goto err_out_free_res;
4336	}
4337	err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4338	if (err)
4339		goto err_out_free_res;
4340	err = cciss_find_cfgtables(h);
4341	if (err)
4342		goto err_out_free_res;
4343	print_cfg_table(h);
4344	cciss_find_board_params(h);
4345
4346	if (!CISS_signature_present(h)) {
4347		err = -ENODEV;
4348		goto err_out_free_res;
4349	}
4350	cciss_enable_scsi_prefetch(h);
4351	cciss_p600_dma_prefetch_quirk(h);
4352	err = cciss_enter_simple_mode(h);
4353	if (err)
4354		goto err_out_free_res;
4355	cciss_put_controller_into_performant_mode(h);
4356	return 0;
4357
4358err_out_free_res:
4359	/*
4360	 * Deliberately omit pci_disable_device(): it does something nasty to
4361	 * Smart Array controllers that pci_enable_device does not undo
4362	 */
4363	if (h->transtable)
4364		iounmap(h->transtable);
4365	if (h->cfgtable)
4366		iounmap(h->cfgtable);
4367	if (h->vaddr)
4368		iounmap(h->vaddr);
4369	pci_release_regions(h->pdev);
4370	return err;
4371}
4372
4373/* Function to find the first free pointer into our hba[] array
4374 * Returns -1 if no free entries are left.
4375 */
4376static int alloc_cciss_hba(struct pci_dev *pdev)
4377{
4378	int i;
4379
4380	for (i = 0; i < MAX_CTLR; i++) {
4381		if (!hba[i]) {
4382			ctlr_info_t *h;
4383
4384			h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4385			if (!h)
4386				goto Enomem;
4387			hba[i] = h;
4388			return i;
4389		}
4390	}
4391	dev_warn(&pdev->dev, "This driver supports a maximum"
4392	       " of %d controllers.\n", MAX_CTLR);
4393	return -1;
4394Enomem:
4395	dev_warn(&pdev->dev, "out of memory.\n");
4396	return -1;
4397}
4398
4399static void free_hba(ctlr_info_t *h)
4400{
4401	int i;
4402
4403	hba[h->ctlr] = NULL;
4404	for (i = 0; i < h->highest_lun + 1; i++)
4405		if (h->gendisk[i] != NULL)
4406			put_disk(h->gendisk[i]);
4407	kfree(h);
4408}
4409
4410/* Send a message CDB to the firmware. */
4411static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4412{
4413	typedef struct {
4414		CommandListHeader_struct CommandHeader;
4415		RequestBlock_struct Request;
4416		ErrDescriptor_struct ErrorDescriptor;
4417	} Command;
4418	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4419	Command *cmd;
4420	dma_addr_t paddr64;
4421	uint32_t paddr32, tag;
4422	void __iomem *vaddr;
4423	int i, err;
4424
4425	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4426	if (vaddr == NULL)
4427		return -ENOMEM;
4428
4429	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4430	   CCISS commands, so they must be allocated from the lower 4GiB of
4431	   memory. */
4432	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4433	if (err) {
4434		iounmap(vaddr);
4435		return -ENOMEM;
4436	}
4437
4438	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4439	if (cmd == NULL) {
4440		iounmap(vaddr);
4441		return -ENOMEM;
4442	}
4443
4444	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4445	   although there's no guarantee, we assume that the address is at
4446	   least 4-byte aligned (most likely, it's page-aligned). */
4447	paddr32 = paddr64;
4448
4449	cmd->CommandHeader.ReplyQueue = 0;
4450	cmd->CommandHeader.SGList = 0;
4451	cmd->CommandHeader.SGTotal = 0;
4452	cmd->CommandHeader.Tag.lower = paddr32;
4453	cmd->CommandHeader.Tag.upper = 0;
4454	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4455
4456	cmd->Request.CDBLen = 16;
4457	cmd->Request.Type.Type = TYPE_MSG;
4458	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4459	cmd->Request.Type.Direction = XFER_NONE;
4460	cmd->Request.Timeout = 0; /* Don't time out */
4461	cmd->Request.CDB[0] = opcode;
4462	cmd->Request.CDB[1] = type;
4463	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4464
4465	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4466	cmd->ErrorDescriptor.Addr.upper = 0;
4467	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4468
4469	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4470
4471	for (i = 0; i < 10; i++) {
4472		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4473		if ((tag & ~3) == paddr32)
4474			break;
4475		msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4476	}
4477
4478	iounmap(vaddr);
4479
4480	/* we leak the DMA buffer here ... no choice since the controller could
4481	   still complete the command. */
4482	if (i == 10) {
4483		dev_err(&pdev->dev,
4484			"controller message %02x:%02x timed out\n",
4485			opcode, type);
4486		return -ETIMEDOUT;
4487	}
4488
4489	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4490
4491	if (tag & 2) {
4492		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4493			opcode, type);
4494		return -EIO;
4495	}
4496
4497	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4498		opcode, type);
4499	return 0;
4500}
4501
4502#define cciss_noop(p) cciss_message(p, 3, 0)
4503
4504static int cciss_controller_hard_reset(struct pci_dev *pdev,
4505	void * __iomem vaddr, u32 use_doorbell)
4506{
4507	u16 pmcsr;
4508	int pos;
4509
4510	if (use_doorbell) {
4511		/* For everything after the P600, the PCI power state method
4512		 * of resetting the controller doesn't work, so we have this
4513		 * other way using the doorbell register.
4514		 */
4515		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4516		writel(use_doorbell, vaddr + SA5_DOORBELL);
4517	} else { /* Try to do it the PCI power state way */
4518
4519		/* Quoting from the Open CISS Specification: "The Power
4520		 * Management Control/Status Register (CSR) controls the power
4521		 * state of the device.  The normal operating state is D0,
4522		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4523		 * the controller, place the interface device in D3 then to D0,
4524		 * this causes a secondary PCI reset which will reset the
4525		 * controller." */
4526
4527		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4528		if (pos == 0) {
4529			dev_err(&pdev->dev,
4530				"cciss_controller_hard_reset: "
4531				"PCI PM not supported\n");
4532			return -ENODEV;
4533		}
4534		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4535		/* enter the D3hot power management state */
4536		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4537		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4538		pmcsr |= PCI_D3hot;
4539		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4540
4541		msleep(500);
4542
4543		/* enter the D0 power management state */
4544		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4545		pmcsr |= PCI_D0;
4546		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4547	}
4548	return 0;
4549}
4550
4551static __devinit void init_driver_version(char *driver_version, int len)
4552{
4553	memset(driver_version, 0, len);
4554	strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4555}
4556
4557static __devinit int write_driver_ver_to_cfgtable(
4558	CfgTable_struct __iomem *cfgtable)
4559{
4560	char *driver_version;
4561	int i, size = sizeof(cfgtable->driver_version);
4562
4563	driver_version = kmalloc(size, GFP_KERNEL);
4564	if (!driver_version)
4565		return -ENOMEM;
4566
4567	init_driver_version(driver_version, size);
4568	for (i = 0; i < size; i++)
4569		writeb(driver_version[i], &cfgtable->driver_version[i]);
4570	kfree(driver_version);
4571	return 0;
4572}
4573
4574static __devinit void read_driver_ver_from_cfgtable(
4575	CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4576{
4577	int i;
4578
4579	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4580		driver_ver[i] = readb(&cfgtable->driver_version[i]);
4581}
4582
4583static __devinit int controller_reset_failed(
4584	CfgTable_struct __iomem *cfgtable)
4585{
4586
4587	char *driver_ver, *old_driver_ver;
4588	int rc, size = sizeof(cfgtable->driver_version);
4589
4590	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4591	if (!old_driver_ver)
4592		return -ENOMEM;
4593	driver_ver = old_driver_ver + size;
4594
4595	/* After a reset, the 32 bytes of "driver version" in the cfgtable
4596	 * should have been changed, otherwise we know the reset failed.
4597	 */
4598	init_driver_version(old_driver_ver, size);
4599	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4600	rc = !memcmp(driver_ver, old_driver_ver, size);
4601	kfree(old_driver_ver);
4602	return rc;
4603}
4604
4605/* This does a hard reset of the controller using PCI power management
4606 * states or using the doorbell register. */
4607static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4608{
4609	u64 cfg_offset;
4610	u32 cfg_base_addr;
4611	u64 cfg_base_addr_index;
4612	void __iomem *vaddr;
4613	unsigned long paddr;
4614	u32 misc_fw_support;
4615	int rc;
4616	CfgTable_struct __iomem *cfgtable;
4617	u32 use_doorbell;
4618	u32 board_id;
4619	u16 command_register;
4620
4621	/* For controllers as old a the p600, this is very nearly
4622	 * the same thing as
4623	 *
4624	 * pci_save_state(pci_dev);
4625	 * pci_set_power_state(pci_dev, PCI_D3hot);
4626	 * pci_set_power_state(pci_dev, PCI_D0);
4627	 * pci_restore_state(pci_dev);
4628	 *
4629	 * For controllers newer than the P600, the pci power state
4630	 * method of resetting doesn't work so we have another way
4631	 * using the doorbell register.
4632	 */
4633
4634	/* Exclude 640x boards.  These are two pci devices in one slot
4635	 * which share a battery backed cache module.  One controls the
4636	 * cache, the other accesses the cache through the one that controls
4637	 * it.  If we reset the one controlling the cache, the other will
4638	 * likely not be happy.  Just forbid resetting this conjoined mess.
4639	 */
4640	cciss_lookup_board_id(pdev, &board_id);
4641	if (!ctlr_is_resettable(board_id)) {
4642		dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4643				"due to shared cache module.");
4644		return -ENODEV;
4645	}
4646
4647	/* if controller is soft- but not hard resettable... */
4648	if (!ctlr_is_hard_resettable(board_id))
4649		return -ENOTSUPP; /* try soft reset later. */
4650
4651	/* Save the PCI command register */
4652	pci_read_config_word(pdev, 4, &command_register);
4653	/* Turn the board off.  This is so that later pci_restore_state()
4654	 * won't turn the board on before the rest of config space is ready.
4655	 */
4656	pci_disable_device(pdev);
4657	pci_save_state(pdev);
4658
4659	/* find the first memory BAR, so we can find the cfg table */
4660	rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4661	if (rc)
4662		return rc;
4663	vaddr = remap_pci_mem(paddr, 0x250);
4664	if (!vaddr)
4665		return -ENOMEM;
4666
4667	/* find cfgtable in order to check if reset via doorbell is supported */
4668	rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4669					&cfg_base_addr_index, &cfg_offset);
4670	if (rc)
4671		goto unmap_vaddr;
4672	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4673		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4674	if (!cfgtable) {
4675		rc = -ENOMEM;
4676		goto unmap_vaddr;
4677	}
4678	rc = write_driver_ver_to_cfgtable(cfgtable);
4679	if (rc)
4680		goto unmap_vaddr;
4681
4682	/* If reset via doorbell register is supported, use that.
4683	 * There are two such methods.  Favor the newest method.
4684	 */
4685	misc_fw_support = readl(&cfgtable->misc_fw_support);
4686	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4687	if (use_doorbell) {
4688		use_doorbell = DOORBELL_CTLR_RESET2;
4689	} else {
4690		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4691		if (use_doorbell) {
4692			dev_warn(&pdev->dev, "Controller claims that "
4693				"'Bit 2 doorbell reset' is "
4694				"supported, but not 'bit 5 doorbell reset'.  "
4695				"Firmware update is recommended.\n");
4696			rc = -ENOTSUPP; /* use the soft reset */
4697			goto unmap_cfgtable;
4698		}
4699	}
4700
4701	rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4702	if (rc)
4703		goto unmap_cfgtable;
4704	pci_restore_state(pdev);
4705	rc = pci_enable_device(pdev);
4706	if (rc) {
4707		dev_warn(&pdev->dev, "failed to enable device.\n");
4708		goto unmap_cfgtable;
4709	}
4710	pci_write_config_word(pdev, 4, command_register);
4711
4712	/* Some devices (notably the HP Smart Array 5i Controller)
4713	   need a little pause here */
4714	msleep(CCISS_POST_RESET_PAUSE_MSECS);
4715
4716	/* Wait for board to become not ready, then ready. */
4717	dev_info(&pdev->dev, "Waiting for board to reset.\n");
4718	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4719	if (rc) {
4720		dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4721				"  Will try soft reset.\n");
4722		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4723		goto unmap_cfgtable;
4724	}
4725	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4726	if (rc) {
4727		dev_warn(&pdev->dev,
4728			"failed waiting for board to become ready "
4729			"after hard reset\n");
4730		goto unmap_cfgtable;
4731	}
4732
4733	rc = controller_reset_failed(vaddr);
4734	if (rc < 0)
4735		goto unmap_cfgtable;
4736	if (rc) {
4737		dev_warn(&pdev->dev, "Unable to successfully hard reset "
4738			"controller. Will try soft reset.\n");
4739		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4740	} else {
4741		dev_info(&pdev->dev, "Board ready after hard reset.\n");
4742	}
4743
4744unmap_cfgtable:
4745	iounmap(cfgtable);
4746
4747unmap_vaddr:
4748	iounmap(vaddr);
4749	return rc;
4750}
4751
4752static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4753{
4754	int rc, i;
4755
4756	if (!reset_devices)
4757		return 0;
4758
4759	/* Reset the controller with a PCI power-cycle or via doorbell */
4760	rc = cciss_kdump_hard_reset_controller(pdev);
4761
4762	/* -ENOTSUPP here means we cannot reset the controller
4763	 * but it's already (and still) up and running in
4764	 * "performant mode".  Or, it might be 640x, which can't reset
4765	 * due to concerns about shared bbwc between 6402/6404 pair.
4766	 */
4767	if (rc == -ENOTSUPP)
4768		return rc; /* just try to do the kdump anyhow. */
4769	if (rc)
4770		return -ENODEV;
4771
4772	/* Now try to get the controller to respond to a no-op */
4773	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4774	for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4775		if (cciss_noop(pdev) == 0)
4776			break;
4777		else
4778			dev_warn(&pdev->dev, "no-op failed%s\n",
4779				(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4780					"; re-trying" : ""));
4781		msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4782	}
4783	return 0;
4784}
4785
4786static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4787{
4788	h->cmd_pool_bits = kmalloc(
4789		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4790		sizeof(unsigned long), GFP_KERNEL);
4791	h->cmd_pool = pci_alloc_consistent(h->pdev,
4792		h->nr_cmds * sizeof(CommandList_struct),
4793		&(h->cmd_pool_dhandle));
4794	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4795		h->nr_cmds * sizeof(ErrorInfo_struct),
4796		&(h->errinfo_pool_dhandle));
4797	if ((h->cmd_pool_bits == NULL)
4798		|| (h->cmd_pool == NULL)
4799		|| (h->errinfo_pool == NULL)) {
4800		dev_err(&h->pdev->dev, "out of memory");
4801		return -ENOMEM;
4802	}
4803	return 0;
4804}
4805
4806static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4807{
4808	int i;
4809
4810	/* zero it, so that on free we need not know how many were alloc'ed */
4811	h->scatter_list = kzalloc(h->max_commands *
4812				sizeof(struct scatterlist *), GFP_KERNEL);
4813	if (!h->scatter_list)
4814		return -ENOMEM;
4815
4816	for (i = 0; i < h->nr_cmds; i++) {
4817		h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4818						h->maxsgentries, GFP_KERNEL);
4819		if (h->scatter_list[i] == NULL) {
4820			dev_err(&h->pdev->dev, "could not allocate "
4821				"s/g lists\n");
4822			return -ENOMEM;
4823		}
4824	}
4825	return 0;
4826}
4827
4828static void cciss_free_scatterlists(ctlr_info_t *h)
4829{
4830	int i;
4831
4832	if (h->scatter_list) {
4833		for (i = 0; i < h->nr_cmds; i++)
4834			kfree(h->scatter_list[i]);
4835		kfree(h->scatter_list);
4836	}
4837}
4838
4839static void cciss_free_cmd_pool(ctlr_info_t *h)
4840{
4841	kfree(h->cmd_pool_bits);
4842	if (h->cmd_pool)
4843		pci_free_consistent(h->pdev,
4844			h->nr_cmds * sizeof(CommandList_struct),
4845			h->cmd_pool, h->cmd_pool_dhandle);
4846	if (h->errinfo_pool)
4847		pci_free_consistent(h->pdev,
4848			h->nr_cmds * sizeof(ErrorInfo_struct),
4849			h->errinfo_pool, h->errinfo_pool_dhandle);
4850}
4851
4852static int cciss_request_irq(ctlr_info_t *h,
4853	irqreturn_t (*msixhandler)(int, void *),
4854	irqreturn_t (*intxhandler)(int, void *))
4855{
4856	if (h->msix_vector || h->msi_vector) {
4857		if (!request_irq(h->intr[h->intr_mode], msixhandler,
4858				IRQF_DISABLED, h->devname, h))
4859			return 0;
4860		dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4861			" for %s\n", h->intr[h->intr_mode],
4862			h->devname);
4863		return -1;
4864	}
4865
4866	if (!request_irq(h->intr[h->intr_mode], intxhandler,
4867			IRQF_DISABLED, h->devname, h))
4868		return 0;
4869	dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4870		h->intr[h->intr_mode], h->devname);
4871	return -1;
4872}
4873
4874static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4875{
4876	if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4877		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4878		return -EIO;
4879	}
4880
4881	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4882	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4883		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4884		return -1;
4885	}
4886
4887	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4888	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4889		dev_warn(&h->pdev->dev, "Board failed to become ready "
4890			"after soft reset.\n");
4891		return -1;
4892	}
4893
4894	return 0;
4895}
4896
4897static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4898{
4899	int ctlr = h->ctlr;
4900
4901	free_irq(h->intr[h->intr_mode], h);
4902#ifdef CONFIG_PCI_MSI
4903	if (h->msix_vector)
4904		pci_disable_msix(h->pdev);
4905	else if (h->msi_vector)
4906		pci_disable_msi(h->pdev);
4907#endif /* CONFIG_PCI_MSI */
4908	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4909	cciss_free_scatterlists(h);
4910	cciss_free_cmd_pool(h);
4911	kfree(h->blockFetchTable);
4912	if (h->reply_pool)
4913		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4914				h->reply_pool, h->reply_pool_dhandle);
4915	if (h->transtable)
4916		iounmap(h->transtable);
4917	if (h->cfgtable)
4918		iounmap(h->cfgtable);
4919	if (h->vaddr)
4920		iounmap(h->vaddr);
4921	unregister_blkdev(h->major, h->devname);
4922	cciss_destroy_hba_sysfs_entry(h);
4923	pci_release_regions(h->pdev);
4924	kfree(h);
4925	hba[ctlr] = NULL;
4926}
4927
4928/*
4929 *  This is it.  Find all the controllers and register them.  I really hate
4930 *  stealing all these major device numbers.
4931 *  returns the number of block devices registered.
4932 */
4933static int __devinit cciss_init_one(struct pci_dev *pdev,
4934				    const struct pci_device_id *ent)
4935{
4936	int i;
4937	int j = 0;
4938	int rc;
4939	int try_soft_reset = 0;
4940	int dac, return_code;
4941	InquiryData_struct *inq_buff;
4942	ctlr_info_t *h;
4943	unsigned long flags;
4944
4945	rc = cciss_init_reset_devices(pdev);
4946	if (rc) {
4947		if (rc != -ENOTSUPP)
4948			return rc;
4949		/* If the reset fails in a particular way (it has no way to do
4950		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4951		 * a soft reset once we get the controller configured up to the
4952		 * point that it can accept a command.
4953		 */
4954		try_soft_reset = 1;
4955		rc = 0;
4956	}
4957
4958reinit_after_soft_reset:
4959
4960	i = alloc_cciss_hba(pdev);
4961	if (i < 0)
4962		return -1;
4963
4964	h = hba[i];
4965	h->pdev = pdev;
4966	h->busy_initializing = 1;
4967	h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4968	INIT_LIST_HEAD(&h->cmpQ);
4969	INIT_LIST_HEAD(&h->reqQ);
4970	mutex_init(&h->busy_shutting_down);
4971
4972	if (cciss_pci_init(h) != 0)
4973		goto clean_no_release_regions;
4974
4975	sprintf(h->devname, "cciss%d", i);
4976	h->ctlr = i;
4977
4978	if (cciss_tape_cmds < 2)
4979		cciss_tape_cmds = 2;
4980	if (cciss_tape_cmds > 16)
4981		cciss_tape_cmds = 16;
4982
4983	init_completion(&h->scan_wait);
4984
4985	if (cciss_create_hba_sysfs_entry(h))
4986		goto clean0;
4987
4988	/* configure PCI DMA stuff */
4989	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4990		dac = 1;
4991	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4992		dac = 0;
4993	else {
4994		dev_err(&h->pdev->dev, "no suitable DMA available\n");
4995		goto clean1;
4996	}
4997
4998	/*
4999	 * register with the major number, or get a dynamic major number
5000	 * by passing 0 as argument.  This is done for greater than
5001	 * 8 controller support.
5002	 */
5003	if (i < MAX_CTLR_ORIG)
5004		h->major = COMPAQ_CISS_MAJOR + i;
5005	rc = register_blkdev(h->major, h->devname);
5006	if (rc == -EBUSY || rc == -EINVAL) {
5007		dev_err(&h->pdev->dev,
5008		       "Unable to get major number %d for %s "
5009		       "on hba %d\n", h->major, h->devname, i);
5010		goto clean1;
5011	} else {
5012		if (i >= MAX_CTLR_ORIG)
5013			h->major = rc;
5014	}
5015
5016	/* make sure the board interrupts are off */
5017	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5018	rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5019	if (rc)
5020		goto clean2;
5021
5022	dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5023	       h->devname, pdev->device, pci_name(pdev),
5024	       h->intr[h->intr_mode], dac ? "" : " not");
5025
5026	if (cciss_allocate_cmd_pool(h))
5027		goto clean4;
5028
5029	if (cciss_allocate_scatterlists(h))
5030		goto clean4;
5031
5032	h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5033		h->chainsize, h->nr_cmds);
5034	if (!h->cmd_sg_list && h->chainsize > 0)
5035		goto clean4;
5036
5037	spin_lock_init(&h->lock);
5038
5039	/* Initialize the pdev driver private data.
5040	   have it point to h.  */
5041	pci_set_drvdata(pdev, h);
5042	/* command and error info recs zeroed out before
5043	   they are used */
5044	memset(h->cmd_pool_bits, 0,
5045	       DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
5046			* sizeof(unsigned long));
5047
5048	h->num_luns = 0;
5049	h->highest_lun = -1;
5050	for (j = 0; j < CISS_MAX_LUN; j++) {
5051		h->drv[j] = NULL;
5052		h->gendisk[j] = NULL;
5053	}
5054
5055	/* At this point, the controller is ready to take commands.
5056	 * Now, if reset_devices and the hard reset didn't work, try
5057	 * the soft reset and see if that works.
5058	 */
5059	if (try_soft_reset) {
5060
5061		/* This is kind of gross.  We may or may not get a completion
5062		 * from the soft reset command, and if we do, then the value
5063		 * from the fifo may or may not be valid.  So, we wait 10 secs
5064		 * after the reset throwing away any completions we get during
5065		 * that time.  Unregister the interrupt handler and register
5066		 * fake ones to scoop up any residual completions.
5067		 */
5068		spin_lock_irqsave(&h->lock, flags);
5069		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5070		spin_unlock_irqrestore(&h->lock, flags);
5071		free_irq(h->intr[h->intr_mode], h);
5072		rc = cciss_request_irq(h, cciss_msix_discard_completions,
5073					cciss_intx_discard_completions);
5074		if (rc) {
5075			dev_warn(&h->pdev->dev, "Failed to request_irq after "
5076				"soft reset.\n");
5077			goto clean4;
5078		}
5079
5080		rc = cciss_kdump_soft_reset(h);
5081		if (rc) {
5082			dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5083			goto clean4;
5084		}
5085
5086		dev_info(&h->pdev->dev, "Board READY.\n");
5087		dev_info(&h->pdev->dev,
5088			"Waiting for stale completions to drain.\n");
5089		h->access.set_intr_mask(h, CCISS_INTR_ON);
5090		msleep(10000);
5091		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5092
5093		rc = controller_reset_failed(h->cfgtable);
5094		if (rc)
5095			dev_info(&h->pdev->dev,
5096				"Soft reset appears to have failed.\n");
5097
5098		/* since the controller's reset, we have to go back and re-init
5099		 * everything.  Easiest to just forget what we've done and do it
5100		 * all over again.
5101		 */
5102		cciss_undo_allocations_after_kdump_soft_reset(h);
5103		try_soft_reset = 0;
5104		if (rc)
5105			/* don't go to clean4, we already unallocated */
5106			return -ENODEV;
5107
5108		goto reinit_after_soft_reset;
5109	}
5110
5111	cciss_scsi_setup(h);
5112
5113	/* Turn the interrupts on so we can service requests */
5114	h->access.set_intr_mask(h, CCISS_INTR_ON);
5115
5116	/* Get the firmware version */
5117	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5118	if (inq_buff == NULL) {
5119		dev_err(&h->pdev->dev, "out of memory\n");
5120		goto clean4;
5121	}
5122
5123	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5124		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5125	if (return_code == IO_OK) {
5126		h->firm_ver[0] = inq_buff->data_byte[32];
5127		h->firm_ver[1] = inq_buff->data_byte[33];
5128		h->firm_ver[2] = inq_buff->data_byte[34];
5129		h->firm_ver[3] = inq_buff->data_byte[35];
5130	} else {	 /* send command failed */
5131		dev_warn(&h->pdev->dev, "unable to determine firmware"
5132			" version of controller\n");
5133	}
5134	kfree(inq_buff);
5135
5136	cciss_procinit(h);
5137
5138	h->cciss_max_sectors = 8192;
5139
5140	rebuild_lun_table(h, 1, 0);
5141	h->busy_initializing = 0;
5142	return 1;
5143
5144clean4:
5145	cciss_free_cmd_pool(h);
5146	cciss_free_scatterlists(h);
5147	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5148	free_irq(h->intr[h->intr_mode], h);
5149clean2:
5150	unregister_blkdev(h->major, h->devname);
5151clean1:
5152	cciss_destroy_hba_sysfs_entry(h);
5153clean0:
5154	pci_release_regions(pdev);
5155clean_no_release_regions:
5156	h->busy_initializing = 0;
5157
5158	/*
5159	 * Deliberately omit pci_disable_device(): it does something nasty to
5160	 * Smart Array controllers that pci_enable_device does not undo
5161	 */
5162	pci_set_drvdata(pdev, NULL);
5163	free_hba(h);
5164	return -1;
5165}
5166
5167static void cciss_shutdown(struct pci_dev *pdev)
5168{
5169	ctlr_info_t *h;
5170	char *flush_buf;
5171	int return_code;
5172
5173	h = pci_get_drvdata(pdev);
5174	flush_buf = kzalloc(4, GFP_KERNEL);
5175	if (!flush_buf) {
5176		dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5177		return;
5178	}
5179	/* write all data in the battery backed cache to disk */
5180	memset(flush_buf, 0, 4);
5181	return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5182		4, 0, CTLR_LUNID, TYPE_CMD);
5183	kfree(flush_buf);
5184	if (return_code != IO_OK)
5185		dev_warn(&h->pdev->dev, "Error flushing cache\n");
5186	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5187	free_irq(h->intr[h->intr_mode], h);
5188}
5189
5190static int __devinit cciss_enter_simple_mode(struct ctlr_info *h)
5191{
5192	u32 trans_support;
5193
5194	trans_support = readl(&(h->cfgtable->TransportSupport));
5195	if (!(trans_support & SIMPLE_MODE))
5196		return -ENOTSUPP;
5197
5198	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5199	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5200	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5201	cciss_wait_for_mode_change_ack(h);
5202	print_cfg_table(h);
5203	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5204		dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5205		return -ENODEV;
5206	}
5207	h->transMethod = CFGTBL_Trans_Simple;
5208	return 0;
5209}
5210
5211
5212static void __devexit cciss_remove_one(struct pci_dev *pdev)
5213{
5214	ctlr_info_t *h;
5215	int i, j;
5216
5217	if (pci_get_drvdata(pdev) == NULL) {
5218		dev_err(&pdev->dev, "Unable to remove device\n");
5219		return;
5220	}
5221
5222	h = pci_get_drvdata(pdev);
5223	i = h->ctlr;
5224	if (hba[i] == NULL) {
5225		dev_err(&pdev->dev, "device appears to already be removed\n");
5226		return;
5227	}
5228
5229	mutex_lock(&h->busy_shutting_down);
5230
5231	remove_from_scan_list(h);
5232	remove_proc_entry(h->devname, proc_cciss);
5233	unregister_blkdev(h->major, h->devname);
5234
5235	/* remove it from the disk list */
5236	for (j = 0; j < CISS_MAX_LUN; j++) {
5237		struct gendisk *disk = h->gendisk[j];
5238		if (disk) {
5239			struct request_queue *q = disk->queue;
5240
5241			if (disk->flags & GENHD_FL_UP) {
5242				cciss_destroy_ld_sysfs_entry(h, j, 1);
5243				del_gendisk(disk);
5244			}
5245			if (q)
5246				blk_cleanup_queue(q);
5247		}
5248	}
5249
5250#ifdef CONFIG_CISS_SCSI_TAPE
5251	cciss_unregister_scsi(h);	/* unhook from SCSI subsystem */
5252#endif
5253
5254	cciss_shutdown(pdev);
5255
5256#ifdef CONFIG_PCI_MSI
5257	if (h->msix_vector)
5258		pci_disable_msix(h->pdev);
5259	else if (h->msi_vector)
5260		pci_disable_msi(h->pdev);
5261#endif				/* CONFIG_PCI_MSI */
5262
5263	iounmap(h->transtable);
5264	iounmap(h->cfgtable);
5265	iounmap(h->vaddr);
5266
5267	cciss_free_cmd_pool(h);
5268	/* Free up sg elements */
5269	for (j = 0; j < h->nr_cmds; j++)
5270		kfree(h->scatter_list[j]);
5271	kfree(h->scatter_list);
5272	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5273	kfree(h->blockFetchTable);
5274	if (h->reply_pool)
5275		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5276				h->reply_pool, h->reply_pool_dhandle);
5277	/*
5278	 * Deliberately omit pci_disable_device(): it does something nasty to
5279	 * Smart Array controllers that pci_enable_device does not undo
5280	 */
5281	pci_release_regions(pdev);
5282	pci_set_drvdata(pdev, NULL);
5283	cciss_destroy_hba_sysfs_entry(h);
5284	mutex_unlock(&h->busy_shutting_down);
5285	free_hba(h);
5286}
5287
5288static struct pci_driver cciss_pci_driver = {
5289	.name = "cciss",
5290	.probe = cciss_init_one,
5291	.remove = __devexit_p(cciss_remove_one),
5292	.id_table = cciss_pci_device_id,	/* id_table */
5293	.shutdown = cciss_shutdown,
5294};
5295
5296/*
5297 *  This is it.  Register the PCI driver information for the cards we control
5298 *  the OS will call our registered routines when it finds one of our cards.
5299 */
5300static int __init cciss_init(void)
5301{
5302	int err;
5303
5304	/*
5305	 * The hardware requires that commands are aligned on a 64-bit
5306	 * boundary. Given that we use pci_alloc_consistent() to allocate an
5307	 * array of them, the size must be a multiple of 8 bytes.
5308	 */
5309	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5310	printk(KERN_INFO DRIVER_NAME "\n");
5311
5312	err = bus_register(&cciss_bus_type);
5313	if (err)
5314		return err;
5315
5316	/* Start the scan thread */
5317	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5318	if (IS_ERR(cciss_scan_thread)) {
5319		err = PTR_ERR(cciss_scan_thread);
5320		goto err_bus_unregister;
5321	}
5322
5323	/* Register for our PCI devices */
5324	err = pci_register_driver(&cciss_pci_driver);
5325	if (err)
5326		goto err_thread_stop;
5327
5328	return err;
5329
5330err_thread_stop:
5331	kthread_stop(cciss_scan_thread);
5332err_bus_unregister:
5333	bus_unregister(&cciss_bus_type);
5334
5335	return err;
5336}
5337
5338static void __exit cciss_cleanup(void)
5339{
5340	int i;
5341
5342	pci_unregister_driver(&cciss_pci_driver);
5343	/* double check that all controller entrys have been removed */
5344	for (i = 0; i < MAX_CTLR; i++) {
5345		if (hba[i] != NULL) {
5346			dev_warn(&hba[i]->pdev->dev,
5347				"had to remove controller\n");
5348			cciss_remove_one(hba[i]->pdev);
5349		}
5350	}
5351	kthread_stop(cciss_scan_thread);
5352	if (proc_cciss)
5353		remove_proc_entry("driver/cciss", NULL);
5354	bus_unregister(&cciss_bus_type);
5355}
5356
5357module_init(cciss_init);
5358module_exit(cciss_cleanup);
5359