cciss.c revision 7d1fd970e4b2e84a624b3274669fa642fcd19c98
1/*
2 *    Disk Array driver for HP Smart Array controllers.
3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; version 2 of the License.
8 *
9 *    This program is distributed in the hope that it will be useful,
10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 *    General Public License for more details.
13 *
14 *    You should have received a copy of the GNU General Public License
15 *    along with this program; if not, write to the Free Software
16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 *    02111-1307, USA.
18 *
19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/bio.h>
33#include <linux/blkpg.h>
34#include <linux/timer.h>
35#include <linux/proc_fs.h>
36#include <linux/init.h>
37#include <linux/hdreg.h>
38#include <linux/spinlock.h>
39#include <linux/compat.h>
40#include <linux/blktrace_api.h>
41#include <asm/uaccess.h>
42#include <asm/io.h>
43
44#include <linux/dma-mapping.h>
45#include <linux/blkdev.h>
46#include <linux/genhd.h>
47#include <linux/completion.h>
48#include <scsi/scsi.h>
49#include <scsi/sg.h>
50#include <scsi/scsi_ioctl.h>
51#include <linux/cdrom.h>
52
53#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
54#define DRIVER_NAME "HP CISS Driver (v 3.6.14)"
55#define DRIVER_VERSION CCISS_DRIVER_VERSION(3,6,14)
56
57/* Embedded module documentation macros - see modules.h */
58MODULE_AUTHOR("Hewlett-Packard Company");
59MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 3.6.14");
60MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
61			" SA6i P600 P800 P400 P400i E200 E200i E500");
62MODULE_VERSION("3.6.14");
63MODULE_LICENSE("GPL");
64
65#include "cciss_cmd.h"
66#include "cciss.h"
67#include <linux/cciss_ioctl.h>
68
69/* define the PCI info for the cards we can control */
70static const struct pci_device_id cciss_pci_device_id[] = {
71	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
72	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
73	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
74	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
75	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
76	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
77	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
78	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
79	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
80	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
81	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
82	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
83	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
84	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
85	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
86	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
87	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
88	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
89	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
90	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
91	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
92		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
93	{0,}
94};
95
96MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
97
98/*  board_id = Subsystem Device ID & Vendor ID
99 *  product = Marketing Name for the board
100 *  access = Address of the struct of function pointers
101 *  nr_cmds = Number of commands supported by controller
102 */
103static struct board_type products[] = {
104	{0x40700E11, "Smart Array 5300", &SA5_access, 512},
105	{0x40800E11, "Smart Array 5i", &SA5B_access, 512},
106	{0x40820E11, "Smart Array 532", &SA5B_access, 512},
107	{0x40830E11, "Smart Array 5312", &SA5B_access, 512},
108	{0x409A0E11, "Smart Array 641", &SA5_access, 512},
109	{0x409B0E11, "Smart Array 642", &SA5_access, 512},
110	{0x409C0E11, "Smart Array 6400", &SA5_access, 512},
111	{0x409D0E11, "Smart Array 6400 EM", &SA5_access, 512},
112	{0x40910E11, "Smart Array 6i", &SA5_access, 512},
113	{0x3225103C, "Smart Array P600", &SA5_access, 512},
114	{0x3223103C, "Smart Array P800", &SA5_access, 512},
115	{0x3234103C, "Smart Array P400", &SA5_access, 512},
116	{0x3235103C, "Smart Array P400i", &SA5_access, 512},
117	{0x3211103C, "Smart Array E200i", &SA5_access, 120},
118	{0x3212103C, "Smart Array E200", &SA5_access, 120},
119	{0x3213103C, "Smart Array E200i", &SA5_access, 120},
120	{0x3214103C, "Smart Array E200i", &SA5_access, 120},
121	{0x3215103C, "Smart Array E200i", &SA5_access, 120},
122	{0x3237103C, "Smart Array E500", &SA5_access, 512},
123	{0x323D103C, "Smart Array P700m", &SA5_access, 512},
124	{0xFFFF103C, "Unknown Smart Array", &SA5_access, 120},
125};
126
127/* How long to wait (in milliseconds) for board to go into simple mode */
128#define MAX_CONFIG_WAIT 30000
129#define MAX_IOCTL_CONFIG_WAIT 1000
130
131/*define how many times we will try a command because of bus resets */
132#define MAX_CMD_RETRIES 3
133
134#define READ_AHEAD 	 1024
135#define MAX_CTLR	32
136
137/* Originally cciss driver only supports 8 major numbers */
138#define MAX_CTLR_ORIG 	8
139
140static ctlr_info_t *hba[MAX_CTLR];
141
142static void do_cciss_request(struct request_queue *q);
143static irqreturn_t do_cciss_intr(int irq, void *dev_id);
144static int cciss_open(struct inode *inode, struct file *filep);
145static int cciss_release(struct inode *inode, struct file *filep);
146static int cciss_ioctl(struct inode *inode, struct file *filep,
147		       unsigned int cmd, unsigned long arg);
148static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
149
150static int cciss_revalidate(struct gendisk *disk);
151static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
152static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
153			   int clear_all);
154
155static void cciss_read_capacity(int ctlr, int logvol, int withirq,
156			sector_t *total_size, unsigned int *block_size);
157static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
158			sector_t *total_size, unsigned int *block_size);
159static void cciss_geometry_inquiry(int ctlr, int logvol,
160			int withirq, sector_t total_size,
161			unsigned int block_size, InquiryData_struct *inq_buff,
162				   drive_info_struct *drv);
163static void cciss_getgeometry(int cntl_num);
164static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
165					   __u32);
166static void start_io(ctlr_info_t *h);
167static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
168		   unsigned int use_unit_num, unsigned int log_unit,
169		   __u8 page_code, unsigned char *scsi3addr, int cmd_type);
170static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
171			   unsigned int use_unit_num, unsigned int log_unit,
172			   __u8 page_code, int cmd_type);
173
174static void fail_all_cmds(unsigned long ctlr);
175
176#ifdef CONFIG_PROC_FS
177static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
178			       int length, int *eof, void *data);
179static void cciss_procinit(int i);
180#else
181static void cciss_procinit(int i)
182{
183}
184#endif				/* CONFIG_PROC_FS */
185
186#ifdef CONFIG_COMPAT
187static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
188#endif
189
190static struct block_device_operations cciss_fops = {
191	.owner = THIS_MODULE,
192	.open = cciss_open,
193	.release = cciss_release,
194	.ioctl = cciss_ioctl,
195	.getgeo = cciss_getgeo,
196#ifdef CONFIG_COMPAT
197	.compat_ioctl = cciss_compat_ioctl,
198#endif
199	.revalidate_disk = cciss_revalidate,
200};
201
202/*
203 * Enqueuing and dequeuing functions for cmdlists.
204 */
205static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
206{
207	if (*Qptr == NULL) {
208		*Qptr = c;
209		c->next = c->prev = c;
210	} else {
211		c->prev = (*Qptr)->prev;
212		c->next = (*Qptr);
213		(*Qptr)->prev->next = c;
214		(*Qptr)->prev = c;
215	}
216}
217
218static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
219					  CommandList_struct *c)
220{
221	if (c && c->next != c) {
222		if (*Qptr == c)
223			*Qptr = c->next;
224		c->prev->next = c->next;
225		c->next->prev = c->prev;
226	} else {
227		*Qptr = NULL;
228	}
229	return c;
230}
231
232#include "cciss_scsi.c"		/* For SCSI tape support */
233
234#define RAID_UNKNOWN 6
235
236#ifdef CONFIG_PROC_FS
237
238/*
239 * Report information about this controller.
240 */
241#define ENG_GIG 1000000000
242#define ENG_GIG_FACTOR (ENG_GIG/512)
243static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
244	"UNKNOWN"
245};
246
247static struct proc_dir_entry *proc_cciss;
248
249static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
250			       int length, int *eof, void *data)
251{
252	off_t pos = 0;
253	off_t len = 0;
254	int size, i, ctlr;
255	ctlr_info_t *h = (ctlr_info_t *) data;
256	drive_info_struct *drv;
257	unsigned long flags;
258	sector_t vol_sz, vol_sz_frac;
259
260	ctlr = h->ctlr;
261
262	/* prevent displaying bogus info during configuration
263	 * or deconfiguration of a logical volume
264	 */
265	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
266	if (h->busy_configuring) {
267		spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
268		return -EBUSY;
269	}
270	h->busy_configuring = 1;
271	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
272
273	size = sprintf(buffer, "%s: HP %s Controller\n"
274		       "Board ID: 0x%08lx\n"
275		       "Firmware Version: %c%c%c%c\n"
276		       "IRQ: %d\n"
277		       "Logical drives: %d\n"
278		       "Max sectors: %d\n"
279		       "Current Q depth: %d\n"
280		       "Current # commands on controller: %d\n"
281		       "Max Q depth since init: %d\n"
282		       "Max # commands on controller since init: %d\n"
283		       "Max SG entries since init: %d\n\n",
284		       h->devname,
285		       h->product_name,
286		       (unsigned long)h->board_id,
287		       h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
288		       h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
289		       h->num_luns,
290		       h->cciss_max_sectors,
291		       h->Qdepth, h->commands_outstanding,
292		       h->maxQsinceinit, h->max_outstanding, h->maxSG);
293
294	pos += size;
295	len += size;
296	cciss_proc_tape_report(ctlr, buffer, &pos, &len);
297	for (i = 0; i <= h->highest_lun; i++) {
298
299		drv = &h->drv[i];
300		if (drv->heads == 0)
301			continue;
302
303		vol_sz = drv->nr_blocks;
304		vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
305		vol_sz_frac *= 100;
306		sector_div(vol_sz_frac, ENG_GIG_FACTOR);
307
308		if (drv->raid_level > 5)
309			drv->raid_level = RAID_UNKNOWN;
310		size = sprintf(buffer + len, "cciss/c%dd%d:"
311			       "\t%4u.%02uGB\tRAID %s\n",
312			       ctlr, i, (int)vol_sz, (int)vol_sz_frac,
313			       raid_label[drv->raid_level]);
314		pos += size;
315		len += size;
316	}
317
318	*eof = 1;
319	*start = buffer + offset;
320	len -= offset;
321	if (len > length)
322		len = length;
323	h->busy_configuring = 0;
324	return len;
325}
326
327static int
328cciss_proc_write(struct file *file, const char __user *buffer,
329		 unsigned long count, void *data)
330{
331	unsigned char cmd[80];
332	int len;
333#ifdef CONFIG_CISS_SCSI_TAPE
334	ctlr_info_t *h = (ctlr_info_t *) data;
335	int rc;
336#endif
337
338	if (count > sizeof(cmd) - 1)
339		return -EINVAL;
340	if (copy_from_user(cmd, buffer, count))
341		return -EFAULT;
342	cmd[count] = '\0';
343	len = strlen(cmd);	// above 3 lines ensure safety
344	if (len && cmd[len - 1] == '\n')
345		cmd[--len] = '\0';
346#	ifdef CONFIG_CISS_SCSI_TAPE
347	if (strcmp("engage scsi", cmd) == 0) {
348		rc = cciss_engage_scsi(h->ctlr);
349		if (rc != 0)
350			return -rc;
351		return count;
352	}
353	/* might be nice to have "disengage" too, but it's not
354	   safely possible. (only 1 module use count, lock issues.) */
355#	endif
356	return -EINVAL;
357}
358
359/*
360 * Get us a file in /proc/cciss that says something about each controller.
361 * Create /proc/cciss if it doesn't exist yet.
362 */
363static void __devinit cciss_procinit(int i)
364{
365	struct proc_dir_entry *pde;
366
367	if (proc_cciss == NULL) {
368		proc_cciss = proc_mkdir("cciss", proc_root_driver);
369		if (!proc_cciss)
370			return;
371	}
372
373	pde = create_proc_read_entry(hba[i]->devname,
374				     S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
375				     proc_cciss, cciss_proc_get_info, hba[i]);
376	pde->write_proc = cciss_proc_write;
377}
378#endif				/* CONFIG_PROC_FS */
379
380/*
381 * For operations that cannot sleep, a command block is allocated at init,
382 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
383 * which ones are free or in use.  For operations that can wait for kmalloc
384 * to possible sleep, this routine can be called with get_from_pool set to 0.
385 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
386 */
387static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
388{
389	CommandList_struct *c;
390	int i;
391	u64bit temp64;
392	dma_addr_t cmd_dma_handle, err_dma_handle;
393
394	if (!get_from_pool) {
395		c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
396			sizeof(CommandList_struct), &cmd_dma_handle);
397		if (c == NULL)
398			return NULL;
399		memset(c, 0, sizeof(CommandList_struct));
400
401		c->cmdindex = -1;
402
403		c->err_info = (ErrorInfo_struct *)
404		    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
405			    &err_dma_handle);
406
407		if (c->err_info == NULL) {
408			pci_free_consistent(h->pdev,
409				sizeof(CommandList_struct), c, cmd_dma_handle);
410			return NULL;
411		}
412		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
413	} else {		/* get it out of the controllers pool */
414
415		do {
416			i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
417			if (i == h->nr_cmds)
418				return NULL;
419		} while (test_and_set_bit
420			 (i & (BITS_PER_LONG - 1),
421			  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
422#ifdef CCISS_DEBUG
423		printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
424#endif
425		c = h->cmd_pool + i;
426		memset(c, 0, sizeof(CommandList_struct));
427		cmd_dma_handle = h->cmd_pool_dhandle
428		    + i * sizeof(CommandList_struct);
429		c->err_info = h->errinfo_pool + i;
430		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
431		err_dma_handle = h->errinfo_pool_dhandle
432		    + i * sizeof(ErrorInfo_struct);
433		h->nr_allocs++;
434
435		c->cmdindex = i;
436	}
437
438	c->busaddr = (__u32) cmd_dma_handle;
439	temp64.val = (__u64) err_dma_handle;
440	c->ErrDesc.Addr.lower = temp64.val32.lower;
441	c->ErrDesc.Addr.upper = temp64.val32.upper;
442	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
443
444	c->ctlr = h->ctlr;
445	return c;
446}
447
448/*
449 * Frees a command block that was previously allocated with cmd_alloc().
450 */
451static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
452{
453	int i;
454	u64bit temp64;
455
456	if (!got_from_pool) {
457		temp64.val32.lower = c->ErrDesc.Addr.lower;
458		temp64.val32.upper = c->ErrDesc.Addr.upper;
459		pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
460				    c->err_info, (dma_addr_t) temp64.val);
461		pci_free_consistent(h->pdev, sizeof(CommandList_struct),
462				    c, (dma_addr_t) c->busaddr);
463	} else {
464		i = c - h->cmd_pool;
465		clear_bit(i & (BITS_PER_LONG - 1),
466			  h->cmd_pool_bits + (i / BITS_PER_LONG));
467		h->nr_frees++;
468	}
469}
470
471static inline ctlr_info_t *get_host(struct gendisk *disk)
472{
473	return disk->queue->queuedata;
474}
475
476static inline drive_info_struct *get_drv(struct gendisk *disk)
477{
478	return disk->private_data;
479}
480
481/*
482 * Open.  Make sure the device is really there.
483 */
484static int cciss_open(struct inode *inode, struct file *filep)
485{
486	ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
487	drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
488
489#ifdef CCISS_DEBUG
490	printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
491#endif				/* CCISS_DEBUG */
492
493	if (host->busy_initializing || drv->busy_configuring)
494		return -EBUSY;
495	/*
496	 * Root is allowed to open raw volume zero even if it's not configured
497	 * so array config can still work. Root is also allowed to open any
498	 * volume that has a LUN ID, so it can issue IOCTL to reread the
499	 * disk information.  I don't think I really like this
500	 * but I'm already using way to many device nodes to claim another one
501	 * for "raw controller".
502	 */
503	if (drv->heads == 0) {
504		if (iminor(inode) != 0) {	/* not node 0? */
505			/* if not node 0 make sure it is a partition = 0 */
506			if (iminor(inode) & 0x0f) {
507				return -ENXIO;
508				/* if it is, make sure we have a LUN ID */
509			} else if (drv->LunID == 0) {
510				return -ENXIO;
511			}
512		}
513		if (!capable(CAP_SYS_ADMIN))
514			return -EPERM;
515	}
516	drv->usage_count++;
517	host->usage_count++;
518	return 0;
519}
520
521/*
522 * Close.  Sync first.
523 */
524static int cciss_release(struct inode *inode, struct file *filep)
525{
526	ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
527	drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
528
529#ifdef CCISS_DEBUG
530	printk(KERN_DEBUG "cciss_release %s\n",
531	       inode->i_bdev->bd_disk->disk_name);
532#endif				/* CCISS_DEBUG */
533
534	drv->usage_count--;
535	host->usage_count--;
536	return 0;
537}
538
539#ifdef CONFIG_COMPAT
540
541static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
542{
543	int ret;
544	lock_kernel();
545	ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
546	unlock_kernel();
547	return ret;
548}
549
550static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
551				  unsigned long arg);
552static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
553				      unsigned long arg);
554
555static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
556{
557	switch (cmd) {
558	case CCISS_GETPCIINFO:
559	case CCISS_GETINTINFO:
560	case CCISS_SETINTINFO:
561	case CCISS_GETNODENAME:
562	case CCISS_SETNODENAME:
563	case CCISS_GETHEARTBEAT:
564	case CCISS_GETBUSTYPES:
565	case CCISS_GETFIRMVER:
566	case CCISS_GETDRIVVER:
567	case CCISS_REVALIDVOLS:
568	case CCISS_DEREGDISK:
569	case CCISS_REGNEWDISK:
570	case CCISS_REGNEWD:
571	case CCISS_RESCANDISK:
572	case CCISS_GETLUNINFO:
573		return do_ioctl(f, cmd, arg);
574
575	case CCISS_PASSTHRU32:
576		return cciss_ioctl32_passthru(f, cmd, arg);
577	case CCISS_BIG_PASSTHRU32:
578		return cciss_ioctl32_big_passthru(f, cmd, arg);
579
580	default:
581		return -ENOIOCTLCMD;
582	}
583}
584
585static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
586				  unsigned long arg)
587{
588	IOCTL32_Command_struct __user *arg32 =
589	    (IOCTL32_Command_struct __user *) arg;
590	IOCTL_Command_struct arg64;
591	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
592	int err;
593	u32 cp;
594
595	err = 0;
596	err |=
597	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
598			   sizeof(arg64.LUN_info));
599	err |=
600	    copy_from_user(&arg64.Request, &arg32->Request,
601			   sizeof(arg64.Request));
602	err |=
603	    copy_from_user(&arg64.error_info, &arg32->error_info,
604			   sizeof(arg64.error_info));
605	err |= get_user(arg64.buf_size, &arg32->buf_size);
606	err |= get_user(cp, &arg32->buf);
607	arg64.buf = compat_ptr(cp);
608	err |= copy_to_user(p, &arg64, sizeof(arg64));
609
610	if (err)
611		return -EFAULT;
612
613	err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
614	if (err)
615		return err;
616	err |=
617	    copy_in_user(&arg32->error_info, &p->error_info,
618			 sizeof(arg32->error_info));
619	if (err)
620		return -EFAULT;
621	return err;
622}
623
624static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
625				      unsigned long arg)
626{
627	BIG_IOCTL32_Command_struct __user *arg32 =
628	    (BIG_IOCTL32_Command_struct __user *) arg;
629	BIG_IOCTL_Command_struct arg64;
630	BIG_IOCTL_Command_struct __user *p =
631	    compat_alloc_user_space(sizeof(arg64));
632	int err;
633	u32 cp;
634
635	err = 0;
636	err |=
637	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
638			   sizeof(arg64.LUN_info));
639	err |=
640	    copy_from_user(&arg64.Request, &arg32->Request,
641			   sizeof(arg64.Request));
642	err |=
643	    copy_from_user(&arg64.error_info, &arg32->error_info,
644			   sizeof(arg64.error_info));
645	err |= get_user(arg64.buf_size, &arg32->buf_size);
646	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
647	err |= get_user(cp, &arg32->buf);
648	arg64.buf = compat_ptr(cp);
649	err |= copy_to_user(p, &arg64, sizeof(arg64));
650
651	if (err)
652		return -EFAULT;
653
654	err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
655	if (err)
656		return err;
657	err |=
658	    copy_in_user(&arg32->error_info, &p->error_info,
659			 sizeof(arg32->error_info));
660	if (err)
661		return -EFAULT;
662	return err;
663}
664#endif
665
666static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
667{
668	drive_info_struct *drv = get_drv(bdev->bd_disk);
669
670	if (!drv->cylinders)
671		return -ENXIO;
672
673	geo->heads = drv->heads;
674	geo->sectors = drv->sectors;
675	geo->cylinders = drv->cylinders;
676	return 0;
677}
678
679/*
680 * ioctl
681 */
682static int cciss_ioctl(struct inode *inode, struct file *filep,
683		       unsigned int cmd, unsigned long arg)
684{
685	struct block_device *bdev = inode->i_bdev;
686	struct gendisk *disk = bdev->bd_disk;
687	ctlr_info_t *host = get_host(disk);
688	drive_info_struct *drv = get_drv(disk);
689	int ctlr = host->ctlr;
690	void __user *argp = (void __user *)arg;
691
692#ifdef CCISS_DEBUG
693	printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
694#endif				/* CCISS_DEBUG */
695
696	switch (cmd) {
697	case CCISS_GETPCIINFO:
698		{
699			cciss_pci_info_struct pciinfo;
700
701			if (!arg)
702				return -EINVAL;
703			pciinfo.domain = pci_domain_nr(host->pdev->bus);
704			pciinfo.bus = host->pdev->bus->number;
705			pciinfo.dev_fn = host->pdev->devfn;
706			pciinfo.board_id = host->board_id;
707			if (copy_to_user
708			    (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
709				return -EFAULT;
710			return 0;
711		}
712	case CCISS_GETINTINFO:
713		{
714			cciss_coalint_struct intinfo;
715			if (!arg)
716				return -EINVAL;
717			intinfo.delay =
718			    readl(&host->cfgtable->HostWrite.CoalIntDelay);
719			intinfo.count =
720			    readl(&host->cfgtable->HostWrite.CoalIntCount);
721			if (copy_to_user
722			    (argp, &intinfo, sizeof(cciss_coalint_struct)))
723				return -EFAULT;
724			return 0;
725		}
726	case CCISS_SETINTINFO:
727		{
728			cciss_coalint_struct intinfo;
729			unsigned long flags;
730			int i;
731
732			if (!arg)
733				return -EINVAL;
734			if (!capable(CAP_SYS_ADMIN))
735				return -EPERM;
736			if (copy_from_user
737			    (&intinfo, argp, sizeof(cciss_coalint_struct)))
738				return -EFAULT;
739			if ((intinfo.delay == 0) && (intinfo.count == 0))
740			{
741//                      printk("cciss_ioctl: delay and count cannot be 0\n");
742				return -EINVAL;
743			}
744			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
745			/* Update the field, and then ring the doorbell */
746			writel(intinfo.delay,
747			       &(host->cfgtable->HostWrite.CoalIntDelay));
748			writel(intinfo.count,
749			       &(host->cfgtable->HostWrite.CoalIntCount));
750			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
751
752			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
753				if (!(readl(host->vaddr + SA5_DOORBELL)
754				      & CFGTBL_ChangeReq))
755					break;
756				/* delay and try again */
757				udelay(1000);
758			}
759			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
760			if (i >= MAX_IOCTL_CONFIG_WAIT)
761				return -EAGAIN;
762			return 0;
763		}
764	case CCISS_GETNODENAME:
765		{
766			NodeName_type NodeName;
767			int i;
768
769			if (!arg)
770				return -EINVAL;
771			for (i = 0; i < 16; i++)
772				NodeName[i] =
773				    readb(&host->cfgtable->ServerName[i]);
774			if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
775				return -EFAULT;
776			return 0;
777		}
778	case CCISS_SETNODENAME:
779		{
780			NodeName_type NodeName;
781			unsigned long flags;
782			int i;
783
784			if (!arg)
785				return -EINVAL;
786			if (!capable(CAP_SYS_ADMIN))
787				return -EPERM;
788
789			if (copy_from_user
790			    (NodeName, argp, sizeof(NodeName_type)))
791				return -EFAULT;
792
793			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
794
795			/* Update the field, and then ring the doorbell */
796			for (i = 0; i < 16; i++)
797				writeb(NodeName[i],
798				       &host->cfgtable->ServerName[i]);
799
800			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
801
802			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
803				if (!(readl(host->vaddr + SA5_DOORBELL)
804				      & CFGTBL_ChangeReq))
805					break;
806				/* delay and try again */
807				udelay(1000);
808			}
809			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
810			if (i >= MAX_IOCTL_CONFIG_WAIT)
811				return -EAGAIN;
812			return 0;
813		}
814
815	case CCISS_GETHEARTBEAT:
816		{
817			Heartbeat_type heartbeat;
818
819			if (!arg)
820				return -EINVAL;
821			heartbeat = readl(&host->cfgtable->HeartBeat);
822			if (copy_to_user
823			    (argp, &heartbeat, sizeof(Heartbeat_type)))
824				return -EFAULT;
825			return 0;
826		}
827	case CCISS_GETBUSTYPES:
828		{
829			BusTypes_type BusTypes;
830
831			if (!arg)
832				return -EINVAL;
833			BusTypes = readl(&host->cfgtable->BusTypes);
834			if (copy_to_user
835			    (argp, &BusTypes, sizeof(BusTypes_type)))
836				return -EFAULT;
837			return 0;
838		}
839	case CCISS_GETFIRMVER:
840		{
841			FirmwareVer_type firmware;
842
843			if (!arg)
844				return -EINVAL;
845			memcpy(firmware, host->firm_ver, 4);
846
847			if (copy_to_user
848			    (argp, firmware, sizeof(FirmwareVer_type)))
849				return -EFAULT;
850			return 0;
851		}
852	case CCISS_GETDRIVVER:
853		{
854			DriverVer_type DriverVer = DRIVER_VERSION;
855
856			if (!arg)
857				return -EINVAL;
858
859			if (copy_to_user
860			    (argp, &DriverVer, sizeof(DriverVer_type)))
861				return -EFAULT;
862			return 0;
863		}
864
865	case CCISS_REVALIDVOLS:
866		return rebuild_lun_table(host, NULL);
867
868	case CCISS_GETLUNINFO:{
869			LogvolInfo_struct luninfo;
870
871			luninfo.LunID = drv->LunID;
872			luninfo.num_opens = drv->usage_count;
873			luninfo.num_parts = 0;
874			if (copy_to_user(argp, &luninfo,
875					 sizeof(LogvolInfo_struct)))
876				return -EFAULT;
877			return 0;
878		}
879	case CCISS_DEREGDISK:
880		return rebuild_lun_table(host, disk);
881
882	case CCISS_REGNEWD:
883		return rebuild_lun_table(host, NULL);
884
885	case CCISS_PASSTHRU:
886		{
887			IOCTL_Command_struct iocommand;
888			CommandList_struct *c;
889			char *buff = NULL;
890			u64bit temp64;
891			unsigned long flags;
892			DECLARE_COMPLETION_ONSTACK(wait);
893
894			if (!arg)
895				return -EINVAL;
896
897			if (!capable(CAP_SYS_RAWIO))
898				return -EPERM;
899
900			if (copy_from_user
901			    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
902				return -EFAULT;
903			if ((iocommand.buf_size < 1) &&
904			    (iocommand.Request.Type.Direction != XFER_NONE)) {
905				return -EINVAL;
906			}
907#if 0				/* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
908			/* Check kmalloc limits */
909			if (iocommand.buf_size > 128000)
910				return -EINVAL;
911#endif
912			if (iocommand.buf_size > 0) {
913				buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
914				if (buff == NULL)
915					return -EFAULT;
916			}
917			if (iocommand.Request.Type.Direction == XFER_WRITE) {
918				/* Copy the data into the buffer we created */
919				if (copy_from_user
920				    (buff, iocommand.buf, iocommand.buf_size)) {
921					kfree(buff);
922					return -EFAULT;
923				}
924			} else {
925				memset(buff, 0, iocommand.buf_size);
926			}
927			if ((c = cmd_alloc(host, 0)) == NULL) {
928				kfree(buff);
929				return -ENOMEM;
930			}
931			// Fill in the command type
932			c->cmd_type = CMD_IOCTL_PEND;
933			// Fill in Command Header
934			c->Header.ReplyQueue = 0;	// unused in simple mode
935			if (iocommand.buf_size > 0)	// buffer to fill
936			{
937				c->Header.SGList = 1;
938				c->Header.SGTotal = 1;
939			} else	// no buffers to fill
940			{
941				c->Header.SGList = 0;
942				c->Header.SGTotal = 0;
943			}
944			c->Header.LUN = iocommand.LUN_info;
945			c->Header.Tag.lower = c->busaddr;	// use the kernel address the cmd block for tag
946
947			// Fill in Request block
948			c->Request = iocommand.Request;
949
950			// Fill in the scatter gather information
951			if (iocommand.buf_size > 0) {
952				temp64.val = pci_map_single(host->pdev, buff,
953					iocommand.buf_size,
954					PCI_DMA_BIDIRECTIONAL);
955				c->SG[0].Addr.lower = temp64.val32.lower;
956				c->SG[0].Addr.upper = temp64.val32.upper;
957				c->SG[0].Len = iocommand.buf_size;
958				c->SG[0].Ext = 0;	// we are not chaining
959			}
960			c->waiting = &wait;
961
962			/* Put the request on the tail of the request queue */
963			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
964			addQ(&host->reqQ, c);
965			host->Qdepth++;
966			start_io(host);
967			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
968
969			wait_for_completion(&wait);
970
971			/* unlock the buffers from DMA */
972			temp64.val32.lower = c->SG[0].Addr.lower;
973			temp64.val32.upper = c->SG[0].Addr.upper;
974			pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
975					 iocommand.buf_size,
976					 PCI_DMA_BIDIRECTIONAL);
977
978			/* Copy the error information out */
979			iocommand.error_info = *(c->err_info);
980			if (copy_to_user
981			    (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
982				kfree(buff);
983				cmd_free(host, c, 0);
984				return -EFAULT;
985			}
986
987			if (iocommand.Request.Type.Direction == XFER_READ) {
988				/* Copy the data out of the buffer we created */
989				if (copy_to_user
990				    (iocommand.buf, buff, iocommand.buf_size)) {
991					kfree(buff);
992					cmd_free(host, c, 0);
993					return -EFAULT;
994				}
995			}
996			kfree(buff);
997			cmd_free(host, c, 0);
998			return 0;
999		}
1000	case CCISS_BIG_PASSTHRU:{
1001			BIG_IOCTL_Command_struct *ioc;
1002			CommandList_struct *c;
1003			unsigned char **buff = NULL;
1004			int *buff_size = NULL;
1005			u64bit temp64;
1006			unsigned long flags;
1007			BYTE sg_used = 0;
1008			int status = 0;
1009			int i;
1010			DECLARE_COMPLETION_ONSTACK(wait);
1011			__u32 left;
1012			__u32 sz;
1013			BYTE __user *data_ptr;
1014
1015			if (!arg)
1016				return -EINVAL;
1017			if (!capable(CAP_SYS_RAWIO))
1018				return -EPERM;
1019			ioc = (BIG_IOCTL_Command_struct *)
1020			    kmalloc(sizeof(*ioc), GFP_KERNEL);
1021			if (!ioc) {
1022				status = -ENOMEM;
1023				goto cleanup1;
1024			}
1025			if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1026				status = -EFAULT;
1027				goto cleanup1;
1028			}
1029			if ((ioc->buf_size < 1) &&
1030			    (ioc->Request.Type.Direction != XFER_NONE)) {
1031				status = -EINVAL;
1032				goto cleanup1;
1033			}
1034			/* Check kmalloc limits  using all SGs */
1035			if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1036				status = -EINVAL;
1037				goto cleanup1;
1038			}
1039			if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1040				status = -EINVAL;
1041				goto cleanup1;
1042			}
1043			buff =
1044			    kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1045			if (!buff) {
1046				status = -ENOMEM;
1047				goto cleanup1;
1048			}
1049			buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1050						   GFP_KERNEL);
1051			if (!buff_size) {
1052				status = -ENOMEM;
1053				goto cleanup1;
1054			}
1055			left = ioc->buf_size;
1056			data_ptr = ioc->buf;
1057			while (left) {
1058				sz = (left >
1059				      ioc->malloc_size) ? ioc->
1060				    malloc_size : left;
1061				buff_size[sg_used] = sz;
1062				buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1063				if (buff[sg_used] == NULL) {
1064					status = -ENOMEM;
1065					goto cleanup1;
1066				}
1067				if (ioc->Request.Type.Direction == XFER_WRITE) {
1068					if (copy_from_user
1069					    (buff[sg_used], data_ptr, sz)) {
1070						status = -ENOMEM;
1071						goto cleanup1;
1072					}
1073				} else {
1074					memset(buff[sg_used], 0, sz);
1075				}
1076				left -= sz;
1077				data_ptr += sz;
1078				sg_used++;
1079			}
1080			if ((c = cmd_alloc(host, 0)) == NULL) {
1081				status = -ENOMEM;
1082				goto cleanup1;
1083			}
1084			c->cmd_type = CMD_IOCTL_PEND;
1085			c->Header.ReplyQueue = 0;
1086
1087			if (ioc->buf_size > 0) {
1088				c->Header.SGList = sg_used;
1089				c->Header.SGTotal = sg_used;
1090			} else {
1091				c->Header.SGList = 0;
1092				c->Header.SGTotal = 0;
1093			}
1094			c->Header.LUN = ioc->LUN_info;
1095			c->Header.Tag.lower = c->busaddr;
1096
1097			c->Request = ioc->Request;
1098			if (ioc->buf_size > 0) {
1099				int i;
1100				for (i = 0; i < sg_used; i++) {
1101					temp64.val =
1102					    pci_map_single(host->pdev, buff[i],
1103						    buff_size[i],
1104						    PCI_DMA_BIDIRECTIONAL);
1105					c->SG[i].Addr.lower =
1106					    temp64.val32.lower;
1107					c->SG[i].Addr.upper =
1108					    temp64.val32.upper;
1109					c->SG[i].Len = buff_size[i];
1110					c->SG[i].Ext = 0;	/* we are not chaining */
1111				}
1112			}
1113			c->waiting = &wait;
1114			/* Put the request on the tail of the request queue */
1115			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1116			addQ(&host->reqQ, c);
1117			host->Qdepth++;
1118			start_io(host);
1119			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1120			wait_for_completion(&wait);
1121			/* unlock the buffers from DMA */
1122			for (i = 0; i < sg_used; i++) {
1123				temp64.val32.lower = c->SG[i].Addr.lower;
1124				temp64.val32.upper = c->SG[i].Addr.upper;
1125				pci_unmap_single(host->pdev,
1126					(dma_addr_t) temp64.val, buff_size[i],
1127					PCI_DMA_BIDIRECTIONAL);
1128			}
1129			/* Copy the error information out */
1130			ioc->error_info = *(c->err_info);
1131			if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1132				cmd_free(host, c, 0);
1133				status = -EFAULT;
1134				goto cleanup1;
1135			}
1136			if (ioc->Request.Type.Direction == XFER_READ) {
1137				/* Copy the data out of the buffer we created */
1138				BYTE __user *ptr = ioc->buf;
1139				for (i = 0; i < sg_used; i++) {
1140					if (copy_to_user
1141					    (ptr, buff[i], buff_size[i])) {
1142						cmd_free(host, c, 0);
1143						status = -EFAULT;
1144						goto cleanup1;
1145					}
1146					ptr += buff_size[i];
1147				}
1148			}
1149			cmd_free(host, c, 0);
1150			status = 0;
1151		      cleanup1:
1152			if (buff) {
1153				for (i = 0; i < sg_used; i++)
1154					kfree(buff[i]);
1155				kfree(buff);
1156			}
1157			kfree(buff_size);
1158			kfree(ioc);
1159			return status;
1160		}
1161
1162	/* scsi_cmd_ioctl handles these, below, though some are not */
1163	/* very meaningful for cciss.  SG_IO is the main one people want. */
1164
1165	case SG_GET_VERSION_NUM:
1166	case SG_SET_TIMEOUT:
1167	case SG_GET_TIMEOUT:
1168	case SG_GET_RESERVED_SIZE:
1169	case SG_SET_RESERVED_SIZE:
1170	case SG_EMULATED_HOST:
1171	case SG_IO:
1172	case SCSI_IOCTL_SEND_COMMAND:
1173		return scsi_cmd_ioctl(filep, disk->queue, disk, cmd, argp);
1174
1175	/* scsi_cmd_ioctl would normally handle these, below, but */
1176	/* they aren't a good fit for cciss, as CD-ROMs are */
1177	/* not supported, and we don't have any bus/target/lun */
1178	/* which we present to the kernel. */
1179
1180	case CDROM_SEND_PACKET:
1181	case CDROMCLOSETRAY:
1182	case CDROMEJECT:
1183	case SCSI_IOCTL_GET_IDLUN:
1184	case SCSI_IOCTL_GET_BUS_NUMBER:
1185	default:
1186		return -ENOTTY;
1187	}
1188}
1189
1190static inline void complete_buffers(struct bio *bio, int status)
1191{
1192	while (bio) {
1193		struct bio *xbh = bio->bi_next;
1194
1195		bio->bi_next = NULL;
1196		bio_endio(bio, status ? 0 : -EIO);
1197		bio = xbh;
1198	}
1199}
1200
1201static void cciss_check_queues(ctlr_info_t *h)
1202{
1203	int start_queue = h->next_to_run;
1204	int i;
1205
1206	/* check to see if we have maxed out the number of commands that can
1207	 * be placed on the queue.  If so then exit.  We do this check here
1208	 * in case the interrupt we serviced was from an ioctl and did not
1209	 * free any new commands.
1210	 */
1211	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1212		return;
1213
1214	/* We have room on the queue for more commands.  Now we need to queue
1215	 * them up.  We will also keep track of the next queue to run so
1216	 * that every queue gets a chance to be started first.
1217	 */
1218	for (i = 0; i < h->highest_lun + 1; i++) {
1219		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1220		/* make sure the disk has been added and the drive is real
1221		 * because this can be called from the middle of init_one.
1222		 */
1223		if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1224			continue;
1225		blk_start_queue(h->gendisk[curr_queue]->queue);
1226
1227		/* check to see if we have maxed out the number of commands
1228		 * that can be placed on the queue.
1229		 */
1230		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1231			if (curr_queue == start_queue) {
1232				h->next_to_run =
1233				    (start_queue + 1) % (h->highest_lun + 1);
1234				break;
1235			} else {
1236				h->next_to_run = curr_queue;
1237				break;
1238			}
1239		} else {
1240			curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1241		}
1242	}
1243}
1244
1245static void cciss_softirq_done(struct request *rq)
1246{
1247	CommandList_struct *cmd = rq->completion_data;
1248	ctlr_info_t *h = hba[cmd->ctlr];
1249	unsigned long flags;
1250	u64bit temp64;
1251	int i, ddir;
1252
1253	if (cmd->Request.Type.Direction == XFER_READ)
1254		ddir = PCI_DMA_FROMDEVICE;
1255	else
1256		ddir = PCI_DMA_TODEVICE;
1257
1258	/* command did not need to be retried */
1259	/* unmap the DMA mapping for all the scatter gather elements */
1260	for (i = 0; i < cmd->Header.SGList; i++) {
1261		temp64.val32.lower = cmd->SG[i].Addr.lower;
1262		temp64.val32.upper = cmd->SG[i].Addr.upper;
1263		pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1264	}
1265
1266	complete_buffers(rq->bio, (rq->errors == 0));
1267
1268	if (blk_fs_request(rq)) {
1269		const int rw = rq_data_dir(rq);
1270
1271		disk_stat_add(rq->rq_disk, sectors[rw], rq->nr_sectors);
1272	}
1273
1274#ifdef CCISS_DEBUG
1275	printk("Done with %p\n", rq);
1276#endif				/* CCISS_DEBUG */
1277
1278	add_disk_randomness(rq->rq_disk);
1279	spin_lock_irqsave(&h->lock, flags);
1280	end_that_request_last(rq, (rq->errors == 0));
1281	cmd_free(h, cmd, 1);
1282	cciss_check_queues(h);
1283	spin_unlock_irqrestore(&h->lock, flags);
1284}
1285
1286/* This function will check the usage_count of the drive to be updated/added.
1287 * If the usage_count is zero then the drive information will be updated and
1288 * the disk will be re-registered with the kernel.  If not then it will be
1289 * left alone for the next reboot.  The exception to this is disk 0 which
1290 * will always be left registered with the kernel since it is also the
1291 * controller node.  Any changes to disk 0 will show up on the next
1292 * reboot.
1293 */
1294static void cciss_update_drive_info(int ctlr, int drv_index)
1295{
1296	ctlr_info_t *h = hba[ctlr];
1297	struct gendisk *disk;
1298	InquiryData_struct *inq_buff = NULL;
1299	unsigned int block_size;
1300	sector_t total_size;
1301	unsigned long flags = 0;
1302	int ret = 0;
1303
1304	/* if the disk already exists then deregister it before proceeding */
1305	if (h->drv[drv_index].raid_level != -1) {
1306		spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1307		h->drv[drv_index].busy_configuring = 1;
1308		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1309		ret = deregister_disk(h->gendisk[drv_index],
1310				      &h->drv[drv_index], 0);
1311		h->drv[drv_index].busy_configuring = 0;
1312	}
1313
1314	/* If the disk is in use return */
1315	if (ret)
1316		return;
1317
1318	/* Get information about the disk and modify the driver structure */
1319	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1320	if (inq_buff == NULL)
1321		goto mem_msg;
1322
1323 	/* testing to see if 16-byte CDBs are already being used */
1324 	if (h->cciss_read == CCISS_READ_16) {
1325 		cciss_read_capacity_16(h->ctlr, drv_index, 1,
1326 			&total_size, &block_size);
1327 		goto geo_inq;
1328 	}
1329
1330	cciss_read_capacity(ctlr, drv_index, 1,
1331			    &total_size, &block_size);
1332
1333  	/* if read_capacity returns all F's this volume is >2TB in size */
1334  	/* so we switch to 16-byte CDB's for all read/write ops */
1335  	if (total_size == 0xFFFFFFFFULL) {
1336		cciss_read_capacity_16(ctlr, drv_index, 1,
1337		&total_size, &block_size);
1338		h->cciss_read = CCISS_READ_16;
1339		h->cciss_write = CCISS_WRITE_16;
1340	} else {
1341		h->cciss_read = CCISS_READ_10;
1342		h->cciss_write = CCISS_WRITE_10;
1343	}
1344geo_inq:
1345	cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1346			       inq_buff, &h->drv[drv_index]);
1347
1348	++h->num_luns;
1349	disk = h->gendisk[drv_index];
1350	set_capacity(disk, h->drv[drv_index].nr_blocks);
1351
1352	/* if it's the controller it's already added */
1353	if (drv_index) {
1354		disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1355		sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
1356		disk->major = h->major;
1357		disk->first_minor = drv_index << NWD_SHIFT;
1358		disk->fops = &cciss_fops;
1359		disk->private_data = &h->drv[drv_index];
1360
1361		/* Set up queue information */
1362		disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1363		blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1364
1365		/* This is a hardware imposed limit. */
1366		blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1367
1368		/* This is a limit in the driver and could be eliminated. */
1369		blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1370
1371		blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1372
1373		blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1374
1375		disk->queue->queuedata = hba[ctlr];
1376
1377		blk_queue_hardsect_size(disk->queue,
1378					hba[ctlr]->drv[drv_index].block_size);
1379
1380		h->drv[drv_index].queue = disk->queue;
1381		add_disk(disk);
1382	}
1383
1384      freeret:
1385	kfree(inq_buff);
1386	return;
1387      mem_msg:
1388	printk(KERN_ERR "cciss: out of memory\n");
1389	goto freeret;
1390}
1391
1392/* This function will find the first index of the controllers drive array
1393 * that has a -1 for the raid_level and will return that index.  This is
1394 * where new drives will be added.  If the index to be returned is greater
1395 * than the highest_lun index for the controller then highest_lun is set
1396 * to this new index.  If there are no available indexes then -1 is returned.
1397 */
1398static int cciss_find_free_drive_index(int ctlr)
1399{
1400	int i;
1401
1402	for (i = 0; i < CISS_MAX_LUN; i++) {
1403		if (hba[ctlr]->drv[i].raid_level == -1) {
1404			if (i > hba[ctlr]->highest_lun)
1405				hba[ctlr]->highest_lun = i;
1406			return i;
1407		}
1408	}
1409	return -1;
1410}
1411
1412/* This function will add and remove logical drives from the Logical
1413 * drive array of the controller and maintain persistency of ordering
1414 * so that mount points are preserved until the next reboot.  This allows
1415 * for the removal of logical drives in the middle of the drive array
1416 * without a re-ordering of those drives.
1417 * INPUT
1418 * h		= The controller to perform the operations on
1419 * del_disk	= The disk to remove if specified.  If the value given
1420 *		  is NULL then no disk is removed.
1421 */
1422static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1423{
1424	int ctlr = h->ctlr;
1425	int num_luns;
1426	ReportLunData_struct *ld_buff = NULL;
1427	drive_info_struct *drv = NULL;
1428	int return_code;
1429	int listlength = 0;
1430	int i;
1431	int drv_found;
1432	int drv_index = 0;
1433	__u32 lunid = 0;
1434	unsigned long flags;
1435
1436	/* Set busy_configuring flag for this operation */
1437	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1438	if (h->busy_configuring) {
1439		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1440		return -EBUSY;
1441	}
1442	h->busy_configuring = 1;
1443
1444	/* if del_disk is NULL then we are being called to add a new disk
1445	 * and update the logical drive table.  If it is not NULL then
1446	 * we will check if the disk is in use or not.
1447	 */
1448	if (del_disk != NULL) {
1449		drv = get_drv(del_disk);
1450		drv->busy_configuring = 1;
1451		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1452		return_code = deregister_disk(del_disk, drv, 1);
1453		drv->busy_configuring = 0;
1454		h->busy_configuring = 0;
1455		return return_code;
1456	} else {
1457		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1458		if (!capable(CAP_SYS_RAWIO))
1459			return -EPERM;
1460
1461		ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1462		if (ld_buff == NULL)
1463			goto mem_msg;
1464
1465		return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1466					      sizeof(ReportLunData_struct), 0,
1467					      0, 0, TYPE_CMD);
1468
1469		if (return_code == IO_OK) {
1470			listlength =
1471				be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1472		} else {	/* reading number of logical volumes failed */
1473			printk(KERN_WARNING "cciss: report logical volume"
1474			       " command failed\n");
1475			listlength = 0;
1476			goto freeret;
1477		}
1478
1479		num_luns = listlength / 8;	/* 8 bytes per entry */
1480		if (num_luns > CISS_MAX_LUN) {
1481			num_luns = CISS_MAX_LUN;
1482			printk(KERN_WARNING "cciss: more luns configured"
1483			       " on controller than can be handled by"
1484			       " this driver.\n");
1485		}
1486
1487		/* Compare controller drive array to drivers drive array.
1488		 * Check for updates in the drive information and any new drives
1489		 * on the controller.
1490		 */
1491		for (i = 0; i < num_luns; i++) {
1492			int j;
1493
1494			drv_found = 0;
1495
1496			lunid = (0xff &
1497				 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1498			lunid |= (0xff &
1499				  (unsigned int)(ld_buff->LUN[i][2])) << 16;
1500			lunid |= (0xff &
1501				  (unsigned int)(ld_buff->LUN[i][1])) << 8;
1502			lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1503
1504			/* Find if the LUN is already in the drive array
1505			 * of the controller.  If so then update its info
1506			 * if not is use.  If it does not exist then find
1507			 * the first free index and add it.
1508			 */
1509			for (j = 0; j <= h->highest_lun; j++) {
1510				if (h->drv[j].LunID == lunid) {
1511					drv_index = j;
1512					drv_found = 1;
1513				}
1514			}
1515
1516			/* check if the drive was found already in the array */
1517			if (!drv_found) {
1518				drv_index = cciss_find_free_drive_index(ctlr);
1519				if (drv_index == -1)
1520					goto freeret;
1521
1522				/*Check if the gendisk needs to be allocated */
1523				if (!h->gendisk[drv_index]){
1524					h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
1525					if (!h->gendisk[drv_index]){
1526						printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
1527						goto mem_msg;
1528					}
1529				}
1530			}
1531			h->drv[drv_index].LunID = lunid;
1532			cciss_update_drive_info(ctlr, drv_index);
1533		}		/* end for */
1534	}			/* end else */
1535
1536      freeret:
1537	kfree(ld_buff);
1538	h->busy_configuring = 0;
1539	/* We return -1 here to tell the ACU that we have registered/updated
1540	 * all of the drives that we can and to keep it from calling us
1541	 * additional times.
1542	 */
1543	return -1;
1544      mem_msg:
1545	printk(KERN_ERR "cciss: out of memory\n");
1546	goto freeret;
1547}
1548
1549/* This function will deregister the disk and it's queue from the
1550 * kernel.  It must be called with the controller lock held and the
1551 * drv structures busy_configuring flag set.  It's parameters are:
1552 *
1553 * disk = This is the disk to be deregistered
1554 * drv  = This is the drive_info_struct associated with the disk to be
1555 *        deregistered.  It contains information about the disk used
1556 *        by the driver.
1557 * clear_all = This flag determines whether or not the disk information
1558 *             is going to be completely cleared out and the highest_lun
1559 *             reset.  Sometimes we want to clear out information about
1560 *             the disk in preparation for re-adding it.  In this case
1561 *             the highest_lun should be left unchanged and the LunID
1562 *             should not be cleared.
1563*/
1564static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1565			   int clear_all)
1566{
1567	int i;
1568	ctlr_info_t *h = get_host(disk);
1569
1570	if (!capable(CAP_SYS_RAWIO))
1571		return -EPERM;
1572
1573	/* make sure logical volume is NOT is use */
1574	if (clear_all || (h->gendisk[0] == disk)) {
1575		if (drv->usage_count > 1)
1576			return -EBUSY;
1577	} else if (drv->usage_count > 0)
1578		return -EBUSY;
1579
1580	/* invalidate the devices and deregister the disk.  If it is disk
1581	 * zero do not deregister it but just zero out it's values.  This
1582	 * allows us to delete disk zero but keep the controller registered.
1583	 */
1584	if (h->gendisk[0] != disk) {
1585		struct request_queue *q = disk->queue;
1586		if (disk->flags & GENHD_FL_UP)
1587			del_gendisk(disk);
1588		if (q) {
1589			blk_cleanup_queue(q);
1590			/* Set drv->queue to NULL so that we do not try
1591			 * to call blk_start_queue on this queue in the
1592			 * interrupt handler
1593			 */
1594			drv->queue = NULL;
1595		}
1596		/* If clear_all is set then we are deleting the logical
1597		 * drive, not just refreshing its info.  For drives
1598		 * other than disk 0 we will call put_disk.  We do not
1599		 * do this for disk 0 as we need it to be able to
1600		 * configure the controller.
1601		*/
1602		if (clear_all){
1603			/* This isn't pretty, but we need to find the
1604			 * disk in our array and NULL our the pointer.
1605			 * This is so that we will call alloc_disk if
1606			 * this index is used again later.
1607			*/
1608			for (i=0; i < CISS_MAX_LUN; i++){
1609				if(h->gendisk[i] == disk){
1610					h->gendisk[i] = NULL;
1611					break;
1612				}
1613			}
1614			put_disk(disk);
1615		}
1616	} else {
1617		set_capacity(disk, 0);
1618	}
1619
1620	--h->num_luns;
1621	/* zero out the disk size info */
1622	drv->nr_blocks = 0;
1623	drv->block_size = 0;
1624	drv->heads = 0;
1625	drv->sectors = 0;
1626	drv->cylinders = 0;
1627	drv->raid_level = -1;	/* This can be used as a flag variable to
1628				 * indicate that this element of the drive
1629				 * array is free.
1630				 */
1631
1632	if (clear_all) {
1633		/* check to see if it was the last disk */
1634		if (drv == h->drv + h->highest_lun) {
1635			/* if so, find the new hightest lun */
1636			int i, newhighest = -1;
1637			for (i = 0; i < h->highest_lun; i++) {
1638				/* if the disk has size > 0, it is available */
1639				if (h->drv[i].heads)
1640					newhighest = i;
1641			}
1642			h->highest_lun = newhighest;
1643		}
1644
1645		drv->LunID = 0;
1646	}
1647	return 0;
1648}
1649
1650static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num,	/* 0: address the controller,
1651															   1: address logical volume log_unit,
1652															   2: periph device address is scsi3addr */
1653		    unsigned int log_unit, __u8 page_code,
1654		    unsigned char *scsi3addr, int cmd_type)
1655{
1656	ctlr_info_t *h = hba[ctlr];
1657	u64bit buff_dma_handle;
1658	int status = IO_OK;
1659
1660	c->cmd_type = CMD_IOCTL_PEND;
1661	c->Header.ReplyQueue = 0;
1662	if (buff != NULL) {
1663		c->Header.SGList = 1;
1664		c->Header.SGTotal = 1;
1665	} else {
1666		c->Header.SGList = 0;
1667		c->Header.SGTotal = 0;
1668	}
1669	c->Header.Tag.lower = c->busaddr;
1670
1671	c->Request.Type.Type = cmd_type;
1672	if (cmd_type == TYPE_CMD) {
1673		switch (cmd) {
1674		case CISS_INQUIRY:
1675			/* If the logical unit number is 0 then, this is going
1676			   to controller so It's a physical command
1677			   mode = 0 target = 0.  So we have nothing to write.
1678			   otherwise, if use_unit_num == 1,
1679			   mode = 1(volume set addressing) target = LUNID
1680			   otherwise, if use_unit_num == 2,
1681			   mode = 0(periph dev addr) target = scsi3addr */
1682			if (use_unit_num == 1) {
1683				c->Header.LUN.LogDev.VolId =
1684				    h->drv[log_unit].LunID;
1685				c->Header.LUN.LogDev.Mode = 1;
1686			} else if (use_unit_num == 2) {
1687				memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1688				       8);
1689				c->Header.LUN.LogDev.Mode = 0;
1690			}
1691			/* are we trying to read a vital product page */
1692			if (page_code != 0) {
1693				c->Request.CDB[1] = 0x01;
1694				c->Request.CDB[2] = page_code;
1695			}
1696			c->Request.CDBLen = 6;
1697			c->Request.Type.Attribute = ATTR_SIMPLE;
1698			c->Request.Type.Direction = XFER_READ;
1699			c->Request.Timeout = 0;
1700			c->Request.CDB[0] = CISS_INQUIRY;
1701			c->Request.CDB[4] = size & 0xFF;
1702			break;
1703		case CISS_REPORT_LOG:
1704		case CISS_REPORT_PHYS:
1705			/* Talking to controller so It's a physical command
1706			   mode = 00 target = 0.  Nothing to write.
1707			 */
1708			c->Request.CDBLen = 12;
1709			c->Request.Type.Attribute = ATTR_SIMPLE;
1710			c->Request.Type.Direction = XFER_READ;
1711			c->Request.Timeout = 0;
1712			c->Request.CDB[0] = cmd;
1713			c->Request.CDB[6] = (size >> 24) & 0xFF;	//MSB
1714			c->Request.CDB[7] = (size >> 16) & 0xFF;
1715			c->Request.CDB[8] = (size >> 8) & 0xFF;
1716			c->Request.CDB[9] = size & 0xFF;
1717			break;
1718
1719		case CCISS_READ_CAPACITY:
1720			c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1721			c->Header.LUN.LogDev.Mode = 1;
1722			c->Request.CDBLen = 10;
1723			c->Request.Type.Attribute = ATTR_SIMPLE;
1724			c->Request.Type.Direction = XFER_READ;
1725			c->Request.Timeout = 0;
1726			c->Request.CDB[0] = cmd;
1727			break;
1728		case CCISS_READ_CAPACITY_16:
1729			c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1730			c->Header.LUN.LogDev.Mode = 1;
1731			c->Request.CDBLen = 16;
1732			c->Request.Type.Attribute = ATTR_SIMPLE;
1733			c->Request.Type.Direction = XFER_READ;
1734			c->Request.Timeout = 0;
1735			c->Request.CDB[0] = cmd;
1736			c->Request.CDB[1] = 0x10;
1737			c->Request.CDB[10] = (size >> 24) & 0xFF;
1738			c->Request.CDB[11] = (size >> 16) & 0xFF;
1739			c->Request.CDB[12] = (size >> 8) & 0xFF;
1740			c->Request.CDB[13] = size & 0xFF;
1741			c->Request.Timeout = 0;
1742			c->Request.CDB[0] = cmd;
1743			break;
1744		case CCISS_CACHE_FLUSH:
1745			c->Request.CDBLen = 12;
1746			c->Request.Type.Attribute = ATTR_SIMPLE;
1747			c->Request.Type.Direction = XFER_WRITE;
1748			c->Request.Timeout = 0;
1749			c->Request.CDB[0] = BMIC_WRITE;
1750			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1751			break;
1752		default:
1753			printk(KERN_WARNING
1754			       "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
1755			return IO_ERROR;
1756		}
1757	} else if (cmd_type == TYPE_MSG) {
1758		switch (cmd) {
1759		case 0:	/* ABORT message */
1760			c->Request.CDBLen = 12;
1761			c->Request.Type.Attribute = ATTR_SIMPLE;
1762			c->Request.Type.Direction = XFER_WRITE;
1763			c->Request.Timeout = 0;
1764			c->Request.CDB[0] = cmd;	/* abort */
1765			c->Request.CDB[1] = 0;	/* abort a command */
1766			/* buff contains the tag of the command to abort */
1767			memcpy(&c->Request.CDB[4], buff, 8);
1768			break;
1769		case 1:	/* RESET message */
1770			c->Request.CDBLen = 12;
1771			c->Request.Type.Attribute = ATTR_SIMPLE;
1772			c->Request.Type.Direction = XFER_WRITE;
1773			c->Request.Timeout = 0;
1774			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1775			c->Request.CDB[0] = cmd;	/* reset */
1776			c->Request.CDB[1] = 0x04;	/* reset a LUN */
1777			break;
1778		case 3:	/* No-Op message */
1779			c->Request.CDBLen = 1;
1780			c->Request.Type.Attribute = ATTR_SIMPLE;
1781			c->Request.Type.Direction = XFER_WRITE;
1782			c->Request.Timeout = 0;
1783			c->Request.CDB[0] = cmd;
1784			break;
1785		default:
1786			printk(KERN_WARNING
1787			       "cciss%d: unknown message type %d\n", ctlr, cmd);
1788			return IO_ERROR;
1789		}
1790	} else {
1791		printk(KERN_WARNING
1792		       "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1793		return IO_ERROR;
1794	}
1795	/* Fill in the scatter gather information */
1796	if (size > 0) {
1797		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1798							     buff, size,
1799							     PCI_DMA_BIDIRECTIONAL);
1800		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1801		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1802		c->SG[0].Len = size;
1803		c->SG[0].Ext = 0;	/* we are not chaining */
1804	}
1805	return status;
1806}
1807
1808static int sendcmd_withirq(__u8 cmd,
1809			   int ctlr,
1810			   void *buff,
1811			   size_t size,
1812			   unsigned int use_unit_num,
1813			   unsigned int log_unit, __u8 page_code, int cmd_type)
1814{
1815	ctlr_info_t *h = hba[ctlr];
1816	CommandList_struct *c;
1817	u64bit buff_dma_handle;
1818	unsigned long flags;
1819	int return_status;
1820	DECLARE_COMPLETION_ONSTACK(wait);
1821
1822	if ((c = cmd_alloc(h, 0)) == NULL)
1823		return -ENOMEM;
1824	return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1825				 log_unit, page_code, NULL, cmd_type);
1826	if (return_status != IO_OK) {
1827		cmd_free(h, c, 0);
1828		return return_status;
1829	}
1830      resend_cmd2:
1831	c->waiting = &wait;
1832
1833	/* Put the request on the tail of the queue and send it */
1834	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1835	addQ(&h->reqQ, c);
1836	h->Qdepth++;
1837	start_io(h);
1838	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1839
1840	wait_for_completion(&wait);
1841
1842	if (c->err_info->CommandStatus != 0) {	/* an error has occurred */
1843		switch (c->err_info->CommandStatus) {
1844		case CMD_TARGET_STATUS:
1845			printk(KERN_WARNING "cciss: cmd %p has "
1846			       " completed with errors\n", c);
1847			if (c->err_info->ScsiStatus) {
1848				printk(KERN_WARNING "cciss: cmd %p "
1849				       "has SCSI Status = %x\n",
1850				       c, c->err_info->ScsiStatus);
1851			}
1852
1853			break;
1854		case CMD_DATA_UNDERRUN:
1855		case CMD_DATA_OVERRUN:
1856			/* expected for inquire and report lun commands */
1857			break;
1858		case CMD_INVALID:
1859			printk(KERN_WARNING "cciss: Cmd %p is "
1860			       "reported invalid\n", c);
1861			return_status = IO_ERROR;
1862			break;
1863		case CMD_PROTOCOL_ERR:
1864			printk(KERN_WARNING "cciss: cmd %p has "
1865			       "protocol error \n", c);
1866			return_status = IO_ERROR;
1867			break;
1868		case CMD_HARDWARE_ERR:
1869			printk(KERN_WARNING "cciss: cmd %p had "
1870			       " hardware error\n", c);
1871			return_status = IO_ERROR;
1872			break;
1873		case CMD_CONNECTION_LOST:
1874			printk(KERN_WARNING "cciss: cmd %p had "
1875			       "connection lost\n", c);
1876			return_status = IO_ERROR;
1877			break;
1878		case CMD_ABORTED:
1879			printk(KERN_WARNING "cciss: cmd %p was "
1880			       "aborted\n", c);
1881			return_status = IO_ERROR;
1882			break;
1883		case CMD_ABORT_FAILED:
1884			printk(KERN_WARNING "cciss: cmd %p reports "
1885			       "abort failed\n", c);
1886			return_status = IO_ERROR;
1887			break;
1888		case CMD_UNSOLICITED_ABORT:
1889			printk(KERN_WARNING
1890			       "cciss%d: unsolicited abort %p\n", ctlr, c);
1891			if (c->retry_count < MAX_CMD_RETRIES) {
1892				printk(KERN_WARNING
1893				       "cciss%d: retrying %p\n", ctlr, c);
1894				c->retry_count++;
1895				/* erase the old error information */
1896				memset(c->err_info, 0,
1897				       sizeof(ErrorInfo_struct));
1898				return_status = IO_OK;
1899				INIT_COMPLETION(wait);
1900				goto resend_cmd2;
1901			}
1902			return_status = IO_ERROR;
1903			break;
1904		default:
1905			printk(KERN_WARNING "cciss: cmd %p returned "
1906			       "unknown status %x\n", c,
1907			       c->err_info->CommandStatus);
1908			return_status = IO_ERROR;
1909		}
1910	}
1911	/* unlock the buffers from DMA */
1912	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1913	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1914	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1915			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1916	cmd_free(h, c, 0);
1917	return return_status;
1918}
1919
1920static void cciss_geometry_inquiry(int ctlr, int logvol,
1921				   int withirq, sector_t total_size,
1922				   unsigned int block_size,
1923				   InquiryData_struct *inq_buff,
1924				   drive_info_struct *drv)
1925{
1926	int return_code;
1927	unsigned long t;
1928
1929	memset(inq_buff, 0, sizeof(InquiryData_struct));
1930	if (withirq)
1931		return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1932					      inq_buff, sizeof(*inq_buff), 1,
1933					      logvol, 0xC1, TYPE_CMD);
1934	else
1935		return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1936				      sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1937				      TYPE_CMD);
1938	if (return_code == IO_OK) {
1939		if (inq_buff->data_byte[8] == 0xFF) {
1940			printk(KERN_WARNING
1941			       "cciss: reading geometry failed, volume "
1942			       "does not support reading geometry\n");
1943			drv->heads = 255;
1944			drv->sectors = 32;	// Sectors per track
1945			drv->cylinders = total_size + 1;
1946			drv->raid_level = RAID_UNKNOWN;
1947		} else {
1948			drv->heads = inq_buff->data_byte[6];
1949			drv->sectors = inq_buff->data_byte[7];
1950			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1951			drv->cylinders += inq_buff->data_byte[5];
1952			drv->raid_level = inq_buff->data_byte[8];
1953		}
1954		drv->block_size = block_size;
1955		drv->nr_blocks = total_size + 1;
1956		t = drv->heads * drv->sectors;
1957		if (t > 1) {
1958			sector_t real_size = total_size + 1;
1959			unsigned long rem = sector_div(real_size, t);
1960			if (rem)
1961				real_size++;
1962			drv->cylinders = real_size;
1963		}
1964	} else {		/* Get geometry failed */
1965		printk(KERN_WARNING "cciss: reading geometry failed\n");
1966	}
1967	printk(KERN_INFO "      heads=%d, sectors=%d, cylinders=%d\n\n",
1968	       drv->heads, drv->sectors, drv->cylinders);
1969}
1970
1971static void
1972cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
1973		    unsigned int *block_size)
1974{
1975	ReadCapdata_struct *buf;
1976	int return_code;
1977
1978	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
1979	if (!buf) {
1980		printk(KERN_WARNING "cciss: out of memory\n");
1981		return;
1982	}
1983
1984	if (withirq)
1985		return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1986				ctlr, buf, sizeof(ReadCapdata_struct),
1987					1, logvol, 0, TYPE_CMD);
1988	else
1989		return_code = sendcmd(CCISS_READ_CAPACITY,
1990				ctlr, buf, sizeof(ReadCapdata_struct),
1991					1, logvol, 0, NULL, TYPE_CMD);
1992	if (return_code == IO_OK) {
1993		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
1994		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
1995	} else {		/* read capacity command failed */
1996		printk(KERN_WARNING "cciss: read capacity failed\n");
1997		*total_size = 0;
1998		*block_size = BLOCK_SIZE;
1999	}
2000	if (*total_size != 0)
2001		printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2002		(unsigned long long)*total_size+1, *block_size);
2003	kfree(buf);
2004}
2005
2006static void
2007cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, 				unsigned int *block_size)
2008{
2009	ReadCapdata_struct_16 *buf;
2010	int return_code;
2011
2012	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2013	if (!buf) {
2014		printk(KERN_WARNING "cciss: out of memory\n");
2015		return;
2016	}
2017
2018	if (withirq) {
2019		return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2020			ctlr, buf, sizeof(ReadCapdata_struct_16),
2021				1, logvol, 0, TYPE_CMD);
2022	}
2023	else {
2024		return_code = sendcmd(CCISS_READ_CAPACITY_16,
2025			ctlr, buf, sizeof(ReadCapdata_struct_16),
2026				1, logvol, 0, NULL, TYPE_CMD);
2027	}
2028	if (return_code == IO_OK) {
2029		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2030		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2031	} else {		/* read capacity command failed */
2032		printk(KERN_WARNING "cciss: read capacity failed\n");
2033		*total_size = 0;
2034		*block_size = BLOCK_SIZE;
2035	}
2036	printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2037	       (unsigned long long)*total_size+1, *block_size);
2038	kfree(buf);
2039}
2040
2041static int cciss_revalidate(struct gendisk *disk)
2042{
2043	ctlr_info_t *h = get_host(disk);
2044	drive_info_struct *drv = get_drv(disk);
2045	int logvol;
2046	int FOUND = 0;
2047	unsigned int block_size;
2048	sector_t total_size;
2049	InquiryData_struct *inq_buff = NULL;
2050
2051	for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2052		if (h->drv[logvol].LunID == drv->LunID) {
2053			FOUND = 1;
2054			break;
2055		}
2056	}
2057
2058	if (!FOUND)
2059		return 1;
2060
2061	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2062	if (inq_buff == NULL) {
2063		printk(KERN_WARNING "cciss: out of memory\n");
2064		return 1;
2065	}
2066	if (h->cciss_read == CCISS_READ_10) {
2067		cciss_read_capacity(h->ctlr, logvol, 1,
2068					&total_size, &block_size);
2069	} else {
2070		cciss_read_capacity_16(h->ctlr, logvol, 1,
2071					&total_size, &block_size);
2072	}
2073	cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2074			       inq_buff, drv);
2075
2076	blk_queue_hardsect_size(drv->queue, drv->block_size);
2077	set_capacity(disk, drv->nr_blocks);
2078
2079	kfree(inq_buff);
2080	return 0;
2081}
2082
2083/*
2084 *   Wait polling for a command to complete.
2085 *   The memory mapped FIFO is polled for the completion.
2086 *   Used only at init time, interrupts from the HBA are disabled.
2087 */
2088static unsigned long pollcomplete(int ctlr)
2089{
2090	unsigned long done;
2091	int i;
2092
2093	/* Wait (up to 20 seconds) for a command to complete */
2094
2095	for (i = 20 * HZ; i > 0; i--) {
2096		done = hba[ctlr]->access.command_completed(hba[ctlr]);
2097		if (done == FIFO_EMPTY)
2098			schedule_timeout_uninterruptible(1);
2099		else
2100			return done;
2101	}
2102	/* Invalid address to tell caller we ran out of time */
2103	return 1;
2104}
2105
2106static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2107{
2108	/* We get in here if sendcmd() is polling for completions
2109	   and gets some command back that it wasn't expecting --
2110	   something other than that which it just sent down.
2111	   Ordinarily, that shouldn't happen, but it can happen when
2112	   the scsi tape stuff gets into error handling mode, and
2113	   starts using sendcmd() to try to abort commands and
2114	   reset tape drives.  In that case, sendcmd may pick up
2115	   completions of commands that were sent to logical drives
2116	   through the block i/o system, or cciss ioctls completing, etc.
2117	   In that case, we need to save those completions for later
2118	   processing by the interrupt handler.
2119	 */
2120
2121#ifdef CONFIG_CISS_SCSI_TAPE
2122	struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2123
2124	/* If it's not the scsi tape stuff doing error handling, (abort */
2125	/* or reset) then we don't expect anything weird. */
2126	if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2127#endif
2128		printk(KERN_WARNING "cciss cciss%d: SendCmd "
2129		       "Invalid command list address returned! (%lx)\n",
2130		       ctlr, complete);
2131		/* not much we can do. */
2132#ifdef CONFIG_CISS_SCSI_TAPE
2133		return 1;
2134	}
2135
2136	/* We've sent down an abort or reset, but something else
2137	   has completed */
2138	if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2139		/* Uh oh.  No room to save it for later... */
2140		printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2141		       "reject list overflow, command lost!\n", ctlr);
2142		return 1;
2143	}
2144	/* Save it for later */
2145	srl->complete[srl->ncompletions] = complete;
2146	srl->ncompletions++;
2147#endif
2148	return 0;
2149}
2150
2151/*
2152 * Send a command to the controller, and wait for it to complete.
2153 * Only used at init time.
2154 */
2155static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num,	/* 0: address the controller,
2156												   1: address logical volume log_unit,
2157												   2: periph device address is scsi3addr */
2158		   unsigned int log_unit,
2159		   __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2160{
2161	CommandList_struct *c;
2162	int i;
2163	unsigned long complete;
2164	ctlr_info_t *info_p = hba[ctlr];
2165	u64bit buff_dma_handle;
2166	int status, done = 0;
2167
2168	if ((c = cmd_alloc(info_p, 1)) == NULL) {
2169		printk(KERN_WARNING "cciss: unable to get memory");
2170		return IO_ERROR;
2171	}
2172	status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2173			  log_unit, page_code, scsi3addr, cmd_type);
2174	if (status != IO_OK) {
2175		cmd_free(info_p, c, 1);
2176		return status;
2177	}
2178      resend_cmd1:
2179	/*
2180	 * Disable interrupt
2181	 */
2182#ifdef CCISS_DEBUG
2183	printk(KERN_DEBUG "cciss: turning intr off\n");
2184#endif				/* CCISS_DEBUG */
2185	info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2186
2187	/* Make sure there is room in the command FIFO */
2188	/* Actually it should be completely empty at this time */
2189	/* unless we are in here doing error handling for the scsi */
2190	/* tape side of the driver. */
2191	for (i = 200000; i > 0; i--) {
2192		/* if fifo isn't full go */
2193		if (!(info_p->access.fifo_full(info_p))) {
2194
2195			break;
2196		}
2197		udelay(10);
2198		printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2199		       " waiting!\n", ctlr);
2200	}
2201	/*
2202	 * Send the cmd
2203	 */
2204	info_p->access.submit_command(info_p, c);
2205	done = 0;
2206	do {
2207		complete = pollcomplete(ctlr);
2208
2209#ifdef CCISS_DEBUG
2210		printk(KERN_DEBUG "cciss: command completed\n");
2211#endif				/* CCISS_DEBUG */
2212
2213		if (complete == 1) {
2214			printk(KERN_WARNING
2215			       "cciss cciss%d: SendCmd Timeout out, "
2216			       "No command list address returned!\n", ctlr);
2217			status = IO_ERROR;
2218			done = 1;
2219			break;
2220		}
2221
2222		/* This will need to change for direct lookup completions */
2223		if ((complete & CISS_ERROR_BIT)
2224		    && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2225			/* if data overrun or underun on Report command
2226			   ignore it
2227			 */
2228			if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2229			     (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2230			     (c->Request.CDB[0] == CISS_INQUIRY)) &&
2231			    ((c->err_info->CommandStatus ==
2232			      CMD_DATA_OVERRUN) ||
2233			     (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2234			    )) {
2235				complete = c->busaddr;
2236			} else {
2237				if (c->err_info->CommandStatus ==
2238				    CMD_UNSOLICITED_ABORT) {
2239					printk(KERN_WARNING "cciss%d: "
2240					       "unsolicited abort %p\n",
2241					       ctlr, c);
2242					if (c->retry_count < MAX_CMD_RETRIES) {
2243						printk(KERN_WARNING
2244						       "cciss%d: retrying %p\n",
2245						       ctlr, c);
2246						c->retry_count++;
2247						/* erase the old error */
2248						/* information */
2249						memset(c->err_info, 0,
2250						       sizeof
2251						       (ErrorInfo_struct));
2252						goto resend_cmd1;
2253					} else {
2254						printk(KERN_WARNING
2255						       "cciss%d: retried %p too "
2256						       "many times\n", ctlr, c);
2257						status = IO_ERROR;
2258						goto cleanup1;
2259					}
2260				} else if (c->err_info->CommandStatus ==
2261					   CMD_UNABORTABLE) {
2262					printk(KERN_WARNING
2263					       "cciss%d: command could not be aborted.\n",
2264					       ctlr);
2265					status = IO_ERROR;
2266					goto cleanup1;
2267				}
2268				printk(KERN_WARNING "ciss ciss%d: sendcmd"
2269				       " Error %x \n", ctlr,
2270				       c->err_info->CommandStatus);
2271				printk(KERN_WARNING "ciss ciss%d: sendcmd"
2272				       " offensive info\n"
2273				       "  size %x\n   num %x   value %x\n",
2274				       ctlr,
2275				       c->err_info->MoreErrInfo.Invalid_Cmd.
2276				       offense_size,
2277				       c->err_info->MoreErrInfo.Invalid_Cmd.
2278				       offense_num,
2279				       c->err_info->MoreErrInfo.Invalid_Cmd.
2280				       offense_value);
2281				status = IO_ERROR;
2282				goto cleanup1;
2283			}
2284		}
2285		/* This will need changing for direct lookup completions */
2286		if (complete != c->busaddr) {
2287			if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2288				BUG();	/* we are pretty much hosed if we get here. */
2289			}
2290			continue;
2291		} else
2292			done = 1;
2293	} while (!done);
2294
2295      cleanup1:
2296	/* unlock the data buffer from DMA */
2297	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2298	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2299	pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2300			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2301#ifdef CONFIG_CISS_SCSI_TAPE
2302	/* if we saved some commands for later, process them now. */
2303	if (info_p->scsi_rejects.ncompletions > 0)
2304		do_cciss_intr(0, info_p);
2305#endif
2306	cmd_free(info_p, c, 1);
2307	return status;
2308}
2309
2310/*
2311 * Map (physical) PCI mem into (virtual) kernel space
2312 */
2313static void __iomem *remap_pci_mem(ulong base, ulong size)
2314{
2315	ulong page_base = ((ulong) base) & PAGE_MASK;
2316	ulong page_offs = ((ulong) base) - page_base;
2317	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2318
2319	return page_remapped ? (page_remapped + page_offs) : NULL;
2320}
2321
2322/*
2323 * Takes jobs of the Q and sends them to the hardware, then puts it on
2324 * the Q to wait for completion.
2325 */
2326static void start_io(ctlr_info_t *h)
2327{
2328	CommandList_struct *c;
2329
2330	while ((c = h->reqQ) != NULL) {
2331		/* can't do anything if fifo is full */
2332		if ((h->access.fifo_full(h))) {
2333			printk(KERN_WARNING "cciss: fifo full\n");
2334			break;
2335		}
2336
2337		/* Get the first entry from the Request Q */
2338		removeQ(&(h->reqQ), c);
2339		h->Qdepth--;
2340
2341		/* Tell the controller execute command */
2342		h->access.submit_command(h, c);
2343
2344		/* Put job onto the completed Q */
2345		addQ(&(h->cmpQ), c);
2346	}
2347}
2348
2349/* Assumes that CCISS_LOCK(h->ctlr) is held. */
2350/* Zeros out the error record and then resends the command back */
2351/* to the controller */
2352static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2353{
2354	/* erase the old error information */
2355	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2356
2357	/* add it to software queue and then send it to the controller */
2358	addQ(&(h->reqQ), c);
2359	h->Qdepth++;
2360	if (h->Qdepth > h->maxQsinceinit)
2361		h->maxQsinceinit = h->Qdepth;
2362
2363	start_io(h);
2364}
2365
2366static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2367	unsigned int msg_byte, unsigned int host_byte,
2368	unsigned int driver_byte)
2369{
2370	/* inverse of macros in scsi.h */
2371	return (scsi_status_byte & 0xff) |
2372		((msg_byte & 0xff) << 8) |
2373		((host_byte & 0xff) << 16) |
2374		((driver_byte & 0xff) << 24);
2375}
2376
2377static inline int evaluate_target_status(CommandList_struct *cmd)
2378{
2379	unsigned char sense_key;
2380	unsigned char status_byte, msg_byte, host_byte, driver_byte;
2381	int error_value;
2382
2383	/* If we get in here, it means we got "target status", that is, scsi status */
2384	status_byte = cmd->err_info->ScsiStatus;
2385	driver_byte = DRIVER_OK;
2386	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
2387
2388	if (blk_pc_request(cmd->rq))
2389		host_byte = DID_PASSTHROUGH;
2390	else
2391		host_byte = DID_OK;
2392
2393	error_value = make_status_bytes(status_byte, msg_byte,
2394		host_byte, driver_byte);
2395
2396	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2397		if (!blk_pc_request(cmd->rq))
2398			printk(KERN_WARNING "cciss: cmd %p "
2399			       "has SCSI Status 0x%x\n",
2400			       cmd, cmd->err_info->ScsiStatus);
2401		return error_value;
2402	}
2403
2404	/* check the sense key */
2405	sense_key = 0xf & cmd->err_info->SenseInfo[2];
2406	/* no status or recovered error */
2407	if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2408		error_value = 0;
2409
2410	if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2411		if (error_value != 0)
2412			printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2413			       " sense key = 0x%x\n", cmd, sense_key);
2414		return error_value;
2415	}
2416
2417	/* SG_IO or similar, copy sense data back */
2418	if (cmd->rq->sense) {
2419		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2420			cmd->rq->sense_len = cmd->err_info->SenseLen;
2421		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2422			cmd->rq->sense_len);
2423	} else
2424		cmd->rq->sense_len = 0;
2425
2426	return error_value;
2427}
2428
2429/* checks the status of the job and calls complete buffers to mark all
2430 * buffers for the completed job. Note that this function does not need
2431 * to hold the hba/queue lock.
2432 */
2433static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2434				    int timeout)
2435{
2436	int retry_cmd = 0;
2437	struct request *rq = cmd->rq;
2438
2439	rq->errors = 0;
2440
2441	if (timeout)
2442		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2443
2444	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
2445		goto after_error_processing;
2446
2447	switch (cmd->err_info->CommandStatus) {
2448	case CMD_TARGET_STATUS:
2449		rq->errors = evaluate_target_status(cmd);
2450		break;
2451	case CMD_DATA_UNDERRUN:
2452		if (blk_fs_request(cmd->rq)) {
2453			printk(KERN_WARNING "cciss: cmd %p has"
2454			       " completed with data underrun "
2455			       "reported\n", cmd);
2456			cmd->rq->data_len = cmd->err_info->ResidualCnt;
2457		}
2458		break;
2459	case CMD_DATA_OVERRUN:
2460		if (blk_fs_request(cmd->rq))
2461			printk(KERN_WARNING "cciss: cmd %p has"
2462			       " completed with data overrun "
2463			       "reported\n", cmd);
2464		break;
2465	case CMD_INVALID:
2466		printk(KERN_WARNING "cciss: cmd %p is "
2467		       "reported invalid\n", cmd);
2468		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2469			cmd->err_info->CommandStatus, DRIVER_OK,
2470			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2471		break;
2472	case CMD_PROTOCOL_ERR:
2473		printk(KERN_WARNING "cciss: cmd %p has "
2474		       "protocol error \n", cmd);
2475		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2476			cmd->err_info->CommandStatus, DRIVER_OK,
2477			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2478		break;
2479	case CMD_HARDWARE_ERR:
2480		printk(KERN_WARNING "cciss: cmd %p had "
2481		       " hardware error\n", cmd);
2482		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2483			cmd->err_info->CommandStatus, DRIVER_OK,
2484			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2485		break;
2486	case CMD_CONNECTION_LOST:
2487		printk(KERN_WARNING "cciss: cmd %p had "
2488		       "connection lost\n", cmd);
2489		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2490			cmd->err_info->CommandStatus, DRIVER_OK,
2491			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2492		break;
2493	case CMD_ABORTED:
2494		printk(KERN_WARNING "cciss: cmd %p was "
2495		       "aborted\n", cmd);
2496		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2497			cmd->err_info->CommandStatus, DRIVER_OK,
2498			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2499		break;
2500	case CMD_ABORT_FAILED:
2501		printk(KERN_WARNING "cciss: cmd %p reports "
2502		       "abort failed\n", cmd);
2503		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2504			cmd->err_info->CommandStatus, DRIVER_OK,
2505			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2506		break;
2507	case CMD_UNSOLICITED_ABORT:
2508		printk(KERN_WARNING "cciss%d: unsolicited "
2509		       "abort %p\n", h->ctlr, cmd);
2510		if (cmd->retry_count < MAX_CMD_RETRIES) {
2511			retry_cmd = 1;
2512			printk(KERN_WARNING
2513			       "cciss%d: retrying %p\n", h->ctlr, cmd);
2514			cmd->retry_count++;
2515		} else
2516			printk(KERN_WARNING
2517			       "cciss%d: %p retried too "
2518			       "many times\n", h->ctlr, cmd);
2519		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2520			cmd->err_info->CommandStatus, DRIVER_OK,
2521			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2522		break;
2523	case CMD_TIMEOUT:
2524		printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2525		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2526			cmd->err_info->CommandStatus, DRIVER_OK,
2527			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2528		break;
2529	default:
2530		printk(KERN_WARNING "cciss: cmd %p returned "
2531		       "unknown status %x\n", cmd,
2532		       cmd->err_info->CommandStatus);
2533		rq->errors = make_status_bytes(SAM_STAT_GOOD,
2534			cmd->err_info->CommandStatus, DRIVER_OK,
2535			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2536	}
2537
2538after_error_processing:
2539
2540	/* We need to return this command */
2541	if (retry_cmd) {
2542		resend_cciss_cmd(h, cmd);
2543		return;
2544	}
2545	cmd->rq->data_len = 0;
2546	cmd->rq->completion_data = cmd;
2547	blk_add_trace_rq(cmd->rq->q, cmd->rq, BLK_TA_COMPLETE);
2548	blk_complete_request(cmd->rq);
2549}
2550
2551/*
2552 * Get a request and submit it to the controller.
2553 */
2554static void do_cciss_request(struct request_queue *q)
2555{
2556	ctlr_info_t *h = q->queuedata;
2557	CommandList_struct *c;
2558	sector_t start_blk;
2559	int seg;
2560	struct request *creq;
2561	u64bit temp64;
2562	struct scatterlist tmp_sg[MAXSGENTRIES];
2563	drive_info_struct *drv;
2564	int i, dir;
2565
2566	/* We call start_io here in case there is a command waiting on the
2567	 * queue that has not been sent.
2568	 */
2569	if (blk_queue_plugged(q))
2570		goto startio;
2571
2572      queue:
2573	creq = elv_next_request(q);
2574	if (!creq)
2575		goto startio;
2576
2577	BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2578
2579	if ((c = cmd_alloc(h, 1)) == NULL)
2580		goto full;
2581
2582	blkdev_dequeue_request(creq);
2583
2584	spin_unlock_irq(q->queue_lock);
2585
2586	c->cmd_type = CMD_RWREQ;
2587	c->rq = creq;
2588
2589	/* fill in the request */
2590	drv = creq->rq_disk->private_data;
2591	c->Header.ReplyQueue = 0;	// unused in simple mode
2592	/* got command from pool, so use the command block index instead */
2593	/* for direct lookups. */
2594	/* The first 2 bits are reserved for controller error reporting. */
2595	c->Header.Tag.lower = (c->cmdindex << 3);
2596	c->Header.Tag.lower |= 0x04;	/* flag for direct lookup. */
2597	c->Header.LUN.LogDev.VolId = drv->LunID;
2598	c->Header.LUN.LogDev.Mode = 1;
2599	c->Request.CDBLen = 10;	// 12 byte commands not in FW yet;
2600	c->Request.Type.Type = TYPE_CMD;	// It is a command.
2601	c->Request.Type.Attribute = ATTR_SIMPLE;
2602	c->Request.Type.Direction =
2603	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2604	c->Request.Timeout = 0;	// Don't time out
2605	c->Request.CDB[0] =
2606	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2607	start_blk = creq->sector;
2608#ifdef CCISS_DEBUG
2609	printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2610	       (int)creq->nr_sectors);
2611#endif				/* CCISS_DEBUG */
2612
2613	sg_init_table(tmp_sg, MAXSGENTRIES);
2614	seg = blk_rq_map_sg(q, creq, tmp_sg);
2615
2616	/* get the DMA records for the setup */
2617	if (c->Request.Type.Direction == XFER_READ)
2618		dir = PCI_DMA_FROMDEVICE;
2619	else
2620		dir = PCI_DMA_TODEVICE;
2621
2622	for (i = 0; i < seg; i++) {
2623		c->SG[i].Len = tmp_sg[i].length;
2624		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2625						  tmp_sg[i].offset,
2626						  tmp_sg[i].length, dir);
2627		c->SG[i].Addr.lower = temp64.val32.lower;
2628		c->SG[i].Addr.upper = temp64.val32.upper;
2629		c->SG[i].Ext = 0;	// we are not chaining
2630	}
2631	/* track how many SG entries we are using */
2632	if (seg > h->maxSG)
2633		h->maxSG = seg;
2634
2635#ifdef CCISS_DEBUG
2636	printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2637	       creq->nr_sectors, seg);
2638#endif				/* CCISS_DEBUG */
2639
2640	c->Header.SGList = c->Header.SGTotal = seg;
2641	if (likely(blk_fs_request(creq))) {
2642		if(h->cciss_read == CCISS_READ_10) {
2643			c->Request.CDB[1] = 0;
2644			c->Request.CDB[2] = (start_blk >> 24) & 0xff;	//MSB
2645			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2646			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2647			c->Request.CDB[5] = start_blk & 0xff;
2648			c->Request.CDB[6] = 0;	// (sect >> 24) & 0xff; MSB
2649			c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2650			c->Request.CDB[8] = creq->nr_sectors & 0xff;
2651			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2652		} else {
2653			c->Request.CDBLen = 16;
2654			c->Request.CDB[1]= 0;
2655			c->Request.CDB[2]= (start_blk >> 56) & 0xff;	//MSB
2656			c->Request.CDB[3]= (start_blk >> 48) & 0xff;
2657			c->Request.CDB[4]= (start_blk >> 40) & 0xff;
2658			c->Request.CDB[5]= (start_blk >> 32) & 0xff;
2659			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2660			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2661			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
2662			c->Request.CDB[9]= start_blk & 0xff;
2663			c->Request.CDB[10]= (creq->nr_sectors >>  24) & 0xff;
2664			c->Request.CDB[11]= (creq->nr_sectors >>  16) & 0xff;
2665			c->Request.CDB[12]= (creq->nr_sectors >>  8) & 0xff;
2666			c->Request.CDB[13]= creq->nr_sectors & 0xff;
2667			c->Request.CDB[14] = c->Request.CDB[15] = 0;
2668		}
2669	} else if (blk_pc_request(creq)) {
2670		c->Request.CDBLen = creq->cmd_len;
2671		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2672	} else {
2673		printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2674		BUG();
2675	}
2676
2677	spin_lock_irq(q->queue_lock);
2678
2679	addQ(&(h->reqQ), c);
2680	h->Qdepth++;
2681	if (h->Qdepth > h->maxQsinceinit)
2682		h->maxQsinceinit = h->Qdepth;
2683
2684	goto queue;
2685full:
2686	blk_stop_queue(q);
2687startio:
2688	/* We will already have the driver lock here so not need
2689	 * to lock it.
2690	 */
2691	start_io(h);
2692}
2693
2694static inline unsigned long get_next_completion(ctlr_info_t *h)
2695{
2696#ifdef CONFIG_CISS_SCSI_TAPE
2697	/* Any rejects from sendcmd() lying around? Process them first */
2698	if (h->scsi_rejects.ncompletions == 0)
2699		return h->access.command_completed(h);
2700	else {
2701		struct sendcmd_reject_list *srl;
2702		int n;
2703		srl = &h->scsi_rejects;
2704		n = --srl->ncompletions;
2705		/* printk("cciss%d: processing saved reject\n", h->ctlr); */
2706		printk("p");
2707		return srl->complete[n];
2708	}
2709#else
2710	return h->access.command_completed(h);
2711#endif
2712}
2713
2714static inline int interrupt_pending(ctlr_info_t *h)
2715{
2716#ifdef CONFIG_CISS_SCSI_TAPE
2717	return (h->access.intr_pending(h)
2718		|| (h->scsi_rejects.ncompletions > 0));
2719#else
2720	return h->access.intr_pending(h);
2721#endif
2722}
2723
2724static inline long interrupt_not_for_us(ctlr_info_t *h)
2725{
2726#ifdef CONFIG_CISS_SCSI_TAPE
2727	return (((h->access.intr_pending(h) == 0) ||
2728		 (h->interrupts_enabled == 0))
2729		&& (h->scsi_rejects.ncompletions == 0));
2730#else
2731	return (((h->access.intr_pending(h) == 0) ||
2732		 (h->interrupts_enabled == 0)));
2733#endif
2734}
2735
2736static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2737{
2738	ctlr_info_t *h = dev_id;
2739	CommandList_struct *c;
2740	unsigned long flags;
2741	__u32 a, a1, a2;
2742
2743	if (interrupt_not_for_us(h))
2744		return IRQ_NONE;
2745	/*
2746	 * If there are completed commands in the completion queue,
2747	 * we had better do something about it.
2748	 */
2749	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2750	while (interrupt_pending(h)) {
2751		while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2752			a1 = a;
2753			if ((a & 0x04)) {
2754				a2 = (a >> 3);
2755				if (a2 >= h->nr_cmds) {
2756					printk(KERN_WARNING
2757					       "cciss: controller cciss%d failed, stopping.\n",
2758					       h->ctlr);
2759					fail_all_cmds(h->ctlr);
2760					return IRQ_HANDLED;
2761				}
2762
2763				c = h->cmd_pool + a2;
2764				a = c->busaddr;
2765
2766			} else {
2767				a &= ~3;
2768				if ((c = h->cmpQ) == NULL) {
2769					printk(KERN_WARNING
2770					       "cciss: Completion of %08x ignored\n",
2771					       a1);
2772					continue;
2773				}
2774				while (c->busaddr != a) {
2775					c = c->next;
2776					if (c == h->cmpQ)
2777						break;
2778				}
2779			}
2780			/*
2781			 * If we've found the command, take it off the
2782			 * completion Q and free it
2783			 */
2784			if (c->busaddr == a) {
2785				removeQ(&h->cmpQ, c);
2786				if (c->cmd_type == CMD_RWREQ) {
2787					complete_command(h, c, 0);
2788				} else if (c->cmd_type == CMD_IOCTL_PEND) {
2789					complete(c->waiting);
2790				}
2791#				ifdef CONFIG_CISS_SCSI_TAPE
2792				else if (c->cmd_type == CMD_SCSI)
2793					complete_scsi_command(c, 0, a1);
2794#				endif
2795				continue;
2796			}
2797		}
2798	}
2799
2800	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2801	return IRQ_HANDLED;
2802}
2803
2804/*
2805 *  We cannot read the structure directly, for portability we must use
2806 *   the io functions.
2807 *   This is for debug only.
2808 */
2809#ifdef CCISS_DEBUG
2810static void print_cfg_table(CfgTable_struct *tb)
2811{
2812	int i;
2813	char temp_name[17];
2814
2815	printk("Controller Configuration information\n");
2816	printk("------------------------------------\n");
2817	for (i = 0; i < 4; i++)
2818		temp_name[i] = readb(&(tb->Signature[i]));
2819	temp_name[4] = '\0';
2820	printk("   Signature = %s\n", temp_name);
2821	printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
2822	printk("   Transport methods supported = 0x%x\n",
2823	       readl(&(tb->TransportSupport)));
2824	printk("   Transport methods active = 0x%x\n",
2825	       readl(&(tb->TransportActive)));
2826	printk("   Requested transport Method = 0x%x\n",
2827	       readl(&(tb->HostWrite.TransportRequest)));
2828	printk("   Coalesce Interrupt Delay = 0x%x\n",
2829	       readl(&(tb->HostWrite.CoalIntDelay)));
2830	printk("   Coalesce Interrupt Count = 0x%x\n",
2831	       readl(&(tb->HostWrite.CoalIntCount)));
2832	printk("   Max outstanding commands = 0x%d\n",
2833	       readl(&(tb->CmdsOutMax)));
2834	printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2835	for (i = 0; i < 16; i++)
2836		temp_name[i] = readb(&(tb->ServerName[i]));
2837	temp_name[16] = '\0';
2838	printk("   Server Name = %s\n", temp_name);
2839	printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2840}
2841#endif				/* CCISS_DEBUG */
2842
2843static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2844{
2845	int i, offset, mem_type, bar_type;
2846	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
2847		return 0;
2848	offset = 0;
2849	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2850		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2851		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2852			offset += 4;
2853		else {
2854			mem_type = pci_resource_flags(pdev, i) &
2855			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2856			switch (mem_type) {
2857			case PCI_BASE_ADDRESS_MEM_TYPE_32:
2858			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2859				offset += 4;	/* 32 bit */
2860				break;
2861			case PCI_BASE_ADDRESS_MEM_TYPE_64:
2862				offset += 8;
2863				break;
2864			default:	/* reserved in PCI 2.2 */
2865				printk(KERN_WARNING
2866				       "Base address is invalid\n");
2867				return -1;
2868				break;
2869			}
2870		}
2871		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2872			return i + 1;
2873	}
2874	return -1;
2875}
2876
2877/* If MSI/MSI-X is supported by the kernel we will try to enable it on
2878 * controllers that are capable. If not, we use IO-APIC mode.
2879 */
2880
2881static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2882					   struct pci_dev *pdev, __u32 board_id)
2883{
2884#ifdef CONFIG_PCI_MSI
2885	int err;
2886	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2887	{0, 2}, {0, 3}
2888	};
2889
2890	/* Some boards advertise MSI but don't really support it */
2891	if ((board_id == 0x40700E11) ||
2892	    (board_id == 0x40800E11) ||
2893	    (board_id == 0x40820E11) || (board_id == 0x40830E11))
2894		goto default_int_mode;
2895
2896	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2897		err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2898		if (!err) {
2899			c->intr[0] = cciss_msix_entries[0].vector;
2900			c->intr[1] = cciss_msix_entries[1].vector;
2901			c->intr[2] = cciss_msix_entries[2].vector;
2902			c->intr[3] = cciss_msix_entries[3].vector;
2903			c->msix_vector = 1;
2904			return;
2905		}
2906		if (err > 0) {
2907			printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2908			       "available\n", err);
2909			goto default_int_mode;
2910		} else {
2911			printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2912			       err);
2913			goto default_int_mode;
2914		}
2915	}
2916	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2917		if (!pci_enable_msi(pdev)) {
2918			c->msi_vector = 1;
2919		} else {
2920			printk(KERN_WARNING "cciss: MSI init failed\n");
2921		}
2922	}
2923default_int_mode:
2924#endif				/* CONFIG_PCI_MSI */
2925	/* if we get here we're going to use the default interrupt mode */
2926	c->intr[SIMPLE_MODE_INT] = pdev->irq;
2927	return;
2928}
2929
2930static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2931{
2932	ushort subsystem_vendor_id, subsystem_device_id, command;
2933	__u32 board_id, scratchpad = 0;
2934	__u64 cfg_offset;
2935	__u32 cfg_base_addr;
2936	__u64 cfg_base_addr_index;
2937	int i, err;
2938
2939	/* check to see if controller has been disabled */
2940	/* BEFORE trying to enable it */
2941	(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2942	if (!(command & 0x02)) {
2943		printk(KERN_WARNING
2944		       "cciss: controller appears to be disabled\n");
2945		return -ENODEV;
2946	}
2947
2948	err = pci_enable_device(pdev);
2949	if (err) {
2950		printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2951		return err;
2952	}
2953
2954	err = pci_request_regions(pdev, "cciss");
2955	if (err) {
2956		printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
2957		       "aborting\n");
2958		return err;
2959	}
2960
2961	subsystem_vendor_id = pdev->subsystem_vendor;
2962	subsystem_device_id = pdev->subsystem_device;
2963	board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2964		    subsystem_vendor_id);
2965
2966#ifdef CCISS_DEBUG
2967	printk("command = %x\n", command);
2968	printk("irq = %x\n", pdev->irq);
2969	printk("board_id = %x\n", board_id);
2970#endif				/* CCISS_DEBUG */
2971
2972/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
2973 * else we use the IO-APIC interrupt assigned to us by system ROM.
2974 */
2975	cciss_interrupt_mode(c, pdev, board_id);
2976
2977	/*
2978	 * Memory base addr is first addr , the second points to the config
2979	 *   table
2980	 */
2981
2982	c->paddr = pci_resource_start(pdev, 0);	/* addressing mode bits already removed */
2983#ifdef CCISS_DEBUG
2984	printk("address 0 = %x\n", c->paddr);
2985#endif				/* CCISS_DEBUG */
2986	c->vaddr = remap_pci_mem(c->paddr, 0x250);
2987
2988	/* Wait for the board to become ready.  (PCI hotplug needs this.)
2989	 * We poll for up to 120 secs, once per 100ms. */
2990	for (i = 0; i < 1200; i++) {
2991		scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2992		if (scratchpad == CCISS_FIRMWARE_READY)
2993			break;
2994		set_current_state(TASK_INTERRUPTIBLE);
2995		schedule_timeout(HZ / 10);	/* wait 100ms */
2996	}
2997	if (scratchpad != CCISS_FIRMWARE_READY) {
2998		printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
2999		err = -ENODEV;
3000		goto err_out_free_res;
3001	}
3002
3003	/* get the address index number */
3004	cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3005	cfg_base_addr &= (__u32) 0x0000ffff;
3006#ifdef CCISS_DEBUG
3007	printk("cfg base address = %x\n", cfg_base_addr);
3008#endif				/* CCISS_DEBUG */
3009	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3010#ifdef CCISS_DEBUG
3011	printk("cfg base address index = %x\n", cfg_base_addr_index);
3012#endif				/* CCISS_DEBUG */
3013	if (cfg_base_addr_index == -1) {
3014		printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3015		err = -ENODEV;
3016		goto err_out_free_res;
3017	}
3018
3019	cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3020#ifdef CCISS_DEBUG
3021	printk("cfg offset = %x\n", cfg_offset);
3022#endif				/* CCISS_DEBUG */
3023	c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3024						       cfg_base_addr_index) +
3025				    cfg_offset, sizeof(CfgTable_struct));
3026	c->board_id = board_id;
3027
3028#ifdef CCISS_DEBUG
3029	print_cfg_table(c->cfgtable);
3030#endif				/* CCISS_DEBUG */
3031
3032	for (i = 0; i < ARRAY_SIZE(products); i++) {
3033		if (board_id == products[i].board_id) {
3034			c->product_name = products[i].product_name;
3035			c->access = *(products[i].access);
3036			c->nr_cmds = products[i].nr_cmds;
3037			break;
3038		}
3039	}
3040	if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3041	    (readb(&c->cfgtable->Signature[1]) != 'I') ||
3042	    (readb(&c->cfgtable->Signature[2]) != 'S') ||
3043	    (readb(&c->cfgtable->Signature[3]) != 'S')) {
3044		printk("Does not appear to be a valid CISS config table\n");
3045		err = -ENODEV;
3046		goto err_out_free_res;
3047	}
3048	/* We didn't find the controller in our list. We know the
3049	 * signature is valid. If it's an HP device let's try to
3050	 * bind to the device and fire it up. Otherwise we bail.
3051	 */
3052	if (i == ARRAY_SIZE(products)) {
3053		if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3054			c->product_name = products[i-1].product_name;
3055			c->access = *(products[i-1].access);
3056			c->nr_cmds = products[i-1].nr_cmds;
3057			printk(KERN_WARNING "cciss: This is an unknown "
3058				"Smart Array controller.\n"
3059				"cciss: Please update to the latest driver "
3060				"available from www.hp.com.\n");
3061		} else {
3062			printk(KERN_WARNING "cciss: Sorry, I don't know how"
3063				" to access the Smart Array controller %08lx\n"
3064					, (unsigned long)board_id);
3065			err = -ENODEV;
3066			goto err_out_free_res;
3067		}
3068	}
3069#ifdef CONFIG_X86
3070	{
3071		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3072		__u32 prefetch;
3073		prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3074		prefetch |= 0x100;
3075		writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3076	}
3077#endif
3078
3079	/* Disabling DMA prefetch and refetch for the P600.
3080	 * An ASIC bug may result in accesses to invalid memory addresses.
3081	 * We've disabled prefetch for some time now. Testing with XEN
3082	 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3083	 */
3084	if(board_id == 0x3225103C) {
3085		__u32 dma_prefetch;
3086		__u32 dma_refetch;
3087		dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3088		dma_prefetch |= 0x8000;
3089		writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3090		pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3091		dma_refetch |= 0x1;
3092		pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3093	}
3094
3095#ifdef CCISS_DEBUG
3096	printk("Trying to put board into Simple mode\n");
3097#endif				/* CCISS_DEBUG */
3098	c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3099	/* Update the field, and then ring the doorbell */
3100	writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3101	writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3102
3103	/* under certain very rare conditions, this can take awhile.
3104	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3105	 * as we enter this code.) */
3106	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3107		if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3108			break;
3109		/* delay and try again */
3110		set_current_state(TASK_INTERRUPTIBLE);
3111		schedule_timeout(10);
3112	}
3113
3114#ifdef CCISS_DEBUG
3115	printk(KERN_DEBUG "I counter got to %d %x\n", i,
3116	       readl(c->vaddr + SA5_DOORBELL));
3117#endif				/* CCISS_DEBUG */
3118#ifdef CCISS_DEBUG
3119	print_cfg_table(c->cfgtable);
3120#endif				/* CCISS_DEBUG */
3121
3122	if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3123		printk(KERN_WARNING "cciss: unable to get board into"
3124		       " simple mode\n");
3125		err = -ENODEV;
3126		goto err_out_free_res;
3127	}
3128	return 0;
3129
3130err_out_free_res:
3131	/*
3132	 * Deliberately omit pci_disable_device(): it does something nasty to
3133	 * Smart Array controllers that pci_enable_device does not undo
3134	 */
3135	pci_release_regions(pdev);
3136	return err;
3137}
3138
3139/*
3140 * Gets information about the local volumes attached to the controller.
3141 */
3142static void cciss_getgeometry(int cntl_num)
3143{
3144	ReportLunData_struct *ld_buff;
3145	InquiryData_struct *inq_buff;
3146	int return_code;
3147	int i;
3148	int listlength = 0;
3149	__u32 lunid = 0;
3150	unsigned block_size;
3151	sector_t total_size;
3152
3153	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3154	if (ld_buff == NULL) {
3155		printk(KERN_ERR "cciss: out of memory\n");
3156		return;
3157	}
3158	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3159	if (inq_buff == NULL) {
3160		printk(KERN_ERR "cciss: out of memory\n");
3161		kfree(ld_buff);
3162		return;
3163	}
3164	/* Get the firmware version */
3165	return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3166			      sizeof(InquiryData_struct), 0, 0, 0, NULL,
3167			      TYPE_CMD);
3168	if (return_code == IO_OK) {
3169		hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3170		hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3171		hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3172		hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3173	} else {		/* send command failed */
3174
3175		printk(KERN_WARNING "cciss: unable to determine firmware"
3176		       " version of controller\n");
3177	}
3178	/* Get the number of logical volumes */
3179	return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3180			      sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3181			      TYPE_CMD);
3182
3183	if (return_code == IO_OK) {
3184#ifdef CCISS_DEBUG
3185		printk("LUN Data\n--------------------------\n");
3186#endif				/* CCISS_DEBUG */
3187
3188		listlength |=
3189		    (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3190		listlength |=
3191		    (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3192		listlength |=
3193		    (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3194		listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3195	} else {		/* reading number of logical volumes failed */
3196
3197		printk(KERN_WARNING "cciss: report logical volume"
3198		       " command failed\n");
3199		listlength = 0;
3200	}
3201	hba[cntl_num]->num_luns = listlength / 8;	// 8 bytes pre entry
3202	if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3203		printk(KERN_ERR
3204		       "ciss:  only %d number of logical volumes supported\n",
3205		       CISS_MAX_LUN);
3206		hba[cntl_num]->num_luns = CISS_MAX_LUN;
3207	}
3208#ifdef CCISS_DEBUG
3209	printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3210	       ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3211	       ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3212	       hba[cntl_num]->num_luns);
3213#endif				/* CCISS_DEBUG */
3214
3215	hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3216	for (i = 0; i < CISS_MAX_LUN; i++) {
3217		if (i < hba[cntl_num]->num_luns) {
3218			lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3219			    << 24;
3220			lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3221			    << 16;
3222			lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3223			    << 8;
3224			lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3225
3226			hba[cntl_num]->drv[i].LunID = lunid;
3227
3228#ifdef CCISS_DEBUG
3229			printk(KERN_DEBUG "LUN[%d]:  %x %x %x %x = %x\n", i,
3230			       ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3231			       ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3232			       hba[cntl_num]->drv[i].LunID);
3233#endif				/* CCISS_DEBUG */
3234
3235		/* testing to see if 16-byte CDBs are already being used */
3236		if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3237			cciss_read_capacity_16(cntl_num, i, 0,
3238					    &total_size, &block_size);
3239			goto geo_inq;
3240		}
3241		cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3242
3243		/* If read_capacity returns all F's the logical is >2TB */
3244		/* so we switch to 16-byte CDBs for all read/write ops */
3245		if(total_size == 0xFFFFFFFFULL) {
3246			cciss_read_capacity_16(cntl_num, i, 0,
3247			&total_size, &block_size);
3248			hba[cntl_num]->cciss_read = CCISS_READ_16;
3249			hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3250		} else {
3251			hba[cntl_num]->cciss_read = CCISS_READ_10;
3252			hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3253		}
3254geo_inq:
3255			cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3256					       block_size, inq_buff,
3257					       &hba[cntl_num]->drv[i]);
3258		} else {
3259			/* initialize raid_level to indicate a free space */
3260			hba[cntl_num]->drv[i].raid_level = -1;
3261		}
3262	}
3263	kfree(ld_buff);
3264	kfree(inq_buff);
3265}
3266
3267/* Function to find the first free pointer into our hba[] array */
3268/* Returns -1 if no free entries are left.  */
3269static int alloc_cciss_hba(void)
3270{
3271	int i;
3272
3273	for (i = 0; i < MAX_CTLR; i++) {
3274		if (!hba[i]) {
3275			ctlr_info_t *p;
3276
3277			p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3278			if (!p)
3279				goto Enomem;
3280			p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
3281			if (!p->gendisk[0]) {
3282				kfree(p);
3283				goto Enomem;
3284			}
3285			hba[i] = p;
3286			return i;
3287		}
3288	}
3289	printk(KERN_WARNING "cciss: This driver supports a maximum"
3290	       " of %d controllers.\n", MAX_CTLR);
3291	return -1;
3292Enomem:
3293	printk(KERN_ERR "cciss: out of memory.\n");
3294	return -1;
3295}
3296
3297static void free_hba(int i)
3298{
3299	ctlr_info_t *p = hba[i];
3300	int n;
3301
3302	hba[i] = NULL;
3303	for (n = 0; n < CISS_MAX_LUN; n++)
3304		put_disk(p->gendisk[n]);
3305	kfree(p);
3306}
3307
3308/*
3309 *  This is it.  Find all the controllers and register them.  I really hate
3310 *  stealing all these major device numbers.
3311 *  returns the number of block devices registered.
3312 */
3313static int __devinit cciss_init_one(struct pci_dev *pdev,
3314				    const struct pci_device_id *ent)
3315{
3316	int i;
3317	int j = 0;
3318	int rc;
3319	int dac;
3320
3321	i = alloc_cciss_hba();
3322	if (i < 0)
3323		return -1;
3324
3325	hba[i]->busy_initializing = 1;
3326
3327	if (cciss_pci_init(hba[i], pdev) != 0)
3328		goto clean1;
3329
3330	sprintf(hba[i]->devname, "cciss%d", i);
3331	hba[i]->ctlr = i;
3332	hba[i]->pdev = pdev;
3333
3334	/* configure PCI DMA stuff */
3335	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3336		dac = 1;
3337	else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3338		dac = 0;
3339	else {
3340		printk(KERN_ERR "cciss: no suitable DMA available\n");
3341		goto clean1;
3342	}
3343
3344	/*
3345	 * register with the major number, or get a dynamic major number
3346	 * by passing 0 as argument.  This is done for greater than
3347	 * 8 controller support.
3348	 */
3349	if (i < MAX_CTLR_ORIG)
3350		hba[i]->major = COMPAQ_CISS_MAJOR + i;
3351	rc = register_blkdev(hba[i]->major, hba[i]->devname);
3352	if (rc == -EBUSY || rc == -EINVAL) {
3353		printk(KERN_ERR
3354		       "cciss:  Unable to get major number %d for %s "
3355		       "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3356		goto clean1;
3357	} else {
3358		if (i >= MAX_CTLR_ORIG)
3359			hba[i]->major = rc;
3360	}
3361
3362	/* make sure the board interrupts are off */
3363	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3364	if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3365			IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3366		printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3367		       hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3368		goto clean2;
3369	}
3370
3371	printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3372	       hba[i]->devname, pdev->device, pci_name(pdev),
3373	       hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3374
3375	hba[i]->cmd_pool_bits =
3376	    kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
3377		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3378	hba[i]->cmd_pool = (CommandList_struct *)
3379	    pci_alloc_consistent(hba[i]->pdev,
3380		    hba[i]->nr_cmds * sizeof(CommandList_struct),
3381		    &(hba[i]->cmd_pool_dhandle));
3382	hba[i]->errinfo_pool = (ErrorInfo_struct *)
3383	    pci_alloc_consistent(hba[i]->pdev,
3384		    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3385		    &(hba[i]->errinfo_pool_dhandle));
3386	if ((hba[i]->cmd_pool_bits == NULL)
3387	    || (hba[i]->cmd_pool == NULL)
3388	    || (hba[i]->errinfo_pool == NULL)) {
3389		printk(KERN_ERR "cciss: out of memory");
3390		goto clean4;
3391	}
3392#ifdef CONFIG_CISS_SCSI_TAPE
3393	hba[i]->scsi_rejects.complete =
3394	    kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3395		    (hba[i]->nr_cmds + 5), GFP_KERNEL);
3396	if (hba[i]->scsi_rejects.complete == NULL) {
3397		printk(KERN_ERR "cciss: out of memory");
3398		goto clean4;
3399	}
3400#endif
3401	spin_lock_init(&hba[i]->lock);
3402
3403	/* Initialize the pdev driver private data.
3404	   have it point to hba[i].  */
3405	pci_set_drvdata(pdev, hba[i]);
3406	/* command and error info recs zeroed out before
3407	   they are used */
3408	memset(hba[i]->cmd_pool_bits, 0,
3409	       ((hba[i]->nr_cmds + BITS_PER_LONG -
3410		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3411
3412#ifdef CCISS_DEBUG
3413	printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3414#endif				/* CCISS_DEBUG */
3415
3416	cciss_getgeometry(i);
3417
3418	cciss_scsi_setup(i);
3419
3420	/* Turn the interrupts on so we can service requests */
3421	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3422
3423	cciss_procinit(i);
3424
3425	hba[i]->cciss_max_sectors = 2048;
3426
3427	hba[i]->busy_initializing = 0;
3428
3429	do {
3430		drive_info_struct *drv = &(hba[i]->drv[j]);
3431		struct gendisk *disk = hba[i]->gendisk[j];
3432		struct request_queue *q;
3433
3434		/* Check if the disk was allocated already */
3435		if (!disk){
3436			hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
3437			disk = hba[i]->gendisk[j];
3438		}
3439
3440		/* Check that the disk was able to be allocated */
3441		if (!disk) {
3442			printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
3443			goto clean4;
3444		}
3445
3446		q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3447		if (!q) {
3448			printk(KERN_ERR
3449			       "cciss:  unable to allocate queue for disk %d\n",
3450			       j);
3451			goto clean4;
3452		}
3453		drv->queue = q;
3454
3455		q->backing_dev_info.ra_pages = READ_AHEAD;
3456		blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3457
3458		/* This is a hardware imposed limit. */
3459		blk_queue_max_hw_segments(q, MAXSGENTRIES);
3460
3461		/* This is a limit in the driver and could be eliminated. */
3462		blk_queue_max_phys_segments(q, MAXSGENTRIES);
3463
3464		blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
3465
3466		blk_queue_softirq_done(q, cciss_softirq_done);
3467
3468		q->queuedata = hba[i];
3469		sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3470		disk->major = hba[i]->major;
3471		disk->first_minor = j << NWD_SHIFT;
3472		disk->fops = &cciss_fops;
3473		disk->queue = q;
3474		disk->private_data = drv;
3475		disk->driverfs_dev = &pdev->dev;
3476		/* we must register the controller even if no disks exist */
3477		/* this is for the online array utilities */
3478		if (!drv->heads && j)
3479			continue;
3480		blk_queue_hardsect_size(q, drv->block_size);
3481		set_capacity(disk, drv->nr_blocks);
3482		add_disk(disk);
3483		j++;
3484	} while (j <= hba[i]->highest_lun);
3485
3486	return 1;
3487
3488      clean4:
3489#ifdef CONFIG_CISS_SCSI_TAPE
3490	kfree(hba[i]->scsi_rejects.complete);
3491#endif
3492	kfree(hba[i]->cmd_pool_bits);
3493	if (hba[i]->cmd_pool)
3494		pci_free_consistent(hba[i]->pdev,
3495				    hba[i]->nr_cmds * sizeof(CommandList_struct),
3496				    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3497	if (hba[i]->errinfo_pool)
3498		pci_free_consistent(hba[i]->pdev,
3499				    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3500				    hba[i]->errinfo_pool,
3501				    hba[i]->errinfo_pool_dhandle);
3502	free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3503      clean2:
3504	unregister_blkdev(hba[i]->major, hba[i]->devname);
3505      clean1:
3506	hba[i]->busy_initializing = 0;
3507	/* cleanup any queues that may have been initialized */
3508	for (j=0; j <= hba[i]->highest_lun; j++){
3509		drive_info_struct *drv = &(hba[i]->drv[j]);
3510		if (drv->queue)
3511			blk_cleanup_queue(drv->queue);
3512	}
3513	/*
3514	 * Deliberately omit pci_disable_device(): it does something nasty to
3515	 * Smart Array controllers that pci_enable_device does not undo
3516	 */
3517	pci_release_regions(pdev);
3518	pci_set_drvdata(pdev, NULL);
3519	free_hba(i);
3520	return -1;
3521}
3522
3523static void cciss_shutdown(struct pci_dev *pdev)
3524{
3525	ctlr_info_t *tmp_ptr;
3526	int i;
3527	char flush_buf[4];
3528	int return_code;
3529
3530	tmp_ptr = pci_get_drvdata(pdev);
3531	if (tmp_ptr == NULL)
3532		return;
3533	i = tmp_ptr->ctlr;
3534	if (hba[i] == NULL)
3535		return;
3536
3537	/* Turn board interrupts off  and send the flush cache command */
3538	/* sendcmd will turn off interrupt, and send the flush...
3539	 * To write all data in the battery backed cache to disks */
3540	memset(flush_buf, 0, 4);
3541	return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3542			      TYPE_CMD);
3543	if (return_code == IO_OK) {
3544		printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3545	} else {
3546		printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3547	}
3548	free_irq(hba[i]->intr[2], hba[i]);
3549}
3550
3551static void __devexit cciss_remove_one(struct pci_dev *pdev)
3552{
3553	ctlr_info_t *tmp_ptr;
3554	int i, j;
3555
3556	if (pci_get_drvdata(pdev) == NULL) {
3557		printk(KERN_ERR "cciss: Unable to remove device \n");
3558		return;
3559	}
3560	tmp_ptr = pci_get_drvdata(pdev);
3561	i = tmp_ptr->ctlr;
3562	if (hba[i] == NULL) {
3563		printk(KERN_ERR "cciss: device appears to "
3564		       "already be removed \n");
3565		return;
3566	}
3567
3568	remove_proc_entry(hba[i]->devname, proc_cciss);
3569	unregister_blkdev(hba[i]->major, hba[i]->devname);
3570
3571	/* remove it from the disk list */
3572	for (j = 0; j < CISS_MAX_LUN; j++) {
3573		struct gendisk *disk = hba[i]->gendisk[j];
3574		if (disk) {
3575			struct request_queue *q = disk->queue;
3576
3577			if (disk->flags & GENHD_FL_UP)
3578				del_gendisk(disk);
3579			if (q)
3580				blk_cleanup_queue(q);
3581		}
3582	}
3583
3584	cciss_unregister_scsi(i);	/* unhook from SCSI subsystem */
3585
3586	cciss_shutdown(pdev);
3587
3588#ifdef CONFIG_PCI_MSI
3589	if (hba[i]->msix_vector)
3590		pci_disable_msix(hba[i]->pdev);
3591	else if (hba[i]->msi_vector)
3592		pci_disable_msi(hba[i]->pdev);
3593#endif				/* CONFIG_PCI_MSI */
3594
3595	iounmap(hba[i]->vaddr);
3596
3597	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3598			    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3599	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3600			    hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3601	kfree(hba[i]->cmd_pool_bits);
3602#ifdef CONFIG_CISS_SCSI_TAPE
3603	kfree(hba[i]->scsi_rejects.complete);
3604#endif
3605	/*
3606	 * Deliberately omit pci_disable_device(): it does something nasty to
3607	 * Smart Array controllers that pci_enable_device does not undo
3608	 */
3609	pci_release_regions(pdev);
3610	pci_set_drvdata(pdev, NULL);
3611	free_hba(i);
3612}
3613
3614static struct pci_driver cciss_pci_driver = {
3615	.name = "cciss",
3616	.probe = cciss_init_one,
3617	.remove = __devexit_p(cciss_remove_one),
3618	.id_table = cciss_pci_device_id,	/* id_table */
3619	.shutdown = cciss_shutdown,
3620};
3621
3622/*
3623 *  This is it.  Register the PCI driver information for the cards we control
3624 *  the OS will call our registered routines when it finds one of our cards.
3625 */
3626static int __init cciss_init(void)
3627{
3628	printk(KERN_INFO DRIVER_NAME "\n");
3629
3630	/* Register for our PCI devices */
3631	return pci_register_driver(&cciss_pci_driver);
3632}
3633
3634static void __exit cciss_cleanup(void)
3635{
3636	int i;
3637
3638	pci_unregister_driver(&cciss_pci_driver);
3639	/* double check that all controller entrys have been removed */
3640	for (i = 0; i < MAX_CTLR; i++) {
3641		if (hba[i] != NULL) {
3642			printk(KERN_WARNING "cciss: had to remove"
3643			       " controller %d\n", i);
3644			cciss_remove_one(hba[i]->pdev);
3645		}
3646	}
3647	remove_proc_entry("cciss", proc_root_driver);
3648}
3649
3650static void fail_all_cmds(unsigned long ctlr)
3651{
3652	/* If we get here, the board is apparently dead. */
3653	ctlr_info_t *h = hba[ctlr];
3654	CommandList_struct *c;
3655	unsigned long flags;
3656
3657	printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3658	h->alive = 0;		/* the controller apparently died... */
3659
3660	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3661
3662	pci_disable_device(h->pdev);	/* Make sure it is really dead. */
3663
3664	/* move everything off the request queue onto the completed queue */
3665	while ((c = h->reqQ) != NULL) {
3666		removeQ(&(h->reqQ), c);
3667		h->Qdepth--;
3668		addQ(&(h->cmpQ), c);
3669	}
3670
3671	/* Now, fail everything on the completed queue with a HW error */
3672	while ((c = h->cmpQ) != NULL) {
3673		removeQ(&h->cmpQ, c);
3674		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3675		if (c->cmd_type == CMD_RWREQ) {
3676			complete_command(h, c, 0);
3677		} else if (c->cmd_type == CMD_IOCTL_PEND)
3678			complete(c->waiting);
3679#ifdef CONFIG_CISS_SCSI_TAPE
3680		else if (c->cmd_type == CMD_SCSI)
3681			complete_scsi_command(c, 0, 0);
3682#endif
3683	}
3684	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3685	return;
3686}
3687
3688module_init(cciss_init);
3689module_exit(cciss_cleanup);
3690