cciss.c revision 9cff3b383dad193b0762c27278a16237e10b53dc
1/*
2 *    Disk Array driver for HP SA 5xxx and 6xxx Controllers
3 *    Copyright 2000, 2006 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; either version 2 of the License, or
8 *    (at your option) any later version.
9 *
10 *    This program is distributed in the hope that it will be useful,
11 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14 *
15 *    You should have received a copy of the GNU General Public License
16 *    along with this program; if not, write to the Free Software
17 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/bio.h>
33#include <linux/blkpg.h>
34#include <linux/timer.h>
35#include <linux/proc_fs.h>
36#include <linux/init.h>
37#include <linux/hdreg.h>
38#include <linux/spinlock.h>
39#include <linux/compat.h>
40#include <linux/blktrace_api.h>
41#include <asm/uaccess.h>
42#include <asm/io.h>
43
44#include <linux/dma-mapping.h>
45#include <linux/blkdev.h>
46#include <linux/genhd.h>
47#include <linux/completion.h>
48#include <scsi/scsi.h>
49#include <scsi/sg.h>
50#include <scsi/scsi_ioctl.h>
51#include <linux/cdrom.h>
52
53#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
54#define DRIVER_NAME "HP CISS Driver (v 3.6.14)"
55#define DRIVER_VERSION CCISS_DRIVER_VERSION(3,6,14)
56
57/* Embedded module documentation macros - see modules.h */
58MODULE_AUTHOR("Hewlett-Packard Company");
59MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 3.6.14");
60MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
61			" SA6i P600 P800 P400 P400i E200 E200i E500");
62MODULE_VERSION("3.6.14");
63MODULE_LICENSE("GPL");
64
65#include "cciss_cmd.h"
66#include "cciss.h"
67#include <linux/cciss_ioctl.h>
68
69/* define the PCI info for the cards we can control */
70static const struct pci_device_id cciss_pci_device_id[] = {
71	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
72	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
73	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
74	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
75	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
76	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
77	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
78	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
79	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
80	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
81	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
82	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
83	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
84	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
85	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
86	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
87	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
88	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
89	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
90	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
91	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
92		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
93	{0,}
94};
95
96MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
97
98/*  board_id = Subsystem Device ID & Vendor ID
99 *  product = Marketing Name for the board
100 *  access = Address of the struct of function pointers
101 *  nr_cmds = Number of commands supported by controller
102 */
103static struct board_type products[] = {
104	{0x40700E11, "Smart Array 5300", &SA5_access, 512},
105	{0x40800E11, "Smart Array 5i", &SA5B_access, 512},
106	{0x40820E11, "Smart Array 532", &SA5B_access, 512},
107	{0x40830E11, "Smart Array 5312", &SA5B_access, 512},
108	{0x409A0E11, "Smart Array 641", &SA5_access, 512},
109	{0x409B0E11, "Smart Array 642", &SA5_access, 512},
110	{0x409C0E11, "Smart Array 6400", &SA5_access, 512},
111	{0x409D0E11, "Smart Array 6400 EM", &SA5_access, 512},
112	{0x40910E11, "Smart Array 6i", &SA5_access, 512},
113	{0x3225103C, "Smart Array P600", &SA5_access, 512},
114	{0x3223103C, "Smart Array P800", &SA5_access, 512},
115	{0x3234103C, "Smart Array P400", &SA5_access, 512},
116	{0x3235103C, "Smart Array P400i", &SA5_access, 512},
117	{0x3211103C, "Smart Array E200i", &SA5_access, 120},
118	{0x3212103C, "Smart Array E200", &SA5_access, 120},
119	{0x3213103C, "Smart Array E200i", &SA5_access, 120},
120	{0x3214103C, "Smart Array E200i", &SA5_access, 120},
121	{0x3215103C, "Smart Array E200i", &SA5_access, 120},
122	{0x3237103C, "Smart Array E500", &SA5_access, 512},
123	{0x323D103C, "Smart Array P700m", &SA5_access, 512},
124	{0xFFFF103C, "Unknown Smart Array", &SA5_access, 120},
125};
126
127/* How long to wait (in milliseconds) for board to go into simple mode */
128#define MAX_CONFIG_WAIT 30000
129#define MAX_IOCTL_CONFIG_WAIT 1000
130
131/*define how many times we will try a command because of bus resets */
132#define MAX_CMD_RETRIES 3
133
134#define READ_AHEAD 	 1024
135#define MAX_CTLR	32
136
137/* Originally cciss driver only supports 8 major numbers */
138#define MAX_CTLR_ORIG 	8
139
140static ctlr_info_t *hba[MAX_CTLR];
141
142static void do_cciss_request(request_queue_t *q);
143static irqreturn_t do_cciss_intr(int irq, void *dev_id);
144static int cciss_open(struct inode *inode, struct file *filep);
145static int cciss_release(struct inode *inode, struct file *filep);
146static int cciss_ioctl(struct inode *inode, struct file *filep,
147		       unsigned int cmd, unsigned long arg);
148static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
149
150static int cciss_revalidate(struct gendisk *disk);
151static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
152static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
153			   int clear_all);
154
155static void cciss_read_capacity(int ctlr, int logvol, int withirq,
156			sector_t *total_size, unsigned int *block_size);
157static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
158			sector_t *total_size, unsigned int *block_size);
159static void cciss_geometry_inquiry(int ctlr, int logvol,
160			int withirq, sector_t total_size,
161			unsigned int block_size, InquiryData_struct *inq_buff,
162				   drive_info_struct *drv);
163static void cciss_getgeometry(int cntl_num);
164static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
165					   __u32);
166static void start_io(ctlr_info_t *h);
167static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
168		   unsigned int use_unit_num, unsigned int log_unit,
169		   __u8 page_code, unsigned char *scsi3addr, int cmd_type);
170static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
171			   unsigned int use_unit_num, unsigned int log_unit,
172			   __u8 page_code, int cmd_type);
173
174static void fail_all_cmds(unsigned long ctlr);
175
176#ifdef CONFIG_PROC_FS
177static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
178			       int length, int *eof, void *data);
179static void cciss_procinit(int i);
180#else
181static void cciss_procinit(int i)
182{
183}
184#endif				/* CONFIG_PROC_FS */
185
186#ifdef CONFIG_COMPAT
187static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
188#endif
189
190static struct block_device_operations cciss_fops = {
191	.owner = THIS_MODULE,
192	.open = cciss_open,
193	.release = cciss_release,
194	.ioctl = cciss_ioctl,
195	.getgeo = cciss_getgeo,
196#ifdef CONFIG_COMPAT
197	.compat_ioctl = cciss_compat_ioctl,
198#endif
199	.revalidate_disk = cciss_revalidate,
200};
201
202/*
203 * Enqueuing and dequeuing functions for cmdlists.
204 */
205static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
206{
207	if (*Qptr == NULL) {
208		*Qptr = c;
209		c->next = c->prev = c;
210	} else {
211		c->prev = (*Qptr)->prev;
212		c->next = (*Qptr);
213		(*Qptr)->prev->next = c;
214		(*Qptr)->prev = c;
215	}
216}
217
218static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
219					  CommandList_struct *c)
220{
221	if (c && c->next != c) {
222		if (*Qptr == c)
223			*Qptr = c->next;
224		c->prev->next = c->next;
225		c->next->prev = c->prev;
226	} else {
227		*Qptr = NULL;
228	}
229	return c;
230}
231
232#include "cciss_scsi.c"		/* For SCSI tape support */
233
234#define RAID_UNKNOWN 6
235
236#ifdef CONFIG_PROC_FS
237
238/*
239 * Report information about this controller.
240 */
241#define ENG_GIG 1000000000
242#define ENG_GIG_FACTOR (ENG_GIG/512)
243static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
244	"UNKNOWN"
245};
246
247static struct proc_dir_entry *proc_cciss;
248
249static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
250			       int length, int *eof, void *data)
251{
252	off_t pos = 0;
253	off_t len = 0;
254	int size, i, ctlr;
255	ctlr_info_t *h = (ctlr_info_t *) data;
256	drive_info_struct *drv;
257	unsigned long flags;
258	sector_t vol_sz, vol_sz_frac;
259
260	ctlr = h->ctlr;
261
262	/* prevent displaying bogus info during configuration
263	 * or deconfiguration of a logical volume
264	 */
265	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
266	if (h->busy_configuring) {
267		spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
268		return -EBUSY;
269	}
270	h->busy_configuring = 1;
271	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
272
273	size = sprintf(buffer, "%s: HP %s Controller\n"
274		       "Board ID: 0x%08lx\n"
275		       "Firmware Version: %c%c%c%c\n"
276		       "IRQ: %d\n"
277		       "Logical drives: %d\n"
278		       "Max sectors: %d\n"
279		       "Current Q depth: %d\n"
280		       "Current # commands on controller: %d\n"
281		       "Max Q depth since init: %d\n"
282		       "Max # commands on controller since init: %d\n"
283		       "Max SG entries since init: %d\n\n",
284		       h->devname,
285		       h->product_name,
286		       (unsigned long)h->board_id,
287		       h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
288		       h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
289		       h->num_luns,
290		       h->cciss_max_sectors,
291		       h->Qdepth, h->commands_outstanding,
292		       h->maxQsinceinit, h->max_outstanding, h->maxSG);
293
294	pos += size;
295	len += size;
296	cciss_proc_tape_report(ctlr, buffer, &pos, &len);
297	for (i = 0; i <= h->highest_lun; i++) {
298
299		drv = &h->drv[i];
300		if (drv->heads == 0)
301			continue;
302
303		vol_sz = drv->nr_blocks;
304		vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
305		vol_sz_frac *= 100;
306		sector_div(vol_sz_frac, ENG_GIG_FACTOR);
307
308		if (drv->raid_level > 5)
309			drv->raid_level = RAID_UNKNOWN;
310		size = sprintf(buffer + len, "cciss/c%dd%d:"
311			       "\t%4u.%02uGB\tRAID %s\n",
312			       ctlr, i, (int)vol_sz, (int)vol_sz_frac,
313			       raid_label[drv->raid_level]);
314		pos += size;
315		len += size;
316	}
317
318	*eof = 1;
319	*start = buffer + offset;
320	len -= offset;
321	if (len > length)
322		len = length;
323	h->busy_configuring = 0;
324	return len;
325}
326
327static int
328cciss_proc_write(struct file *file, const char __user *buffer,
329		 unsigned long count, void *data)
330{
331	unsigned char cmd[80];
332	int len;
333#ifdef CONFIG_CISS_SCSI_TAPE
334	ctlr_info_t *h = (ctlr_info_t *) data;
335	int rc;
336#endif
337
338	if (count > sizeof(cmd) - 1)
339		return -EINVAL;
340	if (copy_from_user(cmd, buffer, count))
341		return -EFAULT;
342	cmd[count] = '\0';
343	len = strlen(cmd);	// above 3 lines ensure safety
344	if (len && cmd[len - 1] == '\n')
345		cmd[--len] = '\0';
346#	ifdef CONFIG_CISS_SCSI_TAPE
347	if (strcmp("engage scsi", cmd) == 0) {
348		rc = cciss_engage_scsi(h->ctlr);
349		if (rc != 0)
350			return -rc;
351		return count;
352	}
353	/* might be nice to have "disengage" too, but it's not
354	   safely possible. (only 1 module use count, lock issues.) */
355#	endif
356	return -EINVAL;
357}
358
359/*
360 * Get us a file in /proc/cciss that says something about each controller.
361 * Create /proc/cciss if it doesn't exist yet.
362 */
363static void __devinit cciss_procinit(int i)
364{
365	struct proc_dir_entry *pde;
366
367	if (proc_cciss == NULL) {
368		proc_cciss = proc_mkdir("cciss", proc_root_driver);
369		if (!proc_cciss)
370			return;
371	}
372
373	pde = create_proc_read_entry(hba[i]->devname,
374				     S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
375				     proc_cciss, cciss_proc_get_info, hba[i]);
376	pde->write_proc = cciss_proc_write;
377}
378#endif				/* CONFIG_PROC_FS */
379
380/*
381 * For operations that cannot sleep, a command block is allocated at init,
382 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
383 * which ones are free or in use.  For operations that can wait for kmalloc
384 * to possible sleep, this routine can be called with get_from_pool set to 0.
385 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
386 */
387static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
388{
389	CommandList_struct *c;
390	int i;
391	u64bit temp64;
392	dma_addr_t cmd_dma_handle, err_dma_handle;
393
394	if (!get_from_pool) {
395		c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
396			sizeof(CommandList_struct), &cmd_dma_handle);
397		if (c == NULL)
398			return NULL;
399		memset(c, 0, sizeof(CommandList_struct));
400
401		c->cmdindex = -1;
402
403		c->err_info = (ErrorInfo_struct *)
404		    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
405			    &err_dma_handle);
406
407		if (c->err_info == NULL) {
408			pci_free_consistent(h->pdev,
409				sizeof(CommandList_struct), c, cmd_dma_handle);
410			return NULL;
411		}
412		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
413	} else {		/* get it out of the controllers pool */
414
415		do {
416			i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
417			if (i == h->nr_cmds)
418				return NULL;
419		} while (test_and_set_bit
420			 (i & (BITS_PER_LONG - 1),
421			  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
422#ifdef CCISS_DEBUG
423		printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
424#endif
425		c = h->cmd_pool + i;
426		memset(c, 0, sizeof(CommandList_struct));
427		cmd_dma_handle = h->cmd_pool_dhandle
428		    + i * sizeof(CommandList_struct);
429		c->err_info = h->errinfo_pool + i;
430		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
431		err_dma_handle = h->errinfo_pool_dhandle
432		    + i * sizeof(ErrorInfo_struct);
433		h->nr_allocs++;
434
435		c->cmdindex = i;
436	}
437
438	c->busaddr = (__u32) cmd_dma_handle;
439	temp64.val = (__u64) err_dma_handle;
440	c->ErrDesc.Addr.lower = temp64.val32.lower;
441	c->ErrDesc.Addr.upper = temp64.val32.upper;
442	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
443
444	c->ctlr = h->ctlr;
445	return c;
446}
447
448/*
449 * Frees a command block that was previously allocated with cmd_alloc().
450 */
451static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
452{
453	int i;
454	u64bit temp64;
455
456	if (!got_from_pool) {
457		temp64.val32.lower = c->ErrDesc.Addr.lower;
458		temp64.val32.upper = c->ErrDesc.Addr.upper;
459		pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
460				    c->err_info, (dma_addr_t) temp64.val);
461		pci_free_consistent(h->pdev, sizeof(CommandList_struct),
462				    c, (dma_addr_t) c->busaddr);
463	} else {
464		i = c - h->cmd_pool;
465		clear_bit(i & (BITS_PER_LONG - 1),
466			  h->cmd_pool_bits + (i / BITS_PER_LONG));
467		h->nr_frees++;
468	}
469}
470
471static inline ctlr_info_t *get_host(struct gendisk *disk)
472{
473	return disk->queue->queuedata;
474}
475
476static inline drive_info_struct *get_drv(struct gendisk *disk)
477{
478	return disk->private_data;
479}
480
481/*
482 * Open.  Make sure the device is really there.
483 */
484static int cciss_open(struct inode *inode, struct file *filep)
485{
486	ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
487	drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
488
489#ifdef CCISS_DEBUG
490	printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
491#endif				/* CCISS_DEBUG */
492
493	if (host->busy_initializing || drv->busy_configuring)
494		return -EBUSY;
495	/*
496	 * Root is allowed to open raw volume zero even if it's not configured
497	 * so array config can still work. Root is also allowed to open any
498	 * volume that has a LUN ID, so it can issue IOCTL to reread the
499	 * disk information.  I don't think I really like this
500	 * but I'm already using way to many device nodes to claim another one
501	 * for "raw controller".
502	 */
503	if (drv->heads == 0) {
504		if (iminor(inode) != 0) {	/* not node 0? */
505			/* if not node 0 make sure it is a partition = 0 */
506			if (iminor(inode) & 0x0f) {
507				return -ENXIO;
508				/* if it is, make sure we have a LUN ID */
509			} else if (drv->LunID == 0) {
510				return -ENXIO;
511			}
512		}
513		if (!capable(CAP_SYS_ADMIN))
514			return -EPERM;
515	}
516	drv->usage_count++;
517	host->usage_count++;
518	return 0;
519}
520
521/*
522 * Close.  Sync first.
523 */
524static int cciss_release(struct inode *inode, struct file *filep)
525{
526	ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
527	drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
528
529#ifdef CCISS_DEBUG
530	printk(KERN_DEBUG "cciss_release %s\n",
531	       inode->i_bdev->bd_disk->disk_name);
532#endif				/* CCISS_DEBUG */
533
534	drv->usage_count--;
535	host->usage_count--;
536	return 0;
537}
538
539#ifdef CONFIG_COMPAT
540
541static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
542{
543	int ret;
544	lock_kernel();
545	ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
546	unlock_kernel();
547	return ret;
548}
549
550static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
551				  unsigned long arg);
552static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
553				      unsigned long arg);
554
555static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
556{
557	switch (cmd) {
558	case CCISS_GETPCIINFO:
559	case CCISS_GETINTINFO:
560	case CCISS_SETINTINFO:
561	case CCISS_GETNODENAME:
562	case CCISS_SETNODENAME:
563	case CCISS_GETHEARTBEAT:
564	case CCISS_GETBUSTYPES:
565	case CCISS_GETFIRMVER:
566	case CCISS_GETDRIVVER:
567	case CCISS_REVALIDVOLS:
568	case CCISS_DEREGDISK:
569	case CCISS_REGNEWDISK:
570	case CCISS_REGNEWD:
571	case CCISS_RESCANDISK:
572	case CCISS_GETLUNINFO:
573		return do_ioctl(f, cmd, arg);
574
575	case CCISS_PASSTHRU32:
576		return cciss_ioctl32_passthru(f, cmd, arg);
577	case CCISS_BIG_PASSTHRU32:
578		return cciss_ioctl32_big_passthru(f, cmd, arg);
579
580	default:
581		return -ENOIOCTLCMD;
582	}
583}
584
585static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
586				  unsigned long arg)
587{
588	IOCTL32_Command_struct __user *arg32 =
589	    (IOCTL32_Command_struct __user *) arg;
590	IOCTL_Command_struct arg64;
591	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
592	int err;
593	u32 cp;
594
595	err = 0;
596	err |=
597	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
598			   sizeof(arg64.LUN_info));
599	err |=
600	    copy_from_user(&arg64.Request, &arg32->Request,
601			   sizeof(arg64.Request));
602	err |=
603	    copy_from_user(&arg64.error_info, &arg32->error_info,
604			   sizeof(arg64.error_info));
605	err |= get_user(arg64.buf_size, &arg32->buf_size);
606	err |= get_user(cp, &arg32->buf);
607	arg64.buf = compat_ptr(cp);
608	err |= copy_to_user(p, &arg64, sizeof(arg64));
609
610	if (err)
611		return -EFAULT;
612
613	err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
614	if (err)
615		return err;
616	err |=
617	    copy_in_user(&arg32->error_info, &p->error_info,
618			 sizeof(arg32->error_info));
619	if (err)
620		return -EFAULT;
621	return err;
622}
623
624static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
625				      unsigned long arg)
626{
627	BIG_IOCTL32_Command_struct __user *arg32 =
628	    (BIG_IOCTL32_Command_struct __user *) arg;
629	BIG_IOCTL_Command_struct arg64;
630	BIG_IOCTL_Command_struct __user *p =
631	    compat_alloc_user_space(sizeof(arg64));
632	int err;
633	u32 cp;
634
635	err = 0;
636	err |=
637	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
638			   sizeof(arg64.LUN_info));
639	err |=
640	    copy_from_user(&arg64.Request, &arg32->Request,
641			   sizeof(arg64.Request));
642	err |=
643	    copy_from_user(&arg64.error_info, &arg32->error_info,
644			   sizeof(arg64.error_info));
645	err |= get_user(arg64.buf_size, &arg32->buf_size);
646	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
647	err |= get_user(cp, &arg32->buf);
648	arg64.buf = compat_ptr(cp);
649	err |= copy_to_user(p, &arg64, sizeof(arg64));
650
651	if (err)
652		return -EFAULT;
653
654	err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
655	if (err)
656		return err;
657	err |=
658	    copy_in_user(&arg32->error_info, &p->error_info,
659			 sizeof(arg32->error_info));
660	if (err)
661		return -EFAULT;
662	return err;
663}
664#endif
665
666static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
667{
668	drive_info_struct *drv = get_drv(bdev->bd_disk);
669
670	if (!drv->cylinders)
671		return -ENXIO;
672
673	geo->heads = drv->heads;
674	geo->sectors = drv->sectors;
675	geo->cylinders = drv->cylinders;
676	return 0;
677}
678
679/*
680 * ioctl
681 */
682static int cciss_ioctl(struct inode *inode, struct file *filep,
683		       unsigned int cmd, unsigned long arg)
684{
685	struct block_device *bdev = inode->i_bdev;
686	struct gendisk *disk = bdev->bd_disk;
687	ctlr_info_t *host = get_host(disk);
688	drive_info_struct *drv = get_drv(disk);
689	int ctlr = host->ctlr;
690	void __user *argp = (void __user *)arg;
691
692#ifdef CCISS_DEBUG
693	printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
694#endif				/* CCISS_DEBUG */
695
696	switch (cmd) {
697	case CCISS_GETPCIINFO:
698		{
699			cciss_pci_info_struct pciinfo;
700
701			if (!arg)
702				return -EINVAL;
703			pciinfo.domain = pci_domain_nr(host->pdev->bus);
704			pciinfo.bus = host->pdev->bus->number;
705			pciinfo.dev_fn = host->pdev->devfn;
706			pciinfo.board_id = host->board_id;
707			if (copy_to_user
708			    (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
709				return -EFAULT;
710			return 0;
711		}
712	case CCISS_GETINTINFO:
713		{
714			cciss_coalint_struct intinfo;
715			if (!arg)
716				return -EINVAL;
717			intinfo.delay =
718			    readl(&host->cfgtable->HostWrite.CoalIntDelay);
719			intinfo.count =
720			    readl(&host->cfgtable->HostWrite.CoalIntCount);
721			if (copy_to_user
722			    (argp, &intinfo, sizeof(cciss_coalint_struct)))
723				return -EFAULT;
724			return 0;
725		}
726	case CCISS_SETINTINFO:
727		{
728			cciss_coalint_struct intinfo;
729			unsigned long flags;
730			int i;
731
732			if (!arg)
733				return -EINVAL;
734			if (!capable(CAP_SYS_ADMIN))
735				return -EPERM;
736			if (copy_from_user
737			    (&intinfo, argp, sizeof(cciss_coalint_struct)))
738				return -EFAULT;
739			if ((intinfo.delay == 0) && (intinfo.count == 0))
740			{
741//                      printk("cciss_ioctl: delay and count cannot be 0\n");
742				return -EINVAL;
743			}
744			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
745			/* Update the field, and then ring the doorbell */
746			writel(intinfo.delay,
747			       &(host->cfgtable->HostWrite.CoalIntDelay));
748			writel(intinfo.count,
749			       &(host->cfgtable->HostWrite.CoalIntCount));
750			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
751
752			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
753				if (!(readl(host->vaddr + SA5_DOORBELL)
754				      & CFGTBL_ChangeReq))
755					break;
756				/* delay and try again */
757				udelay(1000);
758			}
759			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
760			if (i >= MAX_IOCTL_CONFIG_WAIT)
761				return -EAGAIN;
762			return 0;
763		}
764	case CCISS_GETNODENAME:
765		{
766			NodeName_type NodeName;
767			int i;
768
769			if (!arg)
770				return -EINVAL;
771			for (i = 0; i < 16; i++)
772				NodeName[i] =
773				    readb(&host->cfgtable->ServerName[i]);
774			if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
775				return -EFAULT;
776			return 0;
777		}
778	case CCISS_SETNODENAME:
779		{
780			NodeName_type NodeName;
781			unsigned long flags;
782			int i;
783
784			if (!arg)
785				return -EINVAL;
786			if (!capable(CAP_SYS_ADMIN))
787				return -EPERM;
788
789			if (copy_from_user
790			    (NodeName, argp, sizeof(NodeName_type)))
791				return -EFAULT;
792
793			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
794
795			/* Update the field, and then ring the doorbell */
796			for (i = 0; i < 16; i++)
797				writeb(NodeName[i],
798				       &host->cfgtable->ServerName[i]);
799
800			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
801
802			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
803				if (!(readl(host->vaddr + SA5_DOORBELL)
804				      & CFGTBL_ChangeReq))
805					break;
806				/* delay and try again */
807				udelay(1000);
808			}
809			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
810			if (i >= MAX_IOCTL_CONFIG_WAIT)
811				return -EAGAIN;
812			return 0;
813		}
814
815	case CCISS_GETHEARTBEAT:
816		{
817			Heartbeat_type heartbeat;
818
819			if (!arg)
820				return -EINVAL;
821			heartbeat = readl(&host->cfgtable->HeartBeat);
822			if (copy_to_user
823			    (argp, &heartbeat, sizeof(Heartbeat_type)))
824				return -EFAULT;
825			return 0;
826		}
827	case CCISS_GETBUSTYPES:
828		{
829			BusTypes_type BusTypes;
830
831			if (!arg)
832				return -EINVAL;
833			BusTypes = readl(&host->cfgtable->BusTypes);
834			if (copy_to_user
835			    (argp, &BusTypes, sizeof(BusTypes_type)))
836				return -EFAULT;
837			return 0;
838		}
839	case CCISS_GETFIRMVER:
840		{
841			FirmwareVer_type firmware;
842
843			if (!arg)
844				return -EINVAL;
845			memcpy(firmware, host->firm_ver, 4);
846
847			if (copy_to_user
848			    (argp, firmware, sizeof(FirmwareVer_type)))
849				return -EFAULT;
850			return 0;
851		}
852	case CCISS_GETDRIVVER:
853		{
854			DriverVer_type DriverVer = DRIVER_VERSION;
855
856			if (!arg)
857				return -EINVAL;
858
859			if (copy_to_user
860			    (argp, &DriverVer, sizeof(DriverVer_type)))
861				return -EFAULT;
862			return 0;
863		}
864
865	case CCISS_REVALIDVOLS:
866		return rebuild_lun_table(host, NULL);
867
868	case CCISS_GETLUNINFO:{
869			LogvolInfo_struct luninfo;
870
871			luninfo.LunID = drv->LunID;
872			luninfo.num_opens = drv->usage_count;
873			luninfo.num_parts = 0;
874			if (copy_to_user(argp, &luninfo,
875					 sizeof(LogvolInfo_struct)))
876				return -EFAULT;
877			return 0;
878		}
879	case CCISS_DEREGDISK:
880		return rebuild_lun_table(host, disk);
881
882	case CCISS_REGNEWD:
883		return rebuild_lun_table(host, NULL);
884
885	case CCISS_PASSTHRU:
886		{
887			IOCTL_Command_struct iocommand;
888			CommandList_struct *c;
889			char *buff = NULL;
890			u64bit temp64;
891			unsigned long flags;
892			DECLARE_COMPLETION_ONSTACK(wait);
893
894			if (!arg)
895				return -EINVAL;
896
897			if (!capable(CAP_SYS_RAWIO))
898				return -EPERM;
899
900			if (copy_from_user
901			    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
902				return -EFAULT;
903			if ((iocommand.buf_size < 1) &&
904			    (iocommand.Request.Type.Direction != XFER_NONE)) {
905				return -EINVAL;
906			}
907#if 0				/* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
908			/* Check kmalloc limits */
909			if (iocommand.buf_size > 128000)
910				return -EINVAL;
911#endif
912			if (iocommand.buf_size > 0) {
913				buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
914				if (buff == NULL)
915					return -EFAULT;
916			}
917			if (iocommand.Request.Type.Direction == XFER_WRITE) {
918				/* Copy the data into the buffer we created */
919				if (copy_from_user
920				    (buff, iocommand.buf, iocommand.buf_size)) {
921					kfree(buff);
922					return -EFAULT;
923				}
924			} else {
925				memset(buff, 0, iocommand.buf_size);
926			}
927			if ((c = cmd_alloc(host, 0)) == NULL) {
928				kfree(buff);
929				return -ENOMEM;
930			}
931			// Fill in the command type
932			c->cmd_type = CMD_IOCTL_PEND;
933			// Fill in Command Header
934			c->Header.ReplyQueue = 0;	// unused in simple mode
935			if (iocommand.buf_size > 0)	// buffer to fill
936			{
937				c->Header.SGList = 1;
938				c->Header.SGTotal = 1;
939			} else	// no buffers to fill
940			{
941				c->Header.SGList = 0;
942				c->Header.SGTotal = 0;
943			}
944			c->Header.LUN = iocommand.LUN_info;
945			c->Header.Tag.lower = c->busaddr;	// use the kernel address the cmd block for tag
946
947			// Fill in Request block
948			c->Request = iocommand.Request;
949
950			// Fill in the scatter gather information
951			if (iocommand.buf_size > 0) {
952				temp64.val = pci_map_single(host->pdev, buff,
953					iocommand.buf_size,
954					PCI_DMA_BIDIRECTIONAL);
955				c->SG[0].Addr.lower = temp64.val32.lower;
956				c->SG[0].Addr.upper = temp64.val32.upper;
957				c->SG[0].Len = iocommand.buf_size;
958				c->SG[0].Ext = 0;	// we are not chaining
959			}
960			c->waiting = &wait;
961
962			/* Put the request on the tail of the request queue */
963			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
964			addQ(&host->reqQ, c);
965			host->Qdepth++;
966			start_io(host);
967			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
968
969			wait_for_completion(&wait);
970
971			/* unlock the buffers from DMA */
972			temp64.val32.lower = c->SG[0].Addr.lower;
973			temp64.val32.upper = c->SG[0].Addr.upper;
974			pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
975					 iocommand.buf_size,
976					 PCI_DMA_BIDIRECTIONAL);
977
978			/* Copy the error information out */
979			iocommand.error_info = *(c->err_info);
980			if (copy_to_user
981			    (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
982				kfree(buff);
983				cmd_free(host, c, 0);
984				return -EFAULT;
985			}
986
987			if (iocommand.Request.Type.Direction == XFER_READ) {
988				/* Copy the data out of the buffer we created */
989				if (copy_to_user
990				    (iocommand.buf, buff, iocommand.buf_size)) {
991					kfree(buff);
992					cmd_free(host, c, 0);
993					return -EFAULT;
994				}
995			}
996			kfree(buff);
997			cmd_free(host, c, 0);
998			return 0;
999		}
1000	case CCISS_BIG_PASSTHRU:{
1001			BIG_IOCTL_Command_struct *ioc;
1002			CommandList_struct *c;
1003			unsigned char **buff = NULL;
1004			int *buff_size = NULL;
1005			u64bit temp64;
1006			unsigned long flags;
1007			BYTE sg_used = 0;
1008			int status = 0;
1009			int i;
1010			DECLARE_COMPLETION_ONSTACK(wait);
1011			__u32 left;
1012			__u32 sz;
1013			BYTE __user *data_ptr;
1014
1015			if (!arg)
1016				return -EINVAL;
1017			if (!capable(CAP_SYS_RAWIO))
1018				return -EPERM;
1019			ioc = (BIG_IOCTL_Command_struct *)
1020			    kmalloc(sizeof(*ioc), GFP_KERNEL);
1021			if (!ioc) {
1022				status = -ENOMEM;
1023				goto cleanup1;
1024			}
1025			if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1026				status = -EFAULT;
1027				goto cleanup1;
1028			}
1029			if ((ioc->buf_size < 1) &&
1030			    (ioc->Request.Type.Direction != XFER_NONE)) {
1031				status = -EINVAL;
1032				goto cleanup1;
1033			}
1034			/* Check kmalloc limits  using all SGs */
1035			if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1036				status = -EINVAL;
1037				goto cleanup1;
1038			}
1039			if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1040				status = -EINVAL;
1041				goto cleanup1;
1042			}
1043			buff =
1044			    kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1045			if (!buff) {
1046				status = -ENOMEM;
1047				goto cleanup1;
1048			}
1049			buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1050						   GFP_KERNEL);
1051			if (!buff_size) {
1052				status = -ENOMEM;
1053				goto cleanup1;
1054			}
1055			left = ioc->buf_size;
1056			data_ptr = ioc->buf;
1057			while (left) {
1058				sz = (left >
1059				      ioc->malloc_size) ? ioc->
1060				    malloc_size : left;
1061				buff_size[sg_used] = sz;
1062				buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1063				if (buff[sg_used] == NULL) {
1064					status = -ENOMEM;
1065					goto cleanup1;
1066				}
1067				if (ioc->Request.Type.Direction == XFER_WRITE) {
1068					if (copy_from_user
1069					    (buff[sg_used], data_ptr, sz)) {
1070						status = -ENOMEM;
1071						goto cleanup1;
1072					}
1073				} else {
1074					memset(buff[sg_used], 0, sz);
1075				}
1076				left -= sz;
1077				data_ptr += sz;
1078				sg_used++;
1079			}
1080			if ((c = cmd_alloc(host, 0)) == NULL) {
1081				status = -ENOMEM;
1082				goto cleanup1;
1083			}
1084			c->cmd_type = CMD_IOCTL_PEND;
1085			c->Header.ReplyQueue = 0;
1086
1087			if (ioc->buf_size > 0) {
1088				c->Header.SGList = sg_used;
1089				c->Header.SGTotal = sg_used;
1090			} else {
1091				c->Header.SGList = 0;
1092				c->Header.SGTotal = 0;
1093			}
1094			c->Header.LUN = ioc->LUN_info;
1095			c->Header.Tag.lower = c->busaddr;
1096
1097			c->Request = ioc->Request;
1098			if (ioc->buf_size > 0) {
1099				int i;
1100				for (i = 0; i < sg_used; i++) {
1101					temp64.val =
1102					    pci_map_single(host->pdev, buff[i],
1103						    buff_size[i],
1104						    PCI_DMA_BIDIRECTIONAL);
1105					c->SG[i].Addr.lower =
1106					    temp64.val32.lower;
1107					c->SG[i].Addr.upper =
1108					    temp64.val32.upper;
1109					c->SG[i].Len = buff_size[i];
1110					c->SG[i].Ext = 0;	/* we are not chaining */
1111				}
1112			}
1113			c->waiting = &wait;
1114			/* Put the request on the tail of the request queue */
1115			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1116			addQ(&host->reqQ, c);
1117			host->Qdepth++;
1118			start_io(host);
1119			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1120			wait_for_completion(&wait);
1121			/* unlock the buffers from DMA */
1122			for (i = 0; i < sg_used; i++) {
1123				temp64.val32.lower = c->SG[i].Addr.lower;
1124				temp64.val32.upper = c->SG[i].Addr.upper;
1125				pci_unmap_single(host->pdev,
1126					(dma_addr_t) temp64.val, buff_size[i],
1127					PCI_DMA_BIDIRECTIONAL);
1128			}
1129			/* Copy the error information out */
1130			ioc->error_info = *(c->err_info);
1131			if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1132				cmd_free(host, c, 0);
1133				status = -EFAULT;
1134				goto cleanup1;
1135			}
1136			if (ioc->Request.Type.Direction == XFER_READ) {
1137				/* Copy the data out of the buffer we created */
1138				BYTE __user *ptr = ioc->buf;
1139				for (i = 0; i < sg_used; i++) {
1140					if (copy_to_user
1141					    (ptr, buff[i], buff_size[i])) {
1142						cmd_free(host, c, 0);
1143						status = -EFAULT;
1144						goto cleanup1;
1145					}
1146					ptr += buff_size[i];
1147				}
1148			}
1149			cmd_free(host, c, 0);
1150			status = 0;
1151		      cleanup1:
1152			if (buff) {
1153				for (i = 0; i < sg_used; i++)
1154					kfree(buff[i]);
1155				kfree(buff);
1156			}
1157			kfree(buff_size);
1158			kfree(ioc);
1159			return status;
1160		}
1161
1162	/* scsi_cmd_ioctl handles these, below, though some are not */
1163	/* very meaningful for cciss.  SG_IO is the main one people want. */
1164
1165	case SG_GET_VERSION_NUM:
1166	case SG_SET_TIMEOUT:
1167	case SG_GET_TIMEOUT:
1168	case SG_GET_RESERVED_SIZE:
1169	case SG_SET_RESERVED_SIZE:
1170	case SG_EMULATED_HOST:
1171	case SG_IO:
1172	case SCSI_IOCTL_SEND_COMMAND:
1173		return scsi_cmd_ioctl(filep, disk, cmd, argp);
1174
1175	/* scsi_cmd_ioctl would normally handle these, below, but */
1176	/* they aren't a good fit for cciss, as CD-ROMs are */
1177	/* not supported, and we don't have any bus/target/lun */
1178	/* which we present to the kernel. */
1179
1180	case CDROM_SEND_PACKET:
1181	case CDROMCLOSETRAY:
1182	case CDROMEJECT:
1183	case SCSI_IOCTL_GET_IDLUN:
1184	case SCSI_IOCTL_GET_BUS_NUMBER:
1185	default:
1186		return -ENOTTY;
1187	}
1188}
1189
1190static inline void complete_buffers(struct bio *bio, int status)
1191{
1192	while (bio) {
1193		struct bio *xbh = bio->bi_next;
1194		int nr_sectors = bio_sectors(bio);
1195
1196		bio->bi_next = NULL;
1197		bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
1198		bio = xbh;
1199	}
1200}
1201
1202static void cciss_check_queues(ctlr_info_t *h)
1203{
1204	int start_queue = h->next_to_run;
1205	int i;
1206
1207	/* check to see if we have maxed out the number of commands that can
1208	 * be placed on the queue.  If so then exit.  We do this check here
1209	 * in case the interrupt we serviced was from an ioctl and did not
1210	 * free any new commands.
1211	 */
1212	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1213		return;
1214
1215	/* We have room on the queue for more commands.  Now we need to queue
1216	 * them up.  We will also keep track of the next queue to run so
1217	 * that every queue gets a chance to be started first.
1218	 */
1219	for (i = 0; i < h->highest_lun + 1; i++) {
1220		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1221		/* make sure the disk has been added and the drive is real
1222		 * because this can be called from the middle of init_one.
1223		 */
1224		if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1225			continue;
1226		blk_start_queue(h->gendisk[curr_queue]->queue);
1227
1228		/* check to see if we have maxed out the number of commands
1229		 * that can be placed on the queue.
1230		 */
1231		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1232			if (curr_queue == start_queue) {
1233				h->next_to_run =
1234				    (start_queue + 1) % (h->highest_lun + 1);
1235				break;
1236			} else {
1237				h->next_to_run = curr_queue;
1238				break;
1239			}
1240		} else {
1241			curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1242		}
1243	}
1244}
1245
1246static void cciss_softirq_done(struct request *rq)
1247{
1248	CommandList_struct *cmd = rq->completion_data;
1249	ctlr_info_t *h = hba[cmd->ctlr];
1250	unsigned long flags;
1251	u64bit temp64;
1252	int i, ddir;
1253
1254	if (cmd->Request.Type.Direction == XFER_READ)
1255		ddir = PCI_DMA_FROMDEVICE;
1256	else
1257		ddir = PCI_DMA_TODEVICE;
1258
1259	/* command did not need to be retried */
1260	/* unmap the DMA mapping for all the scatter gather elements */
1261	for (i = 0; i < cmd->Header.SGList; i++) {
1262		temp64.val32.lower = cmd->SG[i].Addr.lower;
1263		temp64.val32.upper = cmd->SG[i].Addr.upper;
1264		pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1265	}
1266
1267	complete_buffers(rq->bio, (rq->errors == 0));
1268
1269	if (blk_fs_request(rq)) {
1270		const int rw = rq_data_dir(rq);
1271
1272		disk_stat_add(rq->rq_disk, sectors[rw], rq->nr_sectors);
1273	}
1274
1275#ifdef CCISS_DEBUG
1276	printk("Done with %p\n", rq);
1277#endif				/* CCISS_DEBUG */
1278
1279	add_disk_randomness(rq->rq_disk);
1280	spin_lock_irqsave(&h->lock, flags);
1281	end_that_request_last(rq, (rq->errors == 0));
1282	cmd_free(h, cmd, 1);
1283	cciss_check_queues(h);
1284	spin_unlock_irqrestore(&h->lock, flags);
1285}
1286
1287/* This function will check the usage_count of the drive to be updated/added.
1288 * If the usage_count is zero then the drive information will be updated and
1289 * the disk will be re-registered with the kernel.  If not then it will be
1290 * left alone for the next reboot.  The exception to this is disk 0 which
1291 * will always be left registered with the kernel since it is also the
1292 * controller node.  Any changes to disk 0 will show up on the next
1293 * reboot.
1294 */
1295static void cciss_update_drive_info(int ctlr, int drv_index)
1296{
1297	ctlr_info_t *h = hba[ctlr];
1298	struct gendisk *disk;
1299	InquiryData_struct *inq_buff = NULL;
1300	unsigned int block_size;
1301	sector_t total_size;
1302	unsigned long flags = 0;
1303	int ret = 0;
1304
1305	/* if the disk already exists then deregister it before proceeding */
1306	if (h->drv[drv_index].raid_level != -1) {
1307		spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1308		h->drv[drv_index].busy_configuring = 1;
1309		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1310		ret = deregister_disk(h->gendisk[drv_index],
1311				      &h->drv[drv_index], 0);
1312		h->drv[drv_index].busy_configuring = 0;
1313	}
1314
1315	/* If the disk is in use return */
1316	if (ret)
1317		return;
1318
1319	/* Get information about the disk and modify the driver structure */
1320	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1321	if (inq_buff == NULL)
1322		goto mem_msg;
1323
1324 	/* testing to see if 16-byte CDBs are already being used */
1325 	if (h->cciss_read == CCISS_READ_16) {
1326 		cciss_read_capacity_16(h->ctlr, drv_index, 1,
1327 			&total_size, &block_size);
1328 		goto geo_inq;
1329 	}
1330
1331	cciss_read_capacity(ctlr, drv_index, 1,
1332			    &total_size, &block_size);
1333
1334  	/* if read_capacity returns all F's this volume is >2TB in size */
1335  	/* so we switch to 16-byte CDB's for all read/write ops */
1336  	if (total_size == 0xFFFFFFFFULL) {
1337		cciss_read_capacity_16(ctlr, drv_index, 1,
1338		&total_size, &block_size);
1339		h->cciss_read = CCISS_READ_16;
1340		h->cciss_write = CCISS_WRITE_16;
1341	} else {
1342		h->cciss_read = CCISS_READ_10;
1343		h->cciss_write = CCISS_WRITE_10;
1344	}
1345geo_inq:
1346	cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1347			       inq_buff, &h->drv[drv_index]);
1348
1349	++h->num_luns;
1350	disk = h->gendisk[drv_index];
1351	set_capacity(disk, h->drv[drv_index].nr_blocks);
1352
1353	/* if it's the controller it's already added */
1354	if (drv_index) {
1355		disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1356		sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
1357		disk->major = h->major;
1358		disk->first_minor = drv_index << NWD_SHIFT;
1359		disk->fops = &cciss_fops;
1360		disk->private_data = &h->drv[drv_index];
1361
1362		/* Set up queue information */
1363		disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1364		blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1365
1366		/* This is a hardware imposed limit. */
1367		blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1368
1369		/* This is a limit in the driver and could be eliminated. */
1370		blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1371
1372		blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1373
1374		blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1375
1376		disk->queue->queuedata = hba[ctlr];
1377
1378		blk_queue_hardsect_size(disk->queue,
1379					hba[ctlr]->drv[drv_index].block_size);
1380
1381		h->drv[drv_index].queue = disk->queue;
1382		add_disk(disk);
1383	}
1384
1385      freeret:
1386	kfree(inq_buff);
1387	return;
1388      mem_msg:
1389	printk(KERN_ERR "cciss: out of memory\n");
1390	goto freeret;
1391}
1392
1393/* This function will find the first index of the controllers drive array
1394 * that has a -1 for the raid_level and will return that index.  This is
1395 * where new drives will be added.  If the index to be returned is greater
1396 * than the highest_lun index for the controller then highest_lun is set
1397 * to this new index.  If there are no available indexes then -1 is returned.
1398 */
1399static int cciss_find_free_drive_index(int ctlr)
1400{
1401	int i;
1402
1403	for (i = 0; i < CISS_MAX_LUN; i++) {
1404		if (hba[ctlr]->drv[i].raid_level == -1) {
1405			if (i > hba[ctlr]->highest_lun)
1406				hba[ctlr]->highest_lun = i;
1407			return i;
1408		}
1409	}
1410	return -1;
1411}
1412
1413/* This function will add and remove logical drives from the Logical
1414 * drive array of the controller and maintain persistency of ordering
1415 * so that mount points are preserved until the next reboot.  This allows
1416 * for the removal of logical drives in the middle of the drive array
1417 * without a re-ordering of those drives.
1418 * INPUT
1419 * h		= The controller to perform the operations on
1420 * del_disk	= The disk to remove if specified.  If the value given
1421 *		  is NULL then no disk is removed.
1422 */
1423static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1424{
1425	int ctlr = h->ctlr;
1426	int num_luns;
1427	ReportLunData_struct *ld_buff = NULL;
1428	drive_info_struct *drv = NULL;
1429	int return_code;
1430	int listlength = 0;
1431	int i;
1432	int drv_found;
1433	int drv_index = 0;
1434	__u32 lunid = 0;
1435	unsigned long flags;
1436
1437	/* Set busy_configuring flag for this operation */
1438	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1439	if (h->busy_configuring) {
1440		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1441		return -EBUSY;
1442	}
1443	h->busy_configuring = 1;
1444
1445	/* if del_disk is NULL then we are being called to add a new disk
1446	 * and update the logical drive table.  If it is not NULL then
1447	 * we will check if the disk is in use or not.
1448	 */
1449	if (del_disk != NULL) {
1450		drv = get_drv(del_disk);
1451		drv->busy_configuring = 1;
1452		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1453		return_code = deregister_disk(del_disk, drv, 1);
1454		drv->busy_configuring = 0;
1455		h->busy_configuring = 0;
1456		return return_code;
1457	} else {
1458		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1459		if (!capable(CAP_SYS_RAWIO))
1460			return -EPERM;
1461
1462		ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1463		if (ld_buff == NULL)
1464			goto mem_msg;
1465
1466		return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1467					      sizeof(ReportLunData_struct), 0,
1468					      0, 0, TYPE_CMD);
1469
1470		if (return_code == IO_OK) {
1471			listlength =
1472				be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1473		} else {	/* reading number of logical volumes failed */
1474			printk(KERN_WARNING "cciss: report logical volume"
1475			       " command failed\n");
1476			listlength = 0;
1477			goto freeret;
1478		}
1479
1480		num_luns = listlength / 8;	/* 8 bytes per entry */
1481		if (num_luns > CISS_MAX_LUN) {
1482			num_luns = CISS_MAX_LUN;
1483			printk(KERN_WARNING "cciss: more luns configured"
1484			       " on controller than can be handled by"
1485			       " this driver.\n");
1486		}
1487
1488		/* Compare controller drive array to drivers drive array.
1489		 * Check for updates in the drive information and any new drives
1490		 * on the controller.
1491		 */
1492		for (i = 0; i < num_luns; i++) {
1493			int j;
1494
1495			drv_found = 0;
1496
1497			lunid = (0xff &
1498				 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1499			lunid |= (0xff &
1500				  (unsigned int)(ld_buff->LUN[i][2])) << 16;
1501			lunid |= (0xff &
1502				  (unsigned int)(ld_buff->LUN[i][1])) << 8;
1503			lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1504
1505			/* Find if the LUN is already in the drive array
1506			 * of the controller.  If so then update its info
1507			 * if not is use.  If it does not exist then find
1508			 * the first free index and add it.
1509			 */
1510			for (j = 0; j <= h->highest_lun; j++) {
1511				if (h->drv[j].LunID == lunid) {
1512					drv_index = j;
1513					drv_found = 1;
1514				}
1515			}
1516
1517			/* check if the drive was found already in the array */
1518			if (!drv_found) {
1519				drv_index = cciss_find_free_drive_index(ctlr);
1520				if (drv_index == -1)
1521					goto freeret;
1522
1523				/*Check if the gendisk needs to be allocated */
1524				if (!h->gendisk[drv_index]){
1525					h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
1526					if (!h->gendisk[drv_index]){
1527						printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
1528						goto mem_msg;
1529					}
1530				}
1531			}
1532			h->drv[drv_index].LunID = lunid;
1533			cciss_update_drive_info(ctlr, drv_index);
1534		}		/* end for */
1535	}			/* end else */
1536
1537      freeret:
1538	kfree(ld_buff);
1539	h->busy_configuring = 0;
1540	/* We return -1 here to tell the ACU that we have registered/updated
1541	 * all of the drives that we can and to keep it from calling us
1542	 * additional times.
1543	 */
1544	return -1;
1545      mem_msg:
1546	printk(KERN_ERR "cciss: out of memory\n");
1547	goto freeret;
1548}
1549
1550/* This function will deregister the disk and it's queue from the
1551 * kernel.  It must be called with the controller lock held and the
1552 * drv structures busy_configuring flag set.  It's parameters are:
1553 *
1554 * disk = This is the disk to be deregistered
1555 * drv  = This is the drive_info_struct associated with the disk to be
1556 *        deregistered.  It contains information about the disk used
1557 *        by the driver.
1558 * clear_all = This flag determines whether or not the disk information
1559 *             is going to be completely cleared out and the highest_lun
1560 *             reset.  Sometimes we want to clear out information about
1561 *             the disk in preparation for re-adding it.  In this case
1562 *             the highest_lun should be left unchanged and the LunID
1563 *             should not be cleared.
1564*/
1565static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1566			   int clear_all)
1567{
1568	int i;
1569	ctlr_info_t *h = get_host(disk);
1570
1571	if (!capable(CAP_SYS_RAWIO))
1572		return -EPERM;
1573
1574	/* make sure logical volume is NOT is use */
1575	if (clear_all || (h->gendisk[0] == disk)) {
1576		if (drv->usage_count > 1)
1577			return -EBUSY;
1578	} else if (drv->usage_count > 0)
1579		return -EBUSY;
1580
1581	/* invalidate the devices and deregister the disk.  If it is disk
1582	 * zero do not deregister it but just zero out it's values.  This
1583	 * allows us to delete disk zero but keep the controller registered.
1584	 */
1585	if (h->gendisk[0] != disk) {
1586		if (disk) {
1587			request_queue_t *q = disk->queue;
1588			if (disk->flags & GENHD_FL_UP)
1589				del_gendisk(disk);
1590			if (q) {
1591				blk_cleanup_queue(q);
1592				/* Set drv->queue to NULL so that we do not try
1593				 * to call blk_start_queue on this queue in the
1594				 * interrupt handler
1595				 */
1596				drv->queue = NULL;
1597			}
1598			/* If clear_all is set then we are deleting the logical
1599			 * drive, not just refreshing its info.  For drives
1600			 * other than disk 0 we will call put_disk.  We do not
1601			 * do this for disk 0 as we need it to be able to
1602			 * configure the controller.
1603			*/
1604			if (clear_all){
1605				/* This isn't pretty, but we need to find the
1606				 * disk in our array and NULL our the pointer.
1607				 * This is so that we will call alloc_disk if
1608				 * this index is used again later.
1609				*/
1610				for (i=0; i < CISS_MAX_LUN; i++){
1611					if(h->gendisk[i] == disk){
1612						h->gendisk[i] = NULL;
1613						break;
1614					}
1615				}
1616				put_disk(disk);
1617			}
1618		}
1619	} else {
1620		set_capacity(disk, 0);
1621	}
1622
1623	--h->num_luns;
1624	/* zero out the disk size info */
1625	drv->nr_blocks = 0;
1626	drv->block_size = 0;
1627	drv->heads = 0;
1628	drv->sectors = 0;
1629	drv->cylinders = 0;
1630	drv->raid_level = -1;	/* This can be used as a flag variable to
1631				 * indicate that this element of the drive
1632				 * array is free.
1633				 */
1634
1635	if (clear_all) {
1636		/* check to see if it was the last disk */
1637		if (drv == h->drv + h->highest_lun) {
1638			/* if so, find the new hightest lun */
1639			int i, newhighest = -1;
1640			for (i = 0; i < h->highest_lun; i++) {
1641				/* if the disk has size > 0, it is available */
1642				if (h->drv[i].heads)
1643					newhighest = i;
1644			}
1645			h->highest_lun = newhighest;
1646		}
1647
1648		drv->LunID = 0;
1649	}
1650	return 0;
1651}
1652
1653static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num,	/* 0: address the controller,
1654															   1: address logical volume log_unit,
1655															   2: periph device address is scsi3addr */
1656		    unsigned int log_unit, __u8 page_code,
1657		    unsigned char *scsi3addr, int cmd_type)
1658{
1659	ctlr_info_t *h = hba[ctlr];
1660	u64bit buff_dma_handle;
1661	int status = IO_OK;
1662
1663	c->cmd_type = CMD_IOCTL_PEND;
1664	c->Header.ReplyQueue = 0;
1665	if (buff != NULL) {
1666		c->Header.SGList = 1;
1667		c->Header.SGTotal = 1;
1668	} else {
1669		c->Header.SGList = 0;
1670		c->Header.SGTotal = 0;
1671	}
1672	c->Header.Tag.lower = c->busaddr;
1673
1674	c->Request.Type.Type = cmd_type;
1675	if (cmd_type == TYPE_CMD) {
1676		switch (cmd) {
1677		case CISS_INQUIRY:
1678			/* If the logical unit number is 0 then, this is going
1679			   to controller so It's a physical command
1680			   mode = 0 target = 0.  So we have nothing to write.
1681			   otherwise, if use_unit_num == 1,
1682			   mode = 1(volume set addressing) target = LUNID
1683			   otherwise, if use_unit_num == 2,
1684			   mode = 0(periph dev addr) target = scsi3addr */
1685			if (use_unit_num == 1) {
1686				c->Header.LUN.LogDev.VolId =
1687				    h->drv[log_unit].LunID;
1688				c->Header.LUN.LogDev.Mode = 1;
1689			} else if (use_unit_num == 2) {
1690				memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1691				       8);
1692				c->Header.LUN.LogDev.Mode = 0;
1693			}
1694			/* are we trying to read a vital product page */
1695			if (page_code != 0) {
1696				c->Request.CDB[1] = 0x01;
1697				c->Request.CDB[2] = page_code;
1698			}
1699			c->Request.CDBLen = 6;
1700			c->Request.Type.Attribute = ATTR_SIMPLE;
1701			c->Request.Type.Direction = XFER_READ;
1702			c->Request.Timeout = 0;
1703			c->Request.CDB[0] = CISS_INQUIRY;
1704			c->Request.CDB[4] = size & 0xFF;
1705			break;
1706		case CISS_REPORT_LOG:
1707		case CISS_REPORT_PHYS:
1708			/* Talking to controller so It's a physical command
1709			   mode = 00 target = 0.  Nothing to write.
1710			 */
1711			c->Request.CDBLen = 12;
1712			c->Request.Type.Attribute = ATTR_SIMPLE;
1713			c->Request.Type.Direction = XFER_READ;
1714			c->Request.Timeout = 0;
1715			c->Request.CDB[0] = cmd;
1716			c->Request.CDB[6] = (size >> 24) & 0xFF;	//MSB
1717			c->Request.CDB[7] = (size >> 16) & 0xFF;
1718			c->Request.CDB[8] = (size >> 8) & 0xFF;
1719			c->Request.CDB[9] = size & 0xFF;
1720			break;
1721
1722		case CCISS_READ_CAPACITY:
1723			c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1724			c->Header.LUN.LogDev.Mode = 1;
1725			c->Request.CDBLen = 10;
1726			c->Request.Type.Attribute = ATTR_SIMPLE;
1727			c->Request.Type.Direction = XFER_READ;
1728			c->Request.Timeout = 0;
1729			c->Request.CDB[0] = cmd;
1730			break;
1731		case CCISS_READ_CAPACITY_16:
1732			c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1733			c->Header.LUN.LogDev.Mode = 1;
1734			c->Request.CDBLen = 16;
1735			c->Request.Type.Attribute = ATTR_SIMPLE;
1736			c->Request.Type.Direction = XFER_READ;
1737			c->Request.Timeout = 0;
1738			c->Request.CDB[0] = cmd;
1739			c->Request.CDB[1] = 0x10;
1740			c->Request.CDB[10] = (size >> 24) & 0xFF;
1741			c->Request.CDB[11] = (size >> 16) & 0xFF;
1742			c->Request.CDB[12] = (size >> 8) & 0xFF;
1743			c->Request.CDB[13] = size & 0xFF;
1744			c->Request.Timeout = 0;
1745			c->Request.CDB[0] = cmd;
1746			break;
1747		case CCISS_CACHE_FLUSH:
1748			c->Request.CDBLen = 12;
1749			c->Request.Type.Attribute = ATTR_SIMPLE;
1750			c->Request.Type.Direction = XFER_WRITE;
1751			c->Request.Timeout = 0;
1752			c->Request.CDB[0] = BMIC_WRITE;
1753			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1754			break;
1755		default:
1756			printk(KERN_WARNING
1757			       "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
1758			return IO_ERROR;
1759		}
1760	} else if (cmd_type == TYPE_MSG) {
1761		switch (cmd) {
1762		case 0:	/* ABORT message */
1763			c->Request.CDBLen = 12;
1764			c->Request.Type.Attribute = ATTR_SIMPLE;
1765			c->Request.Type.Direction = XFER_WRITE;
1766			c->Request.Timeout = 0;
1767			c->Request.CDB[0] = cmd;	/* abort */
1768			c->Request.CDB[1] = 0;	/* abort a command */
1769			/* buff contains the tag of the command to abort */
1770			memcpy(&c->Request.CDB[4], buff, 8);
1771			break;
1772		case 1:	/* RESET message */
1773			c->Request.CDBLen = 12;
1774			c->Request.Type.Attribute = ATTR_SIMPLE;
1775			c->Request.Type.Direction = XFER_WRITE;
1776			c->Request.Timeout = 0;
1777			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1778			c->Request.CDB[0] = cmd;	/* reset */
1779			c->Request.CDB[1] = 0x04;	/* reset a LUN */
1780			break;
1781		case 3:	/* No-Op message */
1782			c->Request.CDBLen = 1;
1783			c->Request.Type.Attribute = ATTR_SIMPLE;
1784			c->Request.Type.Direction = XFER_WRITE;
1785			c->Request.Timeout = 0;
1786			c->Request.CDB[0] = cmd;
1787			break;
1788		default:
1789			printk(KERN_WARNING
1790			       "cciss%d: unknown message type %d\n", ctlr, cmd);
1791			return IO_ERROR;
1792		}
1793	} else {
1794		printk(KERN_WARNING
1795		       "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1796		return IO_ERROR;
1797	}
1798	/* Fill in the scatter gather information */
1799	if (size > 0) {
1800		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1801							     buff, size,
1802							     PCI_DMA_BIDIRECTIONAL);
1803		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1804		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1805		c->SG[0].Len = size;
1806		c->SG[0].Ext = 0;	/* we are not chaining */
1807	}
1808	return status;
1809}
1810
1811static int sendcmd_withirq(__u8 cmd,
1812			   int ctlr,
1813			   void *buff,
1814			   size_t size,
1815			   unsigned int use_unit_num,
1816			   unsigned int log_unit, __u8 page_code, int cmd_type)
1817{
1818	ctlr_info_t *h = hba[ctlr];
1819	CommandList_struct *c;
1820	u64bit buff_dma_handle;
1821	unsigned long flags;
1822	int return_status;
1823	DECLARE_COMPLETION_ONSTACK(wait);
1824
1825	if ((c = cmd_alloc(h, 0)) == NULL)
1826		return -ENOMEM;
1827	return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1828				 log_unit, page_code, NULL, cmd_type);
1829	if (return_status != IO_OK) {
1830		cmd_free(h, c, 0);
1831		return return_status;
1832	}
1833      resend_cmd2:
1834	c->waiting = &wait;
1835
1836	/* Put the request on the tail of the queue and send it */
1837	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1838	addQ(&h->reqQ, c);
1839	h->Qdepth++;
1840	start_io(h);
1841	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1842
1843	wait_for_completion(&wait);
1844
1845	if (c->err_info->CommandStatus != 0) {	/* an error has occurred */
1846		switch (c->err_info->CommandStatus) {
1847		case CMD_TARGET_STATUS:
1848			printk(KERN_WARNING "cciss: cmd %p has "
1849			       " completed with errors\n", c);
1850			if (c->err_info->ScsiStatus) {
1851				printk(KERN_WARNING "cciss: cmd %p "
1852				       "has SCSI Status = %x\n",
1853				       c, c->err_info->ScsiStatus);
1854			}
1855
1856			break;
1857		case CMD_DATA_UNDERRUN:
1858		case CMD_DATA_OVERRUN:
1859			/* expected for inquire and report lun commands */
1860			break;
1861		case CMD_INVALID:
1862			printk(KERN_WARNING "cciss: Cmd %p is "
1863			       "reported invalid\n", c);
1864			return_status = IO_ERROR;
1865			break;
1866		case CMD_PROTOCOL_ERR:
1867			printk(KERN_WARNING "cciss: cmd %p has "
1868			       "protocol error \n", c);
1869			return_status = IO_ERROR;
1870			break;
1871		case CMD_HARDWARE_ERR:
1872			printk(KERN_WARNING "cciss: cmd %p had "
1873			       " hardware error\n", c);
1874			return_status = IO_ERROR;
1875			break;
1876		case CMD_CONNECTION_LOST:
1877			printk(KERN_WARNING "cciss: cmd %p had "
1878			       "connection lost\n", c);
1879			return_status = IO_ERROR;
1880			break;
1881		case CMD_ABORTED:
1882			printk(KERN_WARNING "cciss: cmd %p was "
1883			       "aborted\n", c);
1884			return_status = IO_ERROR;
1885			break;
1886		case CMD_ABORT_FAILED:
1887			printk(KERN_WARNING "cciss: cmd %p reports "
1888			       "abort failed\n", c);
1889			return_status = IO_ERROR;
1890			break;
1891		case CMD_UNSOLICITED_ABORT:
1892			printk(KERN_WARNING
1893			       "cciss%d: unsolicited abort %p\n", ctlr, c);
1894			if (c->retry_count < MAX_CMD_RETRIES) {
1895				printk(KERN_WARNING
1896				       "cciss%d: retrying %p\n", ctlr, c);
1897				c->retry_count++;
1898				/* erase the old error information */
1899				memset(c->err_info, 0,
1900				       sizeof(ErrorInfo_struct));
1901				return_status = IO_OK;
1902				INIT_COMPLETION(wait);
1903				goto resend_cmd2;
1904			}
1905			return_status = IO_ERROR;
1906			break;
1907		default:
1908			printk(KERN_WARNING "cciss: cmd %p returned "
1909			       "unknown status %x\n", c,
1910			       c->err_info->CommandStatus);
1911			return_status = IO_ERROR;
1912		}
1913	}
1914	/* unlock the buffers from DMA */
1915	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1916	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1917	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1918			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1919	cmd_free(h, c, 0);
1920	return return_status;
1921}
1922
1923static void cciss_geometry_inquiry(int ctlr, int logvol,
1924				   int withirq, sector_t total_size,
1925				   unsigned int block_size,
1926				   InquiryData_struct *inq_buff,
1927				   drive_info_struct *drv)
1928{
1929	int return_code;
1930	unsigned long t;
1931
1932	memset(inq_buff, 0, sizeof(InquiryData_struct));
1933	if (withirq)
1934		return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1935					      inq_buff, sizeof(*inq_buff), 1,
1936					      logvol, 0xC1, TYPE_CMD);
1937	else
1938		return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1939				      sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1940				      TYPE_CMD);
1941	if (return_code == IO_OK) {
1942		if (inq_buff->data_byte[8] == 0xFF) {
1943			printk(KERN_WARNING
1944			       "cciss: reading geometry failed, volume "
1945			       "does not support reading geometry\n");
1946			drv->heads = 255;
1947			drv->sectors = 32;	// Sectors per track
1948			drv->cylinders = total_size + 1;
1949			drv->raid_level = RAID_UNKNOWN;
1950		} else {
1951			drv->heads = inq_buff->data_byte[6];
1952			drv->sectors = inq_buff->data_byte[7];
1953			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1954			drv->cylinders += inq_buff->data_byte[5];
1955			drv->raid_level = inq_buff->data_byte[8];
1956		}
1957		drv->block_size = block_size;
1958		drv->nr_blocks = total_size + 1;
1959		t = drv->heads * drv->sectors;
1960		if (t > 1) {
1961			sector_t real_size = total_size + 1;
1962			unsigned long rem = sector_div(real_size, t);
1963			if (rem)
1964				real_size++;
1965			drv->cylinders = real_size;
1966		}
1967	} else {		/* Get geometry failed */
1968		printk(KERN_WARNING "cciss: reading geometry failed\n");
1969	}
1970	printk(KERN_INFO "      heads=%d, sectors=%d, cylinders=%d\n\n",
1971	       drv->heads, drv->sectors, drv->cylinders);
1972}
1973
1974static void
1975cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
1976		    unsigned int *block_size)
1977{
1978	ReadCapdata_struct *buf;
1979	int return_code;
1980	buf = kmalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
1981	if (buf == NULL) {
1982		printk(KERN_WARNING "cciss: out of memory\n");
1983		return;
1984	}
1985	memset(buf, 0, sizeof(ReadCapdata_struct));
1986	if (withirq)
1987		return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1988				ctlr, buf, sizeof(ReadCapdata_struct),
1989					1, logvol, 0, TYPE_CMD);
1990	else
1991		return_code = sendcmd(CCISS_READ_CAPACITY,
1992				ctlr, buf, sizeof(ReadCapdata_struct),
1993					1, logvol, 0, NULL, TYPE_CMD);
1994	if (return_code == IO_OK) {
1995		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
1996		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
1997	} else {		/* read capacity command failed */
1998		printk(KERN_WARNING "cciss: read capacity failed\n");
1999		*total_size = 0;
2000		*block_size = BLOCK_SIZE;
2001	}
2002	if (*total_size != 0)
2003		printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2004		(unsigned long long)*total_size+1, *block_size);
2005	kfree(buf);
2006	return;
2007}
2008
2009static void
2010cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, 				unsigned int *block_size)
2011{
2012	ReadCapdata_struct_16 *buf;
2013	int return_code;
2014	buf = kmalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2015	if (buf == NULL) {
2016		printk(KERN_WARNING "cciss: out of memory\n");
2017		return;
2018	}
2019	memset(buf, 0, sizeof(ReadCapdata_struct_16));
2020	if (withirq) {
2021		return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2022			ctlr, buf, sizeof(ReadCapdata_struct_16),
2023				1, logvol, 0, TYPE_CMD);
2024	}
2025	else {
2026		return_code = sendcmd(CCISS_READ_CAPACITY_16,
2027			ctlr, buf, sizeof(ReadCapdata_struct_16),
2028				1, logvol, 0, NULL, TYPE_CMD);
2029	}
2030	if (return_code == IO_OK) {
2031		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2032		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2033	} else {		/* read capacity command failed */
2034		printk(KERN_WARNING "cciss: read capacity failed\n");
2035		*total_size = 0;
2036		*block_size = BLOCK_SIZE;
2037	}
2038	printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2039	       (unsigned long long)*total_size+1, *block_size);
2040	kfree(buf);
2041	return;
2042}
2043
2044static int cciss_revalidate(struct gendisk *disk)
2045{
2046	ctlr_info_t *h = get_host(disk);
2047	drive_info_struct *drv = get_drv(disk);
2048	int logvol;
2049	int FOUND = 0;
2050	unsigned int block_size;
2051	sector_t total_size;
2052	InquiryData_struct *inq_buff = NULL;
2053
2054	for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2055		if (h->drv[logvol].LunID == drv->LunID) {
2056			FOUND = 1;
2057			break;
2058		}
2059	}
2060
2061	if (!FOUND)
2062		return 1;
2063
2064	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2065	if (inq_buff == NULL) {
2066		printk(KERN_WARNING "cciss: out of memory\n");
2067		return 1;
2068	}
2069	if (h->cciss_read == CCISS_READ_10) {
2070		cciss_read_capacity(h->ctlr, logvol, 1,
2071					&total_size, &block_size);
2072	} else {
2073		cciss_read_capacity_16(h->ctlr, logvol, 1,
2074					&total_size, &block_size);
2075	}
2076	cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2077			       inq_buff, drv);
2078
2079	blk_queue_hardsect_size(drv->queue, drv->block_size);
2080	set_capacity(disk, drv->nr_blocks);
2081
2082	kfree(inq_buff);
2083	return 0;
2084}
2085
2086/*
2087 *   Wait polling for a command to complete.
2088 *   The memory mapped FIFO is polled for the completion.
2089 *   Used only at init time, interrupts from the HBA are disabled.
2090 */
2091static unsigned long pollcomplete(int ctlr)
2092{
2093	unsigned long done;
2094	int i;
2095
2096	/* Wait (up to 20 seconds) for a command to complete */
2097
2098	for (i = 20 * HZ; i > 0; i--) {
2099		done = hba[ctlr]->access.command_completed(hba[ctlr]);
2100		if (done == FIFO_EMPTY)
2101			schedule_timeout_uninterruptible(1);
2102		else
2103			return done;
2104	}
2105	/* Invalid address to tell caller we ran out of time */
2106	return 1;
2107}
2108
2109static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2110{
2111	/* We get in here if sendcmd() is polling for completions
2112	   and gets some command back that it wasn't expecting --
2113	   something other than that which it just sent down.
2114	   Ordinarily, that shouldn't happen, but it can happen when
2115	   the scsi tape stuff gets into error handling mode, and
2116	   starts using sendcmd() to try to abort commands and
2117	   reset tape drives.  In that case, sendcmd may pick up
2118	   completions of commands that were sent to logical drives
2119	   through the block i/o system, or cciss ioctls completing, etc.
2120	   In that case, we need to save those completions for later
2121	   processing by the interrupt handler.
2122	 */
2123
2124#ifdef CONFIG_CISS_SCSI_TAPE
2125	struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2126
2127	/* If it's not the scsi tape stuff doing error handling, (abort */
2128	/* or reset) then we don't expect anything weird. */
2129	if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2130#endif
2131		printk(KERN_WARNING "cciss cciss%d: SendCmd "
2132		       "Invalid command list address returned! (%lx)\n",
2133		       ctlr, complete);
2134		/* not much we can do. */
2135#ifdef CONFIG_CISS_SCSI_TAPE
2136		return 1;
2137	}
2138
2139	/* We've sent down an abort or reset, but something else
2140	   has completed */
2141	if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2142		/* Uh oh.  No room to save it for later... */
2143		printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2144		       "reject list overflow, command lost!\n", ctlr);
2145		return 1;
2146	}
2147	/* Save it for later */
2148	srl->complete[srl->ncompletions] = complete;
2149	srl->ncompletions++;
2150#endif
2151	return 0;
2152}
2153
2154/*
2155 * Send a command to the controller, and wait for it to complete.
2156 * Only used at init time.
2157 */
2158static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num,	/* 0: address the controller,
2159												   1: address logical volume log_unit,
2160												   2: periph device address is scsi3addr */
2161		   unsigned int log_unit,
2162		   __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2163{
2164	CommandList_struct *c;
2165	int i;
2166	unsigned long complete;
2167	ctlr_info_t *info_p = hba[ctlr];
2168	u64bit buff_dma_handle;
2169	int status, done = 0;
2170
2171	if ((c = cmd_alloc(info_p, 1)) == NULL) {
2172		printk(KERN_WARNING "cciss: unable to get memory");
2173		return IO_ERROR;
2174	}
2175	status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2176			  log_unit, page_code, scsi3addr, cmd_type);
2177	if (status != IO_OK) {
2178		cmd_free(info_p, c, 1);
2179		return status;
2180	}
2181      resend_cmd1:
2182	/*
2183	 * Disable interrupt
2184	 */
2185#ifdef CCISS_DEBUG
2186	printk(KERN_DEBUG "cciss: turning intr off\n");
2187#endif				/* CCISS_DEBUG */
2188	info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2189
2190	/* Make sure there is room in the command FIFO */
2191	/* Actually it should be completely empty at this time */
2192	/* unless we are in here doing error handling for the scsi */
2193	/* tape side of the driver. */
2194	for (i = 200000; i > 0; i--) {
2195		/* if fifo isn't full go */
2196		if (!(info_p->access.fifo_full(info_p))) {
2197
2198			break;
2199		}
2200		udelay(10);
2201		printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2202		       " waiting!\n", ctlr);
2203	}
2204	/*
2205	 * Send the cmd
2206	 */
2207	info_p->access.submit_command(info_p, c);
2208	done = 0;
2209	do {
2210		complete = pollcomplete(ctlr);
2211
2212#ifdef CCISS_DEBUG
2213		printk(KERN_DEBUG "cciss: command completed\n");
2214#endif				/* CCISS_DEBUG */
2215
2216		if (complete == 1) {
2217			printk(KERN_WARNING
2218			       "cciss cciss%d: SendCmd Timeout out, "
2219			       "No command list address returned!\n", ctlr);
2220			status = IO_ERROR;
2221			done = 1;
2222			break;
2223		}
2224
2225		/* This will need to change for direct lookup completions */
2226		if ((complete & CISS_ERROR_BIT)
2227		    && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2228			/* if data overrun or underun on Report command
2229			   ignore it
2230			 */
2231			if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2232			     (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2233			     (c->Request.CDB[0] == CISS_INQUIRY)) &&
2234			    ((c->err_info->CommandStatus ==
2235			      CMD_DATA_OVERRUN) ||
2236			     (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2237			    )) {
2238				complete = c->busaddr;
2239			} else {
2240				if (c->err_info->CommandStatus ==
2241				    CMD_UNSOLICITED_ABORT) {
2242					printk(KERN_WARNING "cciss%d: "
2243					       "unsolicited abort %p\n",
2244					       ctlr, c);
2245					if (c->retry_count < MAX_CMD_RETRIES) {
2246						printk(KERN_WARNING
2247						       "cciss%d: retrying %p\n",
2248						       ctlr, c);
2249						c->retry_count++;
2250						/* erase the old error */
2251						/* information */
2252						memset(c->err_info, 0,
2253						       sizeof
2254						       (ErrorInfo_struct));
2255						goto resend_cmd1;
2256					} else {
2257						printk(KERN_WARNING
2258						       "cciss%d: retried %p too "
2259						       "many times\n", ctlr, c);
2260						status = IO_ERROR;
2261						goto cleanup1;
2262					}
2263				} else if (c->err_info->CommandStatus ==
2264					   CMD_UNABORTABLE) {
2265					printk(KERN_WARNING
2266					       "cciss%d: command could not be aborted.\n",
2267					       ctlr);
2268					status = IO_ERROR;
2269					goto cleanup1;
2270				}
2271				printk(KERN_WARNING "ciss ciss%d: sendcmd"
2272				       " Error %x \n", ctlr,
2273				       c->err_info->CommandStatus);
2274				printk(KERN_WARNING "ciss ciss%d: sendcmd"
2275				       " offensive info\n"
2276				       "  size %x\n   num %x   value %x\n",
2277				       ctlr,
2278				       c->err_info->MoreErrInfo.Invalid_Cmd.
2279				       offense_size,
2280				       c->err_info->MoreErrInfo.Invalid_Cmd.
2281				       offense_num,
2282				       c->err_info->MoreErrInfo.Invalid_Cmd.
2283				       offense_value);
2284				status = IO_ERROR;
2285				goto cleanup1;
2286			}
2287		}
2288		/* This will need changing for direct lookup completions */
2289		if (complete != c->busaddr) {
2290			if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2291				BUG();	/* we are pretty much hosed if we get here. */
2292			}
2293			continue;
2294		} else
2295			done = 1;
2296	} while (!done);
2297
2298      cleanup1:
2299	/* unlock the data buffer from DMA */
2300	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2301	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2302	pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2303			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2304#ifdef CONFIG_CISS_SCSI_TAPE
2305	/* if we saved some commands for later, process them now. */
2306	if (info_p->scsi_rejects.ncompletions > 0)
2307		do_cciss_intr(0, info_p);
2308#endif
2309	cmd_free(info_p, c, 1);
2310	return status;
2311}
2312
2313/*
2314 * Map (physical) PCI mem into (virtual) kernel space
2315 */
2316static void __iomem *remap_pci_mem(ulong base, ulong size)
2317{
2318	ulong page_base = ((ulong) base) & PAGE_MASK;
2319	ulong page_offs = ((ulong) base) - page_base;
2320	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2321
2322	return page_remapped ? (page_remapped + page_offs) : NULL;
2323}
2324
2325/*
2326 * Takes jobs of the Q and sends them to the hardware, then puts it on
2327 * the Q to wait for completion.
2328 */
2329static void start_io(ctlr_info_t *h)
2330{
2331	CommandList_struct *c;
2332
2333	while ((c = h->reqQ) != NULL) {
2334		/* can't do anything if fifo is full */
2335		if ((h->access.fifo_full(h))) {
2336			printk(KERN_WARNING "cciss: fifo full\n");
2337			break;
2338		}
2339
2340		/* Get the first entry from the Request Q */
2341		removeQ(&(h->reqQ), c);
2342		h->Qdepth--;
2343
2344		/* Tell the controller execute command */
2345		h->access.submit_command(h, c);
2346
2347		/* Put job onto the completed Q */
2348		addQ(&(h->cmpQ), c);
2349	}
2350}
2351
2352/* Assumes that CCISS_LOCK(h->ctlr) is held. */
2353/* Zeros out the error record and then resends the command back */
2354/* to the controller */
2355static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2356{
2357	/* erase the old error information */
2358	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2359
2360	/* add it to software queue and then send it to the controller */
2361	addQ(&(h->reqQ), c);
2362	h->Qdepth++;
2363	if (h->Qdepth > h->maxQsinceinit)
2364		h->maxQsinceinit = h->Qdepth;
2365
2366	start_io(h);
2367}
2368
2369static inline int evaluate_target_status(CommandList_struct *cmd)
2370{
2371	unsigned char sense_key;
2372	int error_count = 1;
2373
2374	if (cmd->err_info->ScsiStatus != 0x02) { /* not check condition? */
2375		if (!blk_pc_request(cmd->rq))
2376			printk(KERN_WARNING "cciss: cmd %p "
2377			       "has SCSI Status 0x%x\n",
2378			       cmd, cmd->err_info->ScsiStatus);
2379		return error_count;
2380	}
2381
2382	/* check the sense key */
2383	sense_key = 0xf & cmd->err_info->SenseInfo[2];
2384	/* no status or recovered error */
2385	if ((sense_key == 0x0) || (sense_key == 0x1))
2386		error_count = 0;
2387
2388	if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2389		if (error_count != 0)
2390			printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2391			       " sense key = 0x%x\n", cmd, sense_key);
2392		return error_count;
2393	}
2394
2395	/* SG_IO or similar, copy sense data back */
2396	if (cmd->rq->sense) {
2397		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2398			cmd->rq->sense_len = cmd->err_info->SenseLen;
2399		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2400			cmd->rq->sense_len);
2401	} else
2402		cmd->rq->sense_len = 0;
2403
2404	return error_count;
2405}
2406
2407/* checks the status of the job and calls complete buffers to mark all
2408 * buffers for the completed job. Note that this function does not need
2409 * to hold the hba/queue lock.
2410 */
2411static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2412				    int timeout)
2413{
2414	int retry_cmd = 0;
2415	struct request *rq = cmd->rq;
2416
2417	rq->errors = 0;
2418
2419	if (timeout)
2420		rq->errors = 1;
2421
2422	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
2423		goto after_error_processing;
2424
2425	switch (cmd->err_info->CommandStatus) {
2426	case CMD_TARGET_STATUS:
2427		rq->errors = evaluate_target_status(cmd);
2428		break;
2429	case CMD_DATA_UNDERRUN:
2430		if (blk_fs_request(cmd->rq)) {
2431			printk(KERN_WARNING "cciss: cmd %p has"
2432			       " completed with data underrun "
2433			       "reported\n", cmd);
2434			cmd->rq->data_len = cmd->err_info->ResidualCnt;
2435		}
2436		break;
2437	case CMD_DATA_OVERRUN:
2438		if (blk_fs_request(cmd->rq))
2439			printk(KERN_WARNING "cciss: cmd %p has"
2440			       " completed with data overrun "
2441			       "reported\n", cmd);
2442		break;
2443	case CMD_INVALID:
2444		printk(KERN_WARNING "cciss: cmd %p is "
2445		       "reported invalid\n", cmd);
2446		rq->errors = 1;
2447		break;
2448	case CMD_PROTOCOL_ERR:
2449		printk(KERN_WARNING "cciss: cmd %p has "
2450		       "protocol error \n", cmd);
2451		rq->errors = 1;
2452		break;
2453	case CMD_HARDWARE_ERR:
2454		printk(KERN_WARNING "cciss: cmd %p had "
2455		       " hardware error\n", cmd);
2456		rq->errors = 1;
2457		break;
2458	case CMD_CONNECTION_LOST:
2459		printk(KERN_WARNING "cciss: cmd %p had "
2460		       "connection lost\n", cmd);
2461		rq->errors = 1;
2462		break;
2463	case CMD_ABORTED:
2464		printk(KERN_WARNING "cciss: cmd %p was "
2465		       "aborted\n", cmd);
2466		rq->errors = 1;
2467		break;
2468	case CMD_ABORT_FAILED:
2469		printk(KERN_WARNING "cciss: cmd %p reports "
2470		       "abort failed\n", cmd);
2471		rq->errors = 1;
2472		break;
2473	case CMD_UNSOLICITED_ABORT:
2474		printk(KERN_WARNING "cciss%d: unsolicited "
2475		       "abort %p\n", h->ctlr, cmd);
2476		if (cmd->retry_count < MAX_CMD_RETRIES) {
2477			retry_cmd = 1;
2478			printk(KERN_WARNING
2479			       "cciss%d: retrying %p\n", h->ctlr, cmd);
2480			cmd->retry_count++;
2481		} else
2482			printk(KERN_WARNING
2483			       "cciss%d: %p retried too "
2484			       "many times\n", h->ctlr, cmd);
2485		rq->errors = 1;
2486		break;
2487	case CMD_TIMEOUT:
2488		printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2489		rq->errors = 1;
2490		break;
2491	default:
2492		printk(KERN_WARNING "cciss: cmd %p returned "
2493		       "unknown status %x\n", cmd,
2494		       cmd->err_info->CommandStatus);
2495		rq->errors = 1;
2496	}
2497
2498after_error_processing:
2499
2500	/* We need to return this command */
2501	if (retry_cmd) {
2502		resend_cciss_cmd(h, cmd);
2503		return;
2504	}
2505	cmd->rq->data_len = 0;
2506	cmd->rq->completion_data = cmd;
2507	blk_add_trace_rq(cmd->rq->q, cmd->rq, BLK_TA_COMPLETE);
2508	blk_complete_request(cmd->rq);
2509}
2510
2511/*
2512 * Get a request and submit it to the controller.
2513 */
2514static void do_cciss_request(request_queue_t *q)
2515{
2516	ctlr_info_t *h = q->queuedata;
2517	CommandList_struct *c;
2518	sector_t start_blk;
2519	int seg;
2520	struct request *creq;
2521	u64bit temp64;
2522	struct scatterlist tmp_sg[MAXSGENTRIES];
2523	drive_info_struct *drv;
2524	int i, dir;
2525
2526	/* We call start_io here in case there is a command waiting on the
2527	 * queue that has not been sent.
2528	 */
2529	if (blk_queue_plugged(q))
2530		goto startio;
2531
2532      queue:
2533	creq = elv_next_request(q);
2534	if (!creq)
2535		goto startio;
2536
2537	BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2538
2539	if ((c = cmd_alloc(h, 1)) == NULL)
2540		goto full;
2541
2542	blkdev_dequeue_request(creq);
2543
2544	spin_unlock_irq(q->queue_lock);
2545
2546	c->cmd_type = CMD_RWREQ;
2547	c->rq = creq;
2548
2549	/* fill in the request */
2550	drv = creq->rq_disk->private_data;
2551	c->Header.ReplyQueue = 0;	// unused in simple mode
2552	/* got command from pool, so use the command block index instead */
2553	/* for direct lookups. */
2554	/* The first 2 bits are reserved for controller error reporting. */
2555	c->Header.Tag.lower = (c->cmdindex << 3);
2556	c->Header.Tag.lower |= 0x04;	/* flag for direct lookup. */
2557	c->Header.LUN.LogDev.VolId = drv->LunID;
2558	c->Header.LUN.LogDev.Mode = 1;
2559	c->Request.CDBLen = 10;	// 12 byte commands not in FW yet;
2560	c->Request.Type.Type = TYPE_CMD;	// It is a command.
2561	c->Request.Type.Attribute = ATTR_SIMPLE;
2562	c->Request.Type.Direction =
2563	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2564	c->Request.Timeout = 0;	// Don't time out
2565	c->Request.CDB[0] =
2566	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2567	start_blk = creq->sector;
2568#ifdef CCISS_DEBUG
2569	printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2570	       (int)creq->nr_sectors);
2571#endif				/* CCISS_DEBUG */
2572
2573	seg = blk_rq_map_sg(q, creq, tmp_sg);
2574
2575	/* get the DMA records for the setup */
2576	if (c->Request.Type.Direction == XFER_READ)
2577		dir = PCI_DMA_FROMDEVICE;
2578	else
2579		dir = PCI_DMA_TODEVICE;
2580
2581	for (i = 0; i < seg; i++) {
2582		c->SG[i].Len = tmp_sg[i].length;
2583		temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2584						  tmp_sg[i].offset,
2585						  tmp_sg[i].length, dir);
2586		c->SG[i].Addr.lower = temp64.val32.lower;
2587		c->SG[i].Addr.upper = temp64.val32.upper;
2588		c->SG[i].Ext = 0;	// we are not chaining
2589	}
2590	/* track how many SG entries we are using */
2591	if (seg > h->maxSG)
2592		h->maxSG = seg;
2593
2594#ifdef CCISS_DEBUG
2595	printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2596	       creq->nr_sectors, seg);
2597#endif				/* CCISS_DEBUG */
2598
2599	c->Header.SGList = c->Header.SGTotal = seg;
2600	if (likely(blk_fs_request(creq))) {
2601		if(h->cciss_read == CCISS_READ_10) {
2602			c->Request.CDB[1] = 0;
2603			c->Request.CDB[2] = (start_blk >> 24) & 0xff;	//MSB
2604			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2605			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2606			c->Request.CDB[5] = start_blk & 0xff;
2607			c->Request.CDB[6] = 0;	// (sect >> 24) & 0xff; MSB
2608			c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2609			c->Request.CDB[8] = creq->nr_sectors & 0xff;
2610			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2611		} else {
2612			c->Request.CDBLen = 16;
2613			c->Request.CDB[1]= 0;
2614			c->Request.CDB[2]= (start_blk >> 56) & 0xff;	//MSB
2615			c->Request.CDB[3]= (start_blk >> 48) & 0xff;
2616			c->Request.CDB[4]= (start_blk >> 40) & 0xff;
2617			c->Request.CDB[5]= (start_blk >> 32) & 0xff;
2618			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2619			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2620			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
2621			c->Request.CDB[9]= start_blk & 0xff;
2622			c->Request.CDB[10]= (creq->nr_sectors >>  24) & 0xff;
2623			c->Request.CDB[11]= (creq->nr_sectors >>  16) & 0xff;
2624			c->Request.CDB[12]= (creq->nr_sectors >>  8) & 0xff;
2625			c->Request.CDB[13]= creq->nr_sectors & 0xff;
2626			c->Request.CDB[14] = c->Request.CDB[15] = 0;
2627		}
2628	} else if (blk_pc_request(creq)) {
2629		c->Request.CDBLen = creq->cmd_len;
2630		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2631	} else {
2632		printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2633		BUG();
2634	}
2635
2636	spin_lock_irq(q->queue_lock);
2637
2638	addQ(&(h->reqQ), c);
2639	h->Qdepth++;
2640	if (h->Qdepth > h->maxQsinceinit)
2641		h->maxQsinceinit = h->Qdepth;
2642
2643	goto queue;
2644full:
2645	blk_stop_queue(q);
2646startio:
2647	/* We will already have the driver lock here so not need
2648	 * to lock it.
2649	 */
2650	start_io(h);
2651}
2652
2653static inline unsigned long get_next_completion(ctlr_info_t *h)
2654{
2655#ifdef CONFIG_CISS_SCSI_TAPE
2656	/* Any rejects from sendcmd() lying around? Process them first */
2657	if (h->scsi_rejects.ncompletions == 0)
2658		return h->access.command_completed(h);
2659	else {
2660		struct sendcmd_reject_list *srl;
2661		int n;
2662		srl = &h->scsi_rejects;
2663		n = --srl->ncompletions;
2664		/* printk("cciss%d: processing saved reject\n", h->ctlr); */
2665		printk("p");
2666		return srl->complete[n];
2667	}
2668#else
2669	return h->access.command_completed(h);
2670#endif
2671}
2672
2673static inline int interrupt_pending(ctlr_info_t *h)
2674{
2675#ifdef CONFIG_CISS_SCSI_TAPE
2676	return (h->access.intr_pending(h)
2677		|| (h->scsi_rejects.ncompletions > 0));
2678#else
2679	return h->access.intr_pending(h);
2680#endif
2681}
2682
2683static inline long interrupt_not_for_us(ctlr_info_t *h)
2684{
2685#ifdef CONFIG_CISS_SCSI_TAPE
2686	return (((h->access.intr_pending(h) == 0) ||
2687		 (h->interrupts_enabled == 0))
2688		&& (h->scsi_rejects.ncompletions == 0));
2689#else
2690	return (((h->access.intr_pending(h) == 0) ||
2691		 (h->interrupts_enabled == 0)));
2692#endif
2693}
2694
2695static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2696{
2697	ctlr_info_t *h = dev_id;
2698	CommandList_struct *c;
2699	unsigned long flags;
2700	__u32 a, a1, a2;
2701
2702	if (interrupt_not_for_us(h))
2703		return IRQ_NONE;
2704	/*
2705	 * If there are completed commands in the completion queue,
2706	 * we had better do something about it.
2707	 */
2708	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2709	while (interrupt_pending(h)) {
2710		while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2711			a1 = a;
2712			if ((a & 0x04)) {
2713				a2 = (a >> 3);
2714				if (a2 >= h->nr_cmds) {
2715					printk(KERN_WARNING
2716					       "cciss: controller cciss%d failed, stopping.\n",
2717					       h->ctlr);
2718					fail_all_cmds(h->ctlr);
2719					return IRQ_HANDLED;
2720				}
2721
2722				c = h->cmd_pool + a2;
2723				a = c->busaddr;
2724
2725			} else {
2726				a &= ~3;
2727				if ((c = h->cmpQ) == NULL) {
2728					printk(KERN_WARNING
2729					       "cciss: Completion of %08x ignored\n",
2730					       a1);
2731					continue;
2732				}
2733				while (c->busaddr != a) {
2734					c = c->next;
2735					if (c == h->cmpQ)
2736						break;
2737				}
2738			}
2739			/*
2740			 * If we've found the command, take it off the
2741			 * completion Q and free it
2742			 */
2743			if (c->busaddr == a) {
2744				removeQ(&h->cmpQ, c);
2745				if (c->cmd_type == CMD_RWREQ) {
2746					complete_command(h, c, 0);
2747				} else if (c->cmd_type == CMD_IOCTL_PEND) {
2748					complete(c->waiting);
2749				}
2750#				ifdef CONFIG_CISS_SCSI_TAPE
2751				else if (c->cmd_type == CMD_SCSI)
2752					complete_scsi_command(c, 0, a1);
2753#				endif
2754				continue;
2755			}
2756		}
2757	}
2758
2759	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2760	return IRQ_HANDLED;
2761}
2762
2763/*
2764 *  We cannot read the structure directly, for portability we must use
2765 *   the io functions.
2766 *   This is for debug only.
2767 */
2768#ifdef CCISS_DEBUG
2769static void print_cfg_table(CfgTable_struct *tb)
2770{
2771	int i;
2772	char temp_name[17];
2773
2774	printk("Controller Configuration information\n");
2775	printk("------------------------------------\n");
2776	for (i = 0; i < 4; i++)
2777		temp_name[i] = readb(&(tb->Signature[i]));
2778	temp_name[4] = '\0';
2779	printk("   Signature = %s\n", temp_name);
2780	printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
2781	printk("   Transport methods supported = 0x%x\n",
2782	       readl(&(tb->TransportSupport)));
2783	printk("   Transport methods active = 0x%x\n",
2784	       readl(&(tb->TransportActive)));
2785	printk("   Requested transport Method = 0x%x\n",
2786	       readl(&(tb->HostWrite.TransportRequest)));
2787	printk("   Coalesce Interrupt Delay = 0x%x\n",
2788	       readl(&(tb->HostWrite.CoalIntDelay)));
2789	printk("   Coalesce Interrupt Count = 0x%x\n",
2790	       readl(&(tb->HostWrite.CoalIntCount)));
2791	printk("   Max outstanding commands = 0x%d\n",
2792	       readl(&(tb->CmdsOutMax)));
2793	printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2794	for (i = 0; i < 16; i++)
2795		temp_name[i] = readb(&(tb->ServerName[i]));
2796	temp_name[16] = '\0';
2797	printk("   Server Name = %s\n", temp_name);
2798	printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2799}
2800#endif				/* CCISS_DEBUG */
2801
2802static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2803{
2804	int i, offset, mem_type, bar_type;
2805	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
2806		return 0;
2807	offset = 0;
2808	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2809		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2810		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2811			offset += 4;
2812		else {
2813			mem_type = pci_resource_flags(pdev, i) &
2814			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2815			switch (mem_type) {
2816			case PCI_BASE_ADDRESS_MEM_TYPE_32:
2817			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2818				offset += 4;	/* 32 bit */
2819				break;
2820			case PCI_BASE_ADDRESS_MEM_TYPE_64:
2821				offset += 8;
2822				break;
2823			default:	/* reserved in PCI 2.2 */
2824				printk(KERN_WARNING
2825				       "Base address is invalid\n");
2826				return -1;
2827				break;
2828			}
2829		}
2830		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2831			return i + 1;
2832	}
2833	return -1;
2834}
2835
2836/* If MSI/MSI-X is supported by the kernel we will try to enable it on
2837 * controllers that are capable. If not, we use IO-APIC mode.
2838 */
2839
2840static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2841					   struct pci_dev *pdev, __u32 board_id)
2842{
2843#ifdef CONFIG_PCI_MSI
2844	int err;
2845	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2846	{0, 2}, {0, 3}
2847	};
2848
2849	/* Some boards advertise MSI but don't really support it */
2850	if ((board_id == 0x40700E11) ||
2851	    (board_id == 0x40800E11) ||
2852	    (board_id == 0x40820E11) || (board_id == 0x40830E11))
2853		goto default_int_mode;
2854
2855	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2856		err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2857		if (!err) {
2858			c->intr[0] = cciss_msix_entries[0].vector;
2859			c->intr[1] = cciss_msix_entries[1].vector;
2860			c->intr[2] = cciss_msix_entries[2].vector;
2861			c->intr[3] = cciss_msix_entries[3].vector;
2862			c->msix_vector = 1;
2863			return;
2864		}
2865		if (err > 0) {
2866			printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2867			       "available\n", err);
2868			goto default_int_mode;
2869		} else {
2870			printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2871			       err);
2872			goto default_int_mode;
2873		}
2874	}
2875	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2876		if (!pci_enable_msi(pdev)) {
2877			c->msi_vector = 1;
2878		} else {
2879			printk(KERN_WARNING "cciss: MSI init failed\n");
2880		}
2881	}
2882default_int_mode:
2883#endif				/* CONFIG_PCI_MSI */
2884	/* if we get here we're going to use the default interrupt mode */
2885	c->intr[SIMPLE_MODE_INT] = pdev->irq;
2886	return;
2887}
2888
2889static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2890{
2891	ushort subsystem_vendor_id, subsystem_device_id, command;
2892	__u32 board_id, scratchpad = 0;
2893	__u64 cfg_offset;
2894	__u32 cfg_base_addr;
2895	__u64 cfg_base_addr_index;
2896	int i, err;
2897
2898	/* check to see if controller has been disabled */
2899	/* BEFORE trying to enable it */
2900	(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2901	if (!(command & 0x02)) {
2902		printk(KERN_WARNING
2903		       "cciss: controller appears to be disabled\n");
2904		return -ENODEV;
2905	}
2906
2907	err = pci_enable_device(pdev);
2908	if (err) {
2909		printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2910		return err;
2911	}
2912
2913	err = pci_request_regions(pdev, "cciss");
2914	if (err) {
2915		printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
2916		       "aborting\n");
2917		return err;
2918	}
2919
2920	subsystem_vendor_id = pdev->subsystem_vendor;
2921	subsystem_device_id = pdev->subsystem_device;
2922	board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2923		    subsystem_vendor_id);
2924
2925#ifdef CCISS_DEBUG
2926	printk("command = %x\n", command);
2927	printk("irq = %x\n", pdev->irq);
2928	printk("board_id = %x\n", board_id);
2929#endif				/* CCISS_DEBUG */
2930
2931/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
2932 * else we use the IO-APIC interrupt assigned to us by system ROM.
2933 */
2934	cciss_interrupt_mode(c, pdev, board_id);
2935
2936	/*
2937	 * Memory base addr is first addr , the second points to the config
2938	 *   table
2939	 */
2940
2941	c->paddr = pci_resource_start(pdev, 0);	/* addressing mode bits already removed */
2942#ifdef CCISS_DEBUG
2943	printk("address 0 = %x\n", c->paddr);
2944#endif				/* CCISS_DEBUG */
2945	c->vaddr = remap_pci_mem(c->paddr, 0x250);
2946
2947	/* Wait for the board to become ready.  (PCI hotplug needs this.)
2948	 * We poll for up to 120 secs, once per 100ms. */
2949	for (i = 0; i < 1200; i++) {
2950		scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2951		if (scratchpad == CCISS_FIRMWARE_READY)
2952			break;
2953		set_current_state(TASK_INTERRUPTIBLE);
2954		schedule_timeout(HZ / 10);	/* wait 100ms */
2955	}
2956	if (scratchpad != CCISS_FIRMWARE_READY) {
2957		printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
2958		err = -ENODEV;
2959		goto err_out_free_res;
2960	}
2961
2962	/* get the address index number */
2963	cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2964	cfg_base_addr &= (__u32) 0x0000ffff;
2965#ifdef CCISS_DEBUG
2966	printk("cfg base address = %x\n", cfg_base_addr);
2967#endif				/* CCISS_DEBUG */
2968	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
2969#ifdef CCISS_DEBUG
2970	printk("cfg base address index = %x\n", cfg_base_addr_index);
2971#endif				/* CCISS_DEBUG */
2972	if (cfg_base_addr_index == -1) {
2973		printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2974		err = -ENODEV;
2975		goto err_out_free_res;
2976	}
2977
2978	cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2979#ifdef CCISS_DEBUG
2980	printk("cfg offset = %x\n", cfg_offset);
2981#endif				/* CCISS_DEBUG */
2982	c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
2983						       cfg_base_addr_index) +
2984				    cfg_offset, sizeof(CfgTable_struct));
2985	c->board_id = board_id;
2986
2987#ifdef CCISS_DEBUG
2988	print_cfg_table(c->cfgtable);
2989#endif				/* CCISS_DEBUG */
2990
2991	for (i = 0; i < ARRAY_SIZE(products); i++) {
2992		if (board_id == products[i].board_id) {
2993			c->product_name = products[i].product_name;
2994			c->access = *(products[i].access);
2995			c->nr_cmds = products[i].nr_cmds;
2996			break;
2997		}
2998	}
2999	if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3000	    (readb(&c->cfgtable->Signature[1]) != 'I') ||
3001	    (readb(&c->cfgtable->Signature[2]) != 'S') ||
3002	    (readb(&c->cfgtable->Signature[3]) != 'S')) {
3003		printk("Does not appear to be a valid CISS config table\n");
3004		err = -ENODEV;
3005		goto err_out_free_res;
3006	}
3007	/* We didn't find the controller in our list. We know the
3008	 * signature is valid. If it's an HP device let's try to
3009	 * bind to the device and fire it up. Otherwise we bail.
3010	 */
3011	if (i == ARRAY_SIZE(products)) {
3012		if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3013			c->product_name = products[i-1].product_name;
3014			c->access = *(products[i-1].access);
3015			c->nr_cmds = products[i-1].nr_cmds;
3016			printk(KERN_WARNING "cciss: This is an unknown "
3017				"Smart Array controller.\n"
3018				"cciss: Please update to the latest driver "
3019				"available from www.hp.com.\n");
3020		} else {
3021			printk(KERN_WARNING "cciss: Sorry, I don't know how"
3022				" to access the Smart Array controller %08lx\n"
3023					, (unsigned long)board_id);
3024			err = -ENODEV;
3025			goto err_out_free_res;
3026		}
3027	}
3028#ifdef CONFIG_X86
3029	{
3030		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3031		__u32 prefetch;
3032		prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3033		prefetch |= 0x100;
3034		writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3035	}
3036#endif
3037
3038	/* Disabling DMA prefetch for the P600
3039	 * An ASIC bug may result in a prefetch beyond
3040	 * physical memory.
3041	 */
3042	if(board_id == 0x3225103C) {
3043		__u32 dma_prefetch;
3044		dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3045		dma_prefetch |= 0x8000;
3046		writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3047	}
3048
3049#ifdef CCISS_DEBUG
3050	printk("Trying to put board into Simple mode\n");
3051#endif				/* CCISS_DEBUG */
3052	c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3053	/* Update the field, and then ring the doorbell */
3054	writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3055	writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3056
3057	/* under certain very rare conditions, this can take awhile.
3058	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3059	 * as we enter this code.) */
3060	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3061		if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3062			break;
3063		/* delay and try again */
3064		set_current_state(TASK_INTERRUPTIBLE);
3065		schedule_timeout(10);
3066	}
3067
3068#ifdef CCISS_DEBUG
3069	printk(KERN_DEBUG "I counter got to %d %x\n", i,
3070	       readl(c->vaddr + SA5_DOORBELL));
3071#endif				/* CCISS_DEBUG */
3072#ifdef CCISS_DEBUG
3073	print_cfg_table(c->cfgtable);
3074#endif				/* CCISS_DEBUG */
3075
3076	if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3077		printk(KERN_WARNING "cciss: unable to get board into"
3078		       " simple mode\n");
3079		err = -ENODEV;
3080		goto err_out_free_res;
3081	}
3082	return 0;
3083
3084err_out_free_res:
3085	/*
3086	 * Deliberately omit pci_disable_device(): it does something nasty to
3087	 * Smart Array controllers that pci_enable_device does not undo
3088	 */
3089	pci_release_regions(pdev);
3090	return err;
3091}
3092
3093/*
3094 * Gets information about the local volumes attached to the controller.
3095 */
3096static void cciss_getgeometry(int cntl_num)
3097{
3098	ReportLunData_struct *ld_buff;
3099	InquiryData_struct *inq_buff;
3100	int return_code;
3101	int i;
3102	int listlength = 0;
3103	__u32 lunid = 0;
3104	int block_size;
3105	sector_t total_size;
3106
3107	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3108	if (ld_buff == NULL) {
3109		printk(KERN_ERR "cciss: out of memory\n");
3110		return;
3111	}
3112	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3113	if (inq_buff == NULL) {
3114		printk(KERN_ERR "cciss: out of memory\n");
3115		kfree(ld_buff);
3116		return;
3117	}
3118	/* Get the firmware version */
3119	return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3120			      sizeof(InquiryData_struct), 0, 0, 0, NULL,
3121			      TYPE_CMD);
3122	if (return_code == IO_OK) {
3123		hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3124		hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3125		hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3126		hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3127	} else {		/* send command failed */
3128
3129		printk(KERN_WARNING "cciss: unable to determine firmware"
3130		       " version of controller\n");
3131	}
3132	/* Get the number of logical volumes */
3133	return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3134			      sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3135			      TYPE_CMD);
3136
3137	if (return_code == IO_OK) {
3138#ifdef CCISS_DEBUG
3139		printk("LUN Data\n--------------------------\n");
3140#endif				/* CCISS_DEBUG */
3141
3142		listlength |=
3143		    (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3144		listlength |=
3145		    (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3146		listlength |=
3147		    (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3148		listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3149	} else {		/* reading number of logical volumes failed */
3150
3151		printk(KERN_WARNING "cciss: report logical volume"
3152		       " command failed\n");
3153		listlength = 0;
3154	}
3155	hba[cntl_num]->num_luns = listlength / 8;	// 8 bytes pre entry
3156	if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3157		printk(KERN_ERR
3158		       "ciss:  only %d number of logical volumes supported\n",
3159		       CISS_MAX_LUN);
3160		hba[cntl_num]->num_luns = CISS_MAX_LUN;
3161	}
3162#ifdef CCISS_DEBUG
3163	printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3164	       ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3165	       ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3166	       hba[cntl_num]->num_luns);
3167#endif				/* CCISS_DEBUG */
3168
3169	hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3170	for (i = 0; i < CISS_MAX_LUN; i++) {
3171		if (i < hba[cntl_num]->num_luns) {
3172			lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3173			    << 24;
3174			lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3175			    << 16;
3176			lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3177			    << 8;
3178			lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3179
3180			hba[cntl_num]->drv[i].LunID = lunid;
3181
3182#ifdef CCISS_DEBUG
3183			printk(KERN_DEBUG "LUN[%d]:  %x %x %x %x = %x\n", i,
3184			       ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3185			       ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3186			       hba[cntl_num]->drv[i].LunID);
3187#endif				/* CCISS_DEBUG */
3188
3189		/* testing to see if 16-byte CDBs are already being used */
3190		if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3191			cciss_read_capacity_16(cntl_num, i, 0,
3192					    &total_size, &block_size);
3193			goto geo_inq;
3194		}
3195		cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3196
3197		/* If read_capacity returns all F's the logical is >2TB */
3198		/* so we switch to 16-byte CDBs for all read/write ops */
3199		if(total_size == 0xFFFFFFFFULL) {
3200			cciss_read_capacity_16(cntl_num, i, 0,
3201			&total_size, &block_size);
3202			hba[cntl_num]->cciss_read = CCISS_READ_16;
3203			hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3204		} else {
3205			hba[cntl_num]->cciss_read = CCISS_READ_10;
3206			hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3207		}
3208geo_inq:
3209			cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3210					       block_size, inq_buff,
3211					       &hba[cntl_num]->drv[i]);
3212		} else {
3213			/* initialize raid_level to indicate a free space */
3214			hba[cntl_num]->drv[i].raid_level = -1;
3215		}
3216	}
3217	kfree(ld_buff);
3218	kfree(inq_buff);
3219}
3220
3221/* Function to find the first free pointer into our hba[] array */
3222/* Returns -1 if no free entries are left.  */
3223static int alloc_cciss_hba(void)
3224{
3225	int i;
3226
3227	for (i = 0; i < MAX_CTLR; i++) {
3228		if (!hba[i]) {
3229			ctlr_info_t *p;
3230			p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3231			if (!p)
3232				goto Enomem;
3233			p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
3234			if (!p->gendisk[0])
3235				goto Enomem;
3236			hba[i] = p;
3237			return i;
3238		}
3239	}
3240	printk(KERN_WARNING "cciss: This driver supports a maximum"
3241	       " of %d controllers.\n", MAX_CTLR);
3242	return -1;
3243Enomem:
3244	printk(KERN_ERR "cciss: out of memory.\n");
3245	return -1;
3246}
3247
3248static void free_hba(int i)
3249{
3250	ctlr_info_t *p = hba[i];
3251	int n;
3252
3253	hba[i] = NULL;
3254	for (n = 0; n < CISS_MAX_LUN; n++)
3255		put_disk(p->gendisk[n]);
3256	kfree(p);
3257}
3258
3259/*
3260 *  This is it.  Find all the controllers and register them.  I really hate
3261 *  stealing all these major device numbers.
3262 *  returns the number of block devices registered.
3263 */
3264static int __devinit cciss_init_one(struct pci_dev *pdev,
3265				    const struct pci_device_id *ent)
3266{
3267	int i;
3268	int j = 0;
3269	int rc;
3270	int dac;
3271
3272	i = alloc_cciss_hba();
3273	if (i < 0)
3274		return -1;
3275
3276	hba[i]->busy_initializing = 1;
3277
3278	if (cciss_pci_init(hba[i], pdev) != 0)
3279		goto clean1;
3280
3281	sprintf(hba[i]->devname, "cciss%d", i);
3282	hba[i]->ctlr = i;
3283	hba[i]->pdev = pdev;
3284
3285	/* configure PCI DMA stuff */
3286	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3287		dac = 1;
3288	else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3289		dac = 0;
3290	else {
3291		printk(KERN_ERR "cciss: no suitable DMA available\n");
3292		goto clean1;
3293	}
3294
3295	/*
3296	 * register with the major number, or get a dynamic major number
3297	 * by passing 0 as argument.  This is done for greater than
3298	 * 8 controller support.
3299	 */
3300	if (i < MAX_CTLR_ORIG)
3301		hba[i]->major = COMPAQ_CISS_MAJOR + i;
3302	rc = register_blkdev(hba[i]->major, hba[i]->devname);
3303	if (rc == -EBUSY || rc == -EINVAL) {
3304		printk(KERN_ERR
3305		       "cciss:  Unable to get major number %d for %s "
3306		       "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3307		goto clean1;
3308	} else {
3309		if (i >= MAX_CTLR_ORIG)
3310			hba[i]->major = rc;
3311	}
3312
3313	/* make sure the board interrupts are off */
3314	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3315	if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3316			IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3317		printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3318		       hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3319		goto clean2;
3320	}
3321
3322	printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3323	       hba[i]->devname, pdev->device, pci_name(pdev),
3324	       hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3325
3326	hba[i]->cmd_pool_bits =
3327	    kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
3328		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3329	hba[i]->cmd_pool = (CommandList_struct *)
3330	    pci_alloc_consistent(hba[i]->pdev,
3331		    hba[i]->nr_cmds * sizeof(CommandList_struct),
3332		    &(hba[i]->cmd_pool_dhandle));
3333	hba[i]->errinfo_pool = (ErrorInfo_struct *)
3334	    pci_alloc_consistent(hba[i]->pdev,
3335		    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3336		    &(hba[i]->errinfo_pool_dhandle));
3337	if ((hba[i]->cmd_pool_bits == NULL)
3338	    || (hba[i]->cmd_pool == NULL)
3339	    || (hba[i]->errinfo_pool == NULL)) {
3340		printk(KERN_ERR "cciss: out of memory");
3341		goto clean4;
3342	}
3343#ifdef CONFIG_CISS_SCSI_TAPE
3344	hba[i]->scsi_rejects.complete =
3345	    kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3346		    (hba[i]->nr_cmds + 5), GFP_KERNEL);
3347	if (hba[i]->scsi_rejects.complete == NULL) {
3348		printk(KERN_ERR "cciss: out of memory");
3349		goto clean4;
3350	}
3351#endif
3352	spin_lock_init(&hba[i]->lock);
3353
3354	/* Initialize the pdev driver private data.
3355	   have it point to hba[i].  */
3356	pci_set_drvdata(pdev, hba[i]);
3357	/* command and error info recs zeroed out before
3358	   they are used */
3359	memset(hba[i]->cmd_pool_bits, 0,
3360	       ((hba[i]->nr_cmds + BITS_PER_LONG -
3361		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3362
3363#ifdef CCISS_DEBUG
3364	printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3365#endif				/* CCISS_DEBUG */
3366
3367	cciss_getgeometry(i);
3368
3369	cciss_scsi_setup(i);
3370
3371	/* Turn the interrupts on so we can service requests */
3372	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3373
3374	cciss_procinit(i);
3375
3376	hba[i]->cciss_max_sectors = 2048;
3377
3378	hba[i]->busy_initializing = 0;
3379
3380	do {
3381		drive_info_struct *drv = &(hba[i]->drv[j]);
3382		struct gendisk *disk = hba[i]->gendisk[j];
3383		request_queue_t *q;
3384
3385		/* Check if the disk was allocated already */
3386		if (!disk){
3387			hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
3388			disk = hba[i]->gendisk[j];
3389		}
3390
3391		/* Check that the disk was able to be allocated */
3392		if (!disk) {
3393			printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
3394			goto clean4;
3395		}
3396
3397		q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3398		if (!q) {
3399			printk(KERN_ERR
3400			       "cciss:  unable to allocate queue for disk %d\n",
3401			       j);
3402			goto clean4;
3403		}
3404		drv->queue = q;
3405
3406		q->backing_dev_info.ra_pages = READ_AHEAD;
3407		blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3408
3409		/* This is a hardware imposed limit. */
3410		blk_queue_max_hw_segments(q, MAXSGENTRIES);
3411
3412		/* This is a limit in the driver and could be eliminated. */
3413		blk_queue_max_phys_segments(q, MAXSGENTRIES);
3414
3415		blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
3416
3417		blk_queue_softirq_done(q, cciss_softirq_done);
3418
3419		q->queuedata = hba[i];
3420		sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3421		disk->major = hba[i]->major;
3422		disk->first_minor = j << NWD_SHIFT;
3423		disk->fops = &cciss_fops;
3424		disk->queue = q;
3425		disk->private_data = drv;
3426		disk->driverfs_dev = &pdev->dev;
3427		/* we must register the controller even if no disks exist */
3428		/* this is for the online array utilities */
3429		if (!drv->heads && j)
3430			continue;
3431		blk_queue_hardsect_size(q, drv->block_size);
3432		set_capacity(disk, drv->nr_blocks);
3433		add_disk(disk);
3434		j++;
3435	} while (j <= hba[i]->highest_lun);
3436
3437	return 1;
3438
3439      clean4:
3440#ifdef CONFIG_CISS_SCSI_TAPE
3441	kfree(hba[i]->scsi_rejects.complete);
3442#endif
3443	kfree(hba[i]->cmd_pool_bits);
3444	if (hba[i]->cmd_pool)
3445		pci_free_consistent(hba[i]->pdev,
3446				    hba[i]->nr_cmds * sizeof(CommandList_struct),
3447				    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3448	if (hba[i]->errinfo_pool)
3449		pci_free_consistent(hba[i]->pdev,
3450				    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3451				    hba[i]->errinfo_pool,
3452				    hba[i]->errinfo_pool_dhandle);
3453	free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3454      clean2:
3455	unregister_blkdev(hba[i]->major, hba[i]->devname);
3456      clean1:
3457	hba[i]->busy_initializing = 0;
3458	/* cleanup any queues that may have been initialized */
3459	for (j=0; j <= hba[i]->highest_lun; j++){
3460		drive_info_struct *drv = &(hba[i]->drv[j]);
3461		if (drv->queue)
3462			blk_cleanup_queue(drv->queue);
3463	}
3464	/*
3465	 * Deliberately omit pci_disable_device(): it does something nasty to
3466	 * Smart Array controllers that pci_enable_device does not undo
3467	 */
3468	pci_release_regions(pdev);
3469	pci_set_drvdata(pdev, NULL);
3470	free_hba(i);
3471	return -1;
3472}
3473
3474static void cciss_shutdown(struct pci_dev *pdev)
3475{
3476	ctlr_info_t *tmp_ptr;
3477	int i;
3478	char flush_buf[4];
3479	int return_code;
3480
3481	tmp_ptr = pci_get_drvdata(pdev);
3482	if (tmp_ptr == NULL)
3483		return;
3484	i = tmp_ptr->ctlr;
3485	if (hba[i] == NULL)
3486		return;
3487
3488	/* Turn board interrupts off  and send the flush cache command */
3489	/* sendcmd will turn off interrupt, and send the flush...
3490	 * To write all data in the battery backed cache to disks */
3491	memset(flush_buf, 0, 4);
3492	return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3493			      TYPE_CMD);
3494	if (return_code == IO_OK) {
3495		printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3496	} else {
3497		printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3498	}
3499	free_irq(hba[i]->intr[2], hba[i]);
3500}
3501
3502static void __devexit cciss_remove_one(struct pci_dev *pdev)
3503{
3504	ctlr_info_t *tmp_ptr;
3505	int i, j;
3506
3507	if (pci_get_drvdata(pdev) == NULL) {
3508		printk(KERN_ERR "cciss: Unable to remove device \n");
3509		return;
3510	}
3511	tmp_ptr = pci_get_drvdata(pdev);
3512	i = tmp_ptr->ctlr;
3513	if (hba[i] == NULL) {
3514		printk(KERN_ERR "cciss: device appears to "
3515		       "already be removed \n");
3516		return;
3517	}
3518
3519	remove_proc_entry(hba[i]->devname, proc_cciss);
3520	unregister_blkdev(hba[i]->major, hba[i]->devname);
3521
3522	/* remove it from the disk list */
3523	for (j = 0; j < CISS_MAX_LUN; j++) {
3524		struct gendisk *disk = hba[i]->gendisk[j];
3525		if (disk) {
3526			request_queue_t *q = disk->queue;
3527
3528			if (disk->flags & GENHD_FL_UP)
3529				del_gendisk(disk);
3530			if (q)
3531				blk_cleanup_queue(q);
3532		}
3533	}
3534
3535	cciss_unregister_scsi(i);	/* unhook from SCSI subsystem */
3536
3537	cciss_shutdown(pdev);
3538
3539#ifdef CONFIG_PCI_MSI
3540	if (hba[i]->msix_vector)
3541		pci_disable_msix(hba[i]->pdev);
3542	else if (hba[i]->msi_vector)
3543		pci_disable_msi(hba[i]->pdev);
3544#endif				/* CONFIG_PCI_MSI */
3545
3546	iounmap(hba[i]->vaddr);
3547
3548	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3549			    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3550	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3551			    hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3552	kfree(hba[i]->cmd_pool_bits);
3553#ifdef CONFIG_CISS_SCSI_TAPE
3554	kfree(hba[i]->scsi_rejects.complete);
3555#endif
3556	/*
3557	 * Deliberately omit pci_disable_device(): it does something nasty to
3558	 * Smart Array controllers that pci_enable_device does not undo
3559	 */
3560	pci_release_regions(pdev);
3561	pci_set_drvdata(pdev, NULL);
3562	free_hba(i);
3563}
3564
3565static struct pci_driver cciss_pci_driver = {
3566	.name = "cciss",
3567	.probe = cciss_init_one,
3568	.remove = __devexit_p(cciss_remove_one),
3569	.id_table = cciss_pci_device_id,	/* id_table */
3570	.shutdown = cciss_shutdown,
3571};
3572
3573/*
3574 *  This is it.  Register the PCI driver information for the cards we control
3575 *  the OS will call our registered routines when it finds one of our cards.
3576 */
3577static int __init cciss_init(void)
3578{
3579	printk(KERN_INFO DRIVER_NAME "\n");
3580
3581	/* Register for our PCI devices */
3582	return pci_register_driver(&cciss_pci_driver);
3583}
3584
3585static void __exit cciss_cleanup(void)
3586{
3587	int i;
3588
3589	pci_unregister_driver(&cciss_pci_driver);
3590	/* double check that all controller entrys have been removed */
3591	for (i = 0; i < MAX_CTLR; i++) {
3592		if (hba[i] != NULL) {
3593			printk(KERN_WARNING "cciss: had to remove"
3594			       " controller %d\n", i);
3595			cciss_remove_one(hba[i]->pdev);
3596		}
3597	}
3598	remove_proc_entry("cciss", proc_root_driver);
3599}
3600
3601static void fail_all_cmds(unsigned long ctlr)
3602{
3603	/* If we get here, the board is apparently dead. */
3604	ctlr_info_t *h = hba[ctlr];
3605	CommandList_struct *c;
3606	unsigned long flags;
3607
3608	printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3609	h->alive = 0;		/* the controller apparently died... */
3610
3611	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3612
3613	pci_disable_device(h->pdev);	/* Make sure it is really dead. */
3614
3615	/* move everything off the request queue onto the completed queue */
3616	while ((c = h->reqQ) != NULL) {
3617		removeQ(&(h->reqQ), c);
3618		h->Qdepth--;
3619		addQ(&(h->cmpQ), c);
3620	}
3621
3622	/* Now, fail everything on the completed queue with a HW error */
3623	while ((c = h->cmpQ) != NULL) {
3624		removeQ(&h->cmpQ, c);
3625		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3626		if (c->cmd_type == CMD_RWREQ) {
3627			complete_command(h, c, 0);
3628		} else if (c->cmd_type == CMD_IOCTL_PEND)
3629			complete(c->waiting);
3630#ifdef CONFIG_CISS_SCSI_TAPE
3631		else if (c->cmd_type == CMD_SCSI)
3632			complete_scsi_command(c, 0, 0);
3633#endif
3634	}
3635	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3636	return;
3637}
3638
3639module_init(cciss_init);
3640module_exit(cciss_cleanup);
3641