iop-adma.c revision a09e64fbc0094e3073dbb09c3b4bfe4ab669244b
1/* 2 * offload engine driver for the Intel Xscale series of i/o processors 3 * Copyright © 2006, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 17 * 18 */ 19 20/* 21 * This driver supports the asynchrounous DMA copy and RAID engines available 22 * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) 23 */ 24 25#include <linux/init.h> 26#include <linux/module.h> 27#include <linux/async_tx.h> 28#include <linux/delay.h> 29#include <linux/dma-mapping.h> 30#include <linux/spinlock.h> 31#include <linux/interrupt.h> 32#include <linux/platform_device.h> 33#include <linux/memory.h> 34#include <linux/ioport.h> 35 36#include <mach/adma.h> 37 38#define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common) 39#define to_iop_adma_device(dev) \ 40 container_of(dev, struct iop_adma_device, common) 41#define tx_to_iop_adma_slot(tx) \ 42 container_of(tx, struct iop_adma_desc_slot, async_tx) 43 44/** 45 * iop_adma_free_slots - flags descriptor slots for reuse 46 * @slot: Slot to free 47 * Caller must hold &iop_chan->lock while calling this function 48 */ 49static void iop_adma_free_slots(struct iop_adma_desc_slot *slot) 50{ 51 int stride = slot->slots_per_op; 52 53 while (stride--) { 54 slot->slots_per_op = 0; 55 slot = list_entry(slot->slot_node.next, 56 struct iop_adma_desc_slot, 57 slot_node); 58 } 59} 60 61static dma_cookie_t 62iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc, 63 struct iop_adma_chan *iop_chan, dma_cookie_t cookie) 64{ 65 BUG_ON(desc->async_tx.cookie < 0); 66 if (desc->async_tx.cookie > 0) { 67 cookie = desc->async_tx.cookie; 68 desc->async_tx.cookie = 0; 69 70 /* call the callback (must not sleep or submit new 71 * operations to this channel) 72 */ 73 if (desc->async_tx.callback) 74 desc->async_tx.callback( 75 desc->async_tx.callback_param); 76 77 /* unmap dma addresses 78 * (unmap_single vs unmap_page?) 79 */ 80 if (desc->group_head && desc->unmap_len) { 81 struct iop_adma_desc_slot *unmap = desc->group_head; 82 struct device *dev = 83 &iop_chan->device->pdev->dev; 84 u32 len = unmap->unmap_len; 85 enum dma_ctrl_flags flags = desc->async_tx.flags; 86 u32 src_cnt; 87 dma_addr_t addr; 88 89 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) { 90 addr = iop_desc_get_dest_addr(unmap, iop_chan); 91 dma_unmap_page(dev, addr, len, DMA_FROM_DEVICE); 92 } 93 94 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { 95 src_cnt = unmap->unmap_src_cnt; 96 while (src_cnt--) { 97 addr = iop_desc_get_src_addr(unmap, 98 iop_chan, 99 src_cnt); 100 dma_unmap_page(dev, addr, len, 101 DMA_TO_DEVICE); 102 } 103 } 104 desc->group_head = NULL; 105 } 106 } 107 108 /* run dependent operations */ 109 async_tx_run_dependencies(&desc->async_tx); 110 111 return cookie; 112} 113 114static int 115iop_adma_clean_slot(struct iop_adma_desc_slot *desc, 116 struct iop_adma_chan *iop_chan) 117{ 118 /* the client is allowed to attach dependent operations 119 * until 'ack' is set 120 */ 121 if (!async_tx_test_ack(&desc->async_tx)) 122 return 0; 123 124 /* leave the last descriptor in the chain 125 * so we can append to it 126 */ 127 if (desc->chain_node.next == &iop_chan->chain) 128 return 1; 129 130 dev_dbg(iop_chan->device->common.dev, 131 "\tfree slot: %d slots_per_op: %d\n", 132 desc->idx, desc->slots_per_op); 133 134 list_del(&desc->chain_node); 135 iop_adma_free_slots(desc); 136 137 return 0; 138} 139 140static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan) 141{ 142 struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL; 143 dma_cookie_t cookie = 0; 144 u32 current_desc = iop_chan_get_current_descriptor(iop_chan); 145 int busy = iop_chan_is_busy(iop_chan); 146 int seen_current = 0, slot_cnt = 0, slots_per_op = 0; 147 148 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__); 149 /* free completed slots from the chain starting with 150 * the oldest descriptor 151 */ 152 list_for_each_entry_safe(iter, _iter, &iop_chan->chain, 153 chain_node) { 154 pr_debug("\tcookie: %d slot: %d busy: %d " 155 "this_desc: %#x next_desc: %#x ack: %d\n", 156 iter->async_tx.cookie, iter->idx, busy, 157 iter->async_tx.phys, iop_desc_get_next_desc(iter), 158 async_tx_test_ack(&iter->async_tx)); 159 prefetch(_iter); 160 prefetch(&_iter->async_tx); 161 162 /* do not advance past the current descriptor loaded into the 163 * hardware channel, subsequent descriptors are either in 164 * process or have not been submitted 165 */ 166 if (seen_current) 167 break; 168 169 /* stop the search if we reach the current descriptor and the 170 * channel is busy, or if it appears that the current descriptor 171 * needs to be re-read (i.e. has been appended to) 172 */ 173 if (iter->async_tx.phys == current_desc) { 174 BUG_ON(seen_current++); 175 if (busy || iop_desc_get_next_desc(iter)) 176 break; 177 } 178 179 /* detect the start of a group transaction */ 180 if (!slot_cnt && !slots_per_op) { 181 slot_cnt = iter->slot_cnt; 182 slots_per_op = iter->slots_per_op; 183 if (slot_cnt <= slots_per_op) { 184 slot_cnt = 0; 185 slots_per_op = 0; 186 } 187 } 188 189 if (slot_cnt) { 190 pr_debug("\tgroup++\n"); 191 if (!grp_start) 192 grp_start = iter; 193 slot_cnt -= slots_per_op; 194 } 195 196 /* all the members of a group are complete */ 197 if (slots_per_op != 0 && slot_cnt == 0) { 198 struct iop_adma_desc_slot *grp_iter, *_grp_iter; 199 int end_of_chain = 0; 200 pr_debug("\tgroup end\n"); 201 202 /* collect the total results */ 203 if (grp_start->xor_check_result) { 204 u32 zero_sum_result = 0; 205 slot_cnt = grp_start->slot_cnt; 206 grp_iter = grp_start; 207 208 list_for_each_entry_from(grp_iter, 209 &iop_chan->chain, chain_node) { 210 zero_sum_result |= 211 iop_desc_get_zero_result(grp_iter); 212 pr_debug("\titer%d result: %d\n", 213 grp_iter->idx, zero_sum_result); 214 slot_cnt -= slots_per_op; 215 if (slot_cnt == 0) 216 break; 217 } 218 pr_debug("\tgrp_start->xor_check_result: %p\n", 219 grp_start->xor_check_result); 220 *grp_start->xor_check_result = zero_sum_result; 221 } 222 223 /* clean up the group */ 224 slot_cnt = grp_start->slot_cnt; 225 grp_iter = grp_start; 226 list_for_each_entry_safe_from(grp_iter, _grp_iter, 227 &iop_chan->chain, chain_node) { 228 cookie = iop_adma_run_tx_complete_actions( 229 grp_iter, iop_chan, cookie); 230 231 slot_cnt -= slots_per_op; 232 end_of_chain = iop_adma_clean_slot(grp_iter, 233 iop_chan); 234 235 if (slot_cnt == 0 || end_of_chain) 236 break; 237 } 238 239 /* the group should be complete at this point */ 240 BUG_ON(slot_cnt); 241 242 slots_per_op = 0; 243 grp_start = NULL; 244 if (end_of_chain) 245 break; 246 else 247 continue; 248 } else if (slots_per_op) /* wait for group completion */ 249 continue; 250 251 /* write back zero sum results (single descriptor case) */ 252 if (iter->xor_check_result && iter->async_tx.cookie) 253 *iter->xor_check_result = 254 iop_desc_get_zero_result(iter); 255 256 cookie = iop_adma_run_tx_complete_actions( 257 iter, iop_chan, cookie); 258 259 if (iop_adma_clean_slot(iter, iop_chan)) 260 break; 261 } 262 263 BUG_ON(!seen_current); 264 265 if (cookie > 0) { 266 iop_chan->completed_cookie = cookie; 267 pr_debug("\tcompleted cookie %d\n", cookie); 268 } 269} 270 271static void 272iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan) 273{ 274 spin_lock_bh(&iop_chan->lock); 275 __iop_adma_slot_cleanup(iop_chan); 276 spin_unlock_bh(&iop_chan->lock); 277} 278 279static void iop_adma_tasklet(unsigned long data) 280{ 281 struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data; 282 283 spin_lock(&iop_chan->lock); 284 __iop_adma_slot_cleanup(iop_chan); 285 spin_unlock(&iop_chan->lock); 286} 287 288static struct iop_adma_desc_slot * 289iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots, 290 int slots_per_op) 291{ 292 struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL; 293 LIST_HEAD(chain); 294 int slots_found, retry = 0; 295 296 /* start search from the last allocated descrtiptor 297 * if a contiguous allocation can not be found start searching 298 * from the beginning of the list 299 */ 300retry: 301 slots_found = 0; 302 if (retry == 0) 303 iter = iop_chan->last_used; 304 else 305 iter = list_entry(&iop_chan->all_slots, 306 struct iop_adma_desc_slot, 307 slot_node); 308 309 list_for_each_entry_safe_continue( 310 iter, _iter, &iop_chan->all_slots, slot_node) { 311 prefetch(_iter); 312 prefetch(&_iter->async_tx); 313 if (iter->slots_per_op) { 314 /* give up after finding the first busy slot 315 * on the second pass through the list 316 */ 317 if (retry) 318 break; 319 320 slots_found = 0; 321 continue; 322 } 323 324 /* start the allocation if the slot is correctly aligned */ 325 if (!slots_found++) { 326 if (iop_desc_is_aligned(iter, slots_per_op)) 327 alloc_start = iter; 328 else { 329 slots_found = 0; 330 continue; 331 } 332 } 333 334 if (slots_found == num_slots) { 335 struct iop_adma_desc_slot *alloc_tail = NULL; 336 struct iop_adma_desc_slot *last_used = NULL; 337 iter = alloc_start; 338 while (num_slots) { 339 int i; 340 dev_dbg(iop_chan->device->common.dev, 341 "allocated slot: %d " 342 "(desc %p phys: %#x) slots_per_op %d\n", 343 iter->idx, iter->hw_desc, 344 iter->async_tx.phys, slots_per_op); 345 346 /* pre-ack all but the last descriptor */ 347 if (num_slots != slots_per_op) 348 async_tx_ack(&iter->async_tx); 349 350 list_add_tail(&iter->chain_node, &chain); 351 alloc_tail = iter; 352 iter->async_tx.cookie = 0; 353 iter->slot_cnt = num_slots; 354 iter->xor_check_result = NULL; 355 for (i = 0; i < slots_per_op; i++) { 356 iter->slots_per_op = slots_per_op - i; 357 last_used = iter; 358 iter = list_entry(iter->slot_node.next, 359 struct iop_adma_desc_slot, 360 slot_node); 361 } 362 num_slots -= slots_per_op; 363 } 364 alloc_tail->group_head = alloc_start; 365 alloc_tail->async_tx.cookie = -EBUSY; 366 list_splice(&chain, &alloc_tail->async_tx.tx_list); 367 iop_chan->last_used = last_used; 368 iop_desc_clear_next_desc(alloc_start); 369 iop_desc_clear_next_desc(alloc_tail); 370 return alloc_tail; 371 } 372 } 373 if (!retry++) 374 goto retry; 375 376 /* perform direct reclaim if the allocation fails */ 377 __iop_adma_slot_cleanup(iop_chan); 378 379 return NULL; 380} 381 382static dma_cookie_t 383iop_desc_assign_cookie(struct iop_adma_chan *iop_chan, 384 struct iop_adma_desc_slot *desc) 385{ 386 dma_cookie_t cookie = iop_chan->common.cookie; 387 cookie++; 388 if (cookie < 0) 389 cookie = 1; 390 iop_chan->common.cookie = desc->async_tx.cookie = cookie; 391 return cookie; 392} 393 394static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan) 395{ 396 dev_dbg(iop_chan->device->common.dev, "pending: %d\n", 397 iop_chan->pending); 398 399 if (iop_chan->pending >= IOP_ADMA_THRESHOLD) { 400 iop_chan->pending = 0; 401 iop_chan_append(iop_chan); 402 } 403} 404 405static dma_cookie_t 406iop_adma_tx_submit(struct dma_async_tx_descriptor *tx) 407{ 408 struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx); 409 struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan); 410 struct iop_adma_desc_slot *grp_start, *old_chain_tail; 411 int slot_cnt; 412 int slots_per_op; 413 dma_cookie_t cookie; 414 415 grp_start = sw_desc->group_head; 416 slot_cnt = grp_start->slot_cnt; 417 slots_per_op = grp_start->slots_per_op; 418 419 spin_lock_bh(&iop_chan->lock); 420 cookie = iop_desc_assign_cookie(iop_chan, sw_desc); 421 422 old_chain_tail = list_entry(iop_chan->chain.prev, 423 struct iop_adma_desc_slot, chain_node); 424 list_splice_init(&sw_desc->async_tx.tx_list, 425 &old_chain_tail->chain_node); 426 427 /* fix up the hardware chain */ 428 iop_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys); 429 430 /* 1/ don't add pre-chained descriptors 431 * 2/ dummy read to flush next_desc write 432 */ 433 BUG_ON(iop_desc_get_next_desc(sw_desc)); 434 435 /* increment the pending count by the number of slots 436 * memcpy operations have a 1:1 (slot:operation) relation 437 * other operations are heavier and will pop the threshold 438 * more often. 439 */ 440 iop_chan->pending += slot_cnt; 441 iop_adma_check_threshold(iop_chan); 442 spin_unlock_bh(&iop_chan->lock); 443 444 dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n", 445 __func__, sw_desc->async_tx.cookie, sw_desc->idx); 446 447 return cookie; 448} 449 450static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan); 451static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan); 452 453/** 454 * iop_adma_alloc_chan_resources - returns the number of allocated descriptors 455 * @chan - allocate descriptor resources for this channel 456 * @client - current client requesting the channel be ready for requests 457 * 458 * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To 459 * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be 460 * greater than 2x the number slots needed to satisfy a device->max_xor 461 * request. 462 * */ 463static int iop_adma_alloc_chan_resources(struct dma_chan *chan, 464 struct dma_client *client) 465{ 466 char *hw_desc; 467 int idx; 468 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 469 struct iop_adma_desc_slot *slot = NULL; 470 int init = iop_chan->slots_allocated ? 0 : 1; 471 struct iop_adma_platform_data *plat_data = 472 iop_chan->device->pdev->dev.platform_data; 473 int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE; 474 475 /* Allocate descriptor slots */ 476 do { 477 idx = iop_chan->slots_allocated; 478 if (idx == num_descs_in_pool) 479 break; 480 481 slot = kzalloc(sizeof(*slot), GFP_KERNEL); 482 if (!slot) { 483 printk(KERN_INFO "IOP ADMA Channel only initialized" 484 " %d descriptor slots", idx); 485 break; 486 } 487 hw_desc = (char *) iop_chan->device->dma_desc_pool_virt; 488 slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE]; 489 490 dma_async_tx_descriptor_init(&slot->async_tx, chan); 491 slot->async_tx.tx_submit = iop_adma_tx_submit; 492 INIT_LIST_HEAD(&slot->chain_node); 493 INIT_LIST_HEAD(&slot->slot_node); 494 INIT_LIST_HEAD(&slot->async_tx.tx_list); 495 hw_desc = (char *) iop_chan->device->dma_desc_pool; 496 slot->async_tx.phys = 497 (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE]; 498 slot->idx = idx; 499 500 spin_lock_bh(&iop_chan->lock); 501 iop_chan->slots_allocated++; 502 list_add_tail(&slot->slot_node, &iop_chan->all_slots); 503 spin_unlock_bh(&iop_chan->lock); 504 } while (iop_chan->slots_allocated < num_descs_in_pool); 505 506 if (idx && !iop_chan->last_used) 507 iop_chan->last_used = list_entry(iop_chan->all_slots.next, 508 struct iop_adma_desc_slot, 509 slot_node); 510 511 dev_dbg(iop_chan->device->common.dev, 512 "allocated %d descriptor slots last_used: %p\n", 513 iop_chan->slots_allocated, iop_chan->last_used); 514 515 /* initialize the channel and the chain with a null operation */ 516 if (init) { 517 if (dma_has_cap(DMA_MEMCPY, 518 iop_chan->device->common.cap_mask)) 519 iop_chan_start_null_memcpy(iop_chan); 520 else if (dma_has_cap(DMA_XOR, 521 iop_chan->device->common.cap_mask)) 522 iop_chan_start_null_xor(iop_chan); 523 else 524 BUG(); 525 } 526 527 return (idx > 0) ? idx : -ENOMEM; 528} 529 530static struct dma_async_tx_descriptor * 531iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags) 532{ 533 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 534 struct iop_adma_desc_slot *sw_desc, *grp_start; 535 int slot_cnt, slots_per_op; 536 537 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__); 538 539 spin_lock_bh(&iop_chan->lock); 540 slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan); 541 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); 542 if (sw_desc) { 543 grp_start = sw_desc->group_head; 544 iop_desc_init_interrupt(grp_start, iop_chan); 545 grp_start->unmap_len = 0; 546 sw_desc->async_tx.flags = flags; 547 } 548 spin_unlock_bh(&iop_chan->lock); 549 550 return sw_desc ? &sw_desc->async_tx : NULL; 551} 552 553static struct dma_async_tx_descriptor * 554iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest, 555 dma_addr_t dma_src, size_t len, unsigned long flags) 556{ 557 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 558 struct iop_adma_desc_slot *sw_desc, *grp_start; 559 int slot_cnt, slots_per_op; 560 561 if (unlikely(!len)) 562 return NULL; 563 BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT)); 564 565 dev_dbg(iop_chan->device->common.dev, "%s len: %u\n", 566 __func__, len); 567 568 spin_lock_bh(&iop_chan->lock); 569 slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op); 570 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); 571 if (sw_desc) { 572 grp_start = sw_desc->group_head; 573 iop_desc_init_memcpy(grp_start, flags); 574 iop_desc_set_byte_count(grp_start, iop_chan, len); 575 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest); 576 iop_desc_set_memcpy_src_addr(grp_start, dma_src); 577 sw_desc->unmap_src_cnt = 1; 578 sw_desc->unmap_len = len; 579 sw_desc->async_tx.flags = flags; 580 } 581 spin_unlock_bh(&iop_chan->lock); 582 583 return sw_desc ? &sw_desc->async_tx : NULL; 584} 585 586static struct dma_async_tx_descriptor * 587iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest, 588 int value, size_t len, unsigned long flags) 589{ 590 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 591 struct iop_adma_desc_slot *sw_desc, *grp_start; 592 int slot_cnt, slots_per_op; 593 594 if (unlikely(!len)) 595 return NULL; 596 BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT)); 597 598 dev_dbg(iop_chan->device->common.dev, "%s len: %u\n", 599 __func__, len); 600 601 spin_lock_bh(&iop_chan->lock); 602 slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op); 603 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); 604 if (sw_desc) { 605 grp_start = sw_desc->group_head; 606 iop_desc_init_memset(grp_start, flags); 607 iop_desc_set_byte_count(grp_start, iop_chan, len); 608 iop_desc_set_block_fill_val(grp_start, value); 609 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest); 610 sw_desc->unmap_src_cnt = 1; 611 sw_desc->unmap_len = len; 612 sw_desc->async_tx.flags = flags; 613 } 614 spin_unlock_bh(&iop_chan->lock); 615 616 return sw_desc ? &sw_desc->async_tx : NULL; 617} 618 619static struct dma_async_tx_descriptor * 620iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest, 621 dma_addr_t *dma_src, unsigned int src_cnt, size_t len, 622 unsigned long flags) 623{ 624 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 625 struct iop_adma_desc_slot *sw_desc, *grp_start; 626 int slot_cnt, slots_per_op; 627 628 if (unlikely(!len)) 629 return NULL; 630 BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT)); 631 632 dev_dbg(iop_chan->device->common.dev, 633 "%s src_cnt: %d len: %u flags: %lx\n", 634 __func__, src_cnt, len, flags); 635 636 spin_lock_bh(&iop_chan->lock); 637 slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op); 638 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); 639 if (sw_desc) { 640 grp_start = sw_desc->group_head; 641 iop_desc_init_xor(grp_start, src_cnt, flags); 642 iop_desc_set_byte_count(grp_start, iop_chan, len); 643 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest); 644 sw_desc->unmap_src_cnt = src_cnt; 645 sw_desc->unmap_len = len; 646 sw_desc->async_tx.flags = flags; 647 while (src_cnt--) 648 iop_desc_set_xor_src_addr(grp_start, src_cnt, 649 dma_src[src_cnt]); 650 } 651 spin_unlock_bh(&iop_chan->lock); 652 653 return sw_desc ? &sw_desc->async_tx : NULL; 654} 655 656static struct dma_async_tx_descriptor * 657iop_adma_prep_dma_zero_sum(struct dma_chan *chan, dma_addr_t *dma_src, 658 unsigned int src_cnt, size_t len, u32 *result, 659 unsigned long flags) 660{ 661 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 662 struct iop_adma_desc_slot *sw_desc, *grp_start; 663 int slot_cnt, slots_per_op; 664 665 if (unlikely(!len)) 666 return NULL; 667 668 dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n", 669 __func__, src_cnt, len); 670 671 spin_lock_bh(&iop_chan->lock); 672 slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op); 673 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); 674 if (sw_desc) { 675 grp_start = sw_desc->group_head; 676 iop_desc_init_zero_sum(grp_start, src_cnt, flags); 677 iop_desc_set_zero_sum_byte_count(grp_start, len); 678 grp_start->xor_check_result = result; 679 pr_debug("\t%s: grp_start->xor_check_result: %p\n", 680 __func__, grp_start->xor_check_result); 681 sw_desc->unmap_src_cnt = src_cnt; 682 sw_desc->unmap_len = len; 683 sw_desc->async_tx.flags = flags; 684 while (src_cnt--) 685 iop_desc_set_zero_sum_src_addr(grp_start, src_cnt, 686 dma_src[src_cnt]); 687 } 688 spin_unlock_bh(&iop_chan->lock); 689 690 return sw_desc ? &sw_desc->async_tx : NULL; 691} 692 693static void iop_adma_free_chan_resources(struct dma_chan *chan) 694{ 695 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 696 struct iop_adma_desc_slot *iter, *_iter; 697 int in_use_descs = 0; 698 699 iop_adma_slot_cleanup(iop_chan); 700 701 spin_lock_bh(&iop_chan->lock); 702 list_for_each_entry_safe(iter, _iter, &iop_chan->chain, 703 chain_node) { 704 in_use_descs++; 705 list_del(&iter->chain_node); 706 } 707 list_for_each_entry_safe_reverse( 708 iter, _iter, &iop_chan->all_slots, slot_node) { 709 list_del(&iter->slot_node); 710 kfree(iter); 711 iop_chan->slots_allocated--; 712 } 713 iop_chan->last_used = NULL; 714 715 dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n", 716 __func__, iop_chan->slots_allocated); 717 spin_unlock_bh(&iop_chan->lock); 718 719 /* one is ok since we left it on there on purpose */ 720 if (in_use_descs > 1) 721 printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n", 722 in_use_descs - 1); 723} 724 725/** 726 * iop_adma_is_complete - poll the status of an ADMA transaction 727 * @chan: ADMA channel handle 728 * @cookie: ADMA transaction identifier 729 */ 730static enum dma_status iop_adma_is_complete(struct dma_chan *chan, 731 dma_cookie_t cookie, 732 dma_cookie_t *done, 733 dma_cookie_t *used) 734{ 735 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 736 dma_cookie_t last_used; 737 dma_cookie_t last_complete; 738 enum dma_status ret; 739 740 last_used = chan->cookie; 741 last_complete = iop_chan->completed_cookie; 742 743 if (done) 744 *done = last_complete; 745 if (used) 746 *used = last_used; 747 748 ret = dma_async_is_complete(cookie, last_complete, last_used); 749 if (ret == DMA_SUCCESS) 750 return ret; 751 752 iop_adma_slot_cleanup(iop_chan); 753 754 last_used = chan->cookie; 755 last_complete = iop_chan->completed_cookie; 756 757 if (done) 758 *done = last_complete; 759 if (used) 760 *used = last_used; 761 762 return dma_async_is_complete(cookie, last_complete, last_used); 763} 764 765static irqreturn_t iop_adma_eot_handler(int irq, void *data) 766{ 767 struct iop_adma_chan *chan = data; 768 769 dev_dbg(chan->device->common.dev, "%s\n", __func__); 770 771 tasklet_schedule(&chan->irq_tasklet); 772 773 iop_adma_device_clear_eot_status(chan); 774 775 return IRQ_HANDLED; 776} 777 778static irqreturn_t iop_adma_eoc_handler(int irq, void *data) 779{ 780 struct iop_adma_chan *chan = data; 781 782 dev_dbg(chan->device->common.dev, "%s\n", __func__); 783 784 tasklet_schedule(&chan->irq_tasklet); 785 786 iop_adma_device_clear_eoc_status(chan); 787 788 return IRQ_HANDLED; 789} 790 791static irqreturn_t iop_adma_err_handler(int irq, void *data) 792{ 793 struct iop_adma_chan *chan = data; 794 unsigned long status = iop_chan_get_status(chan); 795 796 dev_printk(KERN_ERR, chan->device->common.dev, 797 "error ( %s%s%s%s%s%s%s)\n", 798 iop_is_err_int_parity(status, chan) ? "int_parity " : "", 799 iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "", 800 iop_is_err_int_tabort(status, chan) ? "int_tabort " : "", 801 iop_is_err_int_mabort(status, chan) ? "int_mabort " : "", 802 iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "", 803 iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "", 804 iop_is_err_split_tx(status, chan) ? "split_tx " : ""); 805 806 iop_adma_device_clear_err_status(chan); 807 808 BUG(); 809 810 return IRQ_HANDLED; 811} 812 813static void iop_adma_issue_pending(struct dma_chan *chan) 814{ 815 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); 816 817 if (iop_chan->pending) { 818 iop_chan->pending = 0; 819 iop_chan_append(iop_chan); 820 } 821} 822 823/* 824 * Perform a transaction to verify the HW works. 825 */ 826#define IOP_ADMA_TEST_SIZE 2000 827 828static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device) 829{ 830 int i; 831 void *src, *dest; 832 dma_addr_t src_dma, dest_dma; 833 struct dma_chan *dma_chan; 834 dma_cookie_t cookie; 835 struct dma_async_tx_descriptor *tx; 836 int err = 0; 837 struct iop_adma_chan *iop_chan; 838 839 dev_dbg(device->common.dev, "%s\n", __func__); 840 841 src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL); 842 if (!src) 843 return -ENOMEM; 844 dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL); 845 if (!dest) { 846 kfree(src); 847 return -ENOMEM; 848 } 849 850 /* Fill in src buffer */ 851 for (i = 0; i < IOP_ADMA_TEST_SIZE; i++) 852 ((u8 *) src)[i] = (u8)i; 853 854 /* Start copy, using first DMA channel */ 855 dma_chan = container_of(device->common.channels.next, 856 struct dma_chan, 857 device_node); 858 if (iop_adma_alloc_chan_resources(dma_chan, NULL) < 1) { 859 err = -ENODEV; 860 goto out; 861 } 862 863 dest_dma = dma_map_single(dma_chan->device->dev, dest, 864 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE); 865 src_dma = dma_map_single(dma_chan->device->dev, src, 866 IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE); 867 tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma, 868 IOP_ADMA_TEST_SIZE, 869 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 870 871 cookie = iop_adma_tx_submit(tx); 872 iop_adma_issue_pending(dma_chan); 873 msleep(1); 874 875 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != 876 DMA_SUCCESS) { 877 dev_printk(KERN_ERR, dma_chan->device->dev, 878 "Self-test copy timed out, disabling\n"); 879 err = -ENODEV; 880 goto free_resources; 881 } 882 883 iop_chan = to_iop_adma_chan(dma_chan); 884 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma, 885 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE); 886 if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) { 887 dev_printk(KERN_ERR, dma_chan->device->dev, 888 "Self-test copy failed compare, disabling\n"); 889 err = -ENODEV; 890 goto free_resources; 891 } 892 893free_resources: 894 iop_adma_free_chan_resources(dma_chan); 895out: 896 kfree(src); 897 kfree(dest); 898 return err; 899} 900 901#define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */ 902static int __devinit 903iop_adma_xor_zero_sum_self_test(struct iop_adma_device *device) 904{ 905 int i, src_idx; 906 struct page *dest; 907 struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST]; 908 struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1]; 909 dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1]; 910 dma_addr_t dma_addr, dest_dma; 911 struct dma_async_tx_descriptor *tx; 912 struct dma_chan *dma_chan; 913 dma_cookie_t cookie; 914 u8 cmp_byte = 0; 915 u32 cmp_word; 916 u32 zero_sum_result; 917 int err = 0; 918 struct iop_adma_chan *iop_chan; 919 920 dev_dbg(device->common.dev, "%s\n", __func__); 921 922 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) { 923 xor_srcs[src_idx] = alloc_page(GFP_KERNEL); 924 if (!xor_srcs[src_idx]) 925 while (src_idx--) { 926 __free_page(xor_srcs[src_idx]); 927 return -ENOMEM; 928 } 929 } 930 931 dest = alloc_page(GFP_KERNEL); 932 if (!dest) 933 while (src_idx--) { 934 __free_page(xor_srcs[src_idx]); 935 return -ENOMEM; 936 } 937 938 /* Fill in src buffers */ 939 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) { 940 u8 *ptr = page_address(xor_srcs[src_idx]); 941 for (i = 0; i < PAGE_SIZE; i++) 942 ptr[i] = (1 << src_idx); 943 } 944 945 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) 946 cmp_byte ^= (u8) (1 << src_idx); 947 948 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) | 949 (cmp_byte << 8) | cmp_byte; 950 951 memset(page_address(dest), 0, PAGE_SIZE); 952 953 dma_chan = container_of(device->common.channels.next, 954 struct dma_chan, 955 device_node); 956 if (iop_adma_alloc_chan_resources(dma_chan, NULL) < 1) { 957 err = -ENODEV; 958 goto out; 959 } 960 961 /* test xor */ 962 dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, 963 PAGE_SIZE, DMA_FROM_DEVICE); 964 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) 965 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i], 966 0, PAGE_SIZE, DMA_TO_DEVICE); 967 tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs, 968 IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE, 969 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 970 971 cookie = iop_adma_tx_submit(tx); 972 iop_adma_issue_pending(dma_chan); 973 msleep(8); 974 975 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != 976 DMA_SUCCESS) { 977 dev_printk(KERN_ERR, dma_chan->device->dev, 978 "Self-test xor timed out, disabling\n"); 979 err = -ENODEV; 980 goto free_resources; 981 } 982 983 iop_chan = to_iop_adma_chan(dma_chan); 984 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma, 985 PAGE_SIZE, DMA_FROM_DEVICE); 986 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) { 987 u32 *ptr = page_address(dest); 988 if (ptr[i] != cmp_word) { 989 dev_printk(KERN_ERR, dma_chan->device->dev, 990 "Self-test xor failed compare, disabling\n"); 991 err = -ENODEV; 992 goto free_resources; 993 } 994 } 995 dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma, 996 PAGE_SIZE, DMA_TO_DEVICE); 997 998 /* skip zero sum if the capability is not present */ 999 if (!dma_has_cap(DMA_ZERO_SUM, dma_chan->device->cap_mask)) 1000 goto free_resources; 1001 1002 /* zero sum the sources with the destintation page */ 1003 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) 1004 zero_sum_srcs[i] = xor_srcs[i]; 1005 zero_sum_srcs[i] = dest; 1006 1007 zero_sum_result = 1; 1008 1009 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++) 1010 dma_srcs[i] = dma_map_page(dma_chan->device->dev, 1011 zero_sum_srcs[i], 0, PAGE_SIZE, 1012 DMA_TO_DEVICE); 1013 tx = iop_adma_prep_dma_zero_sum(dma_chan, dma_srcs, 1014 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE, 1015 &zero_sum_result, 1016 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1017 1018 cookie = iop_adma_tx_submit(tx); 1019 iop_adma_issue_pending(dma_chan); 1020 msleep(8); 1021 1022 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { 1023 dev_printk(KERN_ERR, dma_chan->device->dev, 1024 "Self-test zero sum timed out, disabling\n"); 1025 err = -ENODEV; 1026 goto free_resources; 1027 } 1028 1029 if (zero_sum_result != 0) { 1030 dev_printk(KERN_ERR, dma_chan->device->dev, 1031 "Self-test zero sum failed compare, disabling\n"); 1032 err = -ENODEV; 1033 goto free_resources; 1034 } 1035 1036 /* test memset */ 1037 dma_addr = dma_map_page(dma_chan->device->dev, dest, 0, 1038 PAGE_SIZE, DMA_FROM_DEVICE); 1039 tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE, 1040 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1041 1042 cookie = iop_adma_tx_submit(tx); 1043 iop_adma_issue_pending(dma_chan); 1044 msleep(8); 1045 1046 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { 1047 dev_printk(KERN_ERR, dma_chan->device->dev, 1048 "Self-test memset timed out, disabling\n"); 1049 err = -ENODEV; 1050 goto free_resources; 1051 } 1052 1053 for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) { 1054 u32 *ptr = page_address(dest); 1055 if (ptr[i]) { 1056 dev_printk(KERN_ERR, dma_chan->device->dev, 1057 "Self-test memset failed compare, disabling\n"); 1058 err = -ENODEV; 1059 goto free_resources; 1060 } 1061 } 1062 1063 /* test for non-zero parity sum */ 1064 zero_sum_result = 0; 1065 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++) 1066 dma_srcs[i] = dma_map_page(dma_chan->device->dev, 1067 zero_sum_srcs[i], 0, PAGE_SIZE, 1068 DMA_TO_DEVICE); 1069 tx = iop_adma_prep_dma_zero_sum(dma_chan, dma_srcs, 1070 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE, 1071 &zero_sum_result, 1072 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1073 1074 cookie = iop_adma_tx_submit(tx); 1075 iop_adma_issue_pending(dma_chan); 1076 msleep(8); 1077 1078 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { 1079 dev_printk(KERN_ERR, dma_chan->device->dev, 1080 "Self-test non-zero sum timed out, disabling\n"); 1081 err = -ENODEV; 1082 goto free_resources; 1083 } 1084 1085 if (zero_sum_result != 1) { 1086 dev_printk(KERN_ERR, dma_chan->device->dev, 1087 "Self-test non-zero sum failed compare, disabling\n"); 1088 err = -ENODEV; 1089 goto free_resources; 1090 } 1091 1092free_resources: 1093 iop_adma_free_chan_resources(dma_chan); 1094out: 1095 src_idx = IOP_ADMA_NUM_SRC_TEST; 1096 while (src_idx--) 1097 __free_page(xor_srcs[src_idx]); 1098 __free_page(dest); 1099 return err; 1100} 1101 1102static int __devexit iop_adma_remove(struct platform_device *dev) 1103{ 1104 struct iop_adma_device *device = platform_get_drvdata(dev); 1105 struct dma_chan *chan, *_chan; 1106 struct iop_adma_chan *iop_chan; 1107 int i; 1108 struct iop_adma_platform_data *plat_data = dev->dev.platform_data; 1109 1110 dma_async_device_unregister(&device->common); 1111 1112 for (i = 0; i < 3; i++) { 1113 unsigned int irq; 1114 irq = platform_get_irq(dev, i); 1115 free_irq(irq, device); 1116 } 1117 1118 dma_free_coherent(&dev->dev, plat_data->pool_size, 1119 device->dma_desc_pool_virt, device->dma_desc_pool); 1120 1121 do { 1122 struct resource *res; 1123 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 1124 release_mem_region(res->start, res->end - res->start); 1125 } while (0); 1126 1127 list_for_each_entry_safe(chan, _chan, &device->common.channels, 1128 device_node) { 1129 iop_chan = to_iop_adma_chan(chan); 1130 list_del(&chan->device_node); 1131 kfree(iop_chan); 1132 } 1133 kfree(device); 1134 1135 return 0; 1136} 1137 1138static int __devinit iop_adma_probe(struct platform_device *pdev) 1139{ 1140 struct resource *res; 1141 int ret = 0, i; 1142 struct iop_adma_device *adev; 1143 struct iop_adma_chan *iop_chan; 1144 struct dma_device *dma_dev; 1145 struct iop_adma_platform_data *plat_data = pdev->dev.platform_data; 1146 1147 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1148 if (!res) 1149 return -ENODEV; 1150 1151 if (!devm_request_mem_region(&pdev->dev, res->start, 1152 res->end - res->start, pdev->name)) 1153 return -EBUSY; 1154 1155 adev = kzalloc(sizeof(*adev), GFP_KERNEL); 1156 if (!adev) 1157 return -ENOMEM; 1158 dma_dev = &adev->common; 1159 1160 /* allocate coherent memory for hardware descriptors 1161 * note: writecombine gives slightly better performance, but 1162 * requires that we explicitly flush the writes 1163 */ 1164 if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev, 1165 plat_data->pool_size, 1166 &adev->dma_desc_pool, 1167 GFP_KERNEL)) == NULL) { 1168 ret = -ENOMEM; 1169 goto err_free_adev; 1170 } 1171 1172 dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n", 1173 __func__, adev->dma_desc_pool_virt, 1174 (void *) adev->dma_desc_pool); 1175 1176 adev->id = plat_data->hw_id; 1177 1178 /* discover transaction capabilites from the platform data */ 1179 dma_dev->cap_mask = plat_data->cap_mask; 1180 1181 adev->pdev = pdev; 1182 platform_set_drvdata(pdev, adev); 1183 1184 INIT_LIST_HEAD(&dma_dev->channels); 1185 1186 /* set base routines */ 1187 dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources; 1188 dma_dev->device_free_chan_resources = iop_adma_free_chan_resources; 1189 dma_dev->device_is_tx_complete = iop_adma_is_complete; 1190 dma_dev->device_issue_pending = iop_adma_issue_pending; 1191 dma_dev->dev = &pdev->dev; 1192 1193 /* set prep routines based on capability */ 1194 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) 1195 dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy; 1196 if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) 1197 dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset; 1198 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { 1199 dma_dev->max_xor = iop_adma_get_max_xor(); 1200 dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor; 1201 } 1202 if (dma_has_cap(DMA_ZERO_SUM, dma_dev->cap_mask)) 1203 dma_dev->device_prep_dma_zero_sum = 1204 iop_adma_prep_dma_zero_sum; 1205 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask)) 1206 dma_dev->device_prep_dma_interrupt = 1207 iop_adma_prep_dma_interrupt; 1208 1209 iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL); 1210 if (!iop_chan) { 1211 ret = -ENOMEM; 1212 goto err_free_dma; 1213 } 1214 iop_chan->device = adev; 1215 1216 iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start, 1217 res->end - res->start); 1218 if (!iop_chan->mmr_base) { 1219 ret = -ENOMEM; 1220 goto err_free_iop_chan; 1221 } 1222 tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long) 1223 iop_chan); 1224 1225 /* clear errors before enabling interrupts */ 1226 iop_adma_device_clear_err_status(iop_chan); 1227 1228 for (i = 0; i < 3; i++) { 1229 irq_handler_t handler[] = { iop_adma_eot_handler, 1230 iop_adma_eoc_handler, 1231 iop_adma_err_handler }; 1232 int irq = platform_get_irq(pdev, i); 1233 if (irq < 0) { 1234 ret = -ENXIO; 1235 goto err_free_iop_chan; 1236 } else { 1237 ret = devm_request_irq(&pdev->dev, irq, 1238 handler[i], 0, pdev->name, iop_chan); 1239 if (ret) 1240 goto err_free_iop_chan; 1241 } 1242 } 1243 1244 spin_lock_init(&iop_chan->lock); 1245 INIT_LIST_HEAD(&iop_chan->chain); 1246 INIT_LIST_HEAD(&iop_chan->all_slots); 1247 INIT_RCU_HEAD(&iop_chan->common.rcu); 1248 iop_chan->common.device = dma_dev; 1249 list_add_tail(&iop_chan->common.device_node, &dma_dev->channels); 1250 1251 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) { 1252 ret = iop_adma_memcpy_self_test(adev); 1253 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret); 1254 if (ret) 1255 goto err_free_iop_chan; 1256 } 1257 1258 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) || 1259 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) { 1260 ret = iop_adma_xor_zero_sum_self_test(adev); 1261 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret); 1262 if (ret) 1263 goto err_free_iop_chan; 1264 } 1265 1266 dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: " 1267 "( %s%s%s%s%s%s%s%s%s%s)\n", 1268 dma_has_cap(DMA_PQ_XOR, dma_dev->cap_mask) ? "pq_xor " : "", 1269 dma_has_cap(DMA_PQ_UPDATE, dma_dev->cap_mask) ? "pq_update " : "", 1270 dma_has_cap(DMA_PQ_ZERO_SUM, dma_dev->cap_mask) ? "pq_zero_sum " : "", 1271 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "", 1272 dma_has_cap(DMA_DUAL_XOR, dma_dev->cap_mask) ? "dual_xor " : "", 1273 dma_has_cap(DMA_ZERO_SUM, dma_dev->cap_mask) ? "xor_zero_sum " : "", 1274 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "", 1275 dma_has_cap(DMA_MEMCPY_CRC32C, dma_dev->cap_mask) ? "cpy+crc " : "", 1276 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "", 1277 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : ""); 1278 1279 dma_async_device_register(dma_dev); 1280 goto out; 1281 1282 err_free_iop_chan: 1283 kfree(iop_chan); 1284 err_free_dma: 1285 dma_free_coherent(&adev->pdev->dev, plat_data->pool_size, 1286 adev->dma_desc_pool_virt, adev->dma_desc_pool); 1287 err_free_adev: 1288 kfree(adev); 1289 out: 1290 return ret; 1291} 1292 1293static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan) 1294{ 1295 struct iop_adma_desc_slot *sw_desc, *grp_start; 1296 dma_cookie_t cookie; 1297 int slot_cnt, slots_per_op; 1298 1299 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__); 1300 1301 spin_lock_bh(&iop_chan->lock); 1302 slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op); 1303 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); 1304 if (sw_desc) { 1305 grp_start = sw_desc->group_head; 1306 1307 list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain); 1308 async_tx_ack(&sw_desc->async_tx); 1309 iop_desc_init_memcpy(grp_start, 0); 1310 iop_desc_set_byte_count(grp_start, iop_chan, 0); 1311 iop_desc_set_dest_addr(grp_start, iop_chan, 0); 1312 iop_desc_set_memcpy_src_addr(grp_start, 0); 1313 1314 cookie = iop_chan->common.cookie; 1315 cookie++; 1316 if (cookie <= 1) 1317 cookie = 2; 1318 1319 /* initialize the completed cookie to be less than 1320 * the most recently used cookie 1321 */ 1322 iop_chan->completed_cookie = cookie - 1; 1323 iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie; 1324 1325 /* channel should not be busy */ 1326 BUG_ON(iop_chan_is_busy(iop_chan)); 1327 1328 /* clear any prior error-status bits */ 1329 iop_adma_device_clear_err_status(iop_chan); 1330 1331 /* disable operation */ 1332 iop_chan_disable(iop_chan); 1333 1334 /* set the descriptor address */ 1335 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys); 1336 1337 /* 1/ don't add pre-chained descriptors 1338 * 2/ dummy read to flush next_desc write 1339 */ 1340 BUG_ON(iop_desc_get_next_desc(sw_desc)); 1341 1342 /* run the descriptor */ 1343 iop_chan_enable(iop_chan); 1344 } else 1345 dev_printk(KERN_ERR, iop_chan->device->common.dev, 1346 "failed to allocate null descriptor\n"); 1347 spin_unlock_bh(&iop_chan->lock); 1348} 1349 1350static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan) 1351{ 1352 struct iop_adma_desc_slot *sw_desc, *grp_start; 1353 dma_cookie_t cookie; 1354 int slot_cnt, slots_per_op; 1355 1356 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__); 1357 1358 spin_lock_bh(&iop_chan->lock); 1359 slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op); 1360 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op); 1361 if (sw_desc) { 1362 grp_start = sw_desc->group_head; 1363 list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain); 1364 async_tx_ack(&sw_desc->async_tx); 1365 iop_desc_init_null_xor(grp_start, 2, 0); 1366 iop_desc_set_byte_count(grp_start, iop_chan, 0); 1367 iop_desc_set_dest_addr(grp_start, iop_chan, 0); 1368 iop_desc_set_xor_src_addr(grp_start, 0, 0); 1369 iop_desc_set_xor_src_addr(grp_start, 1, 0); 1370 1371 cookie = iop_chan->common.cookie; 1372 cookie++; 1373 if (cookie <= 1) 1374 cookie = 2; 1375 1376 /* initialize the completed cookie to be less than 1377 * the most recently used cookie 1378 */ 1379 iop_chan->completed_cookie = cookie - 1; 1380 iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie; 1381 1382 /* channel should not be busy */ 1383 BUG_ON(iop_chan_is_busy(iop_chan)); 1384 1385 /* clear any prior error-status bits */ 1386 iop_adma_device_clear_err_status(iop_chan); 1387 1388 /* disable operation */ 1389 iop_chan_disable(iop_chan); 1390 1391 /* set the descriptor address */ 1392 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys); 1393 1394 /* 1/ don't add pre-chained descriptors 1395 * 2/ dummy read to flush next_desc write 1396 */ 1397 BUG_ON(iop_desc_get_next_desc(sw_desc)); 1398 1399 /* run the descriptor */ 1400 iop_chan_enable(iop_chan); 1401 } else 1402 dev_printk(KERN_ERR, iop_chan->device->common.dev, 1403 "failed to allocate null descriptor\n"); 1404 spin_unlock_bh(&iop_chan->lock); 1405} 1406 1407MODULE_ALIAS("platform:iop-adma"); 1408 1409static struct platform_driver iop_adma_driver = { 1410 .probe = iop_adma_probe, 1411 .remove = iop_adma_remove, 1412 .driver = { 1413 .owner = THIS_MODULE, 1414 .name = "iop-adma", 1415 }, 1416}; 1417 1418static int __init iop_adma_init (void) 1419{ 1420 return platform_driver_register(&iop_adma_driver); 1421} 1422 1423/* it's currently unsafe to unload this module */ 1424#if 0 1425static void __exit iop_adma_exit (void) 1426{ 1427 platform_driver_unregister(&iop_adma_driver); 1428 return; 1429} 1430module_exit(iop_adma_exit); 1431#endif 1432 1433module_init(iop_adma_init); 1434 1435MODULE_AUTHOR("Intel Corporation"); 1436MODULE_DESCRIPTION("IOP ADMA Engine Driver"); 1437MODULE_LICENSE("GPL"); 1438