igb_ethtool.c revision 6ad4edfcd7b6321da34e7cd0c88dd97adddd7f57
1/*******************************************************************************
2
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2011 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39
40#include "igb.h"
41
42struct igb_stats {
43	char stat_string[ETH_GSTRING_LEN];
44	int sizeof_stat;
45	int stat_offset;
46};
47
48#define IGB_STAT(_name, _stat) { \
49	.stat_string = _name, \
50	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51	.stat_offset = offsetof(struct igb_adapter, _stat) \
52}
53static const struct igb_stats igb_gstrings_stats[] = {
54	IGB_STAT("rx_packets", stats.gprc),
55	IGB_STAT("tx_packets", stats.gptc),
56	IGB_STAT("rx_bytes", stats.gorc),
57	IGB_STAT("tx_bytes", stats.gotc),
58	IGB_STAT("rx_broadcast", stats.bprc),
59	IGB_STAT("tx_broadcast", stats.bptc),
60	IGB_STAT("rx_multicast", stats.mprc),
61	IGB_STAT("tx_multicast", stats.mptc),
62	IGB_STAT("multicast", stats.mprc),
63	IGB_STAT("collisions", stats.colc),
64	IGB_STAT("rx_crc_errors", stats.crcerrs),
65	IGB_STAT("rx_no_buffer_count", stats.rnbc),
66	IGB_STAT("rx_missed_errors", stats.mpc),
67	IGB_STAT("tx_aborted_errors", stats.ecol),
68	IGB_STAT("tx_carrier_errors", stats.tncrs),
69	IGB_STAT("tx_window_errors", stats.latecol),
70	IGB_STAT("tx_abort_late_coll", stats.latecol),
71	IGB_STAT("tx_deferred_ok", stats.dc),
72	IGB_STAT("tx_single_coll_ok", stats.scc),
73	IGB_STAT("tx_multi_coll_ok", stats.mcc),
74	IGB_STAT("tx_timeout_count", tx_timeout_count),
75	IGB_STAT("rx_long_length_errors", stats.roc),
76	IGB_STAT("rx_short_length_errors", stats.ruc),
77	IGB_STAT("rx_align_errors", stats.algnerrc),
78	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82	IGB_STAT("tx_flow_control_xon", stats.xontxc),
83	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84	IGB_STAT("rx_long_byte_count", stats.gorc),
85	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86	IGB_STAT("tx_smbus", stats.mgptc),
87	IGB_STAT("rx_smbus", stats.mgprc),
88	IGB_STAT("dropped_smbus", stats.mgpdc),
89	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
90	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
91	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
92	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
93};
94
95#define IGB_NETDEV_STAT(_net_stat) { \
96	.stat_string = __stringify(_net_stat), \
97	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
98	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
99}
100static const struct igb_stats igb_gstrings_net_stats[] = {
101	IGB_NETDEV_STAT(rx_errors),
102	IGB_NETDEV_STAT(tx_errors),
103	IGB_NETDEV_STAT(tx_dropped),
104	IGB_NETDEV_STAT(rx_length_errors),
105	IGB_NETDEV_STAT(rx_over_errors),
106	IGB_NETDEV_STAT(rx_frame_errors),
107	IGB_NETDEV_STAT(rx_fifo_errors),
108	IGB_NETDEV_STAT(tx_fifo_errors),
109	IGB_NETDEV_STAT(tx_heartbeat_errors)
110};
111
112#define IGB_GLOBAL_STATS_LEN	\
113	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
114#define IGB_NETDEV_STATS_LEN	\
115	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
116#define IGB_RX_QUEUE_STATS_LEN \
117	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
118
119#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
120
121#define IGB_QUEUE_STATS_LEN \
122	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
123	  IGB_RX_QUEUE_STATS_LEN) + \
124	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
125	  IGB_TX_QUEUE_STATS_LEN))
126#define IGB_STATS_LEN \
127	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
128
129static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
130	"Register test  (offline)", "Eeprom test    (offline)",
131	"Interrupt test (offline)", "Loopback test  (offline)",
132	"Link test   (on/offline)"
133};
134#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
135
136static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
137{
138	struct igb_adapter *adapter = netdev_priv(netdev);
139	struct e1000_hw *hw = &adapter->hw;
140	u32 status;
141
142	if (hw->phy.media_type == e1000_media_type_copper) {
143
144		ecmd->supported = (SUPPORTED_10baseT_Half |
145				   SUPPORTED_10baseT_Full |
146				   SUPPORTED_100baseT_Half |
147				   SUPPORTED_100baseT_Full |
148				   SUPPORTED_1000baseT_Full|
149				   SUPPORTED_Autoneg |
150				   SUPPORTED_TP);
151		ecmd->advertising = ADVERTISED_TP;
152
153		if (hw->mac.autoneg == 1) {
154			ecmd->advertising |= ADVERTISED_Autoneg;
155			/* the e1000 autoneg seems to match ethtool nicely */
156			ecmd->advertising |= hw->phy.autoneg_advertised;
157		}
158
159		ecmd->port = PORT_TP;
160		ecmd->phy_address = hw->phy.addr;
161	} else {
162		ecmd->supported   = (SUPPORTED_1000baseT_Full |
163				     SUPPORTED_FIBRE |
164				     SUPPORTED_Autoneg);
165
166		ecmd->advertising = (ADVERTISED_1000baseT_Full |
167				     ADVERTISED_FIBRE |
168				     ADVERTISED_Autoneg);
169
170		ecmd->port = PORT_FIBRE;
171	}
172
173	ecmd->transceiver = XCVR_INTERNAL;
174
175	status = rd32(E1000_STATUS);
176
177	if (status & E1000_STATUS_LU) {
178
179		if ((status & E1000_STATUS_SPEED_1000) ||
180		    hw->phy.media_type != e1000_media_type_copper)
181			ethtool_cmd_speed_set(ecmd, SPEED_1000);
182		else if (status & E1000_STATUS_SPEED_100)
183			ethtool_cmd_speed_set(ecmd, SPEED_100);
184		else
185			ethtool_cmd_speed_set(ecmd, SPEED_10);
186
187		if ((status & E1000_STATUS_FD) ||
188		    hw->phy.media_type != e1000_media_type_copper)
189			ecmd->duplex = DUPLEX_FULL;
190		else
191			ecmd->duplex = DUPLEX_HALF;
192	} else {
193		ethtool_cmd_speed_set(ecmd, -1);
194		ecmd->duplex = -1;
195	}
196
197	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
198	return 0;
199}
200
201static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
202{
203	struct igb_adapter *adapter = netdev_priv(netdev);
204	struct e1000_hw *hw = &adapter->hw;
205
206	/* When SoL/IDER sessions are active, autoneg/speed/duplex
207	 * cannot be changed */
208	if (igb_check_reset_block(hw)) {
209		dev_err(&adapter->pdev->dev, "Cannot change link "
210			"characteristics when SoL/IDER is active.\n");
211		return -EINVAL;
212	}
213
214	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
215		msleep(1);
216
217	if (ecmd->autoneg == AUTONEG_ENABLE) {
218		hw->mac.autoneg = 1;
219		hw->phy.autoneg_advertised = ecmd->advertising |
220					     ADVERTISED_TP |
221					     ADVERTISED_Autoneg;
222		ecmd->advertising = hw->phy.autoneg_advertised;
223		if (adapter->fc_autoneg)
224			hw->fc.requested_mode = e1000_fc_default;
225	} else {
226		u32 speed = ethtool_cmd_speed(ecmd);
227		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
228			clear_bit(__IGB_RESETTING, &adapter->state);
229			return -EINVAL;
230		}
231	}
232
233	/* reset the link */
234	if (netif_running(adapter->netdev)) {
235		igb_down(adapter);
236		igb_up(adapter);
237	} else
238		igb_reset(adapter);
239
240	clear_bit(__IGB_RESETTING, &adapter->state);
241	return 0;
242}
243
244static u32 igb_get_link(struct net_device *netdev)
245{
246	struct igb_adapter *adapter = netdev_priv(netdev);
247	struct e1000_mac_info *mac = &adapter->hw.mac;
248
249	/*
250	 * If the link is not reported up to netdev, interrupts are disabled,
251	 * and so the physical link state may have changed since we last
252	 * looked. Set get_link_status to make sure that the true link
253	 * state is interrogated, rather than pulling a cached and possibly
254	 * stale link state from the driver.
255	 */
256	if (!netif_carrier_ok(netdev))
257		mac->get_link_status = 1;
258
259	return igb_has_link(adapter);
260}
261
262static void igb_get_pauseparam(struct net_device *netdev,
263			       struct ethtool_pauseparam *pause)
264{
265	struct igb_adapter *adapter = netdev_priv(netdev);
266	struct e1000_hw *hw = &adapter->hw;
267
268	pause->autoneg =
269		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
270
271	if (hw->fc.current_mode == e1000_fc_rx_pause)
272		pause->rx_pause = 1;
273	else if (hw->fc.current_mode == e1000_fc_tx_pause)
274		pause->tx_pause = 1;
275	else if (hw->fc.current_mode == e1000_fc_full) {
276		pause->rx_pause = 1;
277		pause->tx_pause = 1;
278	}
279}
280
281static int igb_set_pauseparam(struct net_device *netdev,
282			      struct ethtool_pauseparam *pause)
283{
284	struct igb_adapter *adapter = netdev_priv(netdev);
285	struct e1000_hw *hw = &adapter->hw;
286	int retval = 0;
287
288	adapter->fc_autoneg = pause->autoneg;
289
290	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
291		msleep(1);
292
293	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
294		hw->fc.requested_mode = e1000_fc_default;
295		if (netif_running(adapter->netdev)) {
296			igb_down(adapter);
297			igb_up(adapter);
298		} else {
299			igb_reset(adapter);
300		}
301	} else {
302		if (pause->rx_pause && pause->tx_pause)
303			hw->fc.requested_mode = e1000_fc_full;
304		else if (pause->rx_pause && !pause->tx_pause)
305			hw->fc.requested_mode = e1000_fc_rx_pause;
306		else if (!pause->rx_pause && pause->tx_pause)
307			hw->fc.requested_mode = e1000_fc_tx_pause;
308		else if (!pause->rx_pause && !pause->tx_pause)
309			hw->fc.requested_mode = e1000_fc_none;
310
311		hw->fc.current_mode = hw->fc.requested_mode;
312
313		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
314			  igb_force_mac_fc(hw) : igb_setup_link(hw));
315	}
316
317	clear_bit(__IGB_RESETTING, &adapter->state);
318	return retval;
319}
320
321static u32 igb_get_msglevel(struct net_device *netdev)
322{
323	struct igb_adapter *adapter = netdev_priv(netdev);
324	return adapter->msg_enable;
325}
326
327static void igb_set_msglevel(struct net_device *netdev, u32 data)
328{
329	struct igb_adapter *adapter = netdev_priv(netdev);
330	adapter->msg_enable = data;
331}
332
333static int igb_get_regs_len(struct net_device *netdev)
334{
335#define IGB_REGS_LEN 551
336	return IGB_REGS_LEN * sizeof(u32);
337}
338
339static void igb_get_regs(struct net_device *netdev,
340			 struct ethtool_regs *regs, void *p)
341{
342	struct igb_adapter *adapter = netdev_priv(netdev);
343	struct e1000_hw *hw = &adapter->hw;
344	u32 *regs_buff = p;
345	u8 i;
346
347	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
348
349	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
350
351	/* General Registers */
352	regs_buff[0] = rd32(E1000_CTRL);
353	regs_buff[1] = rd32(E1000_STATUS);
354	regs_buff[2] = rd32(E1000_CTRL_EXT);
355	regs_buff[3] = rd32(E1000_MDIC);
356	regs_buff[4] = rd32(E1000_SCTL);
357	regs_buff[5] = rd32(E1000_CONNSW);
358	regs_buff[6] = rd32(E1000_VET);
359	regs_buff[7] = rd32(E1000_LEDCTL);
360	regs_buff[8] = rd32(E1000_PBA);
361	regs_buff[9] = rd32(E1000_PBS);
362	regs_buff[10] = rd32(E1000_FRTIMER);
363	regs_buff[11] = rd32(E1000_TCPTIMER);
364
365	/* NVM Register */
366	regs_buff[12] = rd32(E1000_EECD);
367
368	/* Interrupt */
369	/* Reading EICS for EICR because they read the
370	 * same but EICS does not clear on read */
371	regs_buff[13] = rd32(E1000_EICS);
372	regs_buff[14] = rd32(E1000_EICS);
373	regs_buff[15] = rd32(E1000_EIMS);
374	regs_buff[16] = rd32(E1000_EIMC);
375	regs_buff[17] = rd32(E1000_EIAC);
376	regs_buff[18] = rd32(E1000_EIAM);
377	/* Reading ICS for ICR because they read the
378	 * same but ICS does not clear on read */
379	regs_buff[19] = rd32(E1000_ICS);
380	regs_buff[20] = rd32(E1000_ICS);
381	regs_buff[21] = rd32(E1000_IMS);
382	regs_buff[22] = rd32(E1000_IMC);
383	regs_buff[23] = rd32(E1000_IAC);
384	regs_buff[24] = rd32(E1000_IAM);
385	regs_buff[25] = rd32(E1000_IMIRVP);
386
387	/* Flow Control */
388	regs_buff[26] = rd32(E1000_FCAL);
389	regs_buff[27] = rd32(E1000_FCAH);
390	regs_buff[28] = rd32(E1000_FCTTV);
391	regs_buff[29] = rd32(E1000_FCRTL);
392	regs_buff[30] = rd32(E1000_FCRTH);
393	regs_buff[31] = rd32(E1000_FCRTV);
394
395	/* Receive */
396	regs_buff[32] = rd32(E1000_RCTL);
397	regs_buff[33] = rd32(E1000_RXCSUM);
398	regs_buff[34] = rd32(E1000_RLPML);
399	regs_buff[35] = rd32(E1000_RFCTL);
400	regs_buff[36] = rd32(E1000_MRQC);
401	regs_buff[37] = rd32(E1000_VT_CTL);
402
403	/* Transmit */
404	regs_buff[38] = rd32(E1000_TCTL);
405	regs_buff[39] = rd32(E1000_TCTL_EXT);
406	regs_buff[40] = rd32(E1000_TIPG);
407	regs_buff[41] = rd32(E1000_DTXCTL);
408
409	/* Wake Up */
410	regs_buff[42] = rd32(E1000_WUC);
411	regs_buff[43] = rd32(E1000_WUFC);
412	regs_buff[44] = rd32(E1000_WUS);
413	regs_buff[45] = rd32(E1000_IPAV);
414	regs_buff[46] = rd32(E1000_WUPL);
415
416	/* MAC */
417	regs_buff[47] = rd32(E1000_PCS_CFG0);
418	regs_buff[48] = rd32(E1000_PCS_LCTL);
419	regs_buff[49] = rd32(E1000_PCS_LSTAT);
420	regs_buff[50] = rd32(E1000_PCS_ANADV);
421	regs_buff[51] = rd32(E1000_PCS_LPAB);
422	regs_buff[52] = rd32(E1000_PCS_NPTX);
423	regs_buff[53] = rd32(E1000_PCS_LPABNP);
424
425	/* Statistics */
426	regs_buff[54] = adapter->stats.crcerrs;
427	regs_buff[55] = adapter->stats.algnerrc;
428	regs_buff[56] = adapter->stats.symerrs;
429	regs_buff[57] = adapter->stats.rxerrc;
430	regs_buff[58] = adapter->stats.mpc;
431	regs_buff[59] = adapter->stats.scc;
432	regs_buff[60] = adapter->stats.ecol;
433	regs_buff[61] = adapter->stats.mcc;
434	regs_buff[62] = adapter->stats.latecol;
435	regs_buff[63] = adapter->stats.colc;
436	regs_buff[64] = adapter->stats.dc;
437	regs_buff[65] = adapter->stats.tncrs;
438	regs_buff[66] = adapter->stats.sec;
439	regs_buff[67] = adapter->stats.htdpmc;
440	regs_buff[68] = adapter->stats.rlec;
441	regs_buff[69] = adapter->stats.xonrxc;
442	regs_buff[70] = adapter->stats.xontxc;
443	regs_buff[71] = adapter->stats.xoffrxc;
444	regs_buff[72] = adapter->stats.xofftxc;
445	regs_buff[73] = adapter->stats.fcruc;
446	regs_buff[74] = adapter->stats.prc64;
447	regs_buff[75] = adapter->stats.prc127;
448	regs_buff[76] = adapter->stats.prc255;
449	regs_buff[77] = adapter->stats.prc511;
450	regs_buff[78] = adapter->stats.prc1023;
451	regs_buff[79] = adapter->stats.prc1522;
452	regs_buff[80] = adapter->stats.gprc;
453	regs_buff[81] = adapter->stats.bprc;
454	regs_buff[82] = adapter->stats.mprc;
455	regs_buff[83] = adapter->stats.gptc;
456	regs_buff[84] = adapter->stats.gorc;
457	regs_buff[86] = adapter->stats.gotc;
458	regs_buff[88] = adapter->stats.rnbc;
459	regs_buff[89] = adapter->stats.ruc;
460	regs_buff[90] = adapter->stats.rfc;
461	regs_buff[91] = adapter->stats.roc;
462	regs_buff[92] = adapter->stats.rjc;
463	regs_buff[93] = adapter->stats.mgprc;
464	regs_buff[94] = adapter->stats.mgpdc;
465	regs_buff[95] = adapter->stats.mgptc;
466	regs_buff[96] = adapter->stats.tor;
467	regs_buff[98] = adapter->stats.tot;
468	regs_buff[100] = adapter->stats.tpr;
469	regs_buff[101] = adapter->stats.tpt;
470	regs_buff[102] = adapter->stats.ptc64;
471	regs_buff[103] = adapter->stats.ptc127;
472	regs_buff[104] = adapter->stats.ptc255;
473	regs_buff[105] = adapter->stats.ptc511;
474	regs_buff[106] = adapter->stats.ptc1023;
475	regs_buff[107] = adapter->stats.ptc1522;
476	regs_buff[108] = adapter->stats.mptc;
477	regs_buff[109] = adapter->stats.bptc;
478	regs_buff[110] = adapter->stats.tsctc;
479	regs_buff[111] = adapter->stats.iac;
480	regs_buff[112] = adapter->stats.rpthc;
481	regs_buff[113] = adapter->stats.hgptc;
482	regs_buff[114] = adapter->stats.hgorc;
483	regs_buff[116] = adapter->stats.hgotc;
484	regs_buff[118] = adapter->stats.lenerrs;
485	regs_buff[119] = adapter->stats.scvpc;
486	regs_buff[120] = adapter->stats.hrmpc;
487
488	for (i = 0; i < 4; i++)
489		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
490	for (i = 0; i < 4; i++)
491		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
492	for (i = 0; i < 4; i++)
493		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
494	for (i = 0; i < 4; i++)
495		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
496	for (i = 0; i < 4; i++)
497		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
498	for (i = 0; i < 4; i++)
499		regs_buff[141 + i] = rd32(E1000_RDH(i));
500	for (i = 0; i < 4; i++)
501		regs_buff[145 + i] = rd32(E1000_RDT(i));
502	for (i = 0; i < 4; i++)
503		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
504
505	for (i = 0; i < 10; i++)
506		regs_buff[153 + i] = rd32(E1000_EITR(i));
507	for (i = 0; i < 8; i++)
508		regs_buff[163 + i] = rd32(E1000_IMIR(i));
509	for (i = 0; i < 8; i++)
510		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
511	for (i = 0; i < 16; i++)
512		regs_buff[179 + i] = rd32(E1000_RAL(i));
513	for (i = 0; i < 16; i++)
514		regs_buff[195 + i] = rd32(E1000_RAH(i));
515
516	for (i = 0; i < 4; i++)
517		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
518	for (i = 0; i < 4; i++)
519		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
520	for (i = 0; i < 4; i++)
521		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
522	for (i = 0; i < 4; i++)
523		regs_buff[223 + i] = rd32(E1000_TDH(i));
524	for (i = 0; i < 4; i++)
525		regs_buff[227 + i] = rd32(E1000_TDT(i));
526	for (i = 0; i < 4; i++)
527		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
528	for (i = 0; i < 4; i++)
529		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
530	for (i = 0; i < 4; i++)
531		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
532	for (i = 0; i < 4; i++)
533		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
534
535	for (i = 0; i < 4; i++)
536		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
537	for (i = 0; i < 4; i++)
538		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
539	for (i = 0; i < 32; i++)
540		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
541	for (i = 0; i < 128; i++)
542		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
543	for (i = 0; i < 128; i++)
544		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
545	for (i = 0; i < 4; i++)
546		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
547
548	regs_buff[547] = rd32(E1000_TDFH);
549	regs_buff[548] = rd32(E1000_TDFT);
550	regs_buff[549] = rd32(E1000_TDFHS);
551	regs_buff[550] = rd32(E1000_TDFPC);
552	regs_buff[551] = adapter->stats.o2bgptc;
553	regs_buff[552] = adapter->stats.b2ospc;
554	regs_buff[553] = adapter->stats.o2bspc;
555	regs_buff[554] = adapter->stats.b2ogprc;
556}
557
558static int igb_get_eeprom_len(struct net_device *netdev)
559{
560	struct igb_adapter *adapter = netdev_priv(netdev);
561	return adapter->hw.nvm.word_size * 2;
562}
563
564static int igb_get_eeprom(struct net_device *netdev,
565			  struct ethtool_eeprom *eeprom, u8 *bytes)
566{
567	struct igb_adapter *adapter = netdev_priv(netdev);
568	struct e1000_hw *hw = &adapter->hw;
569	u16 *eeprom_buff;
570	int first_word, last_word;
571	int ret_val = 0;
572	u16 i;
573
574	if (eeprom->len == 0)
575		return -EINVAL;
576
577	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
578
579	first_word = eeprom->offset >> 1;
580	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
581
582	eeprom_buff = kmalloc(sizeof(u16) *
583			(last_word - first_word + 1), GFP_KERNEL);
584	if (!eeprom_buff)
585		return -ENOMEM;
586
587	if (hw->nvm.type == e1000_nvm_eeprom_spi)
588		ret_val = hw->nvm.ops.read(hw, first_word,
589					    last_word - first_word + 1,
590					    eeprom_buff);
591	else {
592		for (i = 0; i < last_word - first_word + 1; i++) {
593			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
594						    &eeprom_buff[i]);
595			if (ret_val)
596				break;
597		}
598	}
599
600	/* Device's eeprom is always little-endian, word addressable */
601	for (i = 0; i < last_word - first_word + 1; i++)
602		le16_to_cpus(&eeprom_buff[i]);
603
604	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
605			eeprom->len);
606	kfree(eeprom_buff);
607
608	return ret_val;
609}
610
611static int igb_set_eeprom(struct net_device *netdev,
612			  struct ethtool_eeprom *eeprom, u8 *bytes)
613{
614	struct igb_adapter *adapter = netdev_priv(netdev);
615	struct e1000_hw *hw = &adapter->hw;
616	u16 *eeprom_buff;
617	void *ptr;
618	int max_len, first_word, last_word, ret_val = 0;
619	u16 i;
620
621	if (eeprom->len == 0)
622		return -EOPNOTSUPP;
623
624	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
625		return -EFAULT;
626
627	max_len = hw->nvm.word_size * 2;
628
629	first_word = eeprom->offset >> 1;
630	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
631	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
632	if (!eeprom_buff)
633		return -ENOMEM;
634
635	ptr = (void *)eeprom_buff;
636
637	if (eeprom->offset & 1) {
638		/* need read/modify/write of first changed EEPROM word */
639		/* only the second byte of the word is being modified */
640		ret_val = hw->nvm.ops.read(hw, first_word, 1,
641					    &eeprom_buff[0]);
642		ptr++;
643	}
644	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
645		/* need read/modify/write of last changed EEPROM word */
646		/* only the first byte of the word is being modified */
647		ret_val = hw->nvm.ops.read(hw, last_word, 1,
648				   &eeprom_buff[last_word - first_word]);
649	}
650
651	/* Device's eeprom is always little-endian, word addressable */
652	for (i = 0; i < last_word - first_word + 1; i++)
653		le16_to_cpus(&eeprom_buff[i]);
654
655	memcpy(ptr, bytes, eeprom->len);
656
657	for (i = 0; i < last_word - first_word + 1; i++)
658		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
659
660	ret_val = hw->nvm.ops.write(hw, first_word,
661				     last_word - first_word + 1, eeprom_buff);
662
663	/* Update the checksum over the first part of the EEPROM if needed
664	 * and flush shadow RAM for 82573 controllers */
665	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
666		hw->nvm.ops.update(hw);
667
668	kfree(eeprom_buff);
669	return ret_val;
670}
671
672static void igb_get_drvinfo(struct net_device *netdev,
673			    struct ethtool_drvinfo *drvinfo)
674{
675	struct igb_adapter *adapter = netdev_priv(netdev);
676	char firmware_version[32];
677	u16 eeprom_data;
678
679	strncpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver) - 1);
680	strncpy(drvinfo->version, igb_driver_version,
681		sizeof(drvinfo->version) - 1);
682
683	/* EEPROM image version # is reported as firmware version # for
684	 * 82575 controllers */
685	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
686	sprintf(firmware_version, "%d.%d-%d",
687		(eeprom_data & 0xF000) >> 12,
688		(eeprom_data & 0x0FF0) >> 4,
689		eeprom_data & 0x000F);
690
691	strncpy(drvinfo->fw_version, firmware_version,
692		sizeof(drvinfo->fw_version) - 1);
693	strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
694		sizeof(drvinfo->bus_info) - 1);
695	drvinfo->n_stats = IGB_STATS_LEN;
696	drvinfo->testinfo_len = IGB_TEST_LEN;
697	drvinfo->regdump_len = igb_get_regs_len(netdev);
698	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
699}
700
701static void igb_get_ringparam(struct net_device *netdev,
702			      struct ethtool_ringparam *ring)
703{
704	struct igb_adapter *adapter = netdev_priv(netdev);
705
706	ring->rx_max_pending = IGB_MAX_RXD;
707	ring->tx_max_pending = IGB_MAX_TXD;
708	ring->rx_mini_max_pending = 0;
709	ring->rx_jumbo_max_pending = 0;
710	ring->rx_pending = adapter->rx_ring_count;
711	ring->tx_pending = adapter->tx_ring_count;
712	ring->rx_mini_pending = 0;
713	ring->rx_jumbo_pending = 0;
714}
715
716static int igb_set_ringparam(struct net_device *netdev,
717			     struct ethtool_ringparam *ring)
718{
719	struct igb_adapter *adapter = netdev_priv(netdev);
720	struct igb_ring *temp_ring;
721	int i, err = 0;
722	u16 new_rx_count, new_tx_count;
723
724	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
725		return -EINVAL;
726
727	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
728	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
729	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
730
731	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
732	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
733	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
734
735	if ((new_tx_count == adapter->tx_ring_count) &&
736	    (new_rx_count == adapter->rx_ring_count)) {
737		/* nothing to do */
738		return 0;
739	}
740
741	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
742		msleep(1);
743
744	if (!netif_running(adapter->netdev)) {
745		for (i = 0; i < adapter->num_tx_queues; i++)
746			adapter->tx_ring[i]->count = new_tx_count;
747		for (i = 0; i < adapter->num_rx_queues; i++)
748			adapter->rx_ring[i]->count = new_rx_count;
749		adapter->tx_ring_count = new_tx_count;
750		adapter->rx_ring_count = new_rx_count;
751		goto clear_reset;
752	}
753
754	if (adapter->num_tx_queues > adapter->num_rx_queues)
755		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
756	else
757		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
758
759	if (!temp_ring) {
760		err = -ENOMEM;
761		goto clear_reset;
762	}
763
764	igb_down(adapter);
765
766	/*
767	 * We can't just free everything and then setup again,
768	 * because the ISRs in MSI-X mode get passed pointers
769	 * to the tx and rx ring structs.
770	 */
771	if (new_tx_count != adapter->tx_ring_count) {
772		for (i = 0; i < adapter->num_tx_queues; i++) {
773			memcpy(&temp_ring[i], adapter->tx_ring[i],
774			       sizeof(struct igb_ring));
775
776			temp_ring[i].count = new_tx_count;
777			err = igb_setup_tx_resources(&temp_ring[i]);
778			if (err) {
779				while (i) {
780					i--;
781					igb_free_tx_resources(&temp_ring[i]);
782				}
783				goto err_setup;
784			}
785		}
786
787		for (i = 0; i < adapter->num_tx_queues; i++) {
788			igb_free_tx_resources(adapter->tx_ring[i]);
789
790			memcpy(adapter->tx_ring[i], &temp_ring[i],
791			       sizeof(struct igb_ring));
792		}
793
794		adapter->tx_ring_count = new_tx_count;
795	}
796
797	if (new_rx_count != adapter->rx_ring_count) {
798		for (i = 0; i < adapter->num_rx_queues; i++) {
799			memcpy(&temp_ring[i], adapter->rx_ring[i],
800			       sizeof(struct igb_ring));
801
802			temp_ring[i].count = new_rx_count;
803			err = igb_setup_rx_resources(&temp_ring[i]);
804			if (err) {
805				while (i) {
806					i--;
807					igb_free_rx_resources(&temp_ring[i]);
808				}
809				goto err_setup;
810			}
811
812		}
813
814		for (i = 0; i < adapter->num_rx_queues; i++) {
815			igb_free_rx_resources(adapter->rx_ring[i]);
816
817			memcpy(adapter->rx_ring[i], &temp_ring[i],
818			       sizeof(struct igb_ring));
819		}
820
821		adapter->rx_ring_count = new_rx_count;
822	}
823err_setup:
824	igb_up(adapter);
825	vfree(temp_ring);
826clear_reset:
827	clear_bit(__IGB_RESETTING, &adapter->state);
828	return err;
829}
830
831/* ethtool register test data */
832struct igb_reg_test {
833	u16 reg;
834	u16 reg_offset;
835	u16 array_len;
836	u16 test_type;
837	u32 mask;
838	u32 write;
839};
840
841/* In the hardware, registers are laid out either singly, in arrays
842 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
843 * most tests take place on arrays or single registers (handled
844 * as a single-element array) and special-case the tables.
845 * Table tests are always pattern tests.
846 *
847 * We also make provision for some required setup steps by specifying
848 * registers to be written without any read-back testing.
849 */
850
851#define PATTERN_TEST	1
852#define SET_READ_TEST	2
853#define WRITE_NO_TEST	3
854#define TABLE32_TEST	4
855#define TABLE64_TEST_LO	5
856#define TABLE64_TEST_HI	6
857
858/* i350 reg test */
859static struct igb_reg_test reg_test_i350[] = {
860	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
861	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
862	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
863	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
864	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
865	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
866	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
867	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
868	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
869	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
870	/* RDH is read-only for i350, only test RDT. */
871	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
872	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
873	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
874	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
875	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
876	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
877	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
878	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
879	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
880	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
881	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
882	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
883	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
884	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
885	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
886	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
887	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
888	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
889						0xFFFFFFFF, 0xFFFFFFFF },
890	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
891						0xC3FFFFFF, 0xFFFFFFFF },
892	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
893						0xFFFFFFFF, 0xFFFFFFFF },
894	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
895						0xC3FFFFFF, 0xFFFFFFFF },
896	{ E1000_MTA,	   0, 128, TABLE32_TEST,
897						0xFFFFFFFF, 0xFFFFFFFF },
898	{ 0, 0, 0, 0 }
899};
900
901/* 82580 reg test */
902static struct igb_reg_test reg_test_82580[] = {
903	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
904	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
905	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
906	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
907	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
908	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
910	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
911	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
912	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
913	/* RDH is read-only for 82580, only test RDT. */
914	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
915	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
916	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
917	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
918	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
919	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
920	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
921	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
922	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
923	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
924	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
925	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
926	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
927	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
928	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
929	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
930	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
931	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
932						0xFFFFFFFF, 0xFFFFFFFF },
933	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
934						0x83FFFFFF, 0xFFFFFFFF },
935	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
936						0xFFFFFFFF, 0xFFFFFFFF },
937	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
938						0x83FFFFFF, 0xFFFFFFFF },
939	{ E1000_MTA,	   0, 128, TABLE32_TEST,
940						0xFFFFFFFF, 0xFFFFFFFF },
941	{ 0, 0, 0, 0 }
942};
943
944/* 82576 reg test */
945static struct igb_reg_test reg_test_82576[] = {
946	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
947	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
948	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
949	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
950	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
951	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
952	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
953	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
954	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
955	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
956	/* Enable all RX queues before testing. */
957	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
958	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
959	/* RDH is read-only for 82576, only test RDT. */
960	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
961	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
963	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
964	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
965	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
966	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
967	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
968	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
969	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
970	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
971	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
973	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
974	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
975	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
976	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
977	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
978	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
979	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
980	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
981	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
982	{ 0, 0, 0, 0 }
983};
984
985/* 82575 register test */
986static struct igb_reg_test reg_test_82575[] = {
987	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
988	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
989	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
990	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
991	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
992	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
993	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
994	/* Enable all four RX queues before testing. */
995	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
996	/* RDH is read-only for 82575, only test RDT. */
997	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
998	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
999	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1000	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1001	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1002	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1003	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1004	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1005	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1006	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1007	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1008	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1009	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1010	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1011	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1012	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013	{ 0, 0, 0, 0 }
1014};
1015
1016static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1017			     int reg, u32 mask, u32 write)
1018{
1019	struct e1000_hw *hw = &adapter->hw;
1020	u32 pat, val;
1021	static const u32 _test[] =
1022		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1023	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1024		wr32(reg, (_test[pat] & write));
1025		val = rd32(reg) & mask;
1026		if (val != (_test[pat] & write & mask)) {
1027			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1028				"failed: got 0x%08X expected 0x%08X\n",
1029				reg, val, (_test[pat] & write & mask));
1030			*data = reg;
1031			return 1;
1032		}
1033	}
1034
1035	return 0;
1036}
1037
1038static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1039			      int reg, u32 mask, u32 write)
1040{
1041	struct e1000_hw *hw = &adapter->hw;
1042	u32 val;
1043	wr32(reg, write & mask);
1044	val = rd32(reg);
1045	if ((write & mask) != (val & mask)) {
1046		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1047			" got 0x%08X expected 0x%08X\n", reg,
1048			(val & mask), (write & mask));
1049		*data = reg;
1050		return 1;
1051	}
1052
1053	return 0;
1054}
1055
1056#define REG_PATTERN_TEST(reg, mask, write) \
1057	do { \
1058		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1059			return 1; \
1060	} while (0)
1061
1062#define REG_SET_AND_CHECK(reg, mask, write) \
1063	do { \
1064		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1065			return 1; \
1066	} while (0)
1067
1068static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1069{
1070	struct e1000_hw *hw = &adapter->hw;
1071	struct igb_reg_test *test;
1072	u32 value, before, after;
1073	u32 i, toggle;
1074
1075	switch (adapter->hw.mac.type) {
1076	case e1000_i350:
1077		test = reg_test_i350;
1078		toggle = 0x7FEFF3FF;
1079		break;
1080	case e1000_82580:
1081		test = reg_test_82580;
1082		toggle = 0x7FEFF3FF;
1083		break;
1084	case e1000_82576:
1085		test = reg_test_82576;
1086		toggle = 0x7FFFF3FF;
1087		break;
1088	default:
1089		test = reg_test_82575;
1090		toggle = 0x7FFFF3FF;
1091		break;
1092	}
1093
1094	/* Because the status register is such a special case,
1095	 * we handle it separately from the rest of the register
1096	 * tests.  Some bits are read-only, some toggle, and some
1097	 * are writable on newer MACs.
1098	 */
1099	before = rd32(E1000_STATUS);
1100	value = (rd32(E1000_STATUS) & toggle);
1101	wr32(E1000_STATUS, toggle);
1102	after = rd32(E1000_STATUS) & toggle;
1103	if (value != after) {
1104		dev_err(&adapter->pdev->dev, "failed STATUS register test "
1105			"got: 0x%08X expected: 0x%08X\n", after, value);
1106		*data = 1;
1107		return 1;
1108	}
1109	/* restore previous status */
1110	wr32(E1000_STATUS, before);
1111
1112	/* Perform the remainder of the register test, looping through
1113	 * the test table until we either fail or reach the null entry.
1114	 */
1115	while (test->reg) {
1116		for (i = 0; i < test->array_len; i++) {
1117			switch (test->test_type) {
1118			case PATTERN_TEST:
1119				REG_PATTERN_TEST(test->reg +
1120						(i * test->reg_offset),
1121						test->mask,
1122						test->write);
1123				break;
1124			case SET_READ_TEST:
1125				REG_SET_AND_CHECK(test->reg +
1126						(i * test->reg_offset),
1127						test->mask,
1128						test->write);
1129				break;
1130			case WRITE_NO_TEST:
1131				writel(test->write,
1132				    (adapter->hw.hw_addr + test->reg)
1133					+ (i * test->reg_offset));
1134				break;
1135			case TABLE32_TEST:
1136				REG_PATTERN_TEST(test->reg + (i * 4),
1137						test->mask,
1138						test->write);
1139				break;
1140			case TABLE64_TEST_LO:
1141				REG_PATTERN_TEST(test->reg + (i * 8),
1142						test->mask,
1143						test->write);
1144				break;
1145			case TABLE64_TEST_HI:
1146				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1147						test->mask,
1148						test->write);
1149				break;
1150			}
1151		}
1152		test++;
1153	}
1154
1155	*data = 0;
1156	return 0;
1157}
1158
1159static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1160{
1161	u16 temp;
1162	u16 checksum = 0;
1163	u16 i;
1164
1165	*data = 0;
1166	/* Read and add up the contents of the EEPROM */
1167	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1168		if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1169			*data = 1;
1170			break;
1171		}
1172		checksum += temp;
1173	}
1174
1175	/* If Checksum is not Correct return error else test passed */
1176	if ((checksum != (u16) NVM_SUM) && !(*data))
1177		*data = 2;
1178
1179	return *data;
1180}
1181
1182static irqreturn_t igb_test_intr(int irq, void *data)
1183{
1184	struct igb_adapter *adapter = (struct igb_adapter *) data;
1185	struct e1000_hw *hw = &adapter->hw;
1186
1187	adapter->test_icr |= rd32(E1000_ICR);
1188
1189	return IRQ_HANDLED;
1190}
1191
1192static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1193{
1194	struct e1000_hw *hw = &adapter->hw;
1195	struct net_device *netdev = adapter->netdev;
1196	u32 mask, ics_mask, i = 0, shared_int = true;
1197	u32 irq = adapter->pdev->irq;
1198
1199	*data = 0;
1200
1201	/* Hook up test interrupt handler just for this test */
1202	if (adapter->msix_entries) {
1203		if (request_irq(adapter->msix_entries[0].vector,
1204		                igb_test_intr, 0, netdev->name, adapter)) {
1205			*data = 1;
1206			return -1;
1207		}
1208	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1209		shared_int = false;
1210		if (request_irq(irq,
1211		                igb_test_intr, 0, netdev->name, adapter)) {
1212			*data = 1;
1213			return -1;
1214		}
1215	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1216				netdev->name, adapter)) {
1217		shared_int = false;
1218	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1219		 netdev->name, adapter)) {
1220		*data = 1;
1221		return -1;
1222	}
1223	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1224		(shared_int ? "shared" : "unshared"));
1225
1226	/* Disable all the interrupts */
1227	wr32(E1000_IMC, ~0);
1228	wrfl();
1229	msleep(10);
1230
1231	/* Define all writable bits for ICS */
1232	switch (hw->mac.type) {
1233	case e1000_82575:
1234		ics_mask = 0x37F47EDD;
1235		break;
1236	case e1000_82576:
1237		ics_mask = 0x77D4FBFD;
1238		break;
1239	case e1000_82580:
1240		ics_mask = 0x77DCFED5;
1241		break;
1242	case e1000_i350:
1243		ics_mask = 0x77DCFED5;
1244		break;
1245	default:
1246		ics_mask = 0x7FFFFFFF;
1247		break;
1248	}
1249
1250	/* Test each interrupt */
1251	for (; i < 31; i++) {
1252		/* Interrupt to test */
1253		mask = 1 << i;
1254
1255		if (!(mask & ics_mask))
1256			continue;
1257
1258		if (!shared_int) {
1259			/* Disable the interrupt to be reported in
1260			 * the cause register and then force the same
1261			 * interrupt and see if one gets posted.  If
1262			 * an interrupt was posted to the bus, the
1263			 * test failed.
1264			 */
1265			adapter->test_icr = 0;
1266
1267			/* Flush any pending interrupts */
1268			wr32(E1000_ICR, ~0);
1269
1270			wr32(E1000_IMC, mask);
1271			wr32(E1000_ICS, mask);
1272			wrfl();
1273			msleep(10);
1274
1275			if (adapter->test_icr & mask) {
1276				*data = 3;
1277				break;
1278			}
1279		}
1280
1281		/* Enable the interrupt to be reported in
1282		 * the cause register and then force the same
1283		 * interrupt and see if one gets posted.  If
1284		 * an interrupt was not posted to the bus, the
1285		 * test failed.
1286		 */
1287		adapter->test_icr = 0;
1288
1289		/* Flush any pending interrupts */
1290		wr32(E1000_ICR, ~0);
1291
1292		wr32(E1000_IMS, mask);
1293		wr32(E1000_ICS, mask);
1294		wrfl();
1295		msleep(10);
1296
1297		if (!(adapter->test_icr & mask)) {
1298			*data = 4;
1299			break;
1300		}
1301
1302		if (!shared_int) {
1303			/* Disable the other interrupts to be reported in
1304			 * the cause register and then force the other
1305			 * interrupts and see if any get posted.  If
1306			 * an interrupt was posted to the bus, the
1307			 * test failed.
1308			 */
1309			adapter->test_icr = 0;
1310
1311			/* Flush any pending interrupts */
1312			wr32(E1000_ICR, ~0);
1313
1314			wr32(E1000_IMC, ~mask);
1315			wr32(E1000_ICS, ~mask);
1316			wrfl();
1317			msleep(10);
1318
1319			if (adapter->test_icr & mask) {
1320				*data = 5;
1321				break;
1322			}
1323		}
1324	}
1325
1326	/* Disable all the interrupts */
1327	wr32(E1000_IMC, ~0);
1328	wrfl();
1329	msleep(10);
1330
1331	/* Unhook test interrupt handler */
1332	if (adapter->msix_entries)
1333		free_irq(adapter->msix_entries[0].vector, adapter);
1334	else
1335		free_irq(irq, adapter);
1336
1337	return *data;
1338}
1339
1340static void igb_free_desc_rings(struct igb_adapter *adapter)
1341{
1342	igb_free_tx_resources(&adapter->test_tx_ring);
1343	igb_free_rx_resources(&adapter->test_rx_ring);
1344}
1345
1346static int igb_setup_desc_rings(struct igb_adapter *adapter)
1347{
1348	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1349	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1350	struct e1000_hw *hw = &adapter->hw;
1351	int ret_val;
1352
1353	/* Setup Tx descriptor ring and Tx buffers */
1354	tx_ring->count = IGB_DEFAULT_TXD;
1355	tx_ring->dev = &adapter->pdev->dev;
1356	tx_ring->netdev = adapter->netdev;
1357	tx_ring->reg_idx = adapter->vfs_allocated_count;
1358
1359	if (igb_setup_tx_resources(tx_ring)) {
1360		ret_val = 1;
1361		goto err_nomem;
1362	}
1363
1364	igb_setup_tctl(adapter);
1365	igb_configure_tx_ring(adapter, tx_ring);
1366
1367	/* Setup Rx descriptor ring and Rx buffers */
1368	rx_ring->count = IGB_DEFAULT_RXD;
1369	rx_ring->dev = &adapter->pdev->dev;
1370	rx_ring->netdev = adapter->netdev;
1371	rx_ring->reg_idx = adapter->vfs_allocated_count;
1372
1373	if (igb_setup_rx_resources(rx_ring)) {
1374		ret_val = 3;
1375		goto err_nomem;
1376	}
1377
1378	/* set the default queue to queue 0 of PF */
1379	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1380
1381	/* enable receive ring */
1382	igb_setup_rctl(adapter);
1383	igb_configure_rx_ring(adapter, rx_ring);
1384
1385	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1386
1387	return 0;
1388
1389err_nomem:
1390	igb_free_desc_rings(adapter);
1391	return ret_val;
1392}
1393
1394static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1395{
1396	struct e1000_hw *hw = &adapter->hw;
1397
1398	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1399	igb_write_phy_reg(hw, 29, 0x001F);
1400	igb_write_phy_reg(hw, 30, 0x8FFC);
1401	igb_write_phy_reg(hw, 29, 0x001A);
1402	igb_write_phy_reg(hw, 30, 0x8FF0);
1403}
1404
1405static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1406{
1407	struct e1000_hw *hw = &adapter->hw;
1408	u32 ctrl_reg = 0;
1409
1410	hw->mac.autoneg = false;
1411
1412	if (hw->phy.type == e1000_phy_m88) {
1413		/* Auto-MDI/MDIX Off */
1414		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1415		/* reset to update Auto-MDI/MDIX */
1416		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1417		/* autoneg off */
1418		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1419	} else if (hw->phy.type == e1000_phy_82580) {
1420		/* enable MII loopback */
1421		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1422	}
1423
1424	ctrl_reg = rd32(E1000_CTRL);
1425
1426	/* force 1000, set loopback */
1427	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1428
1429	/* Now set up the MAC to the same speed/duplex as the PHY. */
1430	ctrl_reg = rd32(E1000_CTRL);
1431	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1432	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1433		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1434		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1435		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1436		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1437
1438	if (hw->phy.type == e1000_phy_m88)
1439		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1440
1441	wr32(E1000_CTRL, ctrl_reg);
1442
1443	/* Disable the receiver on the PHY so when a cable is plugged in, the
1444	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1445	 */
1446	if (hw->phy.type == e1000_phy_m88)
1447		igb_phy_disable_receiver(adapter);
1448
1449	udelay(500);
1450
1451	return 0;
1452}
1453
1454static int igb_set_phy_loopback(struct igb_adapter *adapter)
1455{
1456	return igb_integrated_phy_loopback(adapter);
1457}
1458
1459static int igb_setup_loopback_test(struct igb_adapter *adapter)
1460{
1461	struct e1000_hw *hw = &adapter->hw;
1462	u32 reg;
1463
1464	reg = rd32(E1000_CTRL_EXT);
1465
1466	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1467	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1468		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1469		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1470		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1471		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1472
1473			/* Enable DH89xxCC MPHY for near end loopback */
1474			reg = rd32(E1000_MPHY_ADDR_CTL);
1475			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1476			E1000_MPHY_PCS_CLK_REG_OFFSET;
1477			wr32(E1000_MPHY_ADDR_CTL, reg);
1478
1479			reg = rd32(E1000_MPHY_DATA);
1480			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1481			wr32(E1000_MPHY_DATA, reg);
1482		}
1483
1484		reg = rd32(E1000_RCTL);
1485		reg |= E1000_RCTL_LBM_TCVR;
1486		wr32(E1000_RCTL, reg);
1487
1488		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1489
1490		reg = rd32(E1000_CTRL);
1491		reg &= ~(E1000_CTRL_RFCE |
1492			 E1000_CTRL_TFCE |
1493			 E1000_CTRL_LRST);
1494		reg |= E1000_CTRL_SLU |
1495		       E1000_CTRL_FD;
1496		wr32(E1000_CTRL, reg);
1497
1498		/* Unset switch control to serdes energy detect */
1499		reg = rd32(E1000_CONNSW);
1500		reg &= ~E1000_CONNSW_ENRGSRC;
1501		wr32(E1000_CONNSW, reg);
1502
1503		/* Set PCS register for forced speed */
1504		reg = rd32(E1000_PCS_LCTL);
1505		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1506		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1507		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1508		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1509		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1510		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1511		wr32(E1000_PCS_LCTL, reg);
1512
1513		return 0;
1514	}
1515
1516	return igb_set_phy_loopback(adapter);
1517}
1518
1519static void igb_loopback_cleanup(struct igb_adapter *adapter)
1520{
1521	struct e1000_hw *hw = &adapter->hw;
1522	u32 rctl;
1523	u16 phy_reg;
1524
1525	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1526	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1527	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1528	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1529		u32 reg;
1530
1531		/* Disable near end loopback on DH89xxCC */
1532		reg = rd32(E1000_MPHY_ADDR_CTL);
1533		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1534		E1000_MPHY_PCS_CLK_REG_OFFSET;
1535		wr32(E1000_MPHY_ADDR_CTL, reg);
1536
1537		reg = rd32(E1000_MPHY_DATA);
1538		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1539		wr32(E1000_MPHY_DATA, reg);
1540	}
1541
1542	rctl = rd32(E1000_RCTL);
1543	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1544	wr32(E1000_RCTL, rctl);
1545
1546	hw->mac.autoneg = true;
1547	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1548	if (phy_reg & MII_CR_LOOPBACK) {
1549		phy_reg &= ~MII_CR_LOOPBACK;
1550		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1551		igb_phy_sw_reset(hw);
1552	}
1553}
1554
1555static void igb_create_lbtest_frame(struct sk_buff *skb,
1556				    unsigned int frame_size)
1557{
1558	memset(skb->data, 0xFF, frame_size);
1559	frame_size /= 2;
1560	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1561	memset(&skb->data[frame_size + 10], 0xBE, 1);
1562	memset(&skb->data[frame_size + 12], 0xAF, 1);
1563}
1564
1565static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1566{
1567	frame_size /= 2;
1568	if (*(skb->data + 3) == 0xFF) {
1569		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1570		   (*(skb->data + frame_size + 12) == 0xAF)) {
1571			return 0;
1572		}
1573	}
1574	return 13;
1575}
1576
1577static int igb_clean_test_rings(struct igb_ring *rx_ring,
1578                                struct igb_ring *tx_ring,
1579                                unsigned int size)
1580{
1581	union e1000_adv_rx_desc *rx_desc;
1582	struct igb_rx_buffer *rx_buffer_info;
1583	struct igb_tx_buffer *tx_buffer_info;
1584	u32 staterr;
1585	u16 rx_ntc, tx_ntc, count = 0;
1586
1587	/* initialize next to clean and descriptor values */
1588	rx_ntc = rx_ring->next_to_clean;
1589	tx_ntc = tx_ring->next_to_clean;
1590	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1591	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1592
1593	while (staterr & E1000_RXD_STAT_DD) {
1594		/* check rx buffer */
1595		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1596
1597		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1598		dma_unmap_single(rx_ring->dev,
1599				 rx_buffer_info->dma,
1600				 IGB_RX_HDR_LEN,
1601				 DMA_FROM_DEVICE);
1602		rx_buffer_info->dma = 0;
1603
1604		/* verify contents of skb */
1605		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1606			count++;
1607
1608		/* unmap buffer on tx side */
1609		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1610		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1611
1612		/* increment rx/tx next to clean counters */
1613		rx_ntc++;
1614		if (rx_ntc == rx_ring->count)
1615			rx_ntc = 0;
1616		tx_ntc++;
1617		if (tx_ntc == tx_ring->count)
1618			tx_ntc = 0;
1619
1620		/* fetch next descriptor */
1621		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1622		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1623	}
1624
1625	/* re-map buffers to ring, store next to clean values */
1626	igb_alloc_rx_buffers(rx_ring, count);
1627	rx_ring->next_to_clean = rx_ntc;
1628	tx_ring->next_to_clean = tx_ntc;
1629
1630	return count;
1631}
1632
1633static int igb_run_loopback_test(struct igb_adapter *adapter)
1634{
1635	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1636	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1637	u16 i, j, lc, good_cnt;
1638	int ret_val = 0;
1639	unsigned int size = IGB_RX_HDR_LEN;
1640	netdev_tx_t tx_ret_val;
1641	struct sk_buff *skb;
1642
1643	/* allocate test skb */
1644	skb = alloc_skb(size, GFP_KERNEL);
1645	if (!skb)
1646		return 11;
1647
1648	/* place data into test skb */
1649	igb_create_lbtest_frame(skb, size);
1650	skb_put(skb, size);
1651
1652	/*
1653	 * Calculate the loop count based on the largest descriptor ring
1654	 * The idea is to wrap the largest ring a number of times using 64
1655	 * send/receive pairs during each loop
1656	 */
1657
1658	if (rx_ring->count <= tx_ring->count)
1659		lc = ((tx_ring->count / 64) * 2) + 1;
1660	else
1661		lc = ((rx_ring->count / 64) * 2) + 1;
1662
1663	for (j = 0; j <= lc; j++) { /* loop count loop */
1664		/* reset count of good packets */
1665		good_cnt = 0;
1666
1667		/* place 64 packets on the transmit queue*/
1668		for (i = 0; i < 64; i++) {
1669			skb_get(skb);
1670			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1671			if (tx_ret_val == NETDEV_TX_OK)
1672				good_cnt++;
1673		}
1674
1675		if (good_cnt != 64) {
1676			ret_val = 12;
1677			break;
1678		}
1679
1680		/* allow 200 milliseconds for packets to go from tx to rx */
1681		msleep(200);
1682
1683		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1684		if (good_cnt != 64) {
1685			ret_val = 13;
1686			break;
1687		}
1688	} /* end loop count loop */
1689
1690	/* free the original skb */
1691	kfree_skb(skb);
1692
1693	return ret_val;
1694}
1695
1696static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1697{
1698	/* PHY loopback cannot be performed if SoL/IDER
1699	 * sessions are active */
1700	if (igb_check_reset_block(&adapter->hw)) {
1701		dev_err(&adapter->pdev->dev,
1702			"Cannot do PHY loopback test "
1703			"when SoL/IDER is active.\n");
1704		*data = 0;
1705		goto out;
1706	}
1707	*data = igb_setup_desc_rings(adapter);
1708	if (*data)
1709		goto out;
1710	*data = igb_setup_loopback_test(adapter);
1711	if (*data)
1712		goto err_loopback;
1713	*data = igb_run_loopback_test(adapter);
1714	igb_loopback_cleanup(adapter);
1715
1716err_loopback:
1717	igb_free_desc_rings(adapter);
1718out:
1719	return *data;
1720}
1721
1722static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1723{
1724	struct e1000_hw *hw = &adapter->hw;
1725	*data = 0;
1726	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1727		int i = 0;
1728		hw->mac.serdes_has_link = false;
1729
1730		/* On some blade server designs, link establishment
1731		 * could take as long as 2-3 minutes */
1732		do {
1733			hw->mac.ops.check_for_link(&adapter->hw);
1734			if (hw->mac.serdes_has_link)
1735				return *data;
1736			msleep(20);
1737		} while (i++ < 3750);
1738
1739		*data = 1;
1740	} else {
1741		hw->mac.ops.check_for_link(&adapter->hw);
1742		if (hw->mac.autoneg)
1743			msleep(4000);
1744
1745		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1746			*data = 1;
1747	}
1748	return *data;
1749}
1750
1751static void igb_diag_test(struct net_device *netdev,
1752			  struct ethtool_test *eth_test, u64 *data)
1753{
1754	struct igb_adapter *adapter = netdev_priv(netdev);
1755	u16 autoneg_advertised;
1756	u8 forced_speed_duplex, autoneg;
1757	bool if_running = netif_running(netdev);
1758
1759	set_bit(__IGB_TESTING, &adapter->state);
1760	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1761		/* Offline tests */
1762
1763		/* save speed, duplex, autoneg settings */
1764		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1765		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1766		autoneg = adapter->hw.mac.autoneg;
1767
1768		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1769
1770		/* power up link for link test */
1771		igb_power_up_link(adapter);
1772
1773		/* Link test performed before hardware reset so autoneg doesn't
1774		 * interfere with test result */
1775		if (igb_link_test(adapter, &data[4]))
1776			eth_test->flags |= ETH_TEST_FL_FAILED;
1777
1778		if (if_running)
1779			/* indicate we're in test mode */
1780			dev_close(netdev);
1781		else
1782			igb_reset(adapter);
1783
1784		if (igb_reg_test(adapter, &data[0]))
1785			eth_test->flags |= ETH_TEST_FL_FAILED;
1786
1787		igb_reset(adapter);
1788		if (igb_eeprom_test(adapter, &data[1]))
1789			eth_test->flags |= ETH_TEST_FL_FAILED;
1790
1791		igb_reset(adapter);
1792		if (igb_intr_test(adapter, &data[2]))
1793			eth_test->flags |= ETH_TEST_FL_FAILED;
1794
1795		igb_reset(adapter);
1796		/* power up link for loopback test */
1797		igb_power_up_link(adapter);
1798		if (igb_loopback_test(adapter, &data[3]))
1799			eth_test->flags |= ETH_TEST_FL_FAILED;
1800
1801		/* restore speed, duplex, autoneg settings */
1802		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1803		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1804		adapter->hw.mac.autoneg = autoneg;
1805
1806		/* force this routine to wait until autoneg complete/timeout */
1807		adapter->hw.phy.autoneg_wait_to_complete = true;
1808		igb_reset(adapter);
1809		adapter->hw.phy.autoneg_wait_to_complete = false;
1810
1811		clear_bit(__IGB_TESTING, &adapter->state);
1812		if (if_running)
1813			dev_open(netdev);
1814	} else {
1815		dev_info(&adapter->pdev->dev, "online testing starting\n");
1816
1817		/* PHY is powered down when interface is down */
1818		if (if_running && igb_link_test(adapter, &data[4]))
1819			eth_test->flags |= ETH_TEST_FL_FAILED;
1820		else
1821			data[4] = 0;
1822
1823		/* Online tests aren't run; pass by default */
1824		data[0] = 0;
1825		data[1] = 0;
1826		data[2] = 0;
1827		data[3] = 0;
1828
1829		clear_bit(__IGB_TESTING, &adapter->state);
1830	}
1831	msleep_interruptible(4 * 1000);
1832}
1833
1834static int igb_wol_exclusion(struct igb_adapter *adapter,
1835			     struct ethtool_wolinfo *wol)
1836{
1837	struct e1000_hw *hw = &adapter->hw;
1838	int retval = 1; /* fail by default */
1839
1840	switch (hw->device_id) {
1841	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1842		/* WoL not supported */
1843		wol->supported = 0;
1844		break;
1845	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1846	case E1000_DEV_ID_82576_FIBER:
1847	case E1000_DEV_ID_82576_SERDES:
1848		/* Wake events not supported on port B */
1849		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1850			wol->supported = 0;
1851			break;
1852		}
1853		/* return success for non excluded adapter ports */
1854		retval = 0;
1855		break;
1856	case E1000_DEV_ID_82576_QUAD_COPPER:
1857	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1858		/* quad port adapters only support WoL on port A */
1859		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1860			wol->supported = 0;
1861			break;
1862		}
1863		/* return success for non excluded adapter ports */
1864		retval = 0;
1865		break;
1866	default:
1867		/* dual port cards only support WoL on port A from now on
1868		 * unless it was enabled in the eeprom for port B
1869		 * so exclude FUNC_1 ports from having WoL enabled */
1870		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1871		    !adapter->eeprom_wol) {
1872			wol->supported = 0;
1873			break;
1874		}
1875
1876		retval = 0;
1877	}
1878
1879	return retval;
1880}
1881
1882static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1883{
1884	struct igb_adapter *adapter = netdev_priv(netdev);
1885
1886	wol->supported = WAKE_UCAST | WAKE_MCAST |
1887	                 WAKE_BCAST | WAKE_MAGIC |
1888	                 WAKE_PHY;
1889	wol->wolopts = 0;
1890
1891	/* this function will set ->supported = 0 and return 1 if wol is not
1892	 * supported by this hardware */
1893	if (igb_wol_exclusion(adapter, wol) ||
1894	    !device_can_wakeup(&adapter->pdev->dev))
1895		return;
1896
1897	/* apply any specific unsupported masks here */
1898	switch (adapter->hw.device_id) {
1899	default:
1900		break;
1901	}
1902
1903	if (adapter->wol & E1000_WUFC_EX)
1904		wol->wolopts |= WAKE_UCAST;
1905	if (adapter->wol & E1000_WUFC_MC)
1906		wol->wolopts |= WAKE_MCAST;
1907	if (adapter->wol & E1000_WUFC_BC)
1908		wol->wolopts |= WAKE_BCAST;
1909	if (adapter->wol & E1000_WUFC_MAG)
1910		wol->wolopts |= WAKE_MAGIC;
1911	if (adapter->wol & E1000_WUFC_LNKC)
1912		wol->wolopts |= WAKE_PHY;
1913}
1914
1915static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1916{
1917	struct igb_adapter *adapter = netdev_priv(netdev);
1918
1919	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1920		return -EOPNOTSUPP;
1921
1922	if (igb_wol_exclusion(adapter, wol) ||
1923	    !device_can_wakeup(&adapter->pdev->dev))
1924		return wol->wolopts ? -EOPNOTSUPP : 0;
1925
1926	/* these settings will always override what we currently have */
1927	adapter->wol = 0;
1928
1929	if (wol->wolopts & WAKE_UCAST)
1930		adapter->wol |= E1000_WUFC_EX;
1931	if (wol->wolopts & WAKE_MCAST)
1932		adapter->wol |= E1000_WUFC_MC;
1933	if (wol->wolopts & WAKE_BCAST)
1934		adapter->wol |= E1000_WUFC_BC;
1935	if (wol->wolopts & WAKE_MAGIC)
1936		adapter->wol |= E1000_WUFC_MAG;
1937	if (wol->wolopts & WAKE_PHY)
1938		adapter->wol |= E1000_WUFC_LNKC;
1939	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1940
1941	return 0;
1942}
1943
1944/* bit defines for adapter->led_status */
1945#define IGB_LED_ON		0
1946
1947static int igb_set_phys_id(struct net_device *netdev,
1948			   enum ethtool_phys_id_state state)
1949{
1950	struct igb_adapter *adapter = netdev_priv(netdev);
1951	struct e1000_hw *hw = &adapter->hw;
1952
1953	switch (state) {
1954	case ETHTOOL_ID_ACTIVE:
1955		igb_blink_led(hw);
1956		return 2;
1957	case ETHTOOL_ID_ON:
1958		igb_blink_led(hw);
1959		break;
1960	case ETHTOOL_ID_OFF:
1961		igb_led_off(hw);
1962		break;
1963	case ETHTOOL_ID_INACTIVE:
1964		igb_led_off(hw);
1965		clear_bit(IGB_LED_ON, &adapter->led_status);
1966		igb_cleanup_led(hw);
1967		break;
1968	}
1969
1970	return 0;
1971}
1972
1973static int igb_set_coalesce(struct net_device *netdev,
1974			    struct ethtool_coalesce *ec)
1975{
1976	struct igb_adapter *adapter = netdev_priv(netdev);
1977	int i;
1978
1979	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1980	    ((ec->rx_coalesce_usecs > 3) &&
1981	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1982	    (ec->rx_coalesce_usecs == 2))
1983		return -EINVAL;
1984
1985	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1986	    ((ec->tx_coalesce_usecs > 3) &&
1987	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1988	    (ec->tx_coalesce_usecs == 2))
1989		return -EINVAL;
1990
1991	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1992		return -EINVAL;
1993
1994	/* If ITR is disabled, disable DMAC */
1995	if (ec->rx_coalesce_usecs == 0) {
1996		if (adapter->flags & IGB_FLAG_DMAC)
1997			adapter->flags &= ~IGB_FLAG_DMAC;
1998	}
1999
2000	/* convert to rate of irq's per second */
2001	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2002		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2003	else
2004		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2005
2006	/* convert to rate of irq's per second */
2007	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2008		adapter->tx_itr_setting = adapter->rx_itr_setting;
2009	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2010		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2011	else
2012		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2013
2014	for (i = 0; i < adapter->num_q_vectors; i++) {
2015		struct igb_q_vector *q_vector = adapter->q_vector[i];
2016		q_vector->tx_work_limit = adapter->tx_work_limit;
2017		if (q_vector->rx_ring)
2018			q_vector->itr_val = adapter->rx_itr_setting;
2019		else
2020			q_vector->itr_val = adapter->tx_itr_setting;
2021		if (q_vector->itr_val && q_vector->itr_val <= 3)
2022			q_vector->itr_val = IGB_START_ITR;
2023		q_vector->set_itr = 1;
2024	}
2025
2026	return 0;
2027}
2028
2029static int igb_get_coalesce(struct net_device *netdev,
2030			    struct ethtool_coalesce *ec)
2031{
2032	struct igb_adapter *adapter = netdev_priv(netdev);
2033
2034	if (adapter->rx_itr_setting <= 3)
2035		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2036	else
2037		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2038
2039	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2040		if (adapter->tx_itr_setting <= 3)
2041			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2042		else
2043			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2044	}
2045
2046	return 0;
2047}
2048
2049static int igb_nway_reset(struct net_device *netdev)
2050{
2051	struct igb_adapter *adapter = netdev_priv(netdev);
2052	if (netif_running(netdev))
2053		igb_reinit_locked(adapter);
2054	return 0;
2055}
2056
2057static int igb_get_sset_count(struct net_device *netdev, int sset)
2058{
2059	switch (sset) {
2060	case ETH_SS_STATS:
2061		return IGB_STATS_LEN;
2062	case ETH_SS_TEST:
2063		return IGB_TEST_LEN;
2064	default:
2065		return -ENOTSUPP;
2066	}
2067}
2068
2069static void igb_get_ethtool_stats(struct net_device *netdev,
2070				  struct ethtool_stats *stats, u64 *data)
2071{
2072	struct igb_adapter *adapter = netdev_priv(netdev);
2073	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2074	unsigned int start;
2075	struct igb_ring *ring;
2076	int i, j;
2077	char *p;
2078
2079	spin_lock(&adapter->stats64_lock);
2080	igb_update_stats(adapter, net_stats);
2081
2082	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2083		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2084		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2085			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2086	}
2087	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2088		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2089		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2090			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2091	}
2092	for (j = 0; j < adapter->num_tx_queues; j++) {
2093		u64	restart2;
2094
2095		ring = adapter->tx_ring[j];
2096		do {
2097			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2098			data[i]   = ring->tx_stats.packets;
2099			data[i+1] = ring->tx_stats.bytes;
2100			data[i+2] = ring->tx_stats.restart_queue;
2101		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2102		do {
2103			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2104			restart2  = ring->tx_stats.restart_queue2;
2105		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2106		data[i+2] += restart2;
2107
2108		i += IGB_TX_QUEUE_STATS_LEN;
2109	}
2110	for (j = 0; j < adapter->num_rx_queues; j++) {
2111		ring = adapter->rx_ring[j];
2112		do {
2113			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2114			data[i]   = ring->rx_stats.packets;
2115			data[i+1] = ring->rx_stats.bytes;
2116			data[i+2] = ring->rx_stats.drops;
2117			data[i+3] = ring->rx_stats.csum_err;
2118			data[i+4] = ring->rx_stats.alloc_failed;
2119		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2120		i += IGB_RX_QUEUE_STATS_LEN;
2121	}
2122	spin_unlock(&adapter->stats64_lock);
2123}
2124
2125static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2126{
2127	struct igb_adapter *adapter = netdev_priv(netdev);
2128	u8 *p = data;
2129	int i;
2130
2131	switch (stringset) {
2132	case ETH_SS_TEST:
2133		memcpy(data, *igb_gstrings_test,
2134			IGB_TEST_LEN*ETH_GSTRING_LEN);
2135		break;
2136	case ETH_SS_STATS:
2137		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2138			memcpy(p, igb_gstrings_stats[i].stat_string,
2139			       ETH_GSTRING_LEN);
2140			p += ETH_GSTRING_LEN;
2141		}
2142		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2143			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2144			       ETH_GSTRING_LEN);
2145			p += ETH_GSTRING_LEN;
2146		}
2147		for (i = 0; i < adapter->num_tx_queues; i++) {
2148			sprintf(p, "tx_queue_%u_packets", i);
2149			p += ETH_GSTRING_LEN;
2150			sprintf(p, "tx_queue_%u_bytes", i);
2151			p += ETH_GSTRING_LEN;
2152			sprintf(p, "tx_queue_%u_restart", i);
2153			p += ETH_GSTRING_LEN;
2154		}
2155		for (i = 0; i < adapter->num_rx_queues; i++) {
2156			sprintf(p, "rx_queue_%u_packets", i);
2157			p += ETH_GSTRING_LEN;
2158			sprintf(p, "rx_queue_%u_bytes", i);
2159			p += ETH_GSTRING_LEN;
2160			sprintf(p, "rx_queue_%u_drops", i);
2161			p += ETH_GSTRING_LEN;
2162			sprintf(p, "rx_queue_%u_csum_err", i);
2163			p += ETH_GSTRING_LEN;
2164			sprintf(p, "rx_queue_%u_alloc_failed", i);
2165			p += ETH_GSTRING_LEN;
2166		}
2167/*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2168		break;
2169	}
2170}
2171
2172static const struct ethtool_ops igb_ethtool_ops = {
2173	.get_settings           = igb_get_settings,
2174	.set_settings           = igb_set_settings,
2175	.get_drvinfo            = igb_get_drvinfo,
2176	.get_regs_len           = igb_get_regs_len,
2177	.get_regs               = igb_get_regs,
2178	.get_wol                = igb_get_wol,
2179	.set_wol                = igb_set_wol,
2180	.get_msglevel           = igb_get_msglevel,
2181	.set_msglevel           = igb_set_msglevel,
2182	.nway_reset             = igb_nway_reset,
2183	.get_link               = igb_get_link,
2184	.get_eeprom_len         = igb_get_eeprom_len,
2185	.get_eeprom             = igb_get_eeprom,
2186	.set_eeprom             = igb_set_eeprom,
2187	.get_ringparam          = igb_get_ringparam,
2188	.set_ringparam          = igb_set_ringparam,
2189	.get_pauseparam         = igb_get_pauseparam,
2190	.set_pauseparam         = igb_set_pauseparam,
2191	.self_test              = igb_diag_test,
2192	.get_strings            = igb_get_strings,
2193	.set_phys_id            = igb_set_phys_id,
2194	.get_sset_count         = igb_get_sset_count,
2195	.get_ethtool_stats      = igb_get_ethtool_stats,
2196	.get_coalesce           = igb_get_coalesce,
2197	.set_coalesce           = igb_set_coalesce,
2198};
2199
2200void igb_set_ethtool_ops(struct net_device *netdev)
2201{
2202	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2203}
2204