1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2010 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
16#include <linux/i2c.h>
17#include <linux/mii.h>
18#include <linux/slab.h>
19#include "net_driver.h"
20#include "bitfield.h"
21#include "efx.h"
22#include "mac.h"
23#include "spi.h"
24#include "nic.h"
25#include "regs.h"
26#include "io.h"
27#include "phy.h"
28#include "workarounds.h"
29
30/* Hardware control for SFC4000 (aka Falcon). */
31
32static const unsigned int
33/* "Large" EEPROM device: Atmel AT25640 or similar
34 * 8 KB, 16-bit address, 32 B write block */
35large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
36		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
37		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
38/* Default flash device: Atmel AT25F1024
39 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
40default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
41		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
42		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
43		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
44		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
45
46/**************************************************************************
47 *
48 * I2C bus - this is a bit-bashing interface using GPIO pins
49 * Note that it uses the output enables to tristate the outputs
50 * SDA is the data pin and SCL is the clock
51 *
52 **************************************************************************
53 */
54static void falcon_setsda(void *data, int state)
55{
56	struct efx_nic *efx = (struct efx_nic *)data;
57	efx_oword_t reg;
58
59	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
60	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
61	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
62}
63
64static void falcon_setscl(void *data, int state)
65{
66	struct efx_nic *efx = (struct efx_nic *)data;
67	efx_oword_t reg;
68
69	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
70	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
71	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
72}
73
74static int falcon_getsda(void *data)
75{
76	struct efx_nic *efx = (struct efx_nic *)data;
77	efx_oword_t reg;
78
79	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
80	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
81}
82
83static int falcon_getscl(void *data)
84{
85	struct efx_nic *efx = (struct efx_nic *)data;
86	efx_oword_t reg;
87
88	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
89	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
90}
91
92static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
93	.setsda		= falcon_setsda,
94	.setscl		= falcon_setscl,
95	.getsda		= falcon_getsda,
96	.getscl		= falcon_getscl,
97	.udelay		= 5,
98	/* Wait up to 50 ms for slave to let us pull SCL high */
99	.timeout	= DIV_ROUND_UP(HZ, 20),
100};
101
102static void falcon_push_irq_moderation(struct efx_channel *channel)
103{
104	efx_dword_t timer_cmd;
105	struct efx_nic *efx = channel->efx;
106
107	BUILD_BUG_ON(EFX_IRQ_MOD_MAX > (1 << FRF_AB_TC_TIMER_VAL_WIDTH));
108
109	/* Set timer register */
110	if (channel->irq_moderation) {
111		EFX_POPULATE_DWORD_2(timer_cmd,
112				     FRF_AB_TC_TIMER_MODE,
113				     FFE_BB_TIMER_MODE_INT_HLDOFF,
114				     FRF_AB_TC_TIMER_VAL,
115				     channel->irq_moderation - 1);
116	} else {
117		EFX_POPULATE_DWORD_2(timer_cmd,
118				     FRF_AB_TC_TIMER_MODE,
119				     FFE_BB_TIMER_MODE_DIS,
120				     FRF_AB_TC_TIMER_VAL, 0);
121	}
122	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
123	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
124			       channel->channel);
125}
126
127static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
128
129static void falcon_prepare_flush(struct efx_nic *efx)
130{
131	falcon_deconfigure_mac_wrapper(efx);
132
133	/* Wait for the tx and rx fifo's to get to the next packet boundary
134	 * (~1ms without back-pressure), then to drain the remainder of the
135	 * fifo's at data path speeds (negligible), with a healthy margin. */
136	msleep(10);
137}
138
139/* Acknowledge a legacy interrupt from Falcon
140 *
141 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142 *
143 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
144 * BIU. Interrupt acknowledge is read sensitive so must write instead
145 * (then read to ensure the BIU collector is flushed)
146 *
147 * NB most hardware supports MSI interrupts
148 */
149inline void falcon_irq_ack_a1(struct efx_nic *efx)
150{
151	efx_dword_t reg;
152
153	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
154	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
155	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
156}
157
158
159irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
160{
161	struct efx_nic *efx = dev_id;
162	efx_oword_t *int_ker = efx->irq_status.addr;
163	int syserr;
164	int queues;
165
166	/* Check to see if this is our interrupt.  If it isn't, we
167	 * exit without having touched the hardware.
168	 */
169	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170		netif_vdbg(efx, intr, efx->net_dev,
171			   "IRQ %d on CPU %d not for me\n", irq,
172			   raw_smp_processor_id());
173		return IRQ_NONE;
174	}
175	efx->last_irq_cpu = raw_smp_processor_id();
176	netif_vdbg(efx, intr, efx->net_dev,
177		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
179
180	/* Determine interrupting queues, clear interrupt status
181	 * register and acknowledge the device interrupt.
182	 */
183	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
184	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
185
186	/* Check to see if we have a serious error condition */
187	if (queues & (1U << efx->fatal_irq_level)) {
188		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
189		if (unlikely(syserr))
190			return efx_nic_fatal_interrupt(efx);
191	}
192
193	EFX_ZERO_OWORD(*int_ker);
194	wmb(); /* Ensure the vector is cleared before interrupt ack */
195	falcon_irq_ack_a1(efx);
196
197	if (queues & 1)
198		efx_schedule_channel(efx_get_channel(efx, 0));
199	if (queues & 2)
200		efx_schedule_channel(efx_get_channel(efx, 1));
201	return IRQ_HANDLED;
202}
203/**************************************************************************
204 *
205 * EEPROM/flash
206 *
207 **************************************************************************
208 */
209
210#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
211
212static int falcon_spi_poll(struct efx_nic *efx)
213{
214	efx_oword_t reg;
215	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
216	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
217}
218
219/* Wait for SPI command completion */
220static int falcon_spi_wait(struct efx_nic *efx)
221{
222	/* Most commands will finish quickly, so we start polling at
223	 * very short intervals.  Sometimes the command may have to
224	 * wait for VPD or expansion ROM access outside of our
225	 * control, so we allow up to 100 ms. */
226	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
227	int i;
228
229	for (i = 0; i < 10; i++) {
230		if (!falcon_spi_poll(efx))
231			return 0;
232		udelay(10);
233	}
234
235	for (;;) {
236		if (!falcon_spi_poll(efx))
237			return 0;
238		if (time_after_eq(jiffies, timeout)) {
239			netif_err(efx, hw, efx->net_dev,
240				  "timed out waiting for SPI\n");
241			return -ETIMEDOUT;
242		}
243		schedule_timeout_uninterruptible(1);
244	}
245}
246
247int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
248		   unsigned int command, int address,
249		   const void *in, void *out, size_t len)
250{
251	bool addressed = (address >= 0);
252	bool reading = (out != NULL);
253	efx_oword_t reg;
254	int rc;
255
256	/* Input validation */
257	if (len > FALCON_SPI_MAX_LEN)
258		return -EINVAL;
259
260	/* Check that previous command is not still running */
261	rc = falcon_spi_poll(efx);
262	if (rc)
263		return rc;
264
265	/* Program address register, if we have an address */
266	if (addressed) {
267		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
268		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
269	}
270
271	/* Program data register, if we have data */
272	if (in != NULL) {
273		memcpy(&reg, in, len);
274		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
275	}
276
277	/* Issue read/write command */
278	EFX_POPULATE_OWORD_7(reg,
279			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
280			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
281			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
282			     FRF_AB_EE_SPI_HCMD_READ, reading,
283			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
284			     FRF_AB_EE_SPI_HCMD_ADBCNT,
285			     (addressed ? spi->addr_len : 0),
286			     FRF_AB_EE_SPI_HCMD_ENC, command);
287	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
288
289	/* Wait for read/write to complete */
290	rc = falcon_spi_wait(efx);
291	if (rc)
292		return rc;
293
294	/* Read data */
295	if (out != NULL) {
296		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
297		memcpy(out, &reg, len);
298	}
299
300	return 0;
301}
302
303static size_t
304falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
305{
306	return min(FALCON_SPI_MAX_LEN,
307		   (spi->block_size - (start & (spi->block_size - 1))));
308}
309
310static inline u8
311efx_spi_munge_command(const struct efx_spi_device *spi,
312		      const u8 command, const unsigned int address)
313{
314	return command | (((address >> 8) & spi->munge_address) << 3);
315}
316
317/* Wait up to 10 ms for buffered write completion */
318int
319falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
320{
321	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
322	u8 status;
323	int rc;
324
325	for (;;) {
326		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
327				    &status, sizeof(status));
328		if (rc)
329			return rc;
330		if (!(status & SPI_STATUS_NRDY))
331			return 0;
332		if (time_after_eq(jiffies, timeout)) {
333			netif_err(efx, hw, efx->net_dev,
334				  "SPI write timeout on device %d"
335				  " last status=0x%02x\n",
336				  spi->device_id, status);
337			return -ETIMEDOUT;
338		}
339		schedule_timeout_uninterruptible(1);
340	}
341}
342
343int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
344		    loff_t start, size_t len, size_t *retlen, u8 *buffer)
345{
346	size_t block_len, pos = 0;
347	unsigned int command;
348	int rc = 0;
349
350	while (pos < len) {
351		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
352
353		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
354		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
355				    buffer + pos, block_len);
356		if (rc)
357			break;
358		pos += block_len;
359
360		/* Avoid locking up the system */
361		cond_resched();
362		if (signal_pending(current)) {
363			rc = -EINTR;
364			break;
365		}
366	}
367
368	if (retlen)
369		*retlen = pos;
370	return rc;
371}
372
373int
374falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
375		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
376{
377	u8 verify_buffer[FALCON_SPI_MAX_LEN];
378	size_t block_len, pos = 0;
379	unsigned int command;
380	int rc = 0;
381
382	while (pos < len) {
383		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
384		if (rc)
385			break;
386
387		block_len = min(len - pos,
388				falcon_spi_write_limit(spi, start + pos));
389		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
390		rc = falcon_spi_cmd(efx, spi, command, start + pos,
391				    buffer + pos, NULL, block_len);
392		if (rc)
393			break;
394
395		rc = falcon_spi_wait_write(efx, spi);
396		if (rc)
397			break;
398
399		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
400		rc = falcon_spi_cmd(efx, spi, command, start + pos,
401				    NULL, verify_buffer, block_len);
402		if (memcmp(verify_buffer, buffer + pos, block_len)) {
403			rc = -EIO;
404			break;
405		}
406
407		pos += block_len;
408
409		/* Avoid locking up the system */
410		cond_resched();
411		if (signal_pending(current)) {
412			rc = -EINTR;
413			break;
414		}
415	}
416
417	if (retlen)
418		*retlen = pos;
419	return rc;
420}
421
422/**************************************************************************
423 *
424 * MAC wrapper
425 *
426 **************************************************************************
427 */
428
429static void falcon_push_multicast_hash(struct efx_nic *efx)
430{
431	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
432
433	WARN_ON(!mutex_is_locked(&efx->mac_lock));
434
435	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
436	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
437}
438
439static void falcon_reset_macs(struct efx_nic *efx)
440{
441	struct falcon_nic_data *nic_data = efx->nic_data;
442	efx_oword_t reg, mac_ctrl;
443	int count;
444
445	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
446		/* It's not safe to use GLB_CTL_REG to reset the
447		 * macs, so instead use the internal MAC resets
448		 */
449		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
450		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
451
452		for (count = 0; count < 10000; count++) {
453			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
454			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
455			    0)
456				return;
457			udelay(10);
458		}
459
460		netif_err(efx, hw, efx->net_dev,
461			  "timed out waiting for XMAC core reset\n");
462	}
463
464	/* Mac stats will fail whist the TX fifo is draining */
465	WARN_ON(nic_data->stats_disable_count == 0);
466
467	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
468	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
469	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
470
471	efx_reado(efx, &reg, FR_AB_GLB_CTL);
472	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
473	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
474	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
475	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
476
477	count = 0;
478	while (1) {
479		efx_reado(efx, &reg, FR_AB_GLB_CTL);
480		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
481		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
482		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
483			netif_dbg(efx, hw, efx->net_dev,
484				  "Completed MAC reset after %d loops\n",
485				  count);
486			break;
487		}
488		if (count > 20) {
489			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
490			break;
491		}
492		count++;
493		udelay(10);
494	}
495
496	/* Ensure the correct MAC is selected before statistics
497	 * are re-enabled by the caller */
498	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
499
500	falcon_setup_xaui(efx);
501}
502
503void falcon_drain_tx_fifo(struct efx_nic *efx)
504{
505	efx_oword_t reg;
506
507	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
508	    (efx->loopback_mode != LOOPBACK_NONE))
509		return;
510
511	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
512	/* There is no point in draining more than once */
513	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
514		return;
515
516	falcon_reset_macs(efx);
517}
518
519static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
520{
521	efx_oword_t reg;
522
523	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
524		return;
525
526	/* Isolate the MAC -> RX */
527	efx_reado(efx, &reg, FR_AZ_RX_CFG);
528	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
529	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
530
531	/* Isolate TX -> MAC */
532	falcon_drain_tx_fifo(efx);
533}
534
535void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
536{
537	struct efx_link_state *link_state = &efx->link_state;
538	efx_oword_t reg;
539	int link_speed, isolate;
540
541	isolate = !!ACCESS_ONCE(efx->reset_pending);
542
543	switch (link_state->speed) {
544	case 10000: link_speed = 3; break;
545	case 1000:  link_speed = 2; break;
546	case 100:   link_speed = 1; break;
547	default:    link_speed = 0; break;
548	}
549	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
550	 * as advertised.  Disable to ensure packets are not
551	 * indefinitely held and TX queue can be flushed at any point
552	 * while the link is down. */
553	EFX_POPULATE_OWORD_5(reg,
554			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
555			     FRF_AB_MAC_BCAD_ACPT, 1,
556			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
557			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
558			     FRF_AB_MAC_SPEED, link_speed);
559	/* On B0, MAC backpressure can be disabled and packets get
560	 * discarded. */
561	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
562		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
563				    !link_state->up || isolate);
564	}
565
566	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
567
568	/* Restore the multicast hash registers. */
569	falcon_push_multicast_hash(efx);
570
571	efx_reado(efx, &reg, FR_AZ_RX_CFG);
572	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
573	 * initialisation but it may read back as 0) */
574	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
575	/* Unisolate the MAC -> RX */
576	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
577		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
578	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
579}
580
581static void falcon_stats_request(struct efx_nic *efx)
582{
583	struct falcon_nic_data *nic_data = efx->nic_data;
584	efx_oword_t reg;
585
586	WARN_ON(nic_data->stats_pending);
587	WARN_ON(nic_data->stats_disable_count);
588
589	if (nic_data->stats_dma_done == NULL)
590		return;	/* no mac selected */
591
592	*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
593	nic_data->stats_pending = true;
594	wmb(); /* ensure done flag is clear */
595
596	/* Initiate DMA transfer of stats */
597	EFX_POPULATE_OWORD_2(reg,
598			     FRF_AB_MAC_STAT_DMA_CMD, 1,
599			     FRF_AB_MAC_STAT_DMA_ADR,
600			     efx->stats_buffer.dma_addr);
601	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
602
603	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
604}
605
606static void falcon_stats_complete(struct efx_nic *efx)
607{
608	struct falcon_nic_data *nic_data = efx->nic_data;
609
610	if (!nic_data->stats_pending)
611		return;
612
613	nic_data->stats_pending = false;
614	if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
615		rmb(); /* read the done flag before the stats */
616		efx->mac_op->update_stats(efx);
617	} else {
618		netif_err(efx, hw, efx->net_dev,
619			  "timed out waiting for statistics\n");
620	}
621}
622
623static void falcon_stats_timer_func(unsigned long context)
624{
625	struct efx_nic *efx = (struct efx_nic *)context;
626	struct falcon_nic_data *nic_data = efx->nic_data;
627
628	spin_lock(&efx->stats_lock);
629
630	falcon_stats_complete(efx);
631	if (nic_data->stats_disable_count == 0)
632		falcon_stats_request(efx);
633
634	spin_unlock(&efx->stats_lock);
635}
636
637static bool falcon_loopback_link_poll(struct efx_nic *efx)
638{
639	struct efx_link_state old_state = efx->link_state;
640
641	WARN_ON(!mutex_is_locked(&efx->mac_lock));
642	WARN_ON(!LOOPBACK_INTERNAL(efx));
643
644	efx->link_state.fd = true;
645	efx->link_state.fc = efx->wanted_fc;
646	efx->link_state.up = true;
647	efx->link_state.speed = 10000;
648
649	return !efx_link_state_equal(&efx->link_state, &old_state);
650}
651
652static int falcon_reconfigure_port(struct efx_nic *efx)
653{
654	int rc;
655
656	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
657
658	/* Poll the PHY link state *before* reconfiguring it. This means we
659	 * will pick up the correct speed (in loopback) to select the correct
660	 * MAC.
661	 */
662	if (LOOPBACK_INTERNAL(efx))
663		falcon_loopback_link_poll(efx);
664	else
665		efx->phy_op->poll(efx);
666
667	falcon_stop_nic_stats(efx);
668	falcon_deconfigure_mac_wrapper(efx);
669
670	falcon_reset_macs(efx);
671
672	efx->phy_op->reconfigure(efx);
673	rc = efx->mac_op->reconfigure(efx);
674	BUG_ON(rc);
675
676	falcon_start_nic_stats(efx);
677
678	/* Synchronise efx->link_state with the kernel */
679	efx_link_status_changed(efx);
680
681	return 0;
682}
683
684/**************************************************************************
685 *
686 * PHY access via GMII
687 *
688 **************************************************************************
689 */
690
691/* Wait for GMII access to complete */
692static int falcon_gmii_wait(struct efx_nic *efx)
693{
694	efx_oword_t md_stat;
695	int count;
696
697	/* wait up to 50ms - taken max from datasheet */
698	for (count = 0; count < 5000; count++) {
699		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
700		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
701			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
702			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
703				netif_err(efx, hw, efx->net_dev,
704					  "error from GMII access "
705					  EFX_OWORD_FMT"\n",
706					  EFX_OWORD_VAL(md_stat));
707				return -EIO;
708			}
709			return 0;
710		}
711		udelay(10);
712	}
713	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
714	return -ETIMEDOUT;
715}
716
717/* Write an MDIO register of a PHY connected to Falcon. */
718static int falcon_mdio_write(struct net_device *net_dev,
719			     int prtad, int devad, u16 addr, u16 value)
720{
721	struct efx_nic *efx = netdev_priv(net_dev);
722	struct falcon_nic_data *nic_data = efx->nic_data;
723	efx_oword_t reg;
724	int rc;
725
726	netif_vdbg(efx, hw, efx->net_dev,
727		   "writing MDIO %d register %d.%d with 0x%04x\n",
728		    prtad, devad, addr, value);
729
730	mutex_lock(&nic_data->mdio_lock);
731
732	/* Check MDIO not currently being accessed */
733	rc = falcon_gmii_wait(efx);
734	if (rc)
735		goto out;
736
737	/* Write the address/ID register */
738	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
739	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
740
741	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
742			     FRF_AB_MD_DEV_ADR, devad);
743	efx_writeo(efx, &reg, FR_AB_MD_ID);
744
745	/* Write data */
746	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
747	efx_writeo(efx, &reg, FR_AB_MD_TXD);
748
749	EFX_POPULATE_OWORD_2(reg,
750			     FRF_AB_MD_WRC, 1,
751			     FRF_AB_MD_GC, 0);
752	efx_writeo(efx, &reg, FR_AB_MD_CS);
753
754	/* Wait for data to be written */
755	rc = falcon_gmii_wait(efx);
756	if (rc) {
757		/* Abort the write operation */
758		EFX_POPULATE_OWORD_2(reg,
759				     FRF_AB_MD_WRC, 0,
760				     FRF_AB_MD_GC, 1);
761		efx_writeo(efx, &reg, FR_AB_MD_CS);
762		udelay(10);
763	}
764
765out:
766	mutex_unlock(&nic_data->mdio_lock);
767	return rc;
768}
769
770/* Read an MDIO register of a PHY connected to Falcon. */
771static int falcon_mdio_read(struct net_device *net_dev,
772			    int prtad, int devad, u16 addr)
773{
774	struct efx_nic *efx = netdev_priv(net_dev);
775	struct falcon_nic_data *nic_data = efx->nic_data;
776	efx_oword_t reg;
777	int rc;
778
779	mutex_lock(&nic_data->mdio_lock);
780
781	/* Check MDIO not currently being accessed */
782	rc = falcon_gmii_wait(efx);
783	if (rc)
784		goto out;
785
786	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
787	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
788
789	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
790			     FRF_AB_MD_DEV_ADR, devad);
791	efx_writeo(efx, &reg, FR_AB_MD_ID);
792
793	/* Request data to be read */
794	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
795	efx_writeo(efx, &reg, FR_AB_MD_CS);
796
797	/* Wait for data to become available */
798	rc = falcon_gmii_wait(efx);
799	if (rc == 0) {
800		efx_reado(efx, &reg, FR_AB_MD_RXD);
801		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
802		netif_vdbg(efx, hw, efx->net_dev,
803			   "read from MDIO %d register %d.%d, got %04x\n",
804			   prtad, devad, addr, rc);
805	} else {
806		/* Abort the read operation */
807		EFX_POPULATE_OWORD_2(reg,
808				     FRF_AB_MD_RIC, 0,
809				     FRF_AB_MD_GC, 1);
810		efx_writeo(efx, &reg, FR_AB_MD_CS);
811
812		netif_dbg(efx, hw, efx->net_dev,
813			  "read from MDIO %d register %d.%d, got error %d\n",
814			  prtad, devad, addr, rc);
815	}
816
817out:
818	mutex_unlock(&nic_data->mdio_lock);
819	return rc;
820}
821
822/* This call is responsible for hooking in the MAC and PHY operations */
823static int falcon_probe_port(struct efx_nic *efx)
824{
825	struct falcon_nic_data *nic_data = efx->nic_data;
826	int rc;
827
828	switch (efx->phy_type) {
829	case PHY_TYPE_SFX7101:
830		efx->phy_op = &falcon_sfx7101_phy_ops;
831		break;
832	case PHY_TYPE_QT2022C2:
833	case PHY_TYPE_QT2025C:
834		efx->phy_op = &falcon_qt202x_phy_ops;
835		break;
836	case PHY_TYPE_TXC43128:
837		efx->phy_op = &falcon_txc_phy_ops;
838		break;
839	default:
840		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
841			  efx->phy_type);
842		return -ENODEV;
843	}
844
845	/* Fill out MDIO structure and loopback modes */
846	mutex_init(&nic_data->mdio_lock);
847	efx->mdio.mdio_read = falcon_mdio_read;
848	efx->mdio.mdio_write = falcon_mdio_write;
849	rc = efx->phy_op->probe(efx);
850	if (rc != 0)
851		return rc;
852
853	/* Initial assumption */
854	efx->link_state.speed = 10000;
855	efx->link_state.fd = true;
856
857	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
858	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
859		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
860	else
861		efx->wanted_fc = EFX_FC_RX;
862	if (efx->mdio.mmds & MDIO_DEVS_AN)
863		efx->wanted_fc |= EFX_FC_AUTO;
864
865	/* Allocate buffer for stats */
866	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
867				  FALCON_MAC_STATS_SIZE);
868	if (rc)
869		return rc;
870	netif_dbg(efx, probe, efx->net_dev,
871		  "stats buffer at %llx (virt %p phys %llx)\n",
872		  (u64)efx->stats_buffer.dma_addr,
873		  efx->stats_buffer.addr,
874		  (u64)virt_to_phys(efx->stats_buffer.addr));
875	nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
876
877	return 0;
878}
879
880static void falcon_remove_port(struct efx_nic *efx)
881{
882	efx->phy_op->remove(efx);
883	efx_nic_free_buffer(efx, &efx->stats_buffer);
884}
885
886/* Global events are basically PHY events */
887static bool
888falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
889{
890	struct efx_nic *efx = channel->efx;
891	struct falcon_nic_data *nic_data = efx->nic_data;
892
893	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
894	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
895	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
896		/* Ignored */
897		return true;
898
899	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
900	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
901		nic_data->xmac_poll_required = true;
902		return true;
903	}
904
905	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
906	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
907	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
908		netif_err(efx, rx_err, efx->net_dev,
909			  "channel %d seen global RX_RESET event. Resetting.\n",
910			  channel->channel);
911
912		atomic_inc(&efx->rx_reset);
913		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
914				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
915		return true;
916	}
917
918	return false;
919}
920
921/**************************************************************************
922 *
923 * Falcon test code
924 *
925 **************************************************************************/
926
927static int
928falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
929{
930	struct falcon_nic_data *nic_data = efx->nic_data;
931	struct falcon_nvconfig *nvconfig;
932	struct efx_spi_device *spi;
933	void *region;
934	int rc, magic_num, struct_ver;
935	__le16 *word, *limit;
936	u32 csum;
937
938	if (efx_spi_present(&nic_data->spi_flash))
939		spi = &nic_data->spi_flash;
940	else if (efx_spi_present(&nic_data->spi_eeprom))
941		spi = &nic_data->spi_eeprom;
942	else
943		return -EINVAL;
944
945	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
946	if (!region)
947		return -ENOMEM;
948	nvconfig = region + FALCON_NVCONFIG_OFFSET;
949
950	mutex_lock(&nic_data->spi_lock);
951	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
952	mutex_unlock(&nic_data->spi_lock);
953	if (rc) {
954		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
955			  efx_spi_present(&nic_data->spi_flash) ?
956			  "flash" : "EEPROM");
957		rc = -EIO;
958		goto out;
959	}
960
961	magic_num = le16_to_cpu(nvconfig->board_magic_num);
962	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
963
964	rc = -EINVAL;
965	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
966		netif_err(efx, hw, efx->net_dev,
967			  "NVRAM bad magic 0x%x\n", magic_num);
968		goto out;
969	}
970	if (struct_ver < 2) {
971		netif_err(efx, hw, efx->net_dev,
972			  "NVRAM has ancient version 0x%x\n", struct_ver);
973		goto out;
974	} else if (struct_ver < 4) {
975		word = &nvconfig->board_magic_num;
976		limit = (__le16 *) (nvconfig + 1);
977	} else {
978		word = region;
979		limit = region + FALCON_NVCONFIG_END;
980	}
981	for (csum = 0; word < limit; ++word)
982		csum += le16_to_cpu(*word);
983
984	if (~csum & 0xffff) {
985		netif_err(efx, hw, efx->net_dev,
986			  "NVRAM has incorrect checksum\n");
987		goto out;
988	}
989
990	rc = 0;
991	if (nvconfig_out)
992		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
993
994 out:
995	kfree(region);
996	return rc;
997}
998
999static int falcon_test_nvram(struct efx_nic *efx)
1000{
1001	return falcon_read_nvram(efx, NULL);
1002}
1003
1004static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1005	{ FR_AZ_ADR_REGION,
1006	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1007	{ FR_AZ_RX_CFG,
1008	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1009	{ FR_AZ_TX_CFG,
1010	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1011	{ FR_AZ_TX_RESERVED,
1012	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1013	{ FR_AB_MAC_CTRL,
1014	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1015	{ FR_AZ_SRM_TX_DC_CFG,
1016	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1017	{ FR_AZ_RX_DC_CFG,
1018	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1019	{ FR_AZ_RX_DC_PF_WM,
1020	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1021	{ FR_BZ_DP_CTRL,
1022	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1023	{ FR_AB_GM_CFG2,
1024	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1025	{ FR_AB_GMF_CFG0,
1026	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1027	{ FR_AB_XM_GLB_CFG,
1028	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1029	{ FR_AB_XM_TX_CFG,
1030	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1031	{ FR_AB_XM_RX_CFG,
1032	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1033	{ FR_AB_XM_RX_PARAM,
1034	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1035	{ FR_AB_XM_FC,
1036	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1037	{ FR_AB_XM_ADR_LO,
1038	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1039	{ FR_AB_XX_SD_CTL,
1040	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1041};
1042
1043static int falcon_b0_test_registers(struct efx_nic *efx)
1044{
1045	return efx_nic_test_registers(efx, falcon_b0_register_tests,
1046				      ARRAY_SIZE(falcon_b0_register_tests));
1047}
1048
1049/**************************************************************************
1050 *
1051 * Device reset
1052 *
1053 **************************************************************************
1054 */
1055
1056static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1057{
1058	switch (reason) {
1059	case RESET_TYPE_RX_RECOVERY:
1060	case RESET_TYPE_RX_DESC_FETCH:
1061	case RESET_TYPE_TX_DESC_FETCH:
1062	case RESET_TYPE_TX_SKIP:
1063		/* These can occasionally occur due to hardware bugs.
1064		 * We try to reset without disrupting the link.
1065		 */
1066		return RESET_TYPE_INVISIBLE;
1067	default:
1068		return RESET_TYPE_ALL;
1069	}
1070}
1071
1072static int falcon_map_reset_flags(u32 *flags)
1073{
1074	enum {
1075		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1076					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1077		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1078		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1079	};
1080
1081	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1082		*flags &= ~FALCON_RESET_WORLD;
1083		return RESET_TYPE_WORLD;
1084	}
1085
1086	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1087		*flags &= ~FALCON_RESET_ALL;
1088		return RESET_TYPE_ALL;
1089	}
1090
1091	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1092		*flags &= ~FALCON_RESET_INVISIBLE;
1093		return RESET_TYPE_INVISIBLE;
1094	}
1095
1096	return -EINVAL;
1097}
1098
1099/* Resets NIC to known state.  This routine must be called in process
1100 * context and is allowed to sleep. */
1101static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1102{
1103	struct falcon_nic_data *nic_data = efx->nic_data;
1104	efx_oword_t glb_ctl_reg_ker;
1105	int rc;
1106
1107	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1108		  RESET_TYPE(method));
1109
1110	/* Initiate device reset */
1111	if (method == RESET_TYPE_WORLD) {
1112		rc = pci_save_state(efx->pci_dev);
1113		if (rc) {
1114			netif_err(efx, drv, efx->net_dev,
1115				  "failed to backup PCI state of primary "
1116				  "function prior to hardware reset\n");
1117			goto fail1;
1118		}
1119		if (efx_nic_is_dual_func(efx)) {
1120			rc = pci_save_state(nic_data->pci_dev2);
1121			if (rc) {
1122				netif_err(efx, drv, efx->net_dev,
1123					  "failed to backup PCI state of "
1124					  "secondary function prior to "
1125					  "hardware reset\n");
1126				goto fail2;
1127			}
1128		}
1129
1130		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1131				     FRF_AB_EXT_PHY_RST_DUR,
1132				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1133				     FRF_AB_SWRST, 1);
1134	} else {
1135		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1136				     /* exclude PHY from "invisible" reset */
1137				     FRF_AB_EXT_PHY_RST_CTL,
1138				     method == RESET_TYPE_INVISIBLE,
1139				     /* exclude EEPROM/flash and PCIe */
1140				     FRF_AB_PCIE_CORE_RST_CTL, 1,
1141				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1142				     FRF_AB_PCIE_SD_RST_CTL, 1,
1143				     FRF_AB_EE_RST_CTL, 1,
1144				     FRF_AB_EXT_PHY_RST_DUR,
1145				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1146				     FRF_AB_SWRST, 1);
1147	}
1148	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1149
1150	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1151	schedule_timeout_uninterruptible(HZ / 20);
1152
1153	/* Restore PCI configuration if needed */
1154	if (method == RESET_TYPE_WORLD) {
1155		if (efx_nic_is_dual_func(efx))
1156			pci_restore_state(nic_data->pci_dev2);
1157		pci_restore_state(efx->pci_dev);
1158		netif_dbg(efx, drv, efx->net_dev,
1159			  "successfully restored PCI config\n");
1160	}
1161
1162	/* Assert that reset complete */
1163	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1164	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1165		rc = -ETIMEDOUT;
1166		netif_err(efx, hw, efx->net_dev,
1167			  "timed out waiting for hardware reset\n");
1168		goto fail3;
1169	}
1170	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1171
1172	return 0;
1173
1174	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
1175fail2:
1176	pci_restore_state(efx->pci_dev);
1177fail1:
1178fail3:
1179	return rc;
1180}
1181
1182static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1183{
1184	struct falcon_nic_data *nic_data = efx->nic_data;
1185	int rc;
1186
1187	mutex_lock(&nic_data->spi_lock);
1188	rc = __falcon_reset_hw(efx, method);
1189	mutex_unlock(&nic_data->spi_lock);
1190
1191	return rc;
1192}
1193
1194static void falcon_monitor(struct efx_nic *efx)
1195{
1196	bool link_changed;
1197	int rc;
1198
1199	BUG_ON(!mutex_is_locked(&efx->mac_lock));
1200
1201	rc = falcon_board(efx)->type->monitor(efx);
1202	if (rc) {
1203		netif_err(efx, hw, efx->net_dev,
1204			  "Board sensor %s; shutting down PHY\n",
1205			  (rc == -ERANGE) ? "reported fault" : "failed");
1206		efx->phy_mode |= PHY_MODE_LOW_POWER;
1207		rc = __efx_reconfigure_port(efx);
1208		WARN_ON(rc);
1209	}
1210
1211	if (LOOPBACK_INTERNAL(efx))
1212		link_changed = falcon_loopback_link_poll(efx);
1213	else
1214		link_changed = efx->phy_op->poll(efx);
1215
1216	if (link_changed) {
1217		falcon_stop_nic_stats(efx);
1218		falcon_deconfigure_mac_wrapper(efx);
1219
1220		falcon_reset_macs(efx);
1221		rc = efx->mac_op->reconfigure(efx);
1222		BUG_ON(rc);
1223
1224		falcon_start_nic_stats(efx);
1225
1226		efx_link_status_changed(efx);
1227	}
1228
1229	falcon_poll_xmac(efx);
1230}
1231
1232/* Zeroes out the SRAM contents.  This routine must be called in
1233 * process context and is allowed to sleep.
1234 */
1235static int falcon_reset_sram(struct efx_nic *efx)
1236{
1237	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1238	int count;
1239
1240	/* Set the SRAM wake/sleep GPIO appropriately. */
1241	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1242	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1243	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1244	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1245
1246	/* Initiate SRAM reset */
1247	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1248			     FRF_AZ_SRM_INIT_EN, 1,
1249			     FRF_AZ_SRM_NB_SZ, 0);
1250	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1251
1252	/* Wait for SRAM reset to complete */
1253	count = 0;
1254	do {
1255		netif_dbg(efx, hw, efx->net_dev,
1256			  "waiting for SRAM reset (attempt %d)...\n", count);
1257
1258		/* SRAM reset is slow; expect around 16ms */
1259		schedule_timeout_uninterruptible(HZ / 50);
1260
1261		/* Check for reset complete */
1262		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1263		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1264			netif_dbg(efx, hw, efx->net_dev,
1265				  "SRAM reset complete\n");
1266
1267			return 0;
1268		}
1269	} while (++count < 20);	/* wait up to 0.4 sec */
1270
1271	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1272	return -ETIMEDOUT;
1273}
1274
1275static void falcon_spi_device_init(struct efx_nic *efx,
1276				  struct efx_spi_device *spi_device,
1277				  unsigned int device_id, u32 device_type)
1278{
1279	if (device_type != 0) {
1280		spi_device->device_id = device_id;
1281		spi_device->size =
1282			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1283		spi_device->addr_len =
1284			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1285		spi_device->munge_address = (spi_device->size == 1 << 9 &&
1286					     spi_device->addr_len == 1);
1287		spi_device->erase_command =
1288			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1289		spi_device->erase_size =
1290			1 << SPI_DEV_TYPE_FIELD(device_type,
1291						SPI_DEV_TYPE_ERASE_SIZE);
1292		spi_device->block_size =
1293			1 << SPI_DEV_TYPE_FIELD(device_type,
1294						SPI_DEV_TYPE_BLOCK_SIZE);
1295	} else {
1296		spi_device->size = 0;
1297	}
1298}
1299
1300/* Extract non-volatile configuration */
1301static int falcon_probe_nvconfig(struct efx_nic *efx)
1302{
1303	struct falcon_nic_data *nic_data = efx->nic_data;
1304	struct falcon_nvconfig *nvconfig;
1305	int rc;
1306
1307	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1308	if (!nvconfig)
1309		return -ENOMEM;
1310
1311	rc = falcon_read_nvram(efx, nvconfig);
1312	if (rc)
1313		goto out;
1314
1315	efx->phy_type = nvconfig->board_v2.port0_phy_type;
1316	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1317
1318	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1319		falcon_spi_device_init(
1320			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1321			le32_to_cpu(nvconfig->board_v3
1322				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1323		falcon_spi_device_init(
1324			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1325			le32_to_cpu(nvconfig->board_v3
1326				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1327	}
1328
1329	/* Read the MAC addresses */
1330	memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1331
1332	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1333		  efx->phy_type, efx->mdio.prtad);
1334
1335	rc = falcon_probe_board(efx,
1336				le16_to_cpu(nvconfig->board_v2.board_revision));
1337out:
1338	kfree(nvconfig);
1339	return rc;
1340}
1341
1342/* Probe all SPI devices on the NIC */
1343static void falcon_probe_spi_devices(struct efx_nic *efx)
1344{
1345	struct falcon_nic_data *nic_data = efx->nic_data;
1346	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1347	int boot_dev;
1348
1349	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1350	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1351	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1352
1353	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1354		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1355			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1356		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1357			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1358			  "flash" : "EEPROM");
1359	} else {
1360		/* Disable VPD and set clock dividers to safe
1361		 * values for initial programming. */
1362		boot_dev = -1;
1363		netif_dbg(efx, probe, efx->net_dev,
1364			  "Booted from internal ASIC settings;"
1365			  " setting SPI config\n");
1366		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1367				     /* 125 MHz / 7 ~= 20 MHz */
1368				     FRF_AB_EE_SF_CLOCK_DIV, 7,
1369				     /* 125 MHz / 63 ~= 2 MHz */
1370				     FRF_AB_EE_EE_CLOCK_DIV, 63);
1371		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1372	}
1373
1374	mutex_init(&nic_data->spi_lock);
1375
1376	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1377		falcon_spi_device_init(efx, &nic_data->spi_flash,
1378				       FFE_AB_SPI_DEVICE_FLASH,
1379				       default_flash_type);
1380	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1381		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1382				       FFE_AB_SPI_DEVICE_EEPROM,
1383				       large_eeprom_type);
1384}
1385
1386static int falcon_probe_nic(struct efx_nic *efx)
1387{
1388	struct falcon_nic_data *nic_data;
1389	struct falcon_board *board;
1390	int rc;
1391
1392	/* Allocate storage for hardware specific data */
1393	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1394	if (!nic_data)
1395		return -ENOMEM;
1396	efx->nic_data = nic_data;
1397
1398	rc = -ENODEV;
1399
1400	if (efx_nic_fpga_ver(efx) != 0) {
1401		netif_err(efx, probe, efx->net_dev,
1402			  "Falcon FPGA not supported\n");
1403		goto fail1;
1404	}
1405
1406	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1407		efx_oword_t nic_stat;
1408		struct pci_dev *dev;
1409		u8 pci_rev = efx->pci_dev->revision;
1410
1411		if ((pci_rev == 0xff) || (pci_rev == 0)) {
1412			netif_err(efx, probe, efx->net_dev,
1413				  "Falcon rev A0 not supported\n");
1414			goto fail1;
1415		}
1416		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1417		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1418			netif_err(efx, probe, efx->net_dev,
1419				  "Falcon rev A1 1G not supported\n");
1420			goto fail1;
1421		}
1422		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1423			netif_err(efx, probe, efx->net_dev,
1424				  "Falcon rev A1 PCI-X not supported\n");
1425			goto fail1;
1426		}
1427
1428		dev = pci_dev_get(efx->pci_dev);
1429		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
1430					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
1431					     dev))) {
1432			if (dev->bus == efx->pci_dev->bus &&
1433			    dev->devfn == efx->pci_dev->devfn + 1) {
1434				nic_data->pci_dev2 = dev;
1435				break;
1436			}
1437		}
1438		if (!nic_data->pci_dev2) {
1439			netif_err(efx, probe, efx->net_dev,
1440				  "failed to find secondary function\n");
1441			rc = -ENODEV;
1442			goto fail2;
1443		}
1444	}
1445
1446	/* Now we can reset the NIC */
1447	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1448	if (rc) {
1449		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1450		goto fail3;
1451	}
1452
1453	/* Allocate memory for INT_KER */
1454	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1455	if (rc)
1456		goto fail4;
1457	BUG_ON(efx->irq_status.dma_addr & 0x0f);
1458
1459	netif_dbg(efx, probe, efx->net_dev,
1460		  "INT_KER at %llx (virt %p phys %llx)\n",
1461		  (u64)efx->irq_status.dma_addr,
1462		  efx->irq_status.addr,
1463		  (u64)virt_to_phys(efx->irq_status.addr));
1464
1465	falcon_probe_spi_devices(efx);
1466
1467	/* Read in the non-volatile configuration */
1468	rc = falcon_probe_nvconfig(efx);
1469	if (rc) {
1470		if (rc == -EINVAL)
1471			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1472		goto fail5;
1473	}
1474
1475	/* Initialise I2C adapter */
1476	board = falcon_board(efx);
1477	board->i2c_adap.owner = THIS_MODULE;
1478	board->i2c_data = falcon_i2c_bit_operations;
1479	board->i2c_data.data = efx;
1480	board->i2c_adap.algo_data = &board->i2c_data;
1481	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1482	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1483		sizeof(board->i2c_adap.name));
1484	rc = i2c_bit_add_bus(&board->i2c_adap);
1485	if (rc)
1486		goto fail5;
1487
1488	rc = falcon_board(efx)->type->init(efx);
1489	if (rc) {
1490		netif_err(efx, probe, efx->net_dev,
1491			  "failed to initialise board\n");
1492		goto fail6;
1493	}
1494
1495	nic_data->stats_disable_count = 1;
1496	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1497		    (unsigned long)efx);
1498
1499	return 0;
1500
1501 fail6:
1502	BUG_ON(i2c_del_adapter(&board->i2c_adap));
1503	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1504 fail5:
1505	efx_nic_free_buffer(efx, &efx->irq_status);
1506 fail4:
1507 fail3:
1508	if (nic_data->pci_dev2) {
1509		pci_dev_put(nic_data->pci_dev2);
1510		nic_data->pci_dev2 = NULL;
1511	}
1512 fail2:
1513 fail1:
1514	kfree(efx->nic_data);
1515	return rc;
1516}
1517
1518static void falcon_init_rx_cfg(struct efx_nic *efx)
1519{
1520	/* Prior to Siena the RX DMA engine will split each frame at
1521	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1522	 * be so large that that never happens. */
1523	const unsigned huge_buf_size = (3 * 4096) >> 5;
1524	/* RX control FIFO thresholds (32 entries) */
1525	const unsigned ctrl_xon_thr = 20;
1526	const unsigned ctrl_xoff_thr = 25;
1527	efx_oword_t reg;
1528
1529	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1530	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1531		/* Data FIFO size is 5.5K */
1532		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1533		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1534				    huge_buf_size);
1535		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1536		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1537		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1538		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1539	} else {
1540		/* Data FIFO size is 80K; register fields moved */
1541		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1542		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1543				    huge_buf_size);
1544		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
1545		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1546		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1547		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1548		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1549		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1550
1551		/* Enable hash insertion. This is broken for the
1552		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1553		 * IPv4 hashes. */
1554		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1555		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1556		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1557	}
1558	/* Always enable XOFF signal from RX FIFO.  We enable
1559	 * or disable transmission of pause frames at the MAC. */
1560	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1561	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1562}
1563
1564/* This call performs hardware-specific global initialisation, such as
1565 * defining the descriptor cache sizes and number of RSS channels.
1566 * It does not set up any buffers, descriptor rings or event queues.
1567 */
1568static int falcon_init_nic(struct efx_nic *efx)
1569{
1570	efx_oword_t temp;
1571	int rc;
1572
1573	/* Use on-chip SRAM */
1574	efx_reado(efx, &temp, FR_AB_NIC_STAT);
1575	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1576	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1577
1578	rc = falcon_reset_sram(efx);
1579	if (rc)
1580		return rc;
1581
1582	/* Clear the parity enables on the TX data fifos as
1583	 * they produce false parity errors because of timing issues
1584	 */
1585	if (EFX_WORKAROUND_5129(efx)) {
1586		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1587		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1588		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1589	}
1590
1591	if (EFX_WORKAROUND_7244(efx)) {
1592		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1593		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1594		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1595		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1596		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1597		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1598	}
1599
1600	/* XXX This is documented only for Falcon A0/A1 */
1601	/* Setup RX.  Wait for descriptor is broken and must
1602	 * be disabled.  RXDP recovery shouldn't be needed, but is.
1603	 */
1604	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1605	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1606	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1607	if (EFX_WORKAROUND_5583(efx))
1608		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1609	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1610
1611	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1612	 * descriptors (which is bad).
1613	 */
1614	efx_reado(efx, &temp, FR_AZ_TX_CFG);
1615	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1616	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1617
1618	falcon_init_rx_cfg(efx);
1619
1620	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1621		/* Set hash key for IPv4 */
1622		memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1623		efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1624
1625		/* Set destination of both TX and RX Flush events */
1626		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1627		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1628	}
1629
1630	efx_nic_init_common(efx);
1631
1632	return 0;
1633}
1634
1635static void falcon_remove_nic(struct efx_nic *efx)
1636{
1637	struct falcon_nic_data *nic_data = efx->nic_data;
1638	struct falcon_board *board = falcon_board(efx);
1639	int rc;
1640
1641	board->type->fini(efx);
1642
1643	/* Remove I2C adapter and clear it in preparation for a retry */
1644	rc = i2c_del_adapter(&board->i2c_adap);
1645	BUG_ON(rc);
1646	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1647
1648	efx_nic_free_buffer(efx, &efx->irq_status);
1649
1650	__falcon_reset_hw(efx, RESET_TYPE_ALL);
1651
1652	/* Release the second function after the reset */
1653	if (nic_data->pci_dev2) {
1654		pci_dev_put(nic_data->pci_dev2);
1655		nic_data->pci_dev2 = NULL;
1656	}
1657
1658	/* Tear down the private nic state */
1659	kfree(efx->nic_data);
1660	efx->nic_data = NULL;
1661}
1662
1663static void falcon_update_nic_stats(struct efx_nic *efx)
1664{
1665	struct falcon_nic_data *nic_data = efx->nic_data;
1666	efx_oword_t cnt;
1667
1668	if (nic_data->stats_disable_count)
1669		return;
1670
1671	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1672	efx->n_rx_nodesc_drop_cnt +=
1673		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1674
1675	if (nic_data->stats_pending &&
1676	    *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1677		nic_data->stats_pending = false;
1678		rmb(); /* read the done flag before the stats */
1679		efx->mac_op->update_stats(efx);
1680	}
1681}
1682
1683void falcon_start_nic_stats(struct efx_nic *efx)
1684{
1685	struct falcon_nic_data *nic_data = efx->nic_data;
1686
1687	spin_lock_bh(&efx->stats_lock);
1688	if (--nic_data->stats_disable_count == 0)
1689		falcon_stats_request(efx);
1690	spin_unlock_bh(&efx->stats_lock);
1691}
1692
1693void falcon_stop_nic_stats(struct efx_nic *efx)
1694{
1695	struct falcon_nic_data *nic_data = efx->nic_data;
1696	int i;
1697
1698	might_sleep();
1699
1700	spin_lock_bh(&efx->stats_lock);
1701	++nic_data->stats_disable_count;
1702	spin_unlock_bh(&efx->stats_lock);
1703
1704	del_timer_sync(&nic_data->stats_timer);
1705
1706	/* Wait enough time for the most recent transfer to
1707	 * complete. */
1708	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1709		if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1710			break;
1711		msleep(1);
1712	}
1713
1714	spin_lock_bh(&efx->stats_lock);
1715	falcon_stats_complete(efx);
1716	spin_unlock_bh(&efx->stats_lock);
1717}
1718
1719static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1720{
1721	falcon_board(efx)->type->set_id_led(efx, mode);
1722}
1723
1724/**************************************************************************
1725 *
1726 * Wake on LAN
1727 *
1728 **************************************************************************
1729 */
1730
1731static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1732{
1733	wol->supported = 0;
1734	wol->wolopts = 0;
1735	memset(&wol->sopass, 0, sizeof(wol->sopass));
1736}
1737
1738static int falcon_set_wol(struct efx_nic *efx, u32 type)
1739{
1740	if (type != 0)
1741		return -EINVAL;
1742	return 0;
1743}
1744
1745/**************************************************************************
1746 *
1747 * Revision-dependent attributes used by efx.c and nic.c
1748 *
1749 **************************************************************************
1750 */
1751
1752const struct efx_nic_type falcon_a1_nic_type = {
1753	.probe = falcon_probe_nic,
1754	.remove = falcon_remove_nic,
1755	.init = falcon_init_nic,
1756	.fini = efx_port_dummy_op_void,
1757	.monitor = falcon_monitor,
1758	.map_reset_reason = falcon_map_reset_reason,
1759	.map_reset_flags = falcon_map_reset_flags,
1760	.reset = falcon_reset_hw,
1761	.probe_port = falcon_probe_port,
1762	.remove_port = falcon_remove_port,
1763	.handle_global_event = falcon_handle_global_event,
1764	.prepare_flush = falcon_prepare_flush,
1765	.update_stats = falcon_update_nic_stats,
1766	.start_stats = falcon_start_nic_stats,
1767	.stop_stats = falcon_stop_nic_stats,
1768	.set_id_led = falcon_set_id_led,
1769	.push_irq_moderation = falcon_push_irq_moderation,
1770	.push_multicast_hash = falcon_push_multicast_hash,
1771	.reconfigure_port = falcon_reconfigure_port,
1772	.get_wol = falcon_get_wol,
1773	.set_wol = falcon_set_wol,
1774	.resume_wol = efx_port_dummy_op_void,
1775	.test_nvram = falcon_test_nvram,
1776	.default_mac_ops = &falcon_xmac_operations,
1777
1778	.revision = EFX_REV_FALCON_A1,
1779	.mem_map_size = 0x20000,
1780	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1781	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1782	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1783	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1784	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1785	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1786	.rx_buffer_padding = 0x24,
1787	.max_interrupt_mode = EFX_INT_MODE_MSI,
1788	.phys_addr_channels = 4,
1789	.tx_dc_base = 0x130000,
1790	.rx_dc_base = 0x100000,
1791	.offload_features = NETIF_F_IP_CSUM,
1792};
1793
1794const struct efx_nic_type falcon_b0_nic_type = {
1795	.probe = falcon_probe_nic,
1796	.remove = falcon_remove_nic,
1797	.init = falcon_init_nic,
1798	.fini = efx_port_dummy_op_void,
1799	.monitor = falcon_monitor,
1800	.map_reset_reason = falcon_map_reset_reason,
1801	.map_reset_flags = falcon_map_reset_flags,
1802	.reset = falcon_reset_hw,
1803	.probe_port = falcon_probe_port,
1804	.remove_port = falcon_remove_port,
1805	.handle_global_event = falcon_handle_global_event,
1806	.prepare_flush = falcon_prepare_flush,
1807	.update_stats = falcon_update_nic_stats,
1808	.start_stats = falcon_start_nic_stats,
1809	.stop_stats = falcon_stop_nic_stats,
1810	.set_id_led = falcon_set_id_led,
1811	.push_irq_moderation = falcon_push_irq_moderation,
1812	.push_multicast_hash = falcon_push_multicast_hash,
1813	.reconfigure_port = falcon_reconfigure_port,
1814	.get_wol = falcon_get_wol,
1815	.set_wol = falcon_set_wol,
1816	.resume_wol = efx_port_dummy_op_void,
1817	.test_registers = falcon_b0_test_registers,
1818	.test_nvram = falcon_test_nvram,
1819	.default_mac_ops = &falcon_xmac_operations,
1820
1821	.revision = EFX_REV_FALCON_B0,
1822	/* Map everything up to and including the RSS indirection
1823	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
1824	 * requires that they not be mapped.  */
1825	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1826			 FR_BZ_RX_INDIRECTION_TBL_STEP *
1827			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1828	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1829	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1830	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1831	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1832	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1833	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1834	.rx_buffer_hash_size = 0x10,
1835	.rx_buffer_padding = 0,
1836	.max_interrupt_mode = EFX_INT_MODE_MSIX,
1837	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1838				   * interrupt handler only supports 32
1839				   * channels */
1840	.tx_dc_base = 0x130000,
1841	.rx_dc_base = 0x100000,
1842	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1843};
1844
1845