tx.c revision 449fa023bca5b53bd924d91a27ffd34807fdeb80
1/**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2010 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11#include <linux/pci.h> 12#include <linux/tcp.h> 13#include <linux/ip.h> 14#include <linux/in.h> 15#include <linux/ipv6.h> 16#include <linux/slab.h> 17#include <net/ipv6.h> 18#include <linux/if_ether.h> 19#include <linux/highmem.h> 20#include "net_driver.h" 21#include "efx.h" 22#include "nic.h" 23#include "workarounds.h" 24 25/* 26 * TX descriptor ring full threshold 27 * 28 * The tx_queue descriptor ring fill-level must fall below this value 29 * before we restart the netif queue 30 */ 31#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u) 32 33static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, 34 struct efx_tx_buffer *buffer, 35 unsigned int *pkts_compl, 36 unsigned int *bytes_compl) 37{ 38 if (buffer->unmap_len) { 39 struct pci_dev *pci_dev = tx_queue->efx->pci_dev; 40 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - 41 buffer->unmap_len); 42 if (buffer->unmap_single) 43 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len, 44 PCI_DMA_TODEVICE); 45 else 46 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len, 47 PCI_DMA_TODEVICE); 48 buffer->unmap_len = 0; 49 buffer->unmap_single = false; 50 } 51 52 if (buffer->skb) { 53 (*pkts_compl)++; 54 (*bytes_compl) += buffer->skb->len; 55 dev_kfree_skb_any((struct sk_buff *) buffer->skb); 56 buffer->skb = NULL; 57 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 58 "TX queue %d transmission id %x complete\n", 59 tx_queue->queue, tx_queue->read_count); 60 } 61} 62 63/** 64 * struct efx_tso_header - a DMA mapped buffer for packet headers 65 * @next: Linked list of free ones. 66 * The list is protected by the TX queue lock. 67 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. 68 * @dma_addr: The DMA address of the header below. 69 * 70 * This controls the memory used for a TSO header. Use TSOH_DATA() 71 * to find the packet header data. Use TSOH_SIZE() to calculate the 72 * total size required for a given packet header length. TSO headers 73 * in the free list are exactly %TSOH_STD_SIZE bytes in size. 74 */ 75struct efx_tso_header { 76 union { 77 struct efx_tso_header *next; 78 size_t unmap_len; 79 }; 80 dma_addr_t dma_addr; 81}; 82 83static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 84 struct sk_buff *skb); 85static void efx_fini_tso(struct efx_tx_queue *tx_queue); 86static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, 87 struct efx_tso_header *tsoh); 88 89static void efx_tsoh_free(struct efx_tx_queue *tx_queue, 90 struct efx_tx_buffer *buffer) 91{ 92 if (buffer->tsoh) { 93 if (likely(!buffer->tsoh->unmap_len)) { 94 buffer->tsoh->next = tx_queue->tso_headers_free; 95 tx_queue->tso_headers_free = buffer->tsoh; 96 } else { 97 efx_tsoh_heap_free(tx_queue, buffer->tsoh); 98 } 99 buffer->tsoh = NULL; 100 } 101} 102 103 104static inline unsigned 105efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr) 106{ 107 /* Depending on the NIC revision, we can use descriptor 108 * lengths up to 8K or 8K-1. However, since PCI Express 109 * devices must split read requests at 4K boundaries, there is 110 * little benefit from using descriptors that cross those 111 * boundaries and we keep things simple by not doing so. 112 */ 113 unsigned len = (~dma_addr & 0xfff) + 1; 114 115 /* Work around hardware bug for unaligned buffers. */ 116 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf)) 117 len = min_t(unsigned, len, 512 - (dma_addr & 0xf)); 118 119 return len; 120} 121 122/* 123 * Add a socket buffer to a TX queue 124 * 125 * This maps all fragments of a socket buffer for DMA and adds them to 126 * the TX queue. The queue's insert pointer will be incremented by 127 * the number of fragments in the socket buffer. 128 * 129 * If any DMA mapping fails, any mapped fragments will be unmapped, 130 * the queue's insert pointer will be restored to its original value. 131 * 132 * This function is split out from efx_hard_start_xmit to allow the 133 * loopback test to direct packets via specific TX queues. 134 * 135 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY 136 * You must hold netif_tx_lock() to call this function. 137 */ 138netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) 139{ 140 struct efx_nic *efx = tx_queue->efx; 141 struct pci_dev *pci_dev = efx->pci_dev; 142 struct efx_tx_buffer *buffer; 143 skb_frag_t *fragment; 144 unsigned int len, unmap_len = 0, fill_level, insert_ptr; 145 dma_addr_t dma_addr, unmap_addr = 0; 146 unsigned int dma_len; 147 bool unmap_single; 148 int q_space, i = 0; 149 netdev_tx_t rc = NETDEV_TX_OK; 150 151 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); 152 153 if (skb_shinfo(skb)->gso_size) 154 return efx_enqueue_skb_tso(tx_queue, skb); 155 156 /* Get size of the initial fragment */ 157 len = skb_headlen(skb); 158 159 /* Pad if necessary */ 160 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) { 161 EFX_BUG_ON_PARANOID(skb->data_len); 162 len = 32 + 1; 163 if (skb_pad(skb, len - skb->len)) 164 return NETDEV_TX_OK; 165 } 166 167 fill_level = tx_queue->insert_count - tx_queue->old_read_count; 168 q_space = efx->txq_entries - 1 - fill_level; 169 170 /* Map for DMA. Use pci_map_single rather than pci_map_page 171 * since this is more efficient on machines with sparse 172 * memory. 173 */ 174 unmap_single = true; 175 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); 176 177 /* Process all fragments */ 178 while (1) { 179 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr))) 180 goto pci_err; 181 182 /* Store fields for marking in the per-fragment final 183 * descriptor */ 184 unmap_len = len; 185 unmap_addr = dma_addr; 186 187 /* Add to TX queue, splitting across DMA boundaries */ 188 do { 189 if (unlikely(q_space-- <= 0)) { 190 /* It might be that completions have 191 * happened since the xmit path last 192 * checked. Update the xmit path's 193 * copy of read_count. 194 */ 195 netif_tx_stop_queue(tx_queue->core_txq); 196 /* This memory barrier protects the 197 * change of queue state from the access 198 * of read_count. */ 199 smp_mb(); 200 tx_queue->old_read_count = 201 ACCESS_ONCE(tx_queue->read_count); 202 fill_level = (tx_queue->insert_count 203 - tx_queue->old_read_count); 204 q_space = efx->txq_entries - 1 - fill_level; 205 if (unlikely(q_space-- <= 0)) { 206 rc = NETDEV_TX_BUSY; 207 goto unwind; 208 } 209 smp_mb(); 210 if (likely(!efx->loopback_selftest)) 211 netif_tx_start_queue( 212 tx_queue->core_txq); 213 } 214 215 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 216 buffer = &tx_queue->buffer[insert_ptr]; 217 efx_tsoh_free(tx_queue, buffer); 218 EFX_BUG_ON_PARANOID(buffer->tsoh); 219 EFX_BUG_ON_PARANOID(buffer->skb); 220 EFX_BUG_ON_PARANOID(buffer->len); 221 EFX_BUG_ON_PARANOID(!buffer->continuation); 222 EFX_BUG_ON_PARANOID(buffer->unmap_len); 223 224 dma_len = efx_max_tx_len(efx, dma_addr); 225 if (likely(dma_len >= len)) 226 dma_len = len; 227 228 /* Fill out per descriptor fields */ 229 buffer->len = dma_len; 230 buffer->dma_addr = dma_addr; 231 len -= dma_len; 232 dma_addr += dma_len; 233 ++tx_queue->insert_count; 234 } while (len); 235 236 /* Transfer ownership of the unmapping to the final buffer */ 237 buffer->unmap_single = unmap_single; 238 buffer->unmap_len = unmap_len; 239 unmap_len = 0; 240 241 /* Get address and size of next fragment */ 242 if (i >= skb_shinfo(skb)->nr_frags) 243 break; 244 fragment = &skb_shinfo(skb)->frags[i]; 245 len = skb_frag_size(fragment); 246 i++; 247 /* Map for DMA */ 248 unmap_single = false; 249 dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len, 250 DMA_TO_DEVICE); 251 } 252 253 /* Transfer ownership of the skb to the final buffer */ 254 buffer->skb = skb; 255 buffer->continuation = false; 256 257 netdev_tx_sent_queue(tx_queue->core_txq, skb->len); 258 259 /* Pass off to hardware */ 260 efx_nic_push_buffers(tx_queue); 261 262 return NETDEV_TX_OK; 263 264 pci_err: 265 netif_err(efx, tx_err, efx->net_dev, 266 " TX queue %d could not map skb with %d bytes %d " 267 "fragments for DMA\n", tx_queue->queue, skb->len, 268 skb_shinfo(skb)->nr_frags + 1); 269 270 /* Mark the packet as transmitted, and free the SKB ourselves */ 271 dev_kfree_skb_any(skb); 272 273 unwind: 274 /* Work backwards until we hit the original insert pointer value */ 275 while (tx_queue->insert_count != tx_queue->write_count) { 276 unsigned int pkts_compl = 0, bytes_compl = 0; 277 --tx_queue->insert_count; 278 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 279 buffer = &tx_queue->buffer[insert_ptr]; 280 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 281 buffer->len = 0; 282 } 283 284 /* Free the fragment we were mid-way through pushing */ 285 if (unmap_len) { 286 if (unmap_single) 287 pci_unmap_single(pci_dev, unmap_addr, unmap_len, 288 PCI_DMA_TODEVICE); 289 else 290 pci_unmap_page(pci_dev, unmap_addr, unmap_len, 291 PCI_DMA_TODEVICE); 292 } 293 294 return rc; 295} 296 297/* Remove packets from the TX queue 298 * 299 * This removes packets from the TX queue, up to and including the 300 * specified index. 301 */ 302static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, 303 unsigned int index, 304 unsigned int *pkts_compl, 305 unsigned int *bytes_compl) 306{ 307 struct efx_nic *efx = tx_queue->efx; 308 unsigned int stop_index, read_ptr; 309 310 stop_index = (index + 1) & tx_queue->ptr_mask; 311 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 312 313 while (read_ptr != stop_index) { 314 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 315 if (unlikely(buffer->len == 0)) { 316 netif_err(efx, tx_err, efx->net_dev, 317 "TX queue %d spurious TX completion id %x\n", 318 tx_queue->queue, read_ptr); 319 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); 320 return; 321 } 322 323 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 324 buffer->continuation = true; 325 buffer->len = 0; 326 327 ++tx_queue->read_count; 328 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 329 } 330} 331 332/* Initiate a packet transmission. We use one channel per CPU 333 * (sharing when we have more CPUs than channels). On Falcon, the TX 334 * completion events will be directed back to the CPU that transmitted 335 * the packet, which should be cache-efficient. 336 * 337 * Context: non-blocking. 338 * Note that returning anything other than NETDEV_TX_OK will cause the 339 * OS to free the skb. 340 */ 341netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, 342 struct net_device *net_dev) 343{ 344 struct efx_nic *efx = netdev_priv(net_dev); 345 struct efx_tx_queue *tx_queue; 346 unsigned index, type; 347 348 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); 349 350 index = skb_get_queue_mapping(skb); 351 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; 352 if (index >= efx->n_tx_channels) { 353 index -= efx->n_tx_channels; 354 type |= EFX_TXQ_TYPE_HIGHPRI; 355 } 356 tx_queue = efx_get_tx_queue(efx, index, type); 357 358 return efx_enqueue_skb(tx_queue, skb); 359} 360 361void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) 362{ 363 struct efx_nic *efx = tx_queue->efx; 364 365 /* Must be inverse of queue lookup in efx_hard_start_xmit() */ 366 tx_queue->core_txq = 367 netdev_get_tx_queue(efx->net_dev, 368 tx_queue->queue / EFX_TXQ_TYPES + 369 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? 370 efx->n_tx_channels : 0)); 371} 372 373int efx_setup_tc(struct net_device *net_dev, u8 num_tc) 374{ 375 struct efx_nic *efx = netdev_priv(net_dev); 376 struct efx_channel *channel; 377 struct efx_tx_queue *tx_queue; 378 unsigned tc; 379 int rc; 380 381 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC) 382 return -EINVAL; 383 384 if (num_tc == net_dev->num_tc) 385 return 0; 386 387 for (tc = 0; tc < num_tc; tc++) { 388 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 389 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 390 } 391 392 if (num_tc > net_dev->num_tc) { 393 /* Initialise high-priority queues as necessary */ 394 efx_for_each_channel(channel, efx) { 395 efx_for_each_possible_channel_tx_queue(tx_queue, 396 channel) { 397 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) 398 continue; 399 if (!tx_queue->buffer) { 400 rc = efx_probe_tx_queue(tx_queue); 401 if (rc) 402 return rc; 403 } 404 if (!tx_queue->initialised) 405 efx_init_tx_queue(tx_queue); 406 efx_init_tx_queue_core_txq(tx_queue); 407 } 408 } 409 } else { 410 /* Reduce number of classes before number of queues */ 411 net_dev->num_tc = num_tc; 412 } 413 414 rc = netif_set_real_num_tx_queues(net_dev, 415 max_t(int, num_tc, 1) * 416 efx->n_tx_channels); 417 if (rc) 418 return rc; 419 420 /* Do not destroy high-priority queues when they become 421 * unused. We would have to flush them first, and it is 422 * fairly difficult to flush a subset of TX queues. Leave 423 * it to efx_fini_channels(). 424 */ 425 426 net_dev->num_tc = num_tc; 427 return 0; 428} 429 430void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) 431{ 432 unsigned fill_level; 433 struct efx_nic *efx = tx_queue->efx; 434 unsigned int pkts_compl = 0, bytes_compl = 0; 435 436 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask); 437 438 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 439 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl); 440 441 /* See if we need to restart the netif queue. This barrier 442 * separates the update of read_count from the test of the 443 * queue state. */ 444 smp_mb(); 445 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 446 likely(efx->port_enabled) && 447 likely(netif_device_present(efx->net_dev))) { 448 fill_level = tx_queue->insert_count - tx_queue->read_count; 449 if (fill_level < EFX_TXQ_THRESHOLD(efx)) { 450 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx)); 451 netif_tx_wake_queue(tx_queue->core_txq); 452 } 453 } 454 455 /* Check whether the hardware queue is now empty */ 456 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 457 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); 458 if (tx_queue->read_count == tx_queue->old_write_count) { 459 smp_mb(); 460 tx_queue->empty_read_count = 461 tx_queue->read_count | EFX_EMPTY_COUNT_VALID; 462 } 463 } 464} 465 466int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) 467{ 468 struct efx_nic *efx = tx_queue->efx; 469 unsigned int entries; 470 int i, rc; 471 472 /* Create the smallest power-of-two aligned ring */ 473 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); 474 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 475 tx_queue->ptr_mask = entries - 1; 476 477 netif_dbg(efx, probe, efx->net_dev, 478 "creating TX queue %d size %#x mask %#x\n", 479 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 480 481 /* Allocate software ring */ 482 tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer), 483 GFP_KERNEL); 484 if (!tx_queue->buffer) 485 return -ENOMEM; 486 for (i = 0; i <= tx_queue->ptr_mask; ++i) 487 tx_queue->buffer[i].continuation = true; 488 489 /* Allocate hardware ring */ 490 rc = efx_nic_probe_tx(tx_queue); 491 if (rc) 492 goto fail; 493 494 return 0; 495 496 fail: 497 kfree(tx_queue->buffer); 498 tx_queue->buffer = NULL; 499 return rc; 500} 501 502void efx_init_tx_queue(struct efx_tx_queue *tx_queue) 503{ 504 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 505 "initialising TX queue %d\n", tx_queue->queue); 506 507 tx_queue->insert_count = 0; 508 tx_queue->write_count = 0; 509 tx_queue->old_write_count = 0; 510 tx_queue->read_count = 0; 511 tx_queue->old_read_count = 0; 512 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; 513 514 /* Set up TX descriptor ring */ 515 efx_nic_init_tx(tx_queue); 516 517 tx_queue->initialised = true; 518} 519 520void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) 521{ 522 struct efx_tx_buffer *buffer; 523 524 if (!tx_queue->buffer) 525 return; 526 527 /* Free any buffers left in the ring */ 528 while (tx_queue->read_count != tx_queue->write_count) { 529 unsigned int pkts_compl = 0, bytes_compl = 0; 530 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 531 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 532 buffer->continuation = true; 533 buffer->len = 0; 534 535 ++tx_queue->read_count; 536 } 537 netdev_tx_reset_queue(tx_queue->core_txq); 538} 539 540void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) 541{ 542 if (!tx_queue->initialised) 543 return; 544 545 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 546 "shutting down TX queue %d\n", tx_queue->queue); 547 548 tx_queue->initialised = false; 549 550 /* Flush TX queue, remove descriptor ring */ 551 efx_nic_fini_tx(tx_queue); 552 553 efx_release_tx_buffers(tx_queue); 554 555 /* Free up TSO header cache */ 556 efx_fini_tso(tx_queue); 557} 558 559void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) 560{ 561 if (!tx_queue->buffer) 562 return; 563 564 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 565 "destroying TX queue %d\n", tx_queue->queue); 566 efx_nic_remove_tx(tx_queue); 567 568 kfree(tx_queue->buffer); 569 tx_queue->buffer = NULL; 570} 571 572 573/* Efx TCP segmentation acceleration. 574 * 575 * Why? Because by doing it here in the driver we can go significantly 576 * faster than the GSO. 577 * 578 * Requires TX checksum offload support. 579 */ 580 581/* Number of bytes inserted at the start of a TSO header buffer, 582 * similar to NET_IP_ALIGN. 583 */ 584#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 585#define TSOH_OFFSET 0 586#else 587#define TSOH_OFFSET NET_IP_ALIGN 588#endif 589 590#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET) 591 592/* Total size of struct efx_tso_header, buffer and padding */ 593#define TSOH_SIZE(hdr_len) \ 594 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) 595 596/* Size of blocks on free list. Larger blocks must be allocated from 597 * the heap. 598 */ 599#define TSOH_STD_SIZE 128 600 601#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) 602#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data) 603#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data) 604#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) 605#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data) 606 607/** 608 * struct tso_state - TSO state for an SKB 609 * @out_len: Remaining length in current segment 610 * @seqnum: Current sequence number 611 * @ipv4_id: Current IPv4 ID, host endian 612 * @packet_space: Remaining space in current packet 613 * @dma_addr: DMA address of current position 614 * @in_len: Remaining length in current SKB fragment 615 * @unmap_len: Length of SKB fragment 616 * @unmap_addr: DMA address of SKB fragment 617 * @unmap_single: DMA single vs page mapping flag 618 * @protocol: Network protocol (after any VLAN header) 619 * @header_len: Number of bytes of header 620 * @full_packet_size: Number of bytes to put in each outgoing segment 621 * 622 * The state used during segmentation. It is put into this data structure 623 * just to make it easy to pass into inline functions. 624 */ 625struct tso_state { 626 /* Output position */ 627 unsigned out_len; 628 unsigned seqnum; 629 unsigned ipv4_id; 630 unsigned packet_space; 631 632 /* Input position */ 633 dma_addr_t dma_addr; 634 unsigned in_len; 635 unsigned unmap_len; 636 dma_addr_t unmap_addr; 637 bool unmap_single; 638 639 __be16 protocol; 640 unsigned header_len; 641 int full_packet_size; 642}; 643 644 645/* 646 * Verify that our various assumptions about sk_buffs and the conditions 647 * under which TSO will be attempted hold true. Return the protocol number. 648 */ 649static __be16 efx_tso_check_protocol(struct sk_buff *skb) 650{ 651 __be16 protocol = skb->protocol; 652 653 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != 654 protocol); 655 if (protocol == htons(ETH_P_8021Q)) { 656 /* Find the encapsulated protocol; reset network header 657 * and transport header based on that. */ 658 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 659 protocol = veh->h_vlan_encapsulated_proto; 660 skb_set_network_header(skb, sizeof(*veh)); 661 if (protocol == htons(ETH_P_IP)) 662 skb_set_transport_header(skb, sizeof(*veh) + 663 4 * ip_hdr(skb)->ihl); 664 else if (protocol == htons(ETH_P_IPV6)) 665 skb_set_transport_header(skb, sizeof(*veh) + 666 sizeof(struct ipv6hdr)); 667 } 668 669 if (protocol == htons(ETH_P_IP)) { 670 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); 671 } else { 672 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6)); 673 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); 674 } 675 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) 676 + (tcp_hdr(skb)->doff << 2u)) > 677 skb_headlen(skb)); 678 679 return protocol; 680} 681 682 683/* 684 * Allocate a page worth of efx_tso_header structures, and string them 685 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. 686 */ 687static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) 688{ 689 690 struct pci_dev *pci_dev = tx_queue->efx->pci_dev; 691 struct efx_tso_header *tsoh; 692 dma_addr_t dma_addr; 693 u8 *base_kva, *kva; 694 695 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr); 696 if (base_kva == NULL) { 697 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev, 698 "Unable to allocate page for TSO headers\n"); 699 return -ENOMEM; 700 } 701 702 /* pci_alloc_consistent() allocates pages. */ 703 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); 704 705 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { 706 tsoh = (struct efx_tso_header *)kva; 707 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); 708 tsoh->next = tx_queue->tso_headers_free; 709 tx_queue->tso_headers_free = tsoh; 710 } 711 712 return 0; 713} 714 715 716/* Free up a TSO header, and all others in the same page. */ 717static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, 718 struct efx_tso_header *tsoh, 719 struct pci_dev *pci_dev) 720{ 721 struct efx_tso_header **p; 722 unsigned long base_kva; 723 dma_addr_t base_dma; 724 725 base_kva = (unsigned long)tsoh & PAGE_MASK; 726 base_dma = tsoh->dma_addr & PAGE_MASK; 727 728 p = &tx_queue->tso_headers_free; 729 while (*p != NULL) { 730 if (((unsigned long)*p & PAGE_MASK) == base_kva) 731 *p = (*p)->next; 732 else 733 p = &(*p)->next; 734 } 735 736 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma); 737} 738 739static struct efx_tso_header * 740efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) 741{ 742 struct efx_tso_header *tsoh; 743 744 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); 745 if (unlikely(!tsoh)) 746 return NULL; 747 748 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev, 749 TSOH_BUFFER(tsoh), header_len, 750 PCI_DMA_TODEVICE); 751 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev, 752 tsoh->dma_addr))) { 753 kfree(tsoh); 754 return NULL; 755 } 756 757 tsoh->unmap_len = header_len; 758 return tsoh; 759} 760 761static void 762efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) 763{ 764 pci_unmap_single(tx_queue->efx->pci_dev, 765 tsoh->dma_addr, tsoh->unmap_len, 766 PCI_DMA_TODEVICE); 767 kfree(tsoh); 768} 769 770/** 771 * efx_tx_queue_insert - push descriptors onto the TX queue 772 * @tx_queue: Efx TX queue 773 * @dma_addr: DMA address of fragment 774 * @len: Length of fragment 775 * @final_buffer: The final buffer inserted into the queue 776 * 777 * Push descriptors onto the TX queue. Return 0 on success or 1 if 778 * @tx_queue full. 779 */ 780static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, 781 dma_addr_t dma_addr, unsigned len, 782 struct efx_tx_buffer **final_buffer) 783{ 784 struct efx_tx_buffer *buffer; 785 struct efx_nic *efx = tx_queue->efx; 786 unsigned dma_len, fill_level, insert_ptr; 787 int q_space; 788 789 EFX_BUG_ON_PARANOID(len <= 0); 790 791 fill_level = tx_queue->insert_count - tx_queue->old_read_count; 792 /* -1 as there is no way to represent all descriptors used */ 793 q_space = efx->txq_entries - 1 - fill_level; 794 795 while (1) { 796 if (unlikely(q_space-- <= 0)) { 797 /* It might be that completions have happened 798 * since the xmit path last checked. Update 799 * the xmit path's copy of read_count. 800 */ 801 netif_tx_stop_queue(tx_queue->core_txq); 802 /* This memory barrier protects the change of 803 * queue state from the access of read_count. */ 804 smp_mb(); 805 tx_queue->old_read_count = 806 ACCESS_ONCE(tx_queue->read_count); 807 fill_level = (tx_queue->insert_count 808 - tx_queue->old_read_count); 809 q_space = efx->txq_entries - 1 - fill_level; 810 if (unlikely(q_space-- <= 0)) { 811 *final_buffer = NULL; 812 return 1; 813 } 814 smp_mb(); 815 netif_tx_start_queue(tx_queue->core_txq); 816 } 817 818 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; 819 buffer = &tx_queue->buffer[insert_ptr]; 820 ++tx_queue->insert_count; 821 822 EFX_BUG_ON_PARANOID(tx_queue->insert_count - 823 tx_queue->read_count >= 824 efx->txq_entries); 825 826 efx_tsoh_free(tx_queue, buffer); 827 EFX_BUG_ON_PARANOID(buffer->len); 828 EFX_BUG_ON_PARANOID(buffer->unmap_len); 829 EFX_BUG_ON_PARANOID(buffer->skb); 830 EFX_BUG_ON_PARANOID(!buffer->continuation); 831 EFX_BUG_ON_PARANOID(buffer->tsoh); 832 833 buffer->dma_addr = dma_addr; 834 835 dma_len = efx_max_tx_len(efx, dma_addr); 836 837 /* If there is enough space to send then do so */ 838 if (dma_len >= len) 839 break; 840 841 buffer->len = dma_len; /* Don't set the other members */ 842 dma_addr += dma_len; 843 len -= dma_len; 844 } 845 846 EFX_BUG_ON_PARANOID(!len); 847 buffer->len = len; 848 *final_buffer = buffer; 849 return 0; 850} 851 852 853/* 854 * Put a TSO header into the TX queue. 855 * 856 * This is special-cased because we know that it is small enough to fit in 857 * a single fragment, and we know it doesn't cross a page boundary. It 858 * also allows us to not worry about end-of-packet etc. 859 */ 860static void efx_tso_put_header(struct efx_tx_queue *tx_queue, 861 struct efx_tso_header *tsoh, unsigned len) 862{ 863 struct efx_tx_buffer *buffer; 864 865 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask]; 866 efx_tsoh_free(tx_queue, buffer); 867 EFX_BUG_ON_PARANOID(buffer->len); 868 EFX_BUG_ON_PARANOID(buffer->unmap_len); 869 EFX_BUG_ON_PARANOID(buffer->skb); 870 EFX_BUG_ON_PARANOID(!buffer->continuation); 871 EFX_BUG_ON_PARANOID(buffer->tsoh); 872 buffer->len = len; 873 buffer->dma_addr = tsoh->dma_addr; 874 buffer->tsoh = tsoh; 875 876 ++tx_queue->insert_count; 877} 878 879 880/* Remove descriptors put into a tx_queue. */ 881static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) 882{ 883 struct efx_tx_buffer *buffer; 884 dma_addr_t unmap_addr; 885 886 /* Work backwards until we hit the original insert pointer value */ 887 while (tx_queue->insert_count != tx_queue->write_count) { 888 --tx_queue->insert_count; 889 buffer = &tx_queue->buffer[tx_queue->insert_count & 890 tx_queue->ptr_mask]; 891 efx_tsoh_free(tx_queue, buffer); 892 EFX_BUG_ON_PARANOID(buffer->skb); 893 if (buffer->unmap_len) { 894 unmap_addr = (buffer->dma_addr + buffer->len - 895 buffer->unmap_len); 896 if (buffer->unmap_single) 897 pci_unmap_single(tx_queue->efx->pci_dev, 898 unmap_addr, buffer->unmap_len, 899 PCI_DMA_TODEVICE); 900 else 901 pci_unmap_page(tx_queue->efx->pci_dev, 902 unmap_addr, buffer->unmap_len, 903 PCI_DMA_TODEVICE); 904 buffer->unmap_len = 0; 905 } 906 buffer->len = 0; 907 buffer->continuation = true; 908 } 909} 910 911 912/* Parse the SKB header and initialise state. */ 913static void tso_start(struct tso_state *st, const struct sk_buff *skb) 914{ 915 /* All ethernet/IP/TCP headers combined size is TCP header size 916 * plus offset of TCP header relative to start of packet. 917 */ 918 st->header_len = ((tcp_hdr(skb)->doff << 2u) 919 + PTR_DIFF(tcp_hdr(skb), skb->data)); 920 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size; 921 922 if (st->protocol == htons(ETH_P_IP)) 923 st->ipv4_id = ntohs(ip_hdr(skb)->id); 924 else 925 st->ipv4_id = 0; 926 st->seqnum = ntohl(tcp_hdr(skb)->seq); 927 928 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); 929 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); 930 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); 931 932 st->packet_space = st->full_packet_size; 933 st->out_len = skb->len - st->header_len; 934 st->unmap_len = 0; 935 st->unmap_single = false; 936} 937 938static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, 939 skb_frag_t *frag) 940{ 941 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0, 942 skb_frag_size(frag), DMA_TO_DEVICE); 943 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) { 944 st->unmap_single = false; 945 st->unmap_len = skb_frag_size(frag); 946 st->in_len = skb_frag_size(frag); 947 st->dma_addr = st->unmap_addr; 948 return 0; 949 } 950 return -ENOMEM; 951} 952 953static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, 954 const struct sk_buff *skb) 955{ 956 int hl = st->header_len; 957 int len = skb_headlen(skb) - hl; 958 959 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl, 960 len, PCI_DMA_TODEVICE); 961 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { 962 st->unmap_single = true; 963 st->unmap_len = len; 964 st->in_len = len; 965 st->dma_addr = st->unmap_addr; 966 return 0; 967 } 968 return -ENOMEM; 969} 970 971 972/** 973 * tso_fill_packet_with_fragment - form descriptors for the current fragment 974 * @tx_queue: Efx TX queue 975 * @skb: Socket buffer 976 * @st: TSO state 977 * 978 * Form descriptors for the current fragment, until we reach the end 979 * of fragment or end-of-packet. Return 0 on success, 1 if not enough 980 * space in @tx_queue. 981 */ 982static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, 983 const struct sk_buff *skb, 984 struct tso_state *st) 985{ 986 struct efx_tx_buffer *buffer; 987 int n, end_of_packet, rc; 988 989 if (st->in_len == 0) 990 return 0; 991 if (st->packet_space == 0) 992 return 0; 993 994 EFX_BUG_ON_PARANOID(st->in_len <= 0); 995 EFX_BUG_ON_PARANOID(st->packet_space <= 0); 996 997 n = min(st->in_len, st->packet_space); 998 999 st->packet_space -= n; 1000 st->out_len -= n; 1001 st->in_len -= n; 1002 1003 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); 1004 if (likely(rc == 0)) { 1005 if (st->out_len == 0) 1006 /* Transfer ownership of the skb */ 1007 buffer->skb = skb; 1008 1009 end_of_packet = st->out_len == 0 || st->packet_space == 0; 1010 buffer->continuation = !end_of_packet; 1011 1012 if (st->in_len == 0) { 1013 /* Transfer ownership of the pci mapping */ 1014 buffer->unmap_len = st->unmap_len; 1015 buffer->unmap_single = st->unmap_single; 1016 st->unmap_len = 0; 1017 } 1018 } 1019 1020 st->dma_addr += n; 1021 return rc; 1022} 1023 1024 1025/** 1026 * tso_start_new_packet - generate a new header and prepare for the new packet 1027 * @tx_queue: Efx TX queue 1028 * @skb: Socket buffer 1029 * @st: TSO state 1030 * 1031 * Generate a new header and prepare for the new packet. Return 0 on 1032 * success, or -1 if failed to alloc header. 1033 */ 1034static int tso_start_new_packet(struct efx_tx_queue *tx_queue, 1035 const struct sk_buff *skb, 1036 struct tso_state *st) 1037{ 1038 struct efx_tso_header *tsoh; 1039 struct tcphdr *tsoh_th; 1040 unsigned ip_length; 1041 u8 *header; 1042 1043 /* Allocate a DMA-mapped header buffer. */ 1044 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) { 1045 if (tx_queue->tso_headers_free == NULL) { 1046 if (efx_tsoh_block_alloc(tx_queue)) 1047 return -1; 1048 } 1049 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); 1050 tsoh = tx_queue->tso_headers_free; 1051 tx_queue->tso_headers_free = tsoh->next; 1052 tsoh->unmap_len = 0; 1053 } else { 1054 tx_queue->tso_long_headers++; 1055 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len); 1056 if (unlikely(!tsoh)) 1057 return -1; 1058 } 1059 1060 header = TSOH_BUFFER(tsoh); 1061 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); 1062 1063 /* Copy and update the headers. */ 1064 memcpy(header, skb->data, st->header_len); 1065 1066 tsoh_th->seq = htonl(st->seqnum); 1067 st->seqnum += skb_shinfo(skb)->gso_size; 1068 if (st->out_len > skb_shinfo(skb)->gso_size) { 1069 /* This packet will not finish the TSO burst. */ 1070 ip_length = st->full_packet_size - ETH_HDR_LEN(skb); 1071 tsoh_th->fin = 0; 1072 tsoh_th->psh = 0; 1073 } else { 1074 /* This packet will be the last in the TSO burst. */ 1075 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len; 1076 tsoh_th->fin = tcp_hdr(skb)->fin; 1077 tsoh_th->psh = tcp_hdr(skb)->psh; 1078 } 1079 1080 if (st->protocol == htons(ETH_P_IP)) { 1081 struct iphdr *tsoh_iph = 1082 (struct iphdr *)(header + SKB_IPV4_OFF(skb)); 1083 1084 tsoh_iph->tot_len = htons(ip_length); 1085 1086 /* Linux leaves suitable gaps in the IP ID space for us to fill. */ 1087 tsoh_iph->id = htons(st->ipv4_id); 1088 st->ipv4_id++; 1089 } else { 1090 struct ipv6hdr *tsoh_iph = 1091 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb)); 1092 1093 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph)); 1094 } 1095 1096 st->packet_space = skb_shinfo(skb)->gso_size; 1097 ++tx_queue->tso_packets; 1098 1099 /* Form a descriptor for this header. */ 1100 efx_tso_put_header(tx_queue, tsoh, st->header_len); 1101 1102 return 0; 1103} 1104 1105 1106/** 1107 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer 1108 * @tx_queue: Efx TX queue 1109 * @skb: Socket buffer 1110 * 1111 * Context: You must hold netif_tx_lock() to call this function. 1112 * 1113 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if 1114 * @skb was not enqueued. In all cases @skb is consumed. Return 1115 * %NETDEV_TX_OK or %NETDEV_TX_BUSY. 1116 */ 1117static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, 1118 struct sk_buff *skb) 1119{ 1120 struct efx_nic *efx = tx_queue->efx; 1121 int frag_i, rc, rc2 = NETDEV_TX_OK; 1122 struct tso_state state; 1123 1124 /* Find the packet protocol and sanity-check it */ 1125 state.protocol = efx_tso_check_protocol(skb); 1126 1127 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); 1128 1129 tso_start(&state, skb); 1130 1131 /* Assume that skb header area contains exactly the headers, and 1132 * all payload is in the frag list. 1133 */ 1134 if (skb_headlen(skb) == state.header_len) { 1135 /* Grab the first payload fragment. */ 1136 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); 1137 frag_i = 0; 1138 rc = tso_get_fragment(&state, efx, 1139 skb_shinfo(skb)->frags + frag_i); 1140 if (rc) 1141 goto mem_err; 1142 } else { 1143 rc = tso_get_head_fragment(&state, efx, skb); 1144 if (rc) 1145 goto mem_err; 1146 frag_i = -1; 1147 } 1148 1149 if (tso_start_new_packet(tx_queue, skb, &state) < 0) 1150 goto mem_err; 1151 1152 while (1) { 1153 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); 1154 if (unlikely(rc)) { 1155 rc2 = NETDEV_TX_BUSY; 1156 goto unwind; 1157 } 1158 1159 /* Move onto the next fragment? */ 1160 if (state.in_len == 0) { 1161 if (++frag_i >= skb_shinfo(skb)->nr_frags) 1162 /* End of payload reached. */ 1163 break; 1164 rc = tso_get_fragment(&state, efx, 1165 skb_shinfo(skb)->frags + frag_i); 1166 if (rc) 1167 goto mem_err; 1168 } 1169 1170 /* Start at new packet? */ 1171 if (state.packet_space == 0 && 1172 tso_start_new_packet(tx_queue, skb, &state) < 0) 1173 goto mem_err; 1174 } 1175 1176 netdev_tx_sent_queue(tx_queue->core_txq, skb->len); 1177 1178 /* Pass off to hardware */ 1179 efx_nic_push_buffers(tx_queue); 1180 1181 tx_queue->tso_bursts++; 1182 return NETDEV_TX_OK; 1183 1184 mem_err: 1185 netif_err(efx, tx_err, efx->net_dev, 1186 "Out of memory for TSO headers, or PCI mapping error\n"); 1187 dev_kfree_skb_any(skb); 1188 1189 unwind: 1190 /* Free the DMA mapping we were in the process of writing out */ 1191 if (state.unmap_len) { 1192 if (state.unmap_single) 1193 pci_unmap_single(efx->pci_dev, state.unmap_addr, 1194 state.unmap_len, PCI_DMA_TODEVICE); 1195 else 1196 pci_unmap_page(efx->pci_dev, state.unmap_addr, 1197 state.unmap_len, PCI_DMA_TODEVICE); 1198 } 1199 1200 efx_enqueue_unwind(tx_queue); 1201 return rc2; 1202} 1203 1204 1205/* 1206 * Free up all TSO datastructures associated with tx_queue. This 1207 * routine should be called only once the tx_queue is both empty and 1208 * will no longer be used. 1209 */ 1210static void efx_fini_tso(struct efx_tx_queue *tx_queue) 1211{ 1212 unsigned i; 1213 1214 if (tx_queue->buffer) { 1215 for (i = 0; i <= tx_queue->ptr_mask; ++i) 1216 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); 1217 } 1218 1219 while (tx_queue->tso_headers_free != NULL) 1220 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, 1221 tx_queue->efx->pci_dev); 1222} 1223