tx.c revision 449fa023bca5b53bd924d91a27ffd34807fdeb80
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2010 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/ipv6.h>
18#include <linux/if_ether.h>
19#include <linux/highmem.h>
20#include "net_driver.h"
21#include "efx.h"
22#include "nic.h"
23#include "workarounds.h"
24
25/*
26 * TX descriptor ring full threshold
27 *
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
30 */
31#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34			       struct efx_tx_buffer *buffer,
35			       unsigned int *pkts_compl,
36			       unsigned int *bytes_compl)
37{
38	if (buffer->unmap_len) {
39		struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
40		dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
41					 buffer->unmap_len);
42		if (buffer->unmap_single)
43			pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
44					 PCI_DMA_TODEVICE);
45		else
46			pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
47				       PCI_DMA_TODEVICE);
48		buffer->unmap_len = 0;
49		buffer->unmap_single = false;
50	}
51
52	if (buffer->skb) {
53		(*pkts_compl)++;
54		(*bytes_compl) += buffer->skb->len;
55		dev_kfree_skb_any((struct sk_buff *) buffer->skb);
56		buffer->skb = NULL;
57		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
58			   "TX queue %d transmission id %x complete\n",
59			   tx_queue->queue, tx_queue->read_count);
60	}
61}
62
63/**
64 * struct efx_tso_header - a DMA mapped buffer for packet headers
65 * @next: Linked list of free ones.
66 *	The list is protected by the TX queue lock.
67 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68 * @dma_addr: The DMA address of the header below.
69 *
70 * This controls the memory used for a TSO header.  Use TSOH_DATA()
71 * to find the packet header data.  Use TSOH_SIZE() to calculate the
72 * total size required for a given packet header length.  TSO headers
73 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
74 */
75struct efx_tso_header {
76	union {
77		struct efx_tso_header *next;
78		size_t unmap_len;
79	};
80	dma_addr_t dma_addr;
81};
82
83static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
84			       struct sk_buff *skb);
85static void efx_fini_tso(struct efx_tx_queue *tx_queue);
86static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
87			       struct efx_tso_header *tsoh);
88
89static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
90			  struct efx_tx_buffer *buffer)
91{
92	if (buffer->tsoh) {
93		if (likely(!buffer->tsoh->unmap_len)) {
94			buffer->tsoh->next = tx_queue->tso_headers_free;
95			tx_queue->tso_headers_free = buffer->tsoh;
96		} else {
97			efx_tsoh_heap_free(tx_queue, buffer->tsoh);
98		}
99		buffer->tsoh = NULL;
100	}
101}
102
103
104static inline unsigned
105efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
106{
107	/* Depending on the NIC revision, we can use descriptor
108	 * lengths up to 8K or 8K-1.  However, since PCI Express
109	 * devices must split read requests at 4K boundaries, there is
110	 * little benefit from using descriptors that cross those
111	 * boundaries and we keep things simple by not doing so.
112	 */
113	unsigned len = (~dma_addr & 0xfff) + 1;
114
115	/* Work around hardware bug for unaligned buffers. */
116	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
117		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
118
119	return len;
120}
121
122/*
123 * Add a socket buffer to a TX queue
124 *
125 * This maps all fragments of a socket buffer for DMA and adds them to
126 * the TX queue.  The queue's insert pointer will be incremented by
127 * the number of fragments in the socket buffer.
128 *
129 * If any DMA mapping fails, any mapped fragments will be unmapped,
130 * the queue's insert pointer will be restored to its original value.
131 *
132 * This function is split out from efx_hard_start_xmit to allow the
133 * loopback test to direct packets via specific TX queues.
134 *
135 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
136 * You must hold netif_tx_lock() to call this function.
137 */
138netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
139{
140	struct efx_nic *efx = tx_queue->efx;
141	struct pci_dev *pci_dev = efx->pci_dev;
142	struct efx_tx_buffer *buffer;
143	skb_frag_t *fragment;
144	unsigned int len, unmap_len = 0, fill_level, insert_ptr;
145	dma_addr_t dma_addr, unmap_addr = 0;
146	unsigned int dma_len;
147	bool unmap_single;
148	int q_space, i = 0;
149	netdev_tx_t rc = NETDEV_TX_OK;
150
151	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
152
153	if (skb_shinfo(skb)->gso_size)
154		return efx_enqueue_skb_tso(tx_queue, skb);
155
156	/* Get size of the initial fragment */
157	len = skb_headlen(skb);
158
159	/* Pad if necessary */
160	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
161		EFX_BUG_ON_PARANOID(skb->data_len);
162		len = 32 + 1;
163		if (skb_pad(skb, len - skb->len))
164			return NETDEV_TX_OK;
165	}
166
167	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
168	q_space = efx->txq_entries - 1 - fill_level;
169
170	/* Map for DMA.  Use pci_map_single rather than pci_map_page
171	 * since this is more efficient on machines with sparse
172	 * memory.
173	 */
174	unmap_single = true;
175	dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
176
177	/* Process all fragments */
178	while (1) {
179		if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
180			goto pci_err;
181
182		/* Store fields for marking in the per-fragment final
183		 * descriptor */
184		unmap_len = len;
185		unmap_addr = dma_addr;
186
187		/* Add to TX queue, splitting across DMA boundaries */
188		do {
189			if (unlikely(q_space-- <= 0)) {
190				/* It might be that completions have
191				 * happened since the xmit path last
192				 * checked.  Update the xmit path's
193				 * copy of read_count.
194				 */
195				netif_tx_stop_queue(tx_queue->core_txq);
196				/* This memory barrier protects the
197				 * change of queue state from the access
198				 * of read_count. */
199				smp_mb();
200				tx_queue->old_read_count =
201					ACCESS_ONCE(tx_queue->read_count);
202				fill_level = (tx_queue->insert_count
203					      - tx_queue->old_read_count);
204				q_space = efx->txq_entries - 1 - fill_level;
205				if (unlikely(q_space-- <= 0)) {
206					rc = NETDEV_TX_BUSY;
207					goto unwind;
208				}
209				smp_mb();
210				if (likely(!efx->loopback_selftest))
211					netif_tx_start_queue(
212						tx_queue->core_txq);
213			}
214
215			insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
216			buffer = &tx_queue->buffer[insert_ptr];
217			efx_tsoh_free(tx_queue, buffer);
218			EFX_BUG_ON_PARANOID(buffer->tsoh);
219			EFX_BUG_ON_PARANOID(buffer->skb);
220			EFX_BUG_ON_PARANOID(buffer->len);
221			EFX_BUG_ON_PARANOID(!buffer->continuation);
222			EFX_BUG_ON_PARANOID(buffer->unmap_len);
223
224			dma_len = efx_max_tx_len(efx, dma_addr);
225			if (likely(dma_len >= len))
226				dma_len = len;
227
228			/* Fill out per descriptor fields */
229			buffer->len = dma_len;
230			buffer->dma_addr = dma_addr;
231			len -= dma_len;
232			dma_addr += dma_len;
233			++tx_queue->insert_count;
234		} while (len);
235
236		/* Transfer ownership of the unmapping to the final buffer */
237		buffer->unmap_single = unmap_single;
238		buffer->unmap_len = unmap_len;
239		unmap_len = 0;
240
241		/* Get address and size of next fragment */
242		if (i >= skb_shinfo(skb)->nr_frags)
243			break;
244		fragment = &skb_shinfo(skb)->frags[i];
245		len = skb_frag_size(fragment);
246		i++;
247		/* Map for DMA */
248		unmap_single = false;
249		dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
250					    DMA_TO_DEVICE);
251	}
252
253	/* Transfer ownership of the skb to the final buffer */
254	buffer->skb = skb;
255	buffer->continuation = false;
256
257	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
258
259	/* Pass off to hardware */
260	efx_nic_push_buffers(tx_queue);
261
262	return NETDEV_TX_OK;
263
264 pci_err:
265	netif_err(efx, tx_err, efx->net_dev,
266		  " TX queue %d could not map skb with %d bytes %d "
267		  "fragments for DMA\n", tx_queue->queue, skb->len,
268		  skb_shinfo(skb)->nr_frags + 1);
269
270	/* Mark the packet as transmitted, and free the SKB ourselves */
271	dev_kfree_skb_any(skb);
272
273 unwind:
274	/* Work backwards until we hit the original insert pointer value */
275	while (tx_queue->insert_count != tx_queue->write_count) {
276		unsigned int pkts_compl = 0, bytes_compl = 0;
277		--tx_queue->insert_count;
278		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
279		buffer = &tx_queue->buffer[insert_ptr];
280		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
281		buffer->len = 0;
282	}
283
284	/* Free the fragment we were mid-way through pushing */
285	if (unmap_len) {
286		if (unmap_single)
287			pci_unmap_single(pci_dev, unmap_addr, unmap_len,
288					 PCI_DMA_TODEVICE);
289		else
290			pci_unmap_page(pci_dev, unmap_addr, unmap_len,
291				       PCI_DMA_TODEVICE);
292	}
293
294	return rc;
295}
296
297/* Remove packets from the TX queue
298 *
299 * This removes packets from the TX queue, up to and including the
300 * specified index.
301 */
302static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
303				unsigned int index,
304				unsigned int *pkts_compl,
305				unsigned int *bytes_compl)
306{
307	struct efx_nic *efx = tx_queue->efx;
308	unsigned int stop_index, read_ptr;
309
310	stop_index = (index + 1) & tx_queue->ptr_mask;
311	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
312
313	while (read_ptr != stop_index) {
314		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
315		if (unlikely(buffer->len == 0)) {
316			netif_err(efx, tx_err, efx->net_dev,
317				  "TX queue %d spurious TX completion id %x\n",
318				  tx_queue->queue, read_ptr);
319			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
320			return;
321		}
322
323		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
324		buffer->continuation = true;
325		buffer->len = 0;
326
327		++tx_queue->read_count;
328		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
329	}
330}
331
332/* Initiate a packet transmission.  We use one channel per CPU
333 * (sharing when we have more CPUs than channels).  On Falcon, the TX
334 * completion events will be directed back to the CPU that transmitted
335 * the packet, which should be cache-efficient.
336 *
337 * Context: non-blocking.
338 * Note that returning anything other than NETDEV_TX_OK will cause the
339 * OS to free the skb.
340 */
341netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
342				      struct net_device *net_dev)
343{
344	struct efx_nic *efx = netdev_priv(net_dev);
345	struct efx_tx_queue *tx_queue;
346	unsigned index, type;
347
348	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
349
350	index = skb_get_queue_mapping(skb);
351	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352	if (index >= efx->n_tx_channels) {
353		index -= efx->n_tx_channels;
354		type |= EFX_TXQ_TYPE_HIGHPRI;
355	}
356	tx_queue = efx_get_tx_queue(efx, index, type);
357
358	return efx_enqueue_skb(tx_queue, skb);
359}
360
361void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
362{
363	struct efx_nic *efx = tx_queue->efx;
364
365	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
366	tx_queue->core_txq =
367		netdev_get_tx_queue(efx->net_dev,
368				    tx_queue->queue / EFX_TXQ_TYPES +
369				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370				     efx->n_tx_channels : 0));
371}
372
373int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
374{
375	struct efx_nic *efx = netdev_priv(net_dev);
376	struct efx_channel *channel;
377	struct efx_tx_queue *tx_queue;
378	unsigned tc;
379	int rc;
380
381	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382		return -EINVAL;
383
384	if (num_tc == net_dev->num_tc)
385		return 0;
386
387	for (tc = 0; tc < num_tc; tc++) {
388		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
390	}
391
392	if (num_tc > net_dev->num_tc) {
393		/* Initialise high-priority queues as necessary */
394		efx_for_each_channel(channel, efx) {
395			efx_for_each_possible_channel_tx_queue(tx_queue,
396							       channel) {
397				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398					continue;
399				if (!tx_queue->buffer) {
400					rc = efx_probe_tx_queue(tx_queue);
401					if (rc)
402						return rc;
403				}
404				if (!tx_queue->initialised)
405					efx_init_tx_queue(tx_queue);
406				efx_init_tx_queue_core_txq(tx_queue);
407			}
408		}
409	} else {
410		/* Reduce number of classes before number of queues */
411		net_dev->num_tc = num_tc;
412	}
413
414	rc = netif_set_real_num_tx_queues(net_dev,
415					  max_t(int, num_tc, 1) *
416					  efx->n_tx_channels);
417	if (rc)
418		return rc;
419
420	/* Do not destroy high-priority queues when they become
421	 * unused.  We would have to flush them first, and it is
422	 * fairly difficult to flush a subset of TX queues.  Leave
423	 * it to efx_fini_channels().
424	 */
425
426	net_dev->num_tc = num_tc;
427	return 0;
428}
429
430void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
431{
432	unsigned fill_level;
433	struct efx_nic *efx = tx_queue->efx;
434	unsigned int pkts_compl = 0, bytes_compl = 0;
435
436	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
437
438	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
439	netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
440
441	/* See if we need to restart the netif queue.  This barrier
442	 * separates the update of read_count from the test of the
443	 * queue state. */
444	smp_mb();
445	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
446	    likely(efx->port_enabled) &&
447	    likely(netif_device_present(efx->net_dev))) {
448		fill_level = tx_queue->insert_count - tx_queue->read_count;
449		if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
450			EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
451			netif_tx_wake_queue(tx_queue->core_txq);
452		}
453	}
454
455	/* Check whether the hardware queue is now empty */
456	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
457		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
458		if (tx_queue->read_count == tx_queue->old_write_count) {
459			smp_mb();
460			tx_queue->empty_read_count =
461				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
462		}
463	}
464}
465
466int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
467{
468	struct efx_nic *efx = tx_queue->efx;
469	unsigned int entries;
470	int i, rc;
471
472	/* Create the smallest power-of-two aligned ring */
473	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
474	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
475	tx_queue->ptr_mask = entries - 1;
476
477	netif_dbg(efx, probe, efx->net_dev,
478		  "creating TX queue %d size %#x mask %#x\n",
479		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
480
481	/* Allocate software ring */
482	tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
483				   GFP_KERNEL);
484	if (!tx_queue->buffer)
485		return -ENOMEM;
486	for (i = 0; i <= tx_queue->ptr_mask; ++i)
487		tx_queue->buffer[i].continuation = true;
488
489	/* Allocate hardware ring */
490	rc = efx_nic_probe_tx(tx_queue);
491	if (rc)
492		goto fail;
493
494	return 0;
495
496 fail:
497	kfree(tx_queue->buffer);
498	tx_queue->buffer = NULL;
499	return rc;
500}
501
502void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
503{
504	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
505		  "initialising TX queue %d\n", tx_queue->queue);
506
507	tx_queue->insert_count = 0;
508	tx_queue->write_count = 0;
509	tx_queue->old_write_count = 0;
510	tx_queue->read_count = 0;
511	tx_queue->old_read_count = 0;
512	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
513
514	/* Set up TX descriptor ring */
515	efx_nic_init_tx(tx_queue);
516
517	tx_queue->initialised = true;
518}
519
520void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
521{
522	struct efx_tx_buffer *buffer;
523
524	if (!tx_queue->buffer)
525		return;
526
527	/* Free any buffers left in the ring */
528	while (tx_queue->read_count != tx_queue->write_count) {
529		unsigned int pkts_compl = 0, bytes_compl = 0;
530		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
531		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
532		buffer->continuation = true;
533		buffer->len = 0;
534
535		++tx_queue->read_count;
536	}
537	netdev_tx_reset_queue(tx_queue->core_txq);
538}
539
540void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
541{
542	if (!tx_queue->initialised)
543		return;
544
545	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
546		  "shutting down TX queue %d\n", tx_queue->queue);
547
548	tx_queue->initialised = false;
549
550	/* Flush TX queue, remove descriptor ring */
551	efx_nic_fini_tx(tx_queue);
552
553	efx_release_tx_buffers(tx_queue);
554
555	/* Free up TSO header cache */
556	efx_fini_tso(tx_queue);
557}
558
559void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
560{
561	if (!tx_queue->buffer)
562		return;
563
564	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
565		  "destroying TX queue %d\n", tx_queue->queue);
566	efx_nic_remove_tx(tx_queue);
567
568	kfree(tx_queue->buffer);
569	tx_queue->buffer = NULL;
570}
571
572
573/* Efx TCP segmentation acceleration.
574 *
575 * Why?  Because by doing it here in the driver we can go significantly
576 * faster than the GSO.
577 *
578 * Requires TX checksum offload support.
579 */
580
581/* Number of bytes inserted at the start of a TSO header buffer,
582 * similar to NET_IP_ALIGN.
583 */
584#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
585#define TSOH_OFFSET	0
586#else
587#define TSOH_OFFSET	NET_IP_ALIGN
588#endif
589
590#define TSOH_BUFFER(tsoh)	((u8 *)(tsoh + 1) + TSOH_OFFSET)
591
592/* Total size of struct efx_tso_header, buffer and padding */
593#define TSOH_SIZE(hdr_len)					\
594	(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
595
596/* Size of blocks on free list.  Larger blocks must be allocated from
597 * the heap.
598 */
599#define TSOH_STD_SIZE		128
600
601#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
602#define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
603#define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
604#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
605#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
606
607/**
608 * struct tso_state - TSO state for an SKB
609 * @out_len: Remaining length in current segment
610 * @seqnum: Current sequence number
611 * @ipv4_id: Current IPv4 ID, host endian
612 * @packet_space: Remaining space in current packet
613 * @dma_addr: DMA address of current position
614 * @in_len: Remaining length in current SKB fragment
615 * @unmap_len: Length of SKB fragment
616 * @unmap_addr: DMA address of SKB fragment
617 * @unmap_single: DMA single vs page mapping flag
618 * @protocol: Network protocol (after any VLAN header)
619 * @header_len: Number of bytes of header
620 * @full_packet_size: Number of bytes to put in each outgoing segment
621 *
622 * The state used during segmentation.  It is put into this data structure
623 * just to make it easy to pass into inline functions.
624 */
625struct tso_state {
626	/* Output position */
627	unsigned out_len;
628	unsigned seqnum;
629	unsigned ipv4_id;
630	unsigned packet_space;
631
632	/* Input position */
633	dma_addr_t dma_addr;
634	unsigned in_len;
635	unsigned unmap_len;
636	dma_addr_t unmap_addr;
637	bool unmap_single;
638
639	__be16 protocol;
640	unsigned header_len;
641	int full_packet_size;
642};
643
644
645/*
646 * Verify that our various assumptions about sk_buffs and the conditions
647 * under which TSO will be attempted hold true.  Return the protocol number.
648 */
649static __be16 efx_tso_check_protocol(struct sk_buff *skb)
650{
651	__be16 protocol = skb->protocol;
652
653	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
654			    protocol);
655	if (protocol == htons(ETH_P_8021Q)) {
656		/* Find the encapsulated protocol; reset network header
657		 * and transport header based on that. */
658		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
659		protocol = veh->h_vlan_encapsulated_proto;
660		skb_set_network_header(skb, sizeof(*veh));
661		if (protocol == htons(ETH_P_IP))
662			skb_set_transport_header(skb, sizeof(*veh) +
663						 4 * ip_hdr(skb)->ihl);
664		else if (protocol == htons(ETH_P_IPV6))
665			skb_set_transport_header(skb, sizeof(*veh) +
666						 sizeof(struct ipv6hdr));
667	}
668
669	if (protocol == htons(ETH_P_IP)) {
670		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
671	} else {
672		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
673		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
674	}
675	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
676			     + (tcp_hdr(skb)->doff << 2u)) >
677			    skb_headlen(skb));
678
679	return protocol;
680}
681
682
683/*
684 * Allocate a page worth of efx_tso_header structures, and string them
685 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
686 */
687static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
688{
689
690	struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
691	struct efx_tso_header *tsoh;
692	dma_addr_t dma_addr;
693	u8 *base_kva, *kva;
694
695	base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
696	if (base_kva == NULL) {
697		netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
698			  "Unable to allocate page for TSO headers\n");
699		return -ENOMEM;
700	}
701
702	/* pci_alloc_consistent() allocates pages. */
703	EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
704
705	for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
706		tsoh = (struct efx_tso_header *)kva;
707		tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
708		tsoh->next = tx_queue->tso_headers_free;
709		tx_queue->tso_headers_free = tsoh;
710	}
711
712	return 0;
713}
714
715
716/* Free up a TSO header, and all others in the same page. */
717static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
718				struct efx_tso_header *tsoh,
719				struct pci_dev *pci_dev)
720{
721	struct efx_tso_header **p;
722	unsigned long base_kva;
723	dma_addr_t base_dma;
724
725	base_kva = (unsigned long)tsoh & PAGE_MASK;
726	base_dma = tsoh->dma_addr & PAGE_MASK;
727
728	p = &tx_queue->tso_headers_free;
729	while (*p != NULL) {
730		if (((unsigned long)*p & PAGE_MASK) == base_kva)
731			*p = (*p)->next;
732		else
733			p = &(*p)->next;
734	}
735
736	pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
737}
738
739static struct efx_tso_header *
740efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
741{
742	struct efx_tso_header *tsoh;
743
744	tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
745	if (unlikely(!tsoh))
746		return NULL;
747
748	tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
749					TSOH_BUFFER(tsoh), header_len,
750					PCI_DMA_TODEVICE);
751	if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
752					   tsoh->dma_addr))) {
753		kfree(tsoh);
754		return NULL;
755	}
756
757	tsoh->unmap_len = header_len;
758	return tsoh;
759}
760
761static void
762efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
763{
764	pci_unmap_single(tx_queue->efx->pci_dev,
765			 tsoh->dma_addr, tsoh->unmap_len,
766			 PCI_DMA_TODEVICE);
767	kfree(tsoh);
768}
769
770/**
771 * efx_tx_queue_insert - push descriptors onto the TX queue
772 * @tx_queue:		Efx TX queue
773 * @dma_addr:		DMA address of fragment
774 * @len:		Length of fragment
775 * @final_buffer:	The final buffer inserted into the queue
776 *
777 * Push descriptors onto the TX queue.  Return 0 on success or 1 if
778 * @tx_queue full.
779 */
780static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
781			       dma_addr_t dma_addr, unsigned len,
782			       struct efx_tx_buffer **final_buffer)
783{
784	struct efx_tx_buffer *buffer;
785	struct efx_nic *efx = tx_queue->efx;
786	unsigned dma_len, fill_level, insert_ptr;
787	int q_space;
788
789	EFX_BUG_ON_PARANOID(len <= 0);
790
791	fill_level = tx_queue->insert_count - tx_queue->old_read_count;
792	/* -1 as there is no way to represent all descriptors used */
793	q_space = efx->txq_entries - 1 - fill_level;
794
795	while (1) {
796		if (unlikely(q_space-- <= 0)) {
797			/* It might be that completions have happened
798			 * since the xmit path last checked.  Update
799			 * the xmit path's copy of read_count.
800			 */
801			netif_tx_stop_queue(tx_queue->core_txq);
802			/* This memory barrier protects the change of
803			 * queue state from the access of read_count. */
804			smp_mb();
805			tx_queue->old_read_count =
806				ACCESS_ONCE(tx_queue->read_count);
807			fill_level = (tx_queue->insert_count
808				      - tx_queue->old_read_count);
809			q_space = efx->txq_entries - 1 - fill_level;
810			if (unlikely(q_space-- <= 0)) {
811				*final_buffer = NULL;
812				return 1;
813			}
814			smp_mb();
815			netif_tx_start_queue(tx_queue->core_txq);
816		}
817
818		insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
819		buffer = &tx_queue->buffer[insert_ptr];
820		++tx_queue->insert_count;
821
822		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
823				    tx_queue->read_count >=
824				    efx->txq_entries);
825
826		efx_tsoh_free(tx_queue, buffer);
827		EFX_BUG_ON_PARANOID(buffer->len);
828		EFX_BUG_ON_PARANOID(buffer->unmap_len);
829		EFX_BUG_ON_PARANOID(buffer->skb);
830		EFX_BUG_ON_PARANOID(!buffer->continuation);
831		EFX_BUG_ON_PARANOID(buffer->tsoh);
832
833		buffer->dma_addr = dma_addr;
834
835		dma_len = efx_max_tx_len(efx, dma_addr);
836
837		/* If there is enough space to send then do so */
838		if (dma_len >= len)
839			break;
840
841		buffer->len = dma_len; /* Don't set the other members */
842		dma_addr += dma_len;
843		len -= dma_len;
844	}
845
846	EFX_BUG_ON_PARANOID(!len);
847	buffer->len = len;
848	*final_buffer = buffer;
849	return 0;
850}
851
852
853/*
854 * Put a TSO header into the TX queue.
855 *
856 * This is special-cased because we know that it is small enough to fit in
857 * a single fragment, and we know it doesn't cross a page boundary.  It
858 * also allows us to not worry about end-of-packet etc.
859 */
860static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
861			       struct efx_tso_header *tsoh, unsigned len)
862{
863	struct efx_tx_buffer *buffer;
864
865	buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
866	efx_tsoh_free(tx_queue, buffer);
867	EFX_BUG_ON_PARANOID(buffer->len);
868	EFX_BUG_ON_PARANOID(buffer->unmap_len);
869	EFX_BUG_ON_PARANOID(buffer->skb);
870	EFX_BUG_ON_PARANOID(!buffer->continuation);
871	EFX_BUG_ON_PARANOID(buffer->tsoh);
872	buffer->len = len;
873	buffer->dma_addr = tsoh->dma_addr;
874	buffer->tsoh = tsoh;
875
876	++tx_queue->insert_count;
877}
878
879
880/* Remove descriptors put into a tx_queue. */
881static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
882{
883	struct efx_tx_buffer *buffer;
884	dma_addr_t unmap_addr;
885
886	/* Work backwards until we hit the original insert pointer value */
887	while (tx_queue->insert_count != tx_queue->write_count) {
888		--tx_queue->insert_count;
889		buffer = &tx_queue->buffer[tx_queue->insert_count &
890					   tx_queue->ptr_mask];
891		efx_tsoh_free(tx_queue, buffer);
892		EFX_BUG_ON_PARANOID(buffer->skb);
893		if (buffer->unmap_len) {
894			unmap_addr = (buffer->dma_addr + buffer->len -
895				      buffer->unmap_len);
896			if (buffer->unmap_single)
897				pci_unmap_single(tx_queue->efx->pci_dev,
898						 unmap_addr, buffer->unmap_len,
899						 PCI_DMA_TODEVICE);
900			else
901				pci_unmap_page(tx_queue->efx->pci_dev,
902					       unmap_addr, buffer->unmap_len,
903					       PCI_DMA_TODEVICE);
904			buffer->unmap_len = 0;
905		}
906		buffer->len = 0;
907		buffer->continuation = true;
908	}
909}
910
911
912/* Parse the SKB header and initialise state. */
913static void tso_start(struct tso_state *st, const struct sk_buff *skb)
914{
915	/* All ethernet/IP/TCP headers combined size is TCP header size
916	 * plus offset of TCP header relative to start of packet.
917	 */
918	st->header_len = ((tcp_hdr(skb)->doff << 2u)
919			  + PTR_DIFF(tcp_hdr(skb), skb->data));
920	st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
921
922	if (st->protocol == htons(ETH_P_IP))
923		st->ipv4_id = ntohs(ip_hdr(skb)->id);
924	else
925		st->ipv4_id = 0;
926	st->seqnum = ntohl(tcp_hdr(skb)->seq);
927
928	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
929	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
930	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
931
932	st->packet_space = st->full_packet_size;
933	st->out_len = skb->len - st->header_len;
934	st->unmap_len = 0;
935	st->unmap_single = false;
936}
937
938static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
939			    skb_frag_t *frag)
940{
941	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
942					  skb_frag_size(frag), DMA_TO_DEVICE);
943	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
944		st->unmap_single = false;
945		st->unmap_len = skb_frag_size(frag);
946		st->in_len = skb_frag_size(frag);
947		st->dma_addr = st->unmap_addr;
948		return 0;
949	}
950	return -ENOMEM;
951}
952
953static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
954				 const struct sk_buff *skb)
955{
956	int hl = st->header_len;
957	int len = skb_headlen(skb) - hl;
958
959	st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
960					len, PCI_DMA_TODEVICE);
961	if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
962		st->unmap_single = true;
963		st->unmap_len = len;
964		st->in_len = len;
965		st->dma_addr = st->unmap_addr;
966		return 0;
967	}
968	return -ENOMEM;
969}
970
971
972/**
973 * tso_fill_packet_with_fragment - form descriptors for the current fragment
974 * @tx_queue:		Efx TX queue
975 * @skb:		Socket buffer
976 * @st:			TSO state
977 *
978 * Form descriptors for the current fragment, until we reach the end
979 * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
980 * space in @tx_queue.
981 */
982static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
983					 const struct sk_buff *skb,
984					 struct tso_state *st)
985{
986	struct efx_tx_buffer *buffer;
987	int n, end_of_packet, rc;
988
989	if (st->in_len == 0)
990		return 0;
991	if (st->packet_space == 0)
992		return 0;
993
994	EFX_BUG_ON_PARANOID(st->in_len <= 0);
995	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
996
997	n = min(st->in_len, st->packet_space);
998
999	st->packet_space -= n;
1000	st->out_len -= n;
1001	st->in_len -= n;
1002
1003	rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1004	if (likely(rc == 0)) {
1005		if (st->out_len == 0)
1006			/* Transfer ownership of the skb */
1007			buffer->skb = skb;
1008
1009		end_of_packet = st->out_len == 0 || st->packet_space == 0;
1010		buffer->continuation = !end_of_packet;
1011
1012		if (st->in_len == 0) {
1013			/* Transfer ownership of the pci mapping */
1014			buffer->unmap_len = st->unmap_len;
1015			buffer->unmap_single = st->unmap_single;
1016			st->unmap_len = 0;
1017		}
1018	}
1019
1020	st->dma_addr += n;
1021	return rc;
1022}
1023
1024
1025/**
1026 * tso_start_new_packet - generate a new header and prepare for the new packet
1027 * @tx_queue:		Efx TX queue
1028 * @skb:		Socket buffer
1029 * @st:			TSO state
1030 *
1031 * Generate a new header and prepare for the new packet.  Return 0 on
1032 * success, or -1 if failed to alloc header.
1033 */
1034static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1035				const struct sk_buff *skb,
1036				struct tso_state *st)
1037{
1038	struct efx_tso_header *tsoh;
1039	struct tcphdr *tsoh_th;
1040	unsigned ip_length;
1041	u8 *header;
1042
1043	/* Allocate a DMA-mapped header buffer. */
1044	if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1045		if (tx_queue->tso_headers_free == NULL) {
1046			if (efx_tsoh_block_alloc(tx_queue))
1047				return -1;
1048		}
1049		EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1050		tsoh = tx_queue->tso_headers_free;
1051		tx_queue->tso_headers_free = tsoh->next;
1052		tsoh->unmap_len = 0;
1053	} else {
1054		tx_queue->tso_long_headers++;
1055		tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1056		if (unlikely(!tsoh))
1057			return -1;
1058	}
1059
1060	header = TSOH_BUFFER(tsoh);
1061	tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1062
1063	/* Copy and update the headers. */
1064	memcpy(header, skb->data, st->header_len);
1065
1066	tsoh_th->seq = htonl(st->seqnum);
1067	st->seqnum += skb_shinfo(skb)->gso_size;
1068	if (st->out_len > skb_shinfo(skb)->gso_size) {
1069		/* This packet will not finish the TSO burst. */
1070		ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1071		tsoh_th->fin = 0;
1072		tsoh_th->psh = 0;
1073	} else {
1074		/* This packet will be the last in the TSO burst. */
1075		ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1076		tsoh_th->fin = tcp_hdr(skb)->fin;
1077		tsoh_th->psh = tcp_hdr(skb)->psh;
1078	}
1079
1080	if (st->protocol == htons(ETH_P_IP)) {
1081		struct iphdr *tsoh_iph =
1082			(struct iphdr *)(header + SKB_IPV4_OFF(skb));
1083
1084		tsoh_iph->tot_len = htons(ip_length);
1085
1086		/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1087		tsoh_iph->id = htons(st->ipv4_id);
1088		st->ipv4_id++;
1089	} else {
1090		struct ipv6hdr *tsoh_iph =
1091			(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1092
1093		tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1094	}
1095
1096	st->packet_space = skb_shinfo(skb)->gso_size;
1097	++tx_queue->tso_packets;
1098
1099	/* Form a descriptor for this header. */
1100	efx_tso_put_header(tx_queue, tsoh, st->header_len);
1101
1102	return 0;
1103}
1104
1105
1106/**
1107 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1108 * @tx_queue:		Efx TX queue
1109 * @skb:		Socket buffer
1110 *
1111 * Context: You must hold netif_tx_lock() to call this function.
1112 *
1113 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1114 * @skb was not enqueued.  In all cases @skb is consumed.  Return
1115 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1116 */
1117static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1118			       struct sk_buff *skb)
1119{
1120	struct efx_nic *efx = tx_queue->efx;
1121	int frag_i, rc, rc2 = NETDEV_TX_OK;
1122	struct tso_state state;
1123
1124	/* Find the packet protocol and sanity-check it */
1125	state.protocol = efx_tso_check_protocol(skb);
1126
1127	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1128
1129	tso_start(&state, skb);
1130
1131	/* Assume that skb header area contains exactly the headers, and
1132	 * all payload is in the frag list.
1133	 */
1134	if (skb_headlen(skb) == state.header_len) {
1135		/* Grab the first payload fragment. */
1136		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1137		frag_i = 0;
1138		rc = tso_get_fragment(&state, efx,
1139				      skb_shinfo(skb)->frags + frag_i);
1140		if (rc)
1141			goto mem_err;
1142	} else {
1143		rc = tso_get_head_fragment(&state, efx, skb);
1144		if (rc)
1145			goto mem_err;
1146		frag_i = -1;
1147	}
1148
1149	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1150		goto mem_err;
1151
1152	while (1) {
1153		rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1154		if (unlikely(rc)) {
1155			rc2 = NETDEV_TX_BUSY;
1156			goto unwind;
1157		}
1158
1159		/* Move onto the next fragment? */
1160		if (state.in_len == 0) {
1161			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1162				/* End of payload reached. */
1163				break;
1164			rc = tso_get_fragment(&state, efx,
1165					      skb_shinfo(skb)->frags + frag_i);
1166			if (rc)
1167				goto mem_err;
1168		}
1169
1170		/* Start at new packet? */
1171		if (state.packet_space == 0 &&
1172		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1173			goto mem_err;
1174	}
1175
1176	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1177
1178	/* Pass off to hardware */
1179	efx_nic_push_buffers(tx_queue);
1180
1181	tx_queue->tso_bursts++;
1182	return NETDEV_TX_OK;
1183
1184 mem_err:
1185	netif_err(efx, tx_err, efx->net_dev,
1186		  "Out of memory for TSO headers, or PCI mapping error\n");
1187	dev_kfree_skb_any(skb);
1188
1189 unwind:
1190	/* Free the DMA mapping we were in the process of writing out */
1191	if (state.unmap_len) {
1192		if (state.unmap_single)
1193			pci_unmap_single(efx->pci_dev, state.unmap_addr,
1194					 state.unmap_len, PCI_DMA_TODEVICE);
1195		else
1196			pci_unmap_page(efx->pci_dev, state.unmap_addr,
1197				       state.unmap_len, PCI_DMA_TODEVICE);
1198	}
1199
1200	efx_enqueue_unwind(tx_queue);
1201	return rc2;
1202}
1203
1204
1205/*
1206 * Free up all TSO datastructures associated with tx_queue. This
1207 * routine should be called only once the tx_queue is both empty and
1208 * will no longer be used.
1209 */
1210static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1211{
1212	unsigned i;
1213
1214	if (tx_queue->buffer) {
1215		for (i = 0; i <= tx_queue->ptr_mask; ++i)
1216			efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1217	}
1218
1219	while (tx_queue->tso_headers_free != NULL)
1220		efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1221				    tx_queue->efx->pci_dev);
1222}
1223