1/*
2 * Misc utility routines for accessing chip-specific features
3 * of the SiliconBackplane-based Broadcom chips.
4 *
5 * Copyright (C) 1999-2012, Broadcom Corporation
6 *
7 *      Unless you and Broadcom execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2 (the "GPL"),
10 * available at http://www.broadcom.com/licenses/GPLv2.php, with the
11 * following added to such license:
12 *
13 *      As a special exception, the copyright holders of this software give you
14 * permission to link this software with independent modules, and to copy and
15 * distribute the resulting executable under terms of your choice, provided that
16 * you also meet, for each linked independent module, the terms and conditions of
17 * the license of that module.  An independent module is a module which is not
18 * derived from this software.  The special exception does not apply to any
19 * modifications of the software.
20 *
21 *      Notwithstanding the above, under no circumstances may you combine this
22 * software in any way with any other Broadcom software provided under a license
23 * other than the GPL, without Broadcom's express prior written consent.
24 *
25 * $Id: siutils.c 309908 2012-01-21 00:14:29Z $
26 */
27
28#include <bcm_cfg.h>
29#include <typedefs.h>
30#include <bcmdefs.h>
31#include <osl.h>
32#include <bcmutils.h>
33#include <siutils.h>
34#include <bcmdevs.h>
35#include <hndsoc.h>
36#include <sbchipc.h>
37#include <pcicfg.h>
38#include <sbpcmcia.h>
39#include <sbsocram.h>
40#include <bcmsdh.h>
41#include <sdio.h>
42#include <sbsdio.h>
43#include <sbhnddma.h>
44#include <sbsdpcmdev.h>
45#include <bcmsdpcm.h>
46#include <hndpmu.h>
47
48#include "siutils_priv.h"
49
50/* local prototypes */
51static si_info_t *si_doattach(si_info_t *sii, uint devid, osl_t *osh, void *regs,
52                              uint bustype, void *sdh, char **vars, uint *varsz);
53static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh);
54static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
55	uint *origidx, void *regs);
56
57
58
59/* global variable to indicate reservation/release of gpio's */
60static uint32 si_gpioreservation = 0;
61
62/* global flag to prevent shared resources from being initialized multiple times in si_attach() */
63
64int do_4360_pcie2_war = 0;
65
66/*
67 * Allocate a si handle.
68 * devid - pci device id (used to determine chip#)
69 * osh - opaque OS handle
70 * regs - virtual address of initial core registers
71 * bustype - pci/pcmcia/sb/sdio/etc
72 * vars - pointer to a pointer area for "environment" variables
73 * varsz - pointer to int to return the size of the vars
74 */
75si_t *
76si_attach(uint devid, osl_t *osh, void *regs,
77                       uint bustype, void *sdh, char **vars, uint *varsz)
78{
79	si_info_t *sii;
80
81	/* alloc si_info_t */
82	if ((sii = MALLOC(osh, sizeof (si_info_t))) == NULL) {
83		SI_ERROR(("si_attach: malloc failed! malloced %d bytes\n", MALLOCED(osh)));
84		return (NULL);
85	}
86
87	if (si_doattach(sii, devid, osh, regs, bustype, sdh, vars, varsz) == NULL) {
88		MFREE(osh, sii, sizeof(si_info_t));
89		return (NULL);
90	}
91	sii->vars = vars ? *vars : NULL;
92	sii->varsz = varsz ? *varsz : 0;
93
94	return (si_t *)sii;
95}
96
97/* global kernel resource */
98static si_info_t ksii;
99
100static uint32	wd_msticks;		/* watchdog timer ticks normalized to ms */
101
102/* generic kernel variant of si_attach() */
103si_t *
104si_kattach(osl_t *osh)
105{
106	static bool ksii_attached = FALSE;
107
108	if (!ksii_attached) {
109		void *regs;
110		regs = REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
111
112		if (si_doattach(&ksii, BCM4710_DEVICE_ID, osh, regs,
113		                SI_BUS, NULL,
114		                osh != SI_OSH ? &ksii.vars : NULL,
115		                osh != SI_OSH ? &ksii.varsz : NULL) == NULL) {
116			SI_ERROR(("si_kattach: si_doattach failed\n"));
117			REG_UNMAP(regs);
118			return NULL;
119		}
120		REG_UNMAP(regs);
121
122		/* save ticks normalized to ms for si_watchdog_ms() */
123		if (PMUCTL_ENAB(&ksii.pub)) {
124				/* based on 32KHz ILP clock */
125				wd_msticks = 32;
126		} else {
127			wd_msticks = ALP_CLOCK / 1000;
128		}
129
130		ksii_attached = TRUE;
131		SI_MSG(("si_kattach done. ccrev = %d, wd_msticks = %d\n",
132		        ksii.pub.ccrev, wd_msticks));
133	}
134
135	return &ksii.pub;
136}
137
138
139static bool
140si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh)
141{
142	/* need to set memseg flag for CF card first before any sb registers access */
143	if (BUSTYPE(bustype) == PCMCIA_BUS)
144		sii->memseg = TRUE;
145
146
147	if (BUSTYPE(bustype) == SDIO_BUS) {
148		int err;
149		uint8 clkset;
150
151		/* Try forcing SDIO core to do ALPAvail request only */
152		clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
153		bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
154		if (!err) {
155			uint8 clkval;
156
157			/* If register supported, wait for ALPAvail and then force ALP */
158			clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL);
159			if ((clkval & ~SBSDIO_AVBITS) == clkset) {
160				SPINWAIT(((clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1,
161					SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)),
162					PMU_MAX_TRANSITION_DLY);
163				if (!SBSDIO_ALPAV(clkval)) {
164					SI_ERROR(("timeout on ALPAV wait, clkval 0x%02x\n",
165						clkval));
166					return FALSE;
167				}
168				clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
169				bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
170					clkset, &err);
171				OSL_DELAY(65);
172			}
173		}
174
175		/* Also, disable the extra SDIO pull-ups */
176		bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
177	}
178
179
180	return TRUE;
181}
182
183static bool
184si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, uint32 savewin,
185	uint *origidx, void *regs)
186{
187	bool pci, pcie, pcie_gen2 = FALSE;
188	uint i;
189	uint pciidx, pcieidx, pcirev, pcierev;
190
191	cc = si_setcoreidx(&sii->pub, SI_CC_IDX);
192	ASSERT((uintptr)cc);
193
194	/* get chipcommon rev */
195	sii->pub.ccrev = (int)si_corerev(&sii->pub);
196
197	/* get chipcommon chipstatus */
198	if (sii->pub.ccrev >= 11)
199		sii->pub.chipst = R_REG(sii->osh, &cc->chipstatus);
200
201	/* get chipcommon capabilites */
202	sii->pub.cccaps = R_REG(sii->osh, &cc->capabilities);
203	/* get chipcommon extended capabilities */
204
205	if (sii->pub.ccrev >= 35)
206		sii->pub.cccaps_ext = R_REG(sii->osh, &cc->capabilities_ext);
207
208	/* get pmu rev and caps */
209	if (sii->pub.cccaps & CC_CAP_PMU) {
210		sii->pub.pmucaps = R_REG(sii->osh, &cc->pmucapabilities);
211		sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
212	}
213
214	SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n",
215		sii->pub.ccrev, sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev,
216		sii->pub.pmucaps));
217
218	/* figure out bus/orignal core idx */
219	sii->pub.buscoretype = NODEV_CORE_ID;
220	sii->pub.buscorerev = (uint)NOREV;
221	sii->pub.buscoreidx = BADIDX;
222
223	pci = pcie = FALSE;
224	pcirev = pcierev = (uint)NOREV;
225	pciidx = pcieidx = BADIDX;
226
227	for (i = 0; i < sii->numcores; i++) {
228		uint cid, crev;
229
230		si_setcoreidx(&sii->pub, i);
231		cid = si_coreid(&sii->pub);
232		crev = si_corerev(&sii->pub);
233
234		/* Display cores found */
235		SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n",
236		        i, cid, crev, sii->coresba[i], sii->regs[i]));
237
238		if (BUSTYPE(bustype) == PCI_BUS) {
239			if (cid == PCI_CORE_ID) {
240				pciidx = i;
241				pcirev = crev;
242				pci = TRUE;
243			} else if ((cid == PCIE_CORE_ID) || (cid == PCIE2_CORE_ID)) {
244				pcieidx = i;
245				pcierev = crev;
246				pcie = TRUE;
247				if (cid == PCIE2_CORE_ID)
248					pcie_gen2 = TRUE;
249			}
250		} else if ((BUSTYPE(bustype) == PCMCIA_BUS) &&
251		           (cid == PCMCIA_CORE_ID)) {
252			sii->pub.buscorerev = crev;
253			sii->pub.buscoretype = cid;
254			sii->pub.buscoreidx = i;
255		}
256		else if (((BUSTYPE(bustype) == SDIO_BUS) ||
257		          (BUSTYPE(bustype) == SPI_BUS)) &&
258		         ((cid == PCMCIA_CORE_ID) ||
259		          (cid == SDIOD_CORE_ID))) {
260			sii->pub.buscorerev = crev;
261			sii->pub.buscoretype = cid;
262			sii->pub.buscoreidx = i;
263		}
264
265		/* find the core idx before entering this func. */
266		if ((savewin && (savewin == sii->coresba[i])) ||
267		    (regs == sii->regs[i]))
268			*origidx = i;
269	}
270
271	if (pci) {
272		sii->pub.buscoretype = PCI_CORE_ID;
273		sii->pub.buscorerev = pcirev;
274		sii->pub.buscoreidx = pciidx;
275	} else if (pcie) {
276		if (pcie_gen2)
277			sii->pub.buscoretype = PCIE2_CORE_ID;
278		else
279			sii->pub.buscoretype = PCIE_CORE_ID;
280		sii->pub.buscorerev = pcierev;
281		sii->pub.buscoreidx = pcieidx;
282	}
283
284	SI_VMSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype,
285	         sii->pub.buscorerev));
286
287	if (BUSTYPE(sii->pub.bustype) == SI_BUS && (CHIPID(sii->pub.chip) == BCM4712_CHIP_ID) &&
288	    (sii->pub.chippkg != BCM4712LARGE_PKG_ID) && (CHIPREV(sii->pub.chiprev) <= 3))
289		OR_REG(sii->osh, &cc->slow_clk_ctl, SCC_SS_XTAL);
290
291
292	/* Make sure any on-chip ARM is off (in case strapping is wrong), or downloaded code was
293	 * already running.
294	 */
295	if ((BUSTYPE(bustype) == SDIO_BUS) || (BUSTYPE(bustype) == SPI_BUS)) {
296		if (si_setcore(&sii->pub, ARM7S_CORE_ID, 0) ||
297		    si_setcore(&sii->pub, ARMCM3_CORE_ID, 0))
298			si_core_disable(&sii->pub, 0);
299	}
300
301	/* return to the original core */
302	si_setcoreidx(&sii->pub, *origidx);
303
304	return TRUE;
305}
306
307
308
309
310static si_info_t *
311si_doattach(si_info_t *sii, uint devid, osl_t *osh, void *regs,
312                       uint bustype, void *sdh, char **vars, uint *varsz)
313{
314	struct si_pub *sih = &sii->pub;
315	uint32 w, savewin;
316	chipcregs_t *cc;
317	char *pvars = NULL;
318	uint origidx;
319
320	ASSERT(GOODREGS(regs));
321
322	bzero((uchar*)sii, sizeof(si_info_t));
323
324	savewin = 0;
325
326	sih->buscoreidx = BADIDX;
327
328	sii->curmap = regs;
329	sii->sdh = sdh;
330	sii->osh = osh;
331
332
333
334	/* find Chipcommon address */
335	if (bustype == PCI_BUS) {
336		savewin = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
337		if (!GOODCOREADDR(savewin, SI_ENUM_BASE))
338			savewin = SI_ENUM_BASE;
339		OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, SI_ENUM_BASE);
340		if (!regs)
341			return NULL;
342		cc = (chipcregs_t *)regs;
343	} else if ((bustype == SDIO_BUS) || (bustype == SPI_BUS)) {
344		cc = (chipcregs_t *)sii->curmap;
345	} else {
346		cc = (chipcregs_t *)REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE);
347	}
348
349	sih->bustype = bustype;
350	if (bustype != BUSTYPE(bustype)) {
351		SI_ERROR(("si_doattach: bus type %d does not match configured bus type %d\n",
352			bustype, BUSTYPE(bustype)));
353		return NULL;
354	}
355
356	/* bus/core/clk setup for register access */
357	if (!si_buscore_prep(sii, bustype, devid, sdh)) {
358		SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n", bustype));
359		return NULL;
360	}
361
362	/* ChipID recognition.
363	 *   We assume we can read chipid at offset 0 from the regs arg.
364	 *   If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon),
365	 *   some way of recognizing them needs to be added here.
366	 */
367	if (!cc) {
368		SI_ERROR(("%s: chipcommon register space is null \n", __FUNCTION__));
369		return NULL;
370	}
371	w = R_REG(osh, &cc->chipid);
372	sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
373	/* Might as wll fill in chip id rev & pkg */
374	sih->chip = w & CID_ID_MASK;
375	sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT;
376	sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT;
377
378	if ((CHIPID(sih->chip) == BCM4329_CHIP_ID) && (sih->chiprev == 0) &&
379		(sih->chippkg != BCM4329_289PIN_PKG_ID)) {
380		sih->chippkg = BCM4329_182PIN_PKG_ID;
381	}
382	sih->issim = IS_SIM(sih->chippkg);
383
384	/* scan for cores */
385	if (CHIPTYPE(sii->pub.socitype) == SOCI_SB) {
386		SI_MSG(("Found chip type SB (0x%08x)\n", w));
387		sb_scan(&sii->pub, regs, devid);
388	} else if (CHIPTYPE(sii->pub.socitype) == SOCI_AI) {
389		SI_MSG(("Found chip type AI (0x%08x)\n", w));
390		/* pass chipc address instead of original core base */
391		ai_scan(&sii->pub, (void *)(uintptr)cc, devid);
392	} else if (CHIPTYPE(sii->pub.socitype) == SOCI_UBUS) {
393		SI_MSG(("Found chip type UBUS (0x%08x), chip id = 0x%4x\n", w, sih->chip));
394		/* pass chipc address instead of original core base */
395		ub_scan(&sii->pub, (void *)(uintptr)cc, devid);
396	} else {
397		SI_ERROR(("Found chip of unknown type (0x%08x)\n", w));
398		return NULL;
399	}
400	/* no cores found, bail out */
401	if (sii->numcores == 0) {
402		SI_ERROR(("si_doattach: could not find any cores\n"));
403		return NULL;
404	}
405	/* bus/core/clk setup */
406	origidx = SI_CC_IDX;
407	if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) {
408		SI_ERROR(("si_doattach: si_buscore_setup failed\n"));
409		goto exit;
410	}
411
412	if (CHIPID(sih->chip) == BCM4322_CHIP_ID && (((sih->chipst & CST4322_SPROM_OTP_SEL_MASK)
413		>> CST4322_SPROM_OTP_SEL_SHIFT) == (CST4322_OTP_PRESENT |
414		CST4322_SPROM_PRESENT))) {
415		SI_ERROR(("%s: Invalid setting: both SPROM and OTP strapped.\n", __FUNCTION__));
416		return NULL;
417	}
418
419	/* assume current core is CC */
420	if ((sii->pub.ccrev == 0x25) && ((CHIPID(sih->chip) == BCM43236_CHIP_ID ||
421	                                  CHIPID(sih->chip) == BCM43235_CHIP_ID ||
422	                                  CHIPID(sih->chip) == BCM43234_CHIP_ID ||
423	                                  CHIPID(sih->chip) == BCM43238_CHIP_ID) &&
424	                                 (CHIPREV(sii->pub.chiprev) <= 2))) {
425
426		if ((cc->chipstatus & CST43236_BP_CLK) != 0) {
427			uint clkdiv;
428			clkdiv = R_REG(osh, &cc->clkdiv);
429			/* otp_clk_div is even number, 120/14 < 9mhz */
430			clkdiv = (clkdiv & ~CLKD_OTP) | (14 << CLKD_OTP_SHIFT);
431			W_REG(osh, &cc->clkdiv, clkdiv);
432			SI_ERROR(("%s: set clkdiv to %x\n", __FUNCTION__, clkdiv));
433		}
434		OSL_DELAY(10);
435	}
436
437	if (bustype == PCI_BUS) {
438
439	}
440
441	pvars = NULL;
442	BCM_REFERENCE(pvars);
443
444
445
446		if (sii->pub.ccrev >= 20) {
447			uint32 gpiopullup = 0, gpiopulldown = 0;
448			cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
449			ASSERT(cc != NULL);
450
451			/* 4314/43142 has pin muxing, don't clear gpio bits */
452			if ((CHIPID(sih->chip) == BCM4314_CHIP_ID) ||
453				(CHIPID(sih->chip) == BCM43142_CHIP_ID)) {
454				gpiopullup |= 0x402e0;
455				gpiopulldown |= 0x20500;
456			}
457
458			W_REG(osh, &cc->gpiopullup, gpiopullup);
459			W_REG(osh, &cc->gpiopulldown, gpiopulldown);
460			si_setcoreidx(sih, origidx);
461		}
462
463
464	/* clear any previous epidiag-induced target abort */
465	ASSERT(!si_taclear(sih, FALSE));
466
467	return (sii);
468
469exit:
470
471	return NULL;
472}
473
474/* may be called with core in reset */
475void
476si_detach(si_t *sih)
477{
478	si_info_t *sii;
479	uint idx;
480
481
482	sii = SI_INFO(sih);
483
484	if (sii == NULL)
485		return;
486
487	if (BUSTYPE(sih->bustype) == SI_BUS)
488		for (idx = 0; idx < SI_MAXCORES; idx++)
489			if (sii->regs[idx]) {
490				REG_UNMAP(sii->regs[idx]);
491				sii->regs[idx] = NULL;
492			}
493
494
495
496#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS)
497	if (sii != &ksii)
498#endif	/* !BCMBUSTYPE || (BCMBUSTYPE == SI_BUS) */
499		MFREE(sii->osh, sii, sizeof(si_info_t));
500}
501
502void *
503si_osh(si_t *sih)
504{
505	si_info_t *sii;
506
507	sii = SI_INFO(sih);
508	return sii->osh;
509}
510
511void
512si_setosh(si_t *sih, osl_t *osh)
513{
514	si_info_t *sii;
515
516	sii = SI_INFO(sih);
517	if (sii->osh != NULL) {
518		SI_ERROR(("osh is already set....\n"));
519		ASSERT(!sii->osh);
520	}
521	sii->osh = osh;
522}
523
524/* register driver interrupt disabling and restoring callback functions */
525void
526si_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn,
527                          void *intrsenabled_fn, void *intr_arg)
528{
529	si_info_t *sii;
530
531	sii = SI_INFO(sih);
532	sii->intr_arg = intr_arg;
533	sii->intrsoff_fn = (si_intrsoff_t)intrsoff_fn;
534	sii->intrsrestore_fn = (si_intrsrestore_t)intrsrestore_fn;
535	sii->intrsenabled_fn = (si_intrsenabled_t)intrsenabled_fn;
536	/* save current core id.  when this function called, the current core
537	 * must be the core which provides driver functions(il, et, wl, etc.)
538	 */
539	sii->dev_coreid = sii->coreid[sii->curidx];
540}
541
542void
543si_deregister_intr_callback(si_t *sih)
544{
545	si_info_t *sii;
546
547	sii = SI_INFO(sih);
548	sii->intrsoff_fn = NULL;
549}
550
551uint
552si_intflag(si_t *sih)
553{
554	si_info_t *sii = SI_INFO(sih);
555
556	if (CHIPTYPE(sih->socitype) == SOCI_SB)
557		return sb_intflag(sih);
558	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
559		return R_REG(sii->osh, ((uint32 *)(uintptr)
560			    (sii->oob_router + OOB_STATUSA)));
561	else {
562		ASSERT(0);
563		return 0;
564	}
565}
566
567uint
568si_flag(si_t *sih)
569{
570	if (CHIPTYPE(sih->socitype) == SOCI_SB)
571		return sb_flag(sih);
572	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
573		return ai_flag(sih);
574	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
575		return ub_flag(sih);
576	else {
577		ASSERT(0);
578		return 0;
579	}
580}
581
582void
583si_setint(si_t *sih, int siflag)
584{
585	if (CHIPTYPE(sih->socitype) == SOCI_SB)
586		sb_setint(sih, siflag);
587	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
588		ai_setint(sih, siflag);
589	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
590		ub_setint(sih, siflag);
591	else
592		ASSERT(0);
593}
594
595uint
596si_coreid(si_t *sih)
597{
598	si_info_t *sii;
599
600	sii = SI_INFO(sih);
601	return sii->coreid[sii->curidx];
602}
603
604uint
605si_coreidx(si_t *sih)
606{
607	si_info_t *sii;
608
609	sii = SI_INFO(sih);
610	return sii->curidx;
611}
612
613/* return the core-type instantiation # of the current core */
614uint
615si_coreunit(si_t *sih)
616{
617	si_info_t *sii;
618	uint idx;
619	uint coreid;
620	uint coreunit;
621	uint i;
622
623	sii = SI_INFO(sih);
624	coreunit = 0;
625
626	idx = sii->curidx;
627
628	ASSERT(GOODREGS(sii->curmap));
629	coreid = si_coreid(sih);
630
631	/* count the cores of our type */
632	for (i = 0; i < idx; i++)
633		if (sii->coreid[i] == coreid)
634			coreunit++;
635
636	return (coreunit);
637}
638
639uint
640si_corevendor(si_t *sih)
641{
642	if (CHIPTYPE(sih->socitype) == SOCI_SB)
643		return sb_corevendor(sih);
644	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
645		return ai_corevendor(sih);
646	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
647		return ub_corevendor(sih);
648	else {
649		ASSERT(0);
650		return 0;
651	}
652}
653
654bool
655si_backplane64(si_t *sih)
656{
657	return ((sih->cccaps & CC_CAP_BKPLN64) != 0);
658}
659
660uint
661si_corerev(si_t *sih)
662{
663	if (CHIPTYPE(sih->socitype) == SOCI_SB)
664		return sb_corerev(sih);
665	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
666		return ai_corerev(sih);
667	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
668		return ub_corerev(sih);
669	else {
670		ASSERT(0);
671		return 0;
672	}
673}
674
675/* return index of coreid or BADIDX if not found */
676uint
677si_findcoreidx(si_t *sih, uint coreid, uint coreunit)
678{
679	si_info_t *sii;
680	uint found;
681	uint i;
682
683	sii = SI_INFO(sih);
684
685	found = 0;
686
687	for (i = 0; i < sii->numcores; i++)
688		if (sii->coreid[i] == coreid) {
689			if (found == coreunit)
690				return (i);
691			found++;
692		}
693
694	return (BADIDX);
695}
696
697/* return list of found cores */
698uint
699si_corelist(si_t *sih, uint coreid[])
700{
701	si_info_t *sii;
702
703	sii = SI_INFO(sih);
704
705	bcopy((uchar*)sii->coreid, (uchar*)coreid, (sii->numcores * sizeof(uint)));
706	return (sii->numcores);
707}
708
709/* return current register mapping */
710void *
711si_coreregs(si_t *sih)
712{
713	si_info_t *sii;
714
715	sii = SI_INFO(sih);
716	ASSERT(GOODREGS(sii->curmap));
717
718	return (sii->curmap);
719}
720
721/*
722 * This function changes logical "focus" to the indicated core;
723 * must be called with interrupts off.
724 * Moreover, callers should keep interrupts off during switching out of and back to d11 core
725 */
726void *
727si_setcore(si_t *sih, uint coreid, uint coreunit)
728{
729	uint idx;
730
731	idx = si_findcoreidx(sih, coreid, coreunit);
732	if (!GOODIDX(idx))
733		return (NULL);
734
735	if (CHIPTYPE(sih->socitype) == SOCI_SB)
736		return sb_setcoreidx(sih, idx);
737	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
738		return ai_setcoreidx(sih, idx);
739	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
740		return ub_setcoreidx(sih, idx);
741	else {
742		ASSERT(0);
743		return NULL;
744	}
745}
746
747void *
748si_setcoreidx(si_t *sih, uint coreidx)
749{
750	if (CHIPTYPE(sih->socitype) == SOCI_SB)
751		return sb_setcoreidx(sih, coreidx);
752	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
753		return ai_setcoreidx(sih, coreidx);
754	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
755		return ub_setcoreidx(sih, coreidx);
756	else {
757		ASSERT(0);
758		return NULL;
759	}
760}
761
762/* Turn off interrupt as required by sb_setcore, before switch core */
763void *
764si_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val)
765{
766	void *cc;
767	si_info_t *sii;
768
769	sii = SI_INFO(sih);
770
771	if (SI_FAST(sii)) {
772		/* Overloading the origidx variable to remember the coreid,
773		 * this works because the core ids cannot be confused with
774		 * core indices.
775		 */
776		*origidx = coreid;
777		if (coreid == CC_CORE_ID)
778			return (void *)CCREGS_FAST(sii);
779		else if (coreid == sih->buscoretype)
780			return (void *)PCIEREGS(sii);
781	}
782	INTR_OFF(sii, *intr_val);
783	*origidx = sii->curidx;
784	cc = si_setcore(sih, coreid, 0);
785	ASSERT(cc != NULL);
786
787	return cc;
788}
789
790/* restore coreidx and restore interrupt */
791void
792si_restore_core(si_t *sih, uint coreid, uint intr_val)
793{
794	si_info_t *sii;
795
796	sii = SI_INFO(sih);
797	if (SI_FAST(sii) && ((coreid == CC_CORE_ID) || (coreid == sih->buscoretype)))
798		return;
799
800	si_setcoreidx(sih, coreid);
801	INTR_RESTORE(sii, intr_val);
802}
803
804int
805si_numaddrspaces(si_t *sih)
806{
807	if (CHIPTYPE(sih->socitype) == SOCI_SB)
808		return sb_numaddrspaces(sih);
809	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
810		return ai_numaddrspaces(sih);
811	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
812		return ub_numaddrspaces(sih);
813	else {
814		ASSERT(0);
815		return 0;
816	}
817}
818
819uint32
820si_addrspace(si_t *sih, uint asidx)
821{
822	if (CHIPTYPE(sih->socitype) == SOCI_SB)
823		return sb_addrspace(sih, asidx);
824	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
825		return ai_addrspace(sih, asidx);
826	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
827		return ub_addrspace(sih, asidx);
828	else {
829		ASSERT(0);
830		return 0;
831	}
832}
833
834uint32
835si_addrspacesize(si_t *sih, uint asidx)
836{
837	if (CHIPTYPE(sih->socitype) == SOCI_SB)
838		return sb_addrspacesize(sih, asidx);
839	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
840		return ai_addrspacesize(sih, asidx);
841	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
842		return ub_addrspacesize(sih, asidx);
843	else {
844		ASSERT(0);
845		return 0;
846	}
847}
848
849void
850si_coreaddrspaceX(si_t *sih, uint asidx, uint32 *addr, uint32 *size)
851{
852	/* Only supported for SOCI_AI */
853	if (CHIPTYPE(sih->socitype) == SOCI_AI)
854		ai_coreaddrspaceX(sih, asidx, addr, size);
855	else
856		*size = 0;
857}
858
859uint32
860si_core_cflags(si_t *sih, uint32 mask, uint32 val)
861{
862	if (CHIPTYPE(sih->socitype) == SOCI_SB)
863		return sb_core_cflags(sih, mask, val);
864	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
865		return ai_core_cflags(sih, mask, val);
866	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
867		return ub_core_cflags(sih, mask, val);
868	else {
869		ASSERT(0);
870		return 0;
871	}
872}
873
874void
875si_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
876{
877	if (CHIPTYPE(sih->socitype) == SOCI_SB)
878		sb_core_cflags_wo(sih, mask, val);
879	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
880		ai_core_cflags_wo(sih, mask, val);
881	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
882		ub_core_cflags_wo(sih, mask, val);
883	else
884		ASSERT(0);
885}
886
887uint32
888si_core_sflags(si_t *sih, uint32 mask, uint32 val)
889{
890	if (CHIPTYPE(sih->socitype) == SOCI_SB)
891		return sb_core_sflags(sih, mask, val);
892	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
893		return ai_core_sflags(sih, mask, val);
894	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
895		return ub_core_sflags(sih, mask, val);
896	else {
897		ASSERT(0);
898		return 0;
899	}
900}
901
902bool
903si_iscoreup(si_t *sih)
904{
905	if (CHIPTYPE(sih->socitype) == SOCI_SB)
906		return sb_iscoreup(sih);
907	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
908		return ai_iscoreup(sih);
909	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
910		return ub_iscoreup(sih);
911	else {
912		ASSERT(0);
913		return FALSE;
914	}
915}
916
917uint
918si_wrapperreg(si_t *sih, uint32 offset, uint32 mask, uint32 val)
919{
920	/* only for AI back plane chips */
921	if (CHIPTYPE(sih->socitype) == SOCI_AI)
922		return (ai_wrap_reg(sih, offset, mask, val));
923	return 0;
924}
925
926uint
927si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
928{
929	if (CHIPTYPE(sih->socitype) == SOCI_SB)
930		return sb_corereg(sih, coreidx, regoff, mask, val);
931	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
932		return ai_corereg(sih, coreidx, regoff, mask, val);
933	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
934		return ub_corereg(sih, coreidx, regoff, mask, val);
935	else {
936		ASSERT(0);
937		return 0;
938	}
939}
940
941void
942si_core_disable(si_t *sih, uint32 bits)
943{
944	if (CHIPTYPE(sih->socitype) == SOCI_SB)
945		sb_core_disable(sih, bits);
946	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
947		ai_core_disable(sih, bits);
948	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
949		ub_core_disable(sih, bits);
950}
951
952void
953si_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
954{
955	if (CHIPTYPE(sih->socitype) == SOCI_SB)
956		sb_core_reset(sih, bits, resetbits);
957	else if (CHIPTYPE(sih->socitype) == SOCI_AI)
958		ai_core_reset(sih, bits, resetbits);
959	else if (CHIPTYPE(sih->socitype) == SOCI_UBUS)
960		ub_core_reset(sih, bits, resetbits);
961}
962
963/* Run bist on current core. Caller needs to take care of core-specific bist hazards */
964int
965si_corebist(si_t *sih)
966{
967	uint32 cflags;
968	int result = 0;
969
970	/* Read core control flags */
971	cflags = si_core_cflags(sih, 0, 0);
972
973	/* Set bist & fgc */
974	si_core_cflags(sih, ~0, (SICF_BIST_EN | SICF_FGC));
975
976	/* Wait for bist done */
977	SPINWAIT(((si_core_sflags(sih, 0, 0) & SISF_BIST_DONE) == 0), 100000);
978
979	if (si_core_sflags(sih, 0, 0) & SISF_BIST_ERROR)
980		result = BCME_ERROR;
981
982	/* Reset core control flags */
983	si_core_cflags(sih, 0xffff, cflags);
984
985	return result;
986}
987
988static uint32
989factor6(uint32 x)
990{
991	switch (x) {
992	case CC_F6_2:	return 2;
993	case CC_F6_3:	return 3;
994	case CC_F6_4:	return 4;
995	case CC_F6_5:	return 5;
996	case CC_F6_6:	return 6;
997	case CC_F6_7:	return 7;
998	default:	return 0;
999	}
1000}
1001
1002/* calculate the speed the SI would run at given a set of clockcontrol values */
1003uint32
1004si_clock_rate(uint32 pll_type, uint32 n, uint32 m)
1005{
1006	uint32 n1, n2, clock, m1, m2, m3, mc;
1007
1008	n1 = n & CN_N1_MASK;
1009	n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
1010
1011	if (pll_type == PLL_TYPE6) {
1012		if (m & CC_T6_MMASK)
1013			return CC_T6_M1;
1014		else
1015			return CC_T6_M0;
1016	} else if ((pll_type == PLL_TYPE1) ||
1017	           (pll_type == PLL_TYPE3) ||
1018	           (pll_type == PLL_TYPE4) ||
1019	           (pll_type == PLL_TYPE7)) {
1020		n1 = factor6(n1);
1021		n2 += CC_F5_BIAS;
1022	} else if (pll_type == PLL_TYPE2) {
1023		n1 += CC_T2_BIAS;
1024		n2 += CC_T2_BIAS;
1025		ASSERT((n1 >= 2) && (n1 <= 7));
1026		ASSERT((n2 >= 5) && (n2 <= 23));
1027	} else if (pll_type == PLL_TYPE5) {
1028		return (100000000);
1029	} else
1030		ASSERT(0);
1031	/* PLL types 3 and 7 use BASE2 (25Mhz) */
1032	if ((pll_type == PLL_TYPE3) ||
1033	    (pll_type == PLL_TYPE7)) {
1034		clock = CC_CLOCK_BASE2 * n1 * n2;
1035	} else
1036		clock = CC_CLOCK_BASE1 * n1 * n2;
1037
1038	if (clock == 0)
1039		return 0;
1040
1041	m1 = m & CC_M1_MASK;
1042	m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
1043	m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
1044	mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
1045
1046	if ((pll_type == PLL_TYPE1) ||
1047	    (pll_type == PLL_TYPE3) ||
1048	    (pll_type == PLL_TYPE4) ||
1049	    (pll_type == PLL_TYPE7)) {
1050		m1 = factor6(m1);
1051		if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
1052			m2 += CC_F5_BIAS;
1053		else
1054			m2 = factor6(m2);
1055		m3 = factor6(m3);
1056
1057		switch (mc) {
1058		case CC_MC_BYPASS:	return (clock);
1059		case CC_MC_M1:		return (clock / m1);
1060		case CC_MC_M1M2:	return (clock / (m1 * m2));
1061		case CC_MC_M1M2M3:	return (clock / (m1 * m2 * m3));
1062		case CC_MC_M1M3:	return (clock / (m1 * m3));
1063		default:		return (0);
1064		}
1065	} else {
1066		ASSERT(pll_type == PLL_TYPE2);
1067
1068		m1 += CC_T2_BIAS;
1069		m2 += CC_T2M2_BIAS;
1070		m3 += CC_T2_BIAS;
1071		ASSERT((m1 >= 2) && (m1 <= 7));
1072		ASSERT((m2 >= 3) && (m2 <= 10));
1073		ASSERT((m3 >= 2) && (m3 <= 7));
1074
1075		if ((mc & CC_T2MC_M1BYP) == 0)
1076			clock /= m1;
1077		if ((mc & CC_T2MC_M2BYP) == 0)
1078			clock /= m2;
1079		if ((mc & CC_T2MC_M3BYP) == 0)
1080			clock /= m3;
1081
1082		return (clock);
1083	}
1084}
1085
1086
1087/* set chip watchdog reset timer to fire in 'ticks' */
1088void
1089si_watchdog(si_t *sih, uint ticks)
1090{
1091	uint nb, maxt;
1092
1093	if (PMUCTL_ENAB(sih)) {
1094
1095		if ((CHIPID(sih->chip) == BCM4319_CHIP_ID) &&
1096		    (CHIPREV(sih->chiprev) == 0) && (ticks != 0)) {
1097			si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, clk_ctl_st), ~0, 0x2);
1098			si_setcore(sih, USB20D_CORE_ID, 0);
1099			si_core_disable(sih, 1);
1100			si_setcore(sih, CC_CORE_ID, 0);
1101		}
1102
1103			nb = (sih->ccrev < 26) ? 16 : ((sih->ccrev >= 37) ? 32 : 24);
1104		/* The mips compiler uses the sllv instruction,
1105		 * so we specially handle the 32-bit case.
1106		 */
1107		if (nb == 32)
1108			maxt = 0xffffffff;
1109		else
1110			maxt = ((1 << nb) - 1);
1111
1112		if (ticks == 1)
1113			ticks = 2;
1114		else if (ticks > maxt)
1115			ticks = maxt;
1116
1117		si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, pmuwatchdog), ~0, ticks);
1118	} else {
1119		maxt = (1 << 28) - 1;
1120		if (ticks > maxt)
1121			ticks = maxt;
1122
1123		si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, watchdog), ~0, ticks);
1124	}
1125}
1126
1127/* trigger watchdog reset after ms milliseconds */
1128void
1129si_watchdog_ms(si_t *sih, uint32 ms)
1130{
1131	si_watchdog(sih, wd_msticks * ms);
1132}
1133
1134bool
1135si_taclear(si_t *sih, bool details)
1136{
1137	return FALSE;
1138}
1139
1140
1141
1142/* return the slow clock source - LPO, XTAL, or PCI */
1143static uint
1144si_slowclk_src(si_info_t *sii)
1145{
1146	chipcregs_t *cc;
1147
1148	ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
1149
1150	if (sii->pub.ccrev < 6) {
1151		if ((BUSTYPE(sii->pub.bustype) == PCI_BUS) &&
1152		    (OSL_PCI_READ_CONFIG(sii->osh, PCI_GPIO_OUT, sizeof(uint32)) &
1153		     PCI_CFG_GPIO_SCS))
1154			return (SCC_SS_PCI);
1155		else
1156			return (SCC_SS_XTAL);
1157	} else if (sii->pub.ccrev < 10) {
1158		cc = (chipcregs_t *)si_setcoreidx(&sii->pub, sii->curidx);
1159		return (R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_SS_MASK);
1160	} else	/* Insta-clock */
1161		return (SCC_SS_XTAL);
1162}
1163
1164/* return the ILP (slowclock) min or max frequency */
1165static uint
1166si_slowclk_freq(si_info_t *sii, bool max_freq, chipcregs_t *cc)
1167{
1168	uint32 slowclk;
1169	uint div;
1170
1171	ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID);
1172
1173	/* shouldn't be here unless we've established the chip has dynamic clk control */
1174	ASSERT(R_REG(sii->osh, &cc->capabilities) & CC_CAP_PWR_CTL);
1175
1176	slowclk = si_slowclk_src(sii);
1177	if (sii->pub.ccrev < 6) {
1178		if (slowclk == SCC_SS_PCI)
1179			return (max_freq ? (PCIMAXFREQ / 64) : (PCIMINFREQ / 64));
1180		else
1181			return (max_freq ? (XTALMAXFREQ / 32) : (XTALMINFREQ / 32));
1182	} else if (sii->pub.ccrev < 10) {
1183		div = 4 *
1184		        (((R_REG(sii->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1);
1185		if (slowclk == SCC_SS_LPO)
1186			return (max_freq ? LPOMAXFREQ : LPOMINFREQ);
1187		else if (slowclk == SCC_SS_XTAL)
1188			return (max_freq ? (XTALMAXFREQ / div) : (XTALMINFREQ / div));
1189		else if (slowclk == SCC_SS_PCI)
1190			return (max_freq ? (PCIMAXFREQ / div) : (PCIMINFREQ / div));
1191		else
1192			ASSERT(0);
1193	} else {
1194		/* Chipc rev 10 is InstaClock */
1195		div = R_REG(sii->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT;
1196		div = 4 * (div + 1);
1197		return (max_freq ? XTALMAXFREQ : (XTALMINFREQ / div));
1198	}
1199	return (0);
1200}
1201
1202static void
1203si_clkctl_setdelay(si_info_t *sii, void *chipcregs)
1204{
1205	chipcregs_t *cc = (chipcregs_t *)chipcregs;
1206	uint slowmaxfreq, pll_delay, slowclk;
1207	uint pll_on_delay, fref_sel_delay;
1208
1209	pll_delay = PLL_DELAY;
1210
1211	/* If the slow clock is not sourced by the xtal then add the xtal_on_delay
1212	 * since the xtal will also be powered down by dynamic clk control logic.
1213	 */
1214
1215	slowclk = si_slowclk_src(sii);
1216	if (slowclk != SCC_SS_XTAL)
1217		pll_delay += XTAL_ON_DELAY;
1218
1219	/* Starting with 4318 it is ILP that is used for the delays */
1220	slowmaxfreq = si_slowclk_freq(sii, (sii->pub.ccrev >= 10) ? FALSE : TRUE, cc);
1221
1222	pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
1223	fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
1224
1225	W_REG(sii->osh, &cc->pll_on_delay, pll_on_delay);
1226	W_REG(sii->osh, &cc->fref_sel_delay, fref_sel_delay);
1227}
1228
1229/* initialize power control delay registers */
1230void
1231si_clkctl_init(si_t *sih)
1232{
1233	si_info_t *sii;
1234	uint origidx = 0;
1235	chipcregs_t *cc;
1236	bool fast;
1237
1238	if (!CCCTL_ENAB(sih))
1239		return;
1240
1241	sii = SI_INFO(sih);
1242	fast = SI_FAST(sii);
1243	if (!fast) {
1244		origidx = sii->curidx;
1245		if ((cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0)) == NULL)
1246			return;
1247	} else if ((cc = (chipcregs_t *)CCREGS_FAST(sii)) == NULL)
1248		return;
1249	ASSERT(cc != NULL);
1250
1251	/* set all Instaclk chip ILP to 1 MHz */
1252	if (sih->ccrev >= 10)
1253		SET_REG(sii->osh, &cc->system_clk_ctl, SYCC_CD_MASK,
1254		        (ILP_DIV_1MHZ << SYCC_CD_SHIFT));
1255
1256	si_clkctl_setdelay(sii, (void *)(uintptr)cc);
1257
1258	if (!fast)
1259		si_setcoreidx(sih, origidx);
1260}
1261
1262
1263/* change logical "focus" to the gpio core for optimized access */
1264void *
1265si_gpiosetcore(si_t *sih)
1266{
1267	return (si_setcoreidx(sih, SI_CC_IDX));
1268}
1269
1270/*
1271 * mask & set gpiocontrol bits.
1272 * If a gpiocontrol bit is set to 0, chipcommon controls the corresponding GPIO pin.
1273 * If a gpiocontrol bit is set to 1, the GPIO pin is no longer a GPIO and becomes dedicated
1274 *   to some chip-specific purpose.
1275 */
1276uint32
1277si_gpiocontrol(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1278{
1279	uint regoff;
1280
1281	regoff = 0;
1282
1283	/* gpios could be shared on router platforms
1284	 * ignore reservation if it's high priority (e.g., test apps)
1285	 */
1286	if ((priority != GPIO_HI_PRIORITY) &&
1287	    (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1288		mask = priority ? (si_gpioreservation & mask) :
1289			((si_gpioreservation | mask) & ~(si_gpioreservation));
1290		val &= mask;
1291	}
1292
1293	regoff = OFFSETOF(chipcregs_t, gpiocontrol);
1294	return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1295}
1296
1297/* mask&set gpio output enable bits */
1298uint32
1299si_gpioouten(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1300{
1301	uint regoff;
1302
1303	regoff = 0;
1304
1305	/* gpios could be shared on router platforms
1306	 * ignore reservation if it's high priority (e.g., test apps)
1307	 */
1308	if ((priority != GPIO_HI_PRIORITY) &&
1309	    (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1310		mask = priority ? (si_gpioreservation & mask) :
1311			((si_gpioreservation | mask) & ~(si_gpioreservation));
1312		val &= mask;
1313	}
1314
1315	regoff = OFFSETOF(chipcregs_t, gpioouten);
1316	return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1317}
1318
1319/* mask&set gpio output bits */
1320uint32
1321si_gpioout(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1322{
1323	uint regoff;
1324
1325	regoff = 0;
1326
1327	/* gpios could be shared on router platforms
1328	 * ignore reservation if it's high priority (e.g., test apps)
1329	 */
1330	if ((priority != GPIO_HI_PRIORITY) &&
1331	    (BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1332		mask = priority ? (si_gpioreservation & mask) :
1333			((si_gpioreservation | mask) & ~(si_gpioreservation));
1334		val &= mask;
1335	}
1336
1337	regoff = OFFSETOF(chipcregs_t, gpioout);
1338	return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1339}
1340
1341/* reserve one gpio */
1342uint32
1343si_gpioreserve(si_t *sih, uint32 gpio_bitmask, uint8 priority)
1344{
1345	/* only cores on SI_BUS share GPIO's and only applcation users need to
1346	 * reserve/release GPIO
1347	 */
1348	if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
1349		ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
1350		return 0xffffffff;
1351	}
1352	/* make sure only one bit is set */
1353	if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
1354		ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
1355		return 0xffffffff;
1356	}
1357
1358	/* already reserved */
1359	if (si_gpioreservation & gpio_bitmask)
1360		return 0xffffffff;
1361	/* set reservation */
1362	si_gpioreservation |= gpio_bitmask;
1363
1364	return si_gpioreservation;
1365}
1366
1367/* release one gpio */
1368/*
1369 * releasing the gpio doesn't change the current value on the GPIO last write value
1370 * persists till some one overwrites it
1371 */
1372
1373uint32
1374si_gpiorelease(si_t *sih, uint32 gpio_bitmask, uint8 priority)
1375{
1376	/* only cores on SI_BUS share GPIO's and only applcation users need to
1377	 * reserve/release GPIO
1378	 */
1379	if ((BUSTYPE(sih->bustype) != SI_BUS) || (!priority)) {
1380		ASSERT((BUSTYPE(sih->bustype) == SI_BUS) && (priority));
1381		return 0xffffffff;
1382	}
1383	/* make sure only one bit is set */
1384	if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
1385		ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
1386		return 0xffffffff;
1387	}
1388
1389	/* already released */
1390	if (!(si_gpioreservation & gpio_bitmask))
1391		return 0xffffffff;
1392
1393	/* clear reservation */
1394	si_gpioreservation &= ~gpio_bitmask;
1395
1396	return si_gpioreservation;
1397}
1398
1399/* return the current gpioin register value */
1400uint32
1401si_gpioin(si_t *sih)
1402{
1403	uint regoff;
1404
1405	regoff = OFFSETOF(chipcregs_t, gpioin);
1406	return (si_corereg(sih, SI_CC_IDX, regoff, 0, 0));
1407}
1408
1409/* mask&set gpio interrupt polarity bits */
1410uint32
1411si_gpiointpolarity(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1412{
1413	uint regoff;
1414
1415	/* gpios could be shared on router platforms */
1416	if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1417		mask = priority ? (si_gpioreservation & mask) :
1418			((si_gpioreservation | mask) & ~(si_gpioreservation));
1419		val &= mask;
1420	}
1421
1422	regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
1423	return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1424}
1425
1426/* mask&set gpio interrupt mask bits */
1427uint32
1428si_gpiointmask(si_t *sih, uint32 mask, uint32 val, uint8 priority)
1429{
1430	uint regoff;
1431
1432	/* gpios could be shared on router platforms */
1433	if ((BUSTYPE(sih->bustype) == SI_BUS) && (val || mask)) {
1434		mask = priority ? (si_gpioreservation & mask) :
1435			((si_gpioreservation | mask) & ~(si_gpioreservation));
1436		val &= mask;
1437	}
1438
1439	regoff = OFFSETOF(chipcregs_t, gpiointmask);
1440	return (si_corereg(sih, SI_CC_IDX, regoff, mask, val));
1441}
1442
1443/* assign the gpio to an led */
1444uint32
1445si_gpioled(si_t *sih, uint32 mask, uint32 val)
1446{
1447	if (sih->ccrev < 16)
1448		return 0xffffffff;
1449
1450	/* gpio led powersave reg */
1451	return (si_corereg(sih, SI_CC_IDX, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask, val));
1452}
1453
1454/* mask&set gpio timer val */
1455uint32
1456si_gpiotimerval(si_t *sih, uint32 mask, uint32 gpiotimerval)
1457{
1458	if (sih->ccrev < 16)
1459		return 0xffffffff;
1460
1461	return (si_corereg(sih, SI_CC_IDX,
1462		OFFSETOF(chipcregs_t, gpiotimerval), mask, gpiotimerval));
1463}
1464
1465uint32
1466si_gpiopull(si_t *sih, bool updown, uint32 mask, uint32 val)
1467{
1468	uint offs;
1469
1470	if (sih->ccrev < 20)
1471		return 0xffffffff;
1472
1473	offs = (updown ? OFFSETOF(chipcregs_t, gpiopulldown) : OFFSETOF(chipcregs_t, gpiopullup));
1474	return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
1475}
1476
1477uint32
1478si_gpioevent(si_t *sih, uint regtype, uint32 mask, uint32 val)
1479{
1480	uint offs;
1481
1482	if (sih->ccrev < 11)
1483		return 0xffffffff;
1484
1485	if (regtype == GPIO_REGEVT)
1486		offs = OFFSETOF(chipcregs_t, gpioevent);
1487	else if (regtype == GPIO_REGEVT_INTMSK)
1488		offs = OFFSETOF(chipcregs_t, gpioeventintmask);
1489	else if (regtype == GPIO_REGEVT_INTPOL)
1490		offs = OFFSETOF(chipcregs_t, gpioeventintpolarity);
1491	else
1492		return 0xffffffff;
1493
1494	return (si_corereg(sih, SI_CC_IDX, offs, mask, val));
1495}
1496
1497void *
1498si_gpio_handler_register(si_t *sih, uint32 event,
1499	bool level, gpio_handler_t cb, void *arg)
1500{
1501	si_info_t *sii;
1502	gpioh_item_t *gi;
1503
1504	ASSERT(event);
1505	ASSERT(cb != NULL);
1506
1507	sii = SI_INFO(sih);
1508	if (sih->ccrev < 11)
1509		return NULL;
1510
1511	if ((gi = MALLOC(sii->osh, sizeof(gpioh_item_t))) == NULL)
1512		return NULL;
1513
1514	bzero(gi, sizeof(gpioh_item_t));
1515	gi->event = event;
1516	gi->handler = cb;
1517	gi->arg = arg;
1518	gi->level = level;
1519
1520	gi->next = sii->gpioh_head;
1521	sii->gpioh_head = gi;
1522
1523	return (void *)(gi);
1524}
1525
1526void
1527si_gpio_handler_unregister(si_t *sih, void *gpioh)
1528{
1529	si_info_t *sii;
1530	gpioh_item_t *p, *n;
1531
1532	sii = SI_INFO(sih);
1533	if (sih->ccrev < 11)
1534		return;
1535
1536	ASSERT(sii->gpioh_head != NULL);
1537	if ((void*)sii->gpioh_head == gpioh) {
1538		sii->gpioh_head = sii->gpioh_head->next;
1539		MFREE(sii->osh, gpioh, sizeof(gpioh_item_t));
1540		return;
1541	} else {
1542		p = sii->gpioh_head;
1543		n = p->next;
1544		while (n) {
1545			if ((void*)n == gpioh) {
1546				p->next = n->next;
1547				MFREE(sii->osh, gpioh, sizeof(gpioh_item_t));
1548				return;
1549			}
1550			p = n;
1551			n = n->next;
1552		}
1553	}
1554
1555	ASSERT(0); /* Not found in list */
1556}
1557
1558void
1559si_gpio_handler_process(si_t *sih)
1560{
1561	si_info_t *sii;
1562	gpioh_item_t *h;
1563	uint32 level = si_gpioin(sih);
1564	uint32 levelp = si_gpiointpolarity(sih, 0, 0, 0);
1565	uint32 edge = si_gpioevent(sih, GPIO_REGEVT, 0, 0);
1566	uint32 edgep = si_gpioevent(sih, GPIO_REGEVT_INTPOL, 0, 0);
1567
1568	sii = SI_INFO(sih);
1569	for (h = sii->gpioh_head; h != NULL; h = h->next) {
1570		if (h->handler) {
1571			uint32 status = (h->level ? level : edge) & h->event;
1572			uint32 polarity = (h->level ? levelp : edgep) & h->event;
1573
1574			/* polarity bitval is opposite of status bitval */
1575			if (status ^ polarity)
1576				h->handler(status, h->arg);
1577		}
1578	}
1579
1580	si_gpioevent(sih, GPIO_REGEVT, edge, edge); /* clear edge-trigger status */
1581}
1582
1583uint32
1584si_gpio_int_enable(si_t *sih, bool enable)
1585{
1586	uint offs;
1587
1588	if (sih->ccrev < 11)
1589		return 0xffffffff;
1590
1591	offs = OFFSETOF(chipcregs_t, intmask);
1592	return (si_corereg(sih, SI_CC_IDX, offs, CI_GPIO, (enable ? CI_GPIO : 0)));
1593}
1594
1595
1596/* Return the size of the specified SOCRAM bank */
1597static uint
1598socram_banksize(si_info_t *sii, sbsocramregs_t *regs, uint8 idx, uint8 mem_type)
1599{
1600	uint banksize, bankinfo;
1601	uint bankidx = idx | (mem_type << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
1602
1603	ASSERT(mem_type <= SOCRAM_MEMTYPE_DEVRAM);
1604
1605	W_REG(sii->osh, &regs->bankidx, bankidx);
1606	bankinfo = R_REG(sii->osh, &regs->bankinfo);
1607	banksize = SOCRAM_BANKINFO_SZBASE * ((bankinfo & SOCRAM_BANKINFO_SZMASK) + 1);
1608	return banksize;
1609}
1610
1611void
1612si_socdevram(si_t *sih, bool set, uint8 *enable, uint8 *protect, uint8 *remap)
1613{
1614	si_info_t *sii;
1615	uint origidx;
1616	uint intr_val = 0;
1617	sbsocramregs_t *regs;
1618	bool wasup;
1619	uint corerev;
1620
1621	sii = SI_INFO(sih);
1622
1623	/* Block ints and save current core */
1624	INTR_OFF(sii, intr_val);
1625	origidx = si_coreidx(sih);
1626
1627	if (!set)
1628		*enable = *protect = *remap = 0;
1629
1630	/* Switch to SOCRAM core */
1631	if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
1632		goto done;
1633
1634	/* Get info for determining size */
1635	if (!(wasup = si_iscoreup(sih)))
1636		si_core_reset(sih, 0, 0);
1637
1638	corerev = si_corerev(sih);
1639	if (corerev >= 10) {
1640		uint32 extcinfo;
1641		uint8 nb;
1642		uint8 i;
1643		uint32 bankidx, bankinfo;
1644
1645		extcinfo = R_REG(sii->osh, &regs->extracoreinfo);
1646		nb = ((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT);
1647		for (i = 0; i < nb; i++) {
1648			bankidx = i | (SOCRAM_MEMTYPE_DEVRAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
1649			W_REG(sii->osh, &regs->bankidx, bankidx);
1650			bankinfo = R_REG(sii->osh, &regs->bankinfo);
1651			if (set) {
1652				bankinfo &= ~SOCRAM_BANKINFO_DEVRAMSEL_MASK;
1653				bankinfo &= ~SOCRAM_BANKINFO_DEVRAMPRO_MASK;
1654				bankinfo &= ~SOCRAM_BANKINFO_DEVRAMREMAP_MASK;
1655				if (*enable) {
1656					bankinfo |= (1 << SOCRAM_BANKINFO_DEVRAMSEL_SHIFT);
1657					if (*protect)
1658						bankinfo |= (1 << SOCRAM_BANKINFO_DEVRAMPRO_SHIFT);
1659					if ((corerev >= 16) && *remap)
1660						bankinfo |=
1661							(1 << SOCRAM_BANKINFO_DEVRAMREMAP_SHIFT);
1662				}
1663				W_REG(sii->osh, &regs->bankinfo, bankinfo);
1664			}
1665			else if (i == 0) {
1666				if (bankinfo & SOCRAM_BANKINFO_DEVRAMSEL_MASK) {
1667					*enable = 1;
1668					if (bankinfo & SOCRAM_BANKINFO_DEVRAMPRO_MASK)
1669						*protect = 1;
1670					if (bankinfo & SOCRAM_BANKINFO_DEVRAMREMAP_MASK)
1671						*remap = 1;
1672				}
1673			}
1674		}
1675	}
1676
1677	/* Return to previous state and core */
1678	if (!wasup)
1679		si_core_disable(sih, 0);
1680	si_setcoreidx(sih, origidx);
1681
1682done:
1683	INTR_RESTORE(sii, intr_val);
1684}
1685
1686bool
1687si_socdevram_remap_isenb(si_t *sih)
1688{
1689	si_info_t *sii;
1690	uint origidx;
1691	uint intr_val = 0;
1692	sbsocramregs_t *regs;
1693	bool wasup, remap = FALSE;
1694	uint corerev;
1695	uint32 extcinfo;
1696	uint8 nb;
1697	uint8 i;
1698	uint32 bankidx, bankinfo;
1699
1700	sii = SI_INFO(sih);
1701
1702	/* Block ints and save current core */
1703	INTR_OFF(sii, intr_val);
1704	origidx = si_coreidx(sih);
1705
1706	/* Switch to SOCRAM core */
1707	if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
1708		goto done;
1709
1710	/* Get info for determining size */
1711	if (!(wasup = si_iscoreup(sih)))
1712		si_core_reset(sih, 0, 0);
1713
1714	corerev = si_corerev(sih);
1715	if (corerev >= 16) {
1716		extcinfo = R_REG(sii->osh, &regs->extracoreinfo);
1717		nb = ((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT);
1718		for (i = 0; i < nb; i++) {
1719			bankidx = i | (SOCRAM_MEMTYPE_DEVRAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
1720			W_REG(sii->osh, &regs->bankidx, bankidx);
1721			bankinfo = R_REG(sii->osh, &regs->bankinfo);
1722			if (bankinfo & SOCRAM_BANKINFO_DEVRAMREMAP_MASK) {
1723				remap = TRUE;
1724				break;
1725			}
1726		}
1727	}
1728
1729	/* Return to previous state and core */
1730	if (!wasup)
1731		si_core_disable(sih, 0);
1732	si_setcoreidx(sih, origidx);
1733
1734done:
1735	INTR_RESTORE(sii, intr_val);
1736	return remap;
1737}
1738
1739bool
1740si_socdevram_pkg(si_t *sih)
1741{
1742	if (si_socdevram_size(sih) > 0)
1743		return TRUE;
1744	else
1745		return FALSE;
1746}
1747
1748uint32
1749si_socdevram_size(si_t *sih)
1750{
1751	si_info_t *sii;
1752	uint origidx;
1753	uint intr_val = 0;
1754	uint32 memsize = 0;
1755	sbsocramregs_t *regs;
1756	bool wasup;
1757	uint corerev;
1758
1759	sii = SI_INFO(sih);
1760
1761	/* Block ints and save current core */
1762	INTR_OFF(sii, intr_val);
1763	origidx = si_coreidx(sih);
1764
1765	/* Switch to SOCRAM core */
1766	if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
1767		goto done;
1768
1769	/* Get info for determining size */
1770	if (!(wasup = si_iscoreup(sih)))
1771		si_core_reset(sih, 0, 0);
1772
1773	corerev = si_corerev(sih);
1774	if (corerev >= 10) {
1775		uint32 extcinfo;
1776		uint8 nb;
1777		uint8 i;
1778
1779		extcinfo = R_REG(sii->osh, &regs->extracoreinfo);
1780		nb = (((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT));
1781		for (i = 0; i < nb; i++)
1782			memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_DEVRAM);
1783	}
1784
1785	/* Return to previous state and core */
1786	if (!wasup)
1787		si_core_disable(sih, 0);
1788	si_setcoreidx(sih, origidx);
1789
1790done:
1791	INTR_RESTORE(sii, intr_val);
1792
1793	return memsize;
1794}
1795
1796uint32
1797si_socdevram_remap_size(si_t *sih)
1798{
1799	si_info_t *sii;
1800	uint origidx;
1801	uint intr_val = 0;
1802	uint32 memsize = 0, banksz;
1803	sbsocramregs_t *regs;
1804	bool wasup;
1805	uint corerev;
1806	uint32 extcinfo;
1807	uint8 nb;
1808	uint8 i;
1809	uint32 bankidx, bankinfo;
1810
1811	sii = SI_INFO(sih);
1812
1813	/* Block ints and save current core */
1814	INTR_OFF(sii, intr_val);
1815	origidx = si_coreidx(sih);
1816
1817	/* Switch to SOCRAM core */
1818	if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
1819		goto done;
1820
1821	/* Get info for determining size */
1822	if (!(wasup = si_iscoreup(sih)))
1823		si_core_reset(sih, 0, 0);
1824
1825	corerev = si_corerev(sih);
1826	if (corerev >= 16) {
1827		extcinfo = R_REG(sii->osh, &regs->extracoreinfo);
1828		nb = (((extcinfo & SOCRAM_DEVRAMBANK_MASK) >> SOCRAM_DEVRAMBANK_SHIFT));
1829
1830		/*
1831		 * FIX: A0 Issue: Max addressable is 512KB, instead 640KB
1832		 * Only four banks are accessible to ARM
1833		 */
1834		if ((corerev == 16) && (nb == 5))
1835			nb = 4;
1836
1837		for (i = 0; i < nb; i++) {
1838			bankidx = i | (SOCRAM_MEMTYPE_DEVRAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
1839			W_REG(sii->osh, &regs->bankidx, bankidx);
1840			bankinfo = R_REG(sii->osh, &regs->bankinfo);
1841			if (bankinfo & SOCRAM_BANKINFO_DEVRAMREMAP_MASK) {
1842				banksz = socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_DEVRAM);
1843				memsize += banksz;
1844			} else {
1845				/* Account only consecutive banks for now */
1846				break;
1847			}
1848		}
1849	}
1850
1851	/* Return to previous state and core */
1852	if (!wasup)
1853		si_core_disable(sih, 0);
1854	si_setcoreidx(sih, origidx);
1855
1856done:
1857	INTR_RESTORE(sii, intr_val);
1858
1859	return memsize;
1860}
1861
1862/* Return the RAM size of the SOCRAM core */
1863uint32
1864si_socram_size(si_t *sih)
1865{
1866	si_info_t *sii;
1867	uint origidx;
1868	uint intr_val = 0;
1869
1870	sbsocramregs_t *regs;
1871	bool wasup;
1872	uint corerev;
1873	uint32 coreinfo;
1874	uint memsize = 0;
1875
1876	sii = SI_INFO(sih);
1877
1878	/* Block ints and save current core */
1879	INTR_OFF(sii, intr_val);
1880	origidx = si_coreidx(sih);
1881
1882	/* Switch to SOCRAM core */
1883	if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
1884		goto done;
1885
1886	/* Get info for determining size */
1887	if (!(wasup = si_iscoreup(sih)))
1888		si_core_reset(sih, 0, 0);
1889	corerev = si_corerev(sih);
1890	coreinfo = R_REG(sii->osh, &regs->coreinfo);
1891
1892	/* Calculate size from coreinfo based on rev */
1893	if (corerev == 0)
1894		memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
1895	else if (corerev < 3) {
1896		memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
1897		memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
1898	} else if ((corerev <= 7) || (corerev == 12)) {
1899		uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
1900		uint bsz = (coreinfo & SRCI_SRBSZ_MASK);
1901		uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
1902		if (lss != 0)
1903			nb --;
1904		memsize = nb * (1 << (bsz + SR_BSZ_BASE));
1905		if (lss != 0)
1906			memsize += (1 << ((lss - 1) + SR_BSZ_BASE));
1907	} else {
1908		uint8 i;
1909		uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
1910		for (i = 0; i < nb; i++)
1911			memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_RAM);
1912	}
1913
1914	/* Return to previous state and core */
1915	if (!wasup)
1916		si_core_disable(sih, 0);
1917	si_setcoreidx(sih, origidx);
1918
1919done:
1920	INTR_RESTORE(sii, intr_val);
1921
1922	return memsize;
1923}
1924
1925uint32
1926si_socram_srmem_size(si_t *sih)
1927{
1928	si_info_t *sii;
1929	uint origidx;
1930	uint intr_val = 0;
1931
1932	sbsocramregs_t *regs;
1933	bool wasup;
1934	uint corerev;
1935	uint32 coreinfo;
1936	uint memsize = 0;
1937
1938	sii = SI_INFO(sih);
1939
1940	/* Block ints and save current core */
1941	INTR_OFF(sii, intr_val);
1942	origidx = si_coreidx(sih);
1943
1944	/* Switch to SOCRAM core */
1945	if (!(regs = si_setcore(sih, SOCRAM_CORE_ID, 0)))
1946		goto done;
1947
1948	/* Get info for determining size */
1949	if (!(wasup = si_iscoreup(sih)))
1950		si_core_reset(sih, 0, 0);
1951	corerev = si_corerev(sih);
1952	coreinfo = R_REG(sii->osh, &regs->coreinfo);
1953
1954	/* Calculate size from coreinfo based on rev */
1955	if (corerev >= 16) {
1956		uint8 i;
1957		uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
1958		for (i = 0; i < nb; i++) {
1959			W_REG(sii->osh, &regs->bankidx, i);
1960			if (R_REG(sii->osh, &regs->bankinfo) & SOCRAM_BANKINFO_RETNTRAM_MASK)
1961				memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_RAM);
1962		}
1963	}
1964
1965	/* Return to previous state and core */
1966	if (!wasup)
1967		si_core_disable(sih, 0);
1968	si_setcoreidx(sih, origidx);
1969
1970done:
1971	INTR_RESTORE(sii, intr_val);
1972
1973	return memsize;
1974}
1975
1976
1977void
1978si_btcgpiowar(si_t *sih)
1979{
1980	si_info_t *sii;
1981	uint origidx;
1982	uint intr_val = 0;
1983	chipcregs_t *cc;
1984
1985	sii = SI_INFO(sih);
1986
1987	/* Make sure that there is ChipCommon core present &&
1988	 * UART_TX is strapped to 1
1989	 */
1990	if (!(sih->cccaps & CC_CAP_UARTGPIO))
1991		return;
1992
1993	/* si_corereg cannot be used as we have to guarantee 8-bit read/writes */
1994	INTR_OFF(sii, intr_val);
1995
1996	origidx = si_coreidx(sih);
1997
1998	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
1999	ASSERT(cc != NULL);
2000
2001	W_REG(sii->osh, &cc->uart0mcr, R_REG(sii->osh, &cc->uart0mcr) | 0x04);
2002
2003	/* restore the original index */
2004	si_setcoreidx(sih, origidx);
2005
2006	INTR_RESTORE(sii, intr_val);
2007}
2008
2009void
2010si_chipcontrl_btshd0_4331(si_t *sih, bool on)
2011{
2012	si_info_t *sii;
2013	chipcregs_t *cc;
2014	uint origidx;
2015	uint32 val;
2016	uint intr_val = 0;
2017
2018	sii = SI_INFO(sih);
2019
2020	INTR_OFF(sii, intr_val);
2021
2022	origidx = si_coreidx(sih);
2023
2024	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2025
2026	val = R_REG(sii->osh, &cc->chipcontrol);
2027
2028	/* bt_shd0 controls are same for 4331 chiprevs 0 and 1, packages 12x9 and 12x12 */
2029	if (on) {
2030		/* Enable bt_shd0 on gpio4: */
2031		val |= (CCTRL4331_BT_SHD0_ON_GPIO4);
2032		W_REG(sii->osh, &cc->chipcontrol, val);
2033	} else {
2034		val &= ~(CCTRL4331_BT_SHD0_ON_GPIO4);
2035		W_REG(sii->osh, &cc->chipcontrol, val);
2036	}
2037
2038	/* restore the original index */
2039	si_setcoreidx(sih, origidx);
2040
2041	INTR_RESTORE(sii, intr_val);
2042}
2043
2044void
2045si_chipcontrl_restore(si_t *sih, uint32 val)
2046{
2047	si_info_t *sii;
2048	chipcregs_t *cc;
2049	uint origidx;
2050
2051	sii = SI_INFO(sih);
2052	origidx = si_coreidx(sih);
2053	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2054	W_REG(sii->osh, &cc->chipcontrol, val);
2055	si_setcoreidx(sih, origidx);
2056}
2057
2058uint32
2059si_chipcontrl_read(si_t *sih)
2060{
2061	si_info_t *sii;
2062	chipcregs_t *cc;
2063	uint origidx;
2064	uint32 val;
2065
2066	sii = SI_INFO(sih);
2067	origidx = si_coreidx(sih);
2068	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2069	val = R_REG(sii->osh, &cc->chipcontrol);
2070	si_setcoreidx(sih, origidx);
2071	return val;
2072}
2073
2074void
2075si_chipcontrl_epa4331(si_t *sih, bool on)
2076{
2077	si_info_t *sii;
2078	chipcregs_t *cc;
2079	uint origidx;
2080	uint32 val;
2081
2082	sii = SI_INFO(sih);
2083	origidx = si_coreidx(sih);
2084
2085	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2086
2087	val = R_REG(sii->osh, &cc->chipcontrol);
2088
2089	if (on) {
2090		if (sih->chippkg == 9 || sih->chippkg == 0xb) {
2091			val |= (CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5);
2092			/* Ext PA Controls for 4331 12x9 Package */
2093			W_REG(sii->osh, &cc->chipcontrol, val);
2094		} else {
2095			/* Ext PA Controls for 4331 12x12 Package */
2096			if (sih->chiprev > 0) {
2097				W_REG(sii->osh, &cc->chipcontrol, val |
2098				      (CCTRL4331_EXTPA_EN) | (CCTRL4331_EXTPA_EN2));
2099			} else {
2100				W_REG(sii->osh, &cc->chipcontrol, val | (CCTRL4331_EXTPA_EN));
2101			}
2102		}
2103	} else {
2104		val &= ~(CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_EN2 | CCTRL4331_EXTPA_ON_GPIO2_5);
2105		W_REG(sii->osh, &cc->chipcontrol, val);
2106	}
2107
2108	si_setcoreidx(sih, origidx);
2109}
2110
2111/* switch muxed pins, on: SROM, off: FEMCTRL */
2112void
2113si_chipcontrl_srom4360(si_t *sih, bool on)
2114{
2115	si_info_t *sii;
2116	chipcregs_t *cc;
2117	uint origidx;
2118	uint32 val;
2119
2120	sii = SI_INFO(sih);
2121	origidx = si_coreidx(sih);
2122
2123	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2124
2125	val = R_REG(sii->osh, &cc->chipcontrol);
2126
2127	if (on) {
2128		val &= ~(CCTRL4360_SECI_MODE |
2129			CCTRL4360_BTSWCTRL_MODE |
2130			CCTRL4360_EXTRA_FEMCTRL_MODE |
2131			CCTRL4360_BT_LGCY_MODE |
2132			CCTRL4360_CORE2FEMCTRL4_ON);
2133
2134		W_REG(sii->osh, &cc->chipcontrol, val);
2135	} else {
2136	}
2137
2138	si_setcoreidx(sih, origidx);
2139}
2140
2141void
2142si_chipcontrl_epa4331_wowl(si_t *sih, bool enter_wowl)
2143{
2144	si_info_t *sii;
2145	chipcregs_t *cc;
2146	uint origidx;
2147	uint32 val;
2148	bool sel_chip;
2149
2150	sel_chip = (CHIPID(sih->chip) == BCM4331_CHIP_ID) ||
2151		(CHIPID(sih->chip) == BCM43431_CHIP_ID);
2152	sel_chip &= ((sih->chippkg == 9 || sih->chippkg == 0xb));
2153
2154	if (!sel_chip)
2155		return;
2156
2157	sii = SI_INFO(sih);
2158	origidx = si_coreidx(sih);
2159
2160	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2161
2162	val = R_REG(sii->osh, &cc->chipcontrol);
2163
2164	if (enter_wowl) {
2165		val |= CCTRL4331_EXTPA_EN;
2166		W_REG(sii->osh, &cc->chipcontrol, val);
2167	} else {
2168		val |= (CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5);
2169		W_REG(sii->osh, &cc->chipcontrol, val);
2170	}
2171	si_setcoreidx(sih, origidx);
2172}
2173
2174uint
2175si_pll_reset(si_t *sih)
2176{
2177	uint err = 0;
2178
2179	return (err);
2180}
2181
2182/* Enable BT-COEX & Ex-PA for 4313 */
2183void
2184si_epa_4313war(si_t *sih)
2185{
2186	si_info_t *sii;
2187	chipcregs_t *cc;
2188	uint origidx;
2189
2190	sii = SI_INFO(sih);
2191	origidx = si_coreidx(sih);
2192
2193	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2194
2195	/* EPA Fix */
2196	W_REG(sii->osh, &cc->gpiocontrol,
2197		R_REG(sii->osh, &cc->gpiocontrol) | GPIO_CTRL_EPA_EN_MASK);
2198
2199	si_setcoreidx(sih, origidx);
2200}
2201
2202void
2203si_clk_pmu_htavail_set(si_t *sih, bool set_clear)
2204{
2205}
2206
2207/* WL/BT control for 4313 btcombo boards >= P250 */
2208void
2209si_btcombo_p250_4313_war(si_t *sih)
2210{
2211	si_info_t *sii;
2212	chipcregs_t *cc;
2213	uint origidx;
2214
2215	sii = SI_INFO(sih);
2216	origidx = si_coreidx(sih);
2217
2218	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2219	W_REG(sii->osh, &cc->gpiocontrol,
2220		R_REG(sii->osh, &cc->gpiocontrol) | GPIO_CTRL_5_6_EN_MASK);
2221
2222	W_REG(sii->osh, &cc->gpioouten,
2223		R_REG(sii->osh, &cc->gpioouten) | GPIO_CTRL_5_6_EN_MASK);
2224
2225	si_setcoreidx(sih, origidx);
2226}
2227void
2228si_btc_enable_chipcontrol(si_t *sih)
2229{
2230	si_info_t *sii;
2231	chipcregs_t *cc;
2232	uint origidx;
2233
2234	sii = SI_INFO(sih);
2235	origidx = si_coreidx(sih);
2236
2237	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2238
2239	/* BT fix */
2240	W_REG(sii->osh, &cc->chipcontrol,
2241		R_REG(sii->osh, &cc->chipcontrol) | CC_BTCOEX_EN_MASK);
2242
2243	si_setcoreidx(sih, origidx);
2244}
2245void
2246si_btcombo_43228_war(si_t *sih)
2247{
2248	si_info_t *sii;
2249	chipcregs_t *cc;
2250	uint origidx;
2251
2252	sii = SI_INFO(sih);
2253	origidx = si_coreidx(sih);
2254
2255	cc = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
2256
2257	W_REG(sii->osh, &cc->gpioouten, GPIO_CTRL_7_6_EN_MASK);
2258	W_REG(sii->osh, &cc->gpioout, GPIO_OUT_7_EN_MASK);
2259
2260	si_setcoreidx(sih, origidx);
2261}
2262
2263/* check if the device is removed */
2264bool
2265si_deviceremoved(si_t *sih)
2266{
2267	uint32 w;
2268	si_info_t *sii;
2269
2270	sii = SI_INFO(sih);
2271
2272	switch (BUSTYPE(sih->bustype)) {
2273	case PCI_BUS:
2274		ASSERT(sii->osh != NULL);
2275		w = OSL_PCI_READ_CONFIG(sii->osh, PCI_CFG_VID, sizeof(uint32));
2276		if ((w & 0xFFFF) != VENDOR_BROADCOM)
2277			return TRUE;
2278		break;
2279	}
2280	return FALSE;
2281}
2282
2283bool
2284si_is_sprom_available(si_t *sih)
2285{
2286	if (sih->ccrev >= 31) {
2287		si_info_t *sii;
2288		uint origidx;
2289		chipcregs_t *cc;
2290		uint32 sromctrl;
2291
2292		if ((sih->cccaps & CC_CAP_SROM) == 0)
2293			return FALSE;
2294
2295		sii = SI_INFO(sih);
2296		origidx = sii->curidx;
2297		cc = si_setcoreidx(sih, SI_CC_IDX);
2298		sromctrl = R_REG(sii->osh, &cc->sromcontrol);
2299		si_setcoreidx(sih, origidx);
2300		return (sromctrl & SRC_PRESENT);
2301	}
2302
2303	switch (CHIPID(sih->chip)) {
2304	case BCM4312_CHIP_ID:
2305		return ((sih->chipst & CST4312_SPROM_OTP_SEL_MASK) != CST4312_OTP_SEL);
2306	case BCM4325_CHIP_ID:
2307		return (sih->chipst & CST4325_SPROM_SEL) != 0;
2308	case BCM4322_CHIP_ID:	case BCM43221_CHIP_ID:	case BCM43231_CHIP_ID:
2309	case BCM43222_CHIP_ID:	case BCM43111_CHIP_ID:	case BCM43112_CHIP_ID:
2310	case BCM4342_CHIP_ID: {
2311		uint32 spromotp;
2312		spromotp = (sih->chipst & CST4322_SPROM_OTP_SEL_MASK) >>
2313		        CST4322_SPROM_OTP_SEL_SHIFT;
2314		return (spromotp & CST4322_SPROM_PRESENT) != 0;
2315	}
2316	case BCM4329_CHIP_ID:
2317		return (sih->chipst & CST4329_SPROM_SEL) != 0;
2318	case BCM4315_CHIP_ID:
2319		return (sih->chipst & CST4315_SPROM_SEL) != 0;
2320	case BCM4319_CHIP_ID:
2321		return (sih->chipst & CST4319_SPROM_SEL) != 0;
2322	case BCM4336_CHIP_ID:
2323	case BCM43362_CHIP_ID:
2324		return (sih->chipst & CST4336_SPROM_PRESENT) != 0;
2325	case BCM4330_CHIP_ID:
2326		return (sih->chipst & CST4330_SPROM_PRESENT) != 0;
2327	case BCM4313_CHIP_ID:
2328		return (sih->chipst & CST4313_SPROM_PRESENT) != 0;
2329	case BCM4331_CHIP_ID:
2330	case BCM43431_CHIP_ID:
2331		return (sih->chipst & CST4331_SPROM_PRESENT) != 0;
2332	case BCM43239_CHIP_ID:
2333		return ((sih->chipst & CST43239_SPROM_MASK) &&
2334			!(sih->chipst & CST43239_SFLASH_MASK));
2335	case BCM4324_CHIP_ID:
2336		return ((sih->chipst & CST4324_SPROM_MASK) &&
2337			!(sih->chipst & CST4324_SFLASH_MASK));
2338	case BCM43131_CHIP_ID:
2339	case BCM43217_CHIP_ID:
2340	case BCM43227_CHIP_ID:
2341	case BCM43228_CHIP_ID:
2342	case BCM43428_CHIP_ID:
2343		return (sih->chipst & CST43228_OTP_PRESENT) != CST43228_OTP_PRESENT;
2344	default:
2345		return TRUE;
2346	}
2347}
2348