iwl-commands.h revision 3d29dd9b5b160ba4542a9b8f869a220559e633a0
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license.  When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 *  Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 *  * Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 *  * Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in
44 *    the documentation and/or other materials provided with the
45 *    distribution.
46 *  * Neither the name Intel Corporation nor the names of its
47 *    contributors may be used to endorse or promote products derived
48 *    from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63/*
64 * Please use this file (iwl-commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use iwl-dev.h for driver implementation definitions.
67 */
68
69#ifndef __iwl_commands_h__
70#define __iwl_commands_h__
71
72#include <linux/etherdevice.h>
73#include <linux/ieee80211.h>
74
75struct iwl_priv;
76
77/* uCode version contains 4 values: Major/Minor/API/Serial */
78#define IWL_UCODE_MAJOR(ver)	(((ver) & 0xFF000000) >> 24)
79#define IWL_UCODE_MINOR(ver)	(((ver) & 0x00FF0000) >> 16)
80#define IWL_UCODE_API(ver)	(((ver) & 0x0000FF00) >> 8)
81#define IWL_UCODE_SERIAL(ver)	((ver) & 0x000000FF)
82
83
84/* Tx rates */
85#define IWL_CCK_RATES	4
86#define IWL_OFDM_RATES	8
87#define IWL_MAX_RATES	(IWL_CCK_RATES + IWL_OFDM_RATES)
88
89enum {
90	REPLY_ALIVE = 0x1,
91	REPLY_ERROR = 0x2,
92	REPLY_ECHO = 0x3,		/* test command */
93
94	/* RXON and QOS commands */
95	REPLY_RXON = 0x10,
96	REPLY_RXON_ASSOC = 0x11,
97	REPLY_QOS_PARAM = 0x13,
98	REPLY_RXON_TIMING = 0x14,
99
100	/* Multi-Station support */
101	REPLY_ADD_STA = 0x18,
102	REPLY_REMOVE_STA = 0x19,
103	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
104	REPLY_TXFIFO_FLUSH = 0x1e,
105
106	/* Security */
107	REPLY_WEPKEY = 0x20,
108
109	/* RX, TX, LEDs */
110	REPLY_TX = 0x1c,
111	REPLY_LEDS_CMD = 0x48,
112	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
113
114	/* WiMAX coexistence */
115	COEX_PRIORITY_TABLE_CMD = 0x5a,
116	COEX_MEDIUM_NOTIFICATION = 0x5b,
117	COEX_EVENT_CMD = 0x5c,
118
119	/* Calibration */
120	TEMPERATURE_NOTIFICATION = 0x62,
121	CALIBRATION_CFG_CMD = 0x65,
122	CALIBRATION_RES_NOTIFICATION = 0x66,
123	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
124
125	/* 802.11h related */
126	REPLY_QUIET_CMD = 0x71,		/* not used */
127	REPLY_CHANNEL_SWITCH = 0x72,
128	CHANNEL_SWITCH_NOTIFICATION = 0x73,
129	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
130	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
131
132	/* Power Management */
133	POWER_TABLE_CMD = 0x77,
134	PM_SLEEP_NOTIFICATION = 0x7A,
135	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
136
137	/* Scan commands and notifications */
138	REPLY_SCAN_CMD = 0x80,
139	REPLY_SCAN_ABORT_CMD = 0x81,
140	SCAN_START_NOTIFICATION = 0x82,
141	SCAN_RESULTS_NOTIFICATION = 0x83,
142	SCAN_COMPLETE_NOTIFICATION = 0x84,
143
144	/* IBSS/AP commands */
145	BEACON_NOTIFICATION = 0x90,
146	REPLY_TX_BEACON = 0x91,
147	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
148
149	/* Miscellaneous commands */
150	REPLY_TX_POWER_DBM_CMD = 0x95,
151	QUIET_NOTIFICATION = 0x96,		/* not used */
152	REPLY_TX_PWR_TABLE_CMD = 0x97,
153	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
154	TX_ANT_CONFIGURATION_CMD = 0x98,
155	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
156
157	/* Bluetooth device coexistence config command */
158	REPLY_BT_CONFIG = 0x9b,
159
160	/* Statistics */
161	REPLY_STATISTICS_CMD = 0x9c,
162	STATISTICS_NOTIFICATION = 0x9d,
163
164	/* RF-KILL commands and notifications */
165	REPLY_CARD_STATE_CMD = 0xa0,
166	CARD_STATE_NOTIFICATION = 0xa1,
167
168	/* Missed beacons notification */
169	MISSED_BEACONS_NOTIFICATION = 0xa2,
170
171	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
172	SENSITIVITY_CMD = 0xa8,
173	REPLY_PHY_CALIBRATION_CMD = 0xb0,
174	REPLY_RX_PHY_CMD = 0xc0,
175	REPLY_RX_MPDU_CMD = 0xc1,
176	REPLY_RX = 0xc3,
177	REPLY_COMPRESSED_BA = 0xc5,
178
179	/* BT Coex */
180	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
181	REPLY_BT_COEX_PROT_ENV = 0xcd,
182	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
183
184	/* PAN commands */
185	REPLY_WIPAN_PARAMS = 0xb2,
186	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
187	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
188	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
189	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
190	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
191	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
192	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
193	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
194
195	REPLY_WOWLAN_PATTERNS = 0xe0,
196	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
197	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
198	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
199	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
200	REPLY_WOWLAN_GET_STATUS = 0xe5,
201	REPLY_D3_CONFIG = 0xd3,
202
203	REPLY_MAX = 0xff
204};
205
206/******************************************************************************
207 * (0)
208 * Commonly used structures and definitions:
209 * Command header, rate_n_flags, txpower
210 *
211 *****************************************************************************/
212
213/* iwl_cmd_header flags value */
214#define IWL_CMD_FAILED_MSK 0x40
215
216#define SEQ_TO_QUEUE(s)	(((s) >> 8) & 0x1f)
217#define QUEUE_TO_SEQ(q)	(((q) & 0x1f) << 8)
218#define SEQ_TO_INDEX(s)	((s) & 0xff)
219#define INDEX_TO_SEQ(i)	((i) & 0xff)
220#define SEQ_RX_FRAME	cpu_to_le16(0x8000)
221
222/**
223 * struct iwl_cmd_header
224 *
225 * This header format appears in the beginning of each command sent from the
226 * driver, and each response/notification received from uCode.
227 */
228struct iwl_cmd_header {
229	u8 cmd;		/* Command ID:  REPLY_RXON, etc. */
230	u8 flags;	/* 0:5 reserved, 6 abort, 7 internal */
231	/*
232	 * The driver sets up the sequence number to values of its choosing.
233	 * uCode does not use this value, but passes it back to the driver
234	 * when sending the response to each driver-originated command, so
235	 * the driver can match the response to the command.  Since the values
236	 * don't get used by uCode, the driver may set up an arbitrary format.
237	 *
238	 * There is one exception:  uCode sets bit 15 when it originates
239	 * the response/notification, i.e. when the response/notification
240	 * is not a direct response to a command sent by the driver.  For
241	 * example, uCode issues REPLY_RX when it sends a received frame
242	 * to the driver; it is not a direct response to any driver command.
243	 *
244	 * The Linux driver uses the following format:
245	 *
246	 *  0:7		tfd index - position within TX queue
247	 *  8:12	TX queue id
248	 *  13:14	reserved
249	 *  15		unsolicited RX or uCode-originated notification
250	 */
251	__le16 sequence;
252
253	/* command or response/notification data follows immediately */
254	u8 data[0];
255} __packed;
256
257
258/**
259 * iwlagn rate_n_flags bit fields
260 *
261 * rate_n_flags format is used in following iwlagn commands:
262 *  REPLY_RX (response only)
263 *  REPLY_RX_MPDU (response only)
264 *  REPLY_TX (both command and response)
265 *  REPLY_TX_LINK_QUALITY_CMD
266 *
267 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
268 *  2-0:  0)   6 Mbps
269 *        1)  12 Mbps
270 *        2)  18 Mbps
271 *        3)  24 Mbps
272 *        4)  36 Mbps
273 *        5)  48 Mbps
274 *        6)  54 Mbps
275 *        7)  60 Mbps
276 *
277 *  4-3:  0)  Single stream (SISO)
278 *        1)  Dual stream (MIMO)
279 *        2)  Triple stream (MIMO)
280 *
281 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
282 *
283 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
284 *  3-0:  0xD)   6 Mbps
285 *        0xF)   9 Mbps
286 *        0x5)  12 Mbps
287 *        0x7)  18 Mbps
288 *        0x9)  24 Mbps
289 *        0xB)  36 Mbps
290 *        0x1)  48 Mbps
291 *        0x3)  54 Mbps
292 *
293 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
294 *  6-0:   10)  1 Mbps
295 *         20)  2 Mbps
296 *         55)  5.5 Mbps
297 *        110)  11 Mbps
298 */
299#define RATE_MCS_CODE_MSK 0x7
300#define RATE_MCS_SPATIAL_POS 3
301#define RATE_MCS_SPATIAL_MSK 0x18
302#define RATE_MCS_HT_DUP_POS 5
303#define RATE_MCS_HT_DUP_MSK 0x20
304/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
305#define RATE_MCS_RATE_MSK 0xff
306
307/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
308#define RATE_MCS_FLAGS_POS 8
309#define RATE_MCS_HT_POS 8
310#define RATE_MCS_HT_MSK 0x100
311
312/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
313#define RATE_MCS_CCK_POS 9
314#define RATE_MCS_CCK_MSK 0x200
315
316/* Bit 10: (1) Use Green Field preamble */
317#define RATE_MCS_GF_POS 10
318#define RATE_MCS_GF_MSK 0x400
319
320/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
321#define RATE_MCS_HT40_POS 11
322#define RATE_MCS_HT40_MSK 0x800
323
324/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
325#define RATE_MCS_DUP_POS 12
326#define RATE_MCS_DUP_MSK 0x1000
327
328/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
329#define RATE_MCS_SGI_POS 13
330#define RATE_MCS_SGI_MSK 0x2000
331
332/**
333 * rate_n_flags Tx antenna masks
334 * 4965 has 2 transmitters
335 * 5100 has 1 transmitter B
336 * 5150 has 1 transmitter A
337 * 5300 has 3 transmitters
338 * 5350 has 3 transmitters
339 * bit14:16
340 */
341#define RATE_MCS_ANT_POS	14
342#define RATE_MCS_ANT_A_MSK	0x04000
343#define RATE_MCS_ANT_B_MSK	0x08000
344#define RATE_MCS_ANT_C_MSK	0x10000
345#define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
346#define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
347#define RATE_ANT_NUM 3
348
349#define POWER_TABLE_NUM_ENTRIES			33
350#define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
351#define POWER_TABLE_CCK_ENTRY			32
352
353#define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
354#define IWL_PWR_CCK_ENTRIES			2
355
356/**
357 * struct tx_power_dual_stream
358 *
359 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
360 *
361 * Same format as iwl_tx_power_dual_stream, but __le32
362 */
363struct tx_power_dual_stream {
364	__le32 dw;
365} __packed;
366
367/**
368 * Command REPLY_TX_POWER_DBM_CMD = 0x98
369 * struct iwlagn_tx_power_dbm_cmd
370 */
371#define IWLAGN_TX_POWER_AUTO 0x7f
372#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
373
374struct iwlagn_tx_power_dbm_cmd {
375	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
376	u8 flags;
377	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
378	u8 reserved;
379} __packed;
380
381/**
382 * Command TX_ANT_CONFIGURATION_CMD = 0x98
383 * This command is used to configure valid Tx antenna.
384 * By default uCode concludes the valid antenna according to the radio flavor.
385 * This command enables the driver to override/modify this conclusion.
386 */
387struct iwl_tx_ant_config_cmd {
388	__le32 valid;
389} __packed;
390
391/******************************************************************************
392 * (0a)
393 * Alive and Error Commands & Responses:
394 *
395 *****************************************************************************/
396
397#define UCODE_VALID_OK	cpu_to_le32(0x1)
398
399/**
400 * REPLY_ALIVE = 0x1 (response only, not a command)
401 *
402 * uCode issues this "alive" notification once the runtime image is ready
403 * to receive commands from the driver.  This is the *second* "alive"
404 * notification that the driver will receive after rebooting uCode;
405 * this "alive" is indicated by subtype field != 9.
406 *
407 * See comments documenting "BSM" (bootstrap state machine).
408 *
409 * This response includes two pointers to structures within the device's
410 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
411 *
412 * 1)  log_event_table_ptr indicates base of the event log.  This traces
413 *     a 256-entry history of uCode execution within a circular buffer.
414 *     Its header format is:
415 *
416 *	__le32 log_size;     log capacity (in number of entries)
417 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
418 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
419 *      __le32 write_index;  next circular buffer entry that uCode would fill
420 *
421 *     The header is followed by the circular buffer of log entries.  Entries
422 *     with timestamps have the following format:
423 *
424 *	__le32 event_id;     range 0 - 1500
425 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
426 *	__le32 data;         event_id-specific data value
427 *
428 *     Entries without timestamps contain only event_id and data.
429 *
430 *
431 * 2)  error_event_table_ptr indicates base of the error log.  This contains
432 *     information about any uCode error that occurs.  For agn, the format
433 *     of the error log is defined by struct iwl_error_event_table.
434 *
435 * The Linux driver can print both logs to the system log when a uCode error
436 * occurs.
437 */
438
439/*
440 * Note: This structure is read from the device with IO accesses,
441 * and the reading already does the endian conversion. As it is
442 * read with u32-sized accesses, any members with a different size
443 * need to be ordered correctly though!
444 */
445struct iwl_error_event_table {
446	u32 valid;		/* (nonzero) valid, (0) log is empty */
447	u32 error_id;		/* type of error */
448	u32 pc;			/* program counter */
449	u32 blink1;		/* branch link */
450	u32 blink2;		/* branch link */
451	u32 ilink1;		/* interrupt link */
452	u32 ilink2;		/* interrupt link */
453	u32 data1;		/* error-specific data */
454	u32 data2;		/* error-specific data */
455	u32 line;		/* source code line of error */
456	u32 bcon_time;		/* beacon timer */
457	u32 tsf_low;		/* network timestamp function timer */
458	u32 tsf_hi;		/* network timestamp function timer */
459	u32 gp1;		/* GP1 timer register */
460	u32 gp2;		/* GP2 timer register */
461	u32 gp3;		/* GP3 timer register */
462	u32 ucode_ver;		/* uCode version */
463	u32 hw_ver;		/* HW Silicon version */
464	u32 brd_ver;		/* HW board version */
465	u32 log_pc;		/* log program counter */
466	u32 frame_ptr;		/* frame pointer */
467	u32 stack_ptr;		/* stack pointer */
468	u32 hcmd;		/* last host command header */
469	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
470				 * rxtx_flag */
471	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
472				 * host_flag */
473	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
474				 * enc_flag */
475	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
476				 * time_flag */
477	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
478				 * wico interrupt */
479	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
480	u32 wait_event;		/* wait event() caller address */
481	u32 l2p_control;	/* L2pControlField */
482	u32 l2p_duration;	/* L2pDurationField */
483	u32 l2p_mhvalid;	/* L2pMhValidBits */
484	u32 l2p_addr_match;	/* L2pAddrMatchStat */
485	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
486				 * (LMPM_PMG_SEL) */
487	u32 u_timestamp;	/* indicate when the date and time of the
488				 * compilation */
489	u32 flow_handler;	/* FH read/write pointers, RX credit */
490} __packed;
491
492struct iwl_alive_resp {
493	u8 ucode_minor;
494	u8 ucode_major;
495	__le16 reserved1;
496	u8 sw_rev[8];
497	u8 ver_type;
498	u8 ver_subtype;			/* not "9" for runtime alive */
499	__le16 reserved2;
500	__le32 log_event_table_ptr;	/* SRAM address for event log */
501	__le32 error_event_table_ptr;	/* SRAM address for error log */
502	__le32 timestamp;
503	__le32 is_valid;
504} __packed;
505
506/*
507 * REPLY_ERROR = 0x2 (response only, not a command)
508 */
509struct iwl_error_resp {
510	__le32 error_type;
511	u8 cmd_id;
512	u8 reserved1;
513	__le16 bad_cmd_seq_num;
514	__le32 error_info;
515	__le64 timestamp;
516} __packed;
517
518/******************************************************************************
519 * (1)
520 * RXON Commands & Responses:
521 *
522 *****************************************************************************/
523
524/*
525 * Rx config defines & structure
526 */
527/* rx_config device types  */
528enum {
529	RXON_DEV_TYPE_AP = 1,
530	RXON_DEV_TYPE_ESS = 3,
531	RXON_DEV_TYPE_IBSS = 4,
532	RXON_DEV_TYPE_SNIFFER = 6,
533	RXON_DEV_TYPE_CP = 7,
534	RXON_DEV_TYPE_2STA = 8,
535	RXON_DEV_TYPE_P2P = 9,
536};
537
538
539#define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
540#define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
541#define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
542#define RXON_RX_CHAIN_VALID_POS			(1)
543#define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
544#define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
545#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
546#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
547#define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
548#define RXON_RX_CHAIN_CNT_POS			(10)
549#define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
550#define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
551#define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
552#define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
553
554/* rx_config flags */
555/* band & modulation selection */
556#define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
557#define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
558/* auto detection enable */
559#define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
560/* TGg protection when tx */
561#define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
562/* cck short slot & preamble */
563#define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
564#define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
565/* antenna selection */
566#define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
567#define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
568#define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
569#define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
570/* radar detection enable */
571#define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
572#define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
573/* rx response to host with 8-byte TSF
574* (according to ON_AIR deassertion) */
575#define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
576
577
578/* HT flags */
579#define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
580#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
581
582#define RXON_FLG_HT_OPERATING_MODE_POS		(23)
583
584#define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
585#define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
586
587#define RXON_FLG_CHANNEL_MODE_POS		(25)
588#define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
589
590/* channel mode */
591enum {
592	CHANNEL_MODE_LEGACY = 0,
593	CHANNEL_MODE_PURE_40 = 1,
594	CHANNEL_MODE_MIXED = 2,
595	CHANNEL_MODE_RESERVED = 3,
596};
597#define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
598#define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
599#define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
600
601/* CTS to self (if spec allows) flag */
602#define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
603
604/* rx_config filter flags */
605/* accept all data frames */
606#define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
607/* pass control & management to host */
608#define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
609/* accept multi-cast */
610#define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
611/* don't decrypt uni-cast frames */
612#define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
613/* don't decrypt multi-cast frames */
614#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
615/* STA is associated */
616#define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
617/* transfer to host non bssid beacons in associated state */
618#define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
619
620/**
621 * REPLY_RXON = 0x10 (command, has simple generic response)
622 *
623 * RXON tunes the radio tuner to a service channel, and sets up a number
624 * of parameters that are used primarily for Rx, but also for Tx operations.
625 *
626 * NOTE:  When tuning to a new channel, driver must set the
627 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
628 *        info within the device, including the station tables, tx retry
629 *        rate tables, and txpower tables.  Driver must build a new station
630 *        table and txpower table before transmitting anything on the RXON
631 *        channel.
632 *
633 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
634 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
635 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
636 */
637
638struct iwl_rxon_cmd {
639	u8 node_addr[6];
640	__le16 reserved1;
641	u8 bssid_addr[6];
642	__le16 reserved2;
643	u8 wlap_bssid_addr[6];
644	__le16 reserved3;
645	u8 dev_type;
646	u8 air_propagation;
647	__le16 rx_chain;
648	u8 ofdm_basic_rates;
649	u8 cck_basic_rates;
650	__le16 assoc_id;
651	__le32 flags;
652	__le32 filter_flags;
653	__le16 channel;
654	u8 ofdm_ht_single_stream_basic_rates;
655	u8 ofdm_ht_dual_stream_basic_rates;
656	u8 ofdm_ht_triple_stream_basic_rates;
657	u8 reserved5;
658	__le16 acquisition_data;
659	__le16 reserved6;
660} __packed;
661
662/*
663 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
664 */
665struct iwl_rxon_assoc_cmd {
666	__le32 flags;
667	__le32 filter_flags;
668	u8 ofdm_basic_rates;
669	u8 cck_basic_rates;
670	__le16 reserved1;
671	u8 ofdm_ht_single_stream_basic_rates;
672	u8 ofdm_ht_dual_stream_basic_rates;
673	u8 ofdm_ht_triple_stream_basic_rates;
674	u8 reserved2;
675	__le16 rx_chain_select_flags;
676	__le16 acquisition_data;
677	__le32 reserved3;
678} __packed;
679
680#define IWL_CONN_MAX_LISTEN_INTERVAL	10
681#define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
682
683/*
684 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
685 */
686struct iwl_rxon_time_cmd {
687	__le64 timestamp;
688	__le16 beacon_interval;
689	__le16 atim_window;
690	__le32 beacon_init_val;
691	__le16 listen_interval;
692	u8 dtim_period;
693	u8 delta_cp_bss_tbtts;
694} __packed;
695
696/*
697 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
698 */
699/**
700 * struct iwl5000_channel_switch_cmd
701 * @band: 0- 5.2GHz, 1- 2.4GHz
702 * @expect_beacon: 0- resume transmits after channel switch
703 *		   1- wait for beacon to resume transmits
704 * @channel: new channel number
705 * @rxon_flags: Rx on flags
706 * @rxon_filter_flags: filtering parameters
707 * @switch_time: switch time in extended beacon format
708 * @reserved: reserved bytes
709 */
710struct iwl5000_channel_switch_cmd {
711	u8 band;
712	u8 expect_beacon;
713	__le16 channel;
714	__le32 rxon_flags;
715	__le32 rxon_filter_flags;
716	__le32 switch_time;
717	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
718} __packed;
719
720/**
721 * struct iwl6000_channel_switch_cmd
722 * @band: 0- 5.2GHz, 1- 2.4GHz
723 * @expect_beacon: 0- resume transmits after channel switch
724 *		   1- wait for beacon to resume transmits
725 * @channel: new channel number
726 * @rxon_flags: Rx on flags
727 * @rxon_filter_flags: filtering parameters
728 * @switch_time: switch time in extended beacon format
729 * @reserved: reserved bytes
730 */
731struct iwl6000_channel_switch_cmd {
732	u8 band;
733	u8 expect_beacon;
734	__le16 channel;
735	__le32 rxon_flags;
736	__le32 rxon_filter_flags;
737	__le32 switch_time;
738	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
739} __packed;
740
741/*
742 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
743 */
744struct iwl_csa_notification {
745	__le16 band;
746	__le16 channel;
747	__le32 status;		/* 0 - OK, 1 - fail */
748} __packed;
749
750/******************************************************************************
751 * (2)
752 * Quality-of-Service (QOS) Commands & Responses:
753 *
754 *****************************************************************************/
755
756/**
757 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
758 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
759 *
760 * @cw_min: Contention window, start value in numbers of slots.
761 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
762 * @cw_max: Contention window, max value in numbers of slots.
763 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
764 * @aifsn:  Number of slots in Arbitration Interframe Space (before
765 *          performing random backoff timing prior to Tx).  Device default 1.
766 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
767 *
768 * Device will automatically increase contention window by (2*CW) + 1 for each
769 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
770 * value, to cap the CW value.
771 */
772struct iwl_ac_qos {
773	__le16 cw_min;
774	__le16 cw_max;
775	u8 aifsn;
776	u8 reserved1;
777	__le16 edca_txop;
778} __packed;
779
780/* QoS flags defines */
781#define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
782#define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
783#define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
784
785/* Number of Access Categories (AC) (EDCA), queues 0..3 */
786#define AC_NUM                4
787
788/*
789 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
790 *
791 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
792 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
793 */
794struct iwl_qosparam_cmd {
795	__le32 qos_flags;
796	struct iwl_ac_qos ac[AC_NUM];
797} __packed;
798
799/******************************************************************************
800 * (3)
801 * Add/Modify Stations Commands & Responses:
802 *
803 *****************************************************************************/
804/*
805 * Multi station support
806 */
807
808/* Special, dedicated locations within device's station table */
809#define	IWL_AP_ID		0
810#define	IWL_AP_ID_PAN		1
811#define	IWL_STA_ID		2
812#define IWLAGN_PAN_BCAST_ID	14
813#define IWLAGN_BROADCAST_ID	15
814#define	IWLAGN_STATION_COUNT	16
815
816#define	IWL_INVALID_STATION 	255
817#define IWL_MAX_TID_COUNT	8
818#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
819
820#define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
821#define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
822#define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
823#define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
824#define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
825#define STA_FLG_MAX_AGG_SIZE_POS	(19)
826#define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
827#define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
828#define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
829#define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
830#define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
831
832/* Use in mode field.  1: modify existing entry, 0: add new station entry */
833#define STA_CONTROL_MODIFY_MSK		0x01
834
835/* key flags __le16*/
836#define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
837#define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
838#define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
839#define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
840#define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
841
842#define STA_KEY_FLG_KEYID_POS	8
843#define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
844/* wep key is either from global key (0) or from station info array (1) */
845#define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
846
847/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
848#define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
849#define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
850#define STA_KEY_MAX_NUM		8
851#define STA_KEY_MAX_NUM_PAN	16
852/* must not match WEP_INVALID_OFFSET */
853#define IWLAGN_HW_KEY_DEFAULT	0xfe
854
855/* Flags indicate whether to modify vs. don't change various station params */
856#define	STA_MODIFY_KEY_MASK		0x01
857#define	STA_MODIFY_TID_DISABLE_TX	0x02
858#define	STA_MODIFY_TX_RATE_MSK		0x04
859#define STA_MODIFY_ADDBA_TID_MSK	0x08
860#define STA_MODIFY_DELBA_TID_MSK	0x10
861#define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
862
863/* Receiver address (actually, Rx station's index into station table),
864 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
865#define BUILD_RAxTID(sta_id, tid)	(((sta_id) << 4) + (tid))
866
867/* agn */
868struct iwl_keyinfo {
869	__le16 key_flags;
870	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
871	u8 reserved1;
872	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
873	u8 key_offset;
874	u8 reserved2;
875	u8 key[16];		/* 16-byte unicast decryption key */
876	__le64 tx_secur_seq_cnt;
877	__le64 hw_tkip_mic_rx_key;
878	__le64 hw_tkip_mic_tx_key;
879} __packed;
880
881/**
882 * struct sta_id_modify
883 * @addr[ETH_ALEN]: station's MAC address
884 * @sta_id: index of station in uCode's station table
885 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
886 *
887 * Driver selects unused table index when adding new station,
888 * or the index to a pre-existing station entry when modifying that station.
889 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
890 *
891 * modify_mask flags select which parameters to modify vs. leave alone.
892 */
893struct sta_id_modify {
894	u8 addr[ETH_ALEN];
895	__le16 reserved1;
896	u8 sta_id;
897	u8 modify_mask;
898	__le16 reserved2;
899} __packed;
900
901/*
902 * REPLY_ADD_STA = 0x18 (command)
903 *
904 * The device contains an internal table of per-station information,
905 * with info on security keys, aggregation parameters, and Tx rates for
906 * initial Tx attempt and any retries (agn devices uses
907 * REPLY_TX_LINK_QUALITY_CMD,
908 *
909 * REPLY_ADD_STA sets up the table entry for one station, either creating
910 * a new entry, or modifying a pre-existing one.
911 *
912 * NOTE:  RXON command (without "associated" bit set) wipes the station table
913 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
914 *        new station table before transmitting anything on the RXON channel
915 *        (except active scans or active measurements; those commands carry
916 *        their own txpower/rate setup data).
917 *
918 *        When getting started on a new channel, driver must set up the
919 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
920 *        station in a BSS, once an AP is selected, driver sets up the AP STA
921 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
922 *        are all that are needed for a BSS client station.  If the device is
923 *        used as AP, or in an IBSS network, driver must set up station table
924 *        entries for all STAs in network, starting with index IWL_STA_ID.
925 */
926
927struct iwl_addsta_cmd {
928	u8 mode;		/* 1: modify existing, 0: add new station */
929	u8 reserved[3];
930	struct sta_id_modify sta;
931	struct iwl_keyinfo key;
932	__le32 station_flags;		/* STA_FLG_* */
933	__le32 station_flags_msk;	/* STA_FLG_* */
934
935	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
936	 * corresponding to bit (e.g. bit 5 controls TID 5).
937	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
938	__le16 tid_disable_tx;
939	__le16 legacy_reserved;
940
941	/* TID for which to add block-ack support.
942	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
943	u8 add_immediate_ba_tid;
944
945	/* TID for which to remove block-ack support.
946	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
947	u8 remove_immediate_ba_tid;
948
949	/* Starting Sequence Number for added block-ack support.
950	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
951	__le16 add_immediate_ba_ssn;
952
953	/*
954	 * Number of packets OK to transmit to station even though
955	 * it is asleep -- used to synchronise PS-poll and u-APSD
956	 * responses while ucode keeps track of STA sleep state.
957	 */
958	__le16 sleep_tx_count;
959
960	__le16 reserved2;
961} __packed;
962
963
964#define ADD_STA_SUCCESS_MSK		0x1
965#define ADD_STA_NO_ROOM_IN_TABLE	0x2
966#define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
967#define ADD_STA_MODIFY_NON_EXIST_STA	0x8
968/*
969 * REPLY_ADD_STA = 0x18 (response)
970 */
971struct iwl_add_sta_resp {
972	u8 status;	/* ADD_STA_* */
973} __packed;
974
975#define REM_STA_SUCCESS_MSK              0x1
976/*
977 *  REPLY_REM_STA = 0x19 (response)
978 */
979struct iwl_rem_sta_resp {
980	u8 status;
981} __packed;
982
983/*
984 *  REPLY_REM_STA = 0x19 (command)
985 */
986struct iwl_rem_sta_cmd {
987	u8 num_sta;     /* number of removed stations */
988	u8 reserved[3];
989	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
990	u8 reserved2[2];
991} __packed;
992
993
994/* WiFi queues mask */
995#define IWL_SCD_BK_MSK			cpu_to_le32(BIT(0))
996#define IWL_SCD_BE_MSK			cpu_to_le32(BIT(1))
997#define IWL_SCD_VI_MSK			cpu_to_le32(BIT(2))
998#define IWL_SCD_VO_MSK			cpu_to_le32(BIT(3))
999#define IWL_SCD_MGMT_MSK		cpu_to_le32(BIT(3))
1000
1001/* PAN queues mask */
1002#define IWL_PAN_SCD_BK_MSK		cpu_to_le32(BIT(4))
1003#define IWL_PAN_SCD_BE_MSK		cpu_to_le32(BIT(5))
1004#define IWL_PAN_SCD_VI_MSK		cpu_to_le32(BIT(6))
1005#define IWL_PAN_SCD_VO_MSK		cpu_to_le32(BIT(7))
1006#define IWL_PAN_SCD_MGMT_MSK		cpu_to_le32(BIT(7))
1007#define IWL_PAN_SCD_MULTICAST_MSK	cpu_to_le32(BIT(8))
1008
1009#define IWL_AGG_TX_QUEUE_MSK		cpu_to_le32(0xffc00)
1010
1011#define IWL_DROP_SINGLE		0
1012#define IWL_DROP_ALL		(BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN))
1013
1014/*
1015 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
1016 *
1017 * When using full FIFO flush this command checks the scheduler HW block WR/RD
1018 * pointers to check if all the frames were transferred by DMA into the
1019 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
1020 * empty the command can finish.
1021 * This command is used to flush the TXFIFO from transmit commands, it may
1022 * operate on single or multiple queues, the command queue can't be flushed by
1023 * this command. The command response is returned when all the queue flush
1024 * operations are done. Each TX command flushed return response with the FLUSH
1025 * status set in the TX response status. When FIFO flush operation is used,
1026 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1027 * are set.
1028 *
1029 * @fifo_control: bit mask for which queues to flush
1030 * @flush_control: flush controls
1031 *	0: Dump single MSDU
1032 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1033 *	2: Dump all FIFO
1034 */
1035struct iwl_txfifo_flush_cmd {
1036	__le32 fifo_control;
1037	__le16 flush_control;
1038	__le16 reserved;
1039} __packed;
1040
1041/*
1042 * REPLY_WEP_KEY = 0x20
1043 */
1044struct iwl_wep_key {
1045	u8 key_index;
1046	u8 key_offset;
1047	u8 reserved1[2];
1048	u8 key_size;
1049	u8 reserved2[3];
1050	u8 key[16];
1051} __packed;
1052
1053struct iwl_wep_cmd {
1054	u8 num_keys;
1055	u8 global_key_type;
1056	u8 flags;
1057	u8 reserved;
1058	struct iwl_wep_key key[0];
1059} __packed;
1060
1061#define WEP_KEY_WEP_TYPE 1
1062#define WEP_KEYS_MAX 4
1063#define WEP_INVALID_OFFSET 0xff
1064#define WEP_KEY_LEN_64 5
1065#define WEP_KEY_LEN_128 13
1066
1067/******************************************************************************
1068 * (4)
1069 * Rx Responses:
1070 *
1071 *****************************************************************************/
1072
1073#define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1074#define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1075
1076#define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1077#define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1078#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1079#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1080#define RX_RES_PHY_FLAGS_ANTENNA_MSK		0xf0
1081#define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1082
1083#define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1084#define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1085#define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1086#define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1087#define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1088#define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1089
1090#define RX_RES_STATUS_STATION_FOUND	(1<<6)
1091#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1092
1093#define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1094#define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1095#define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1096#define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1097#define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1098
1099#define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1100#define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1101#define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1102#define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1103
1104
1105#define IWLAGN_RX_RES_PHY_CNT 8
1106#define IWLAGN_RX_RES_AGC_IDX     1
1107#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1108#define IWLAGN_RX_RES_RSSI_C_IDX  3
1109#define IWLAGN_OFDM_AGC_MSK 0xfe00
1110#define IWLAGN_OFDM_AGC_BIT_POS 9
1111#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1112#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1113#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1114#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1115#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1116#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1117#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1118#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1119#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1120
1121struct iwlagn_non_cfg_phy {
1122	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1123} __packed;
1124
1125
1126/*
1127 * REPLY_RX = 0xc3 (response only, not a command)
1128 * Used only for legacy (non 11n) frames.
1129 */
1130struct iwl_rx_phy_res {
1131	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1132	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1133	u8 stat_id;		/* configurable DSP phy data set ID */
1134	u8 reserved1;
1135	__le64 timestamp;	/* TSF at on air rise */
1136	__le32 beacon_time_stamp; /* beacon at on-air rise */
1137	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1138	__le16 channel;		/* channel number */
1139	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1140	__le32 rate_n_flags;	/* RATE_MCS_* */
1141	__le16 byte_count;	/* frame's byte-count */
1142	__le16 frame_time;	/* frame's time on the air */
1143} __packed;
1144
1145struct iwl_rx_mpdu_res_start {
1146	__le16 byte_count;
1147	__le16 reserved;
1148} __packed;
1149
1150
1151/******************************************************************************
1152 * (5)
1153 * Tx Commands & Responses:
1154 *
1155 * Driver must place each REPLY_TX command into one of the prioritized Tx
1156 * queues in host DRAM, shared between driver and device (see comments for
1157 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1158 * are preparing to transmit, the device pulls the Tx command over the PCI
1159 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1160 * from which data will be transmitted.
1161 *
1162 * uCode handles all timing and protocol related to control frames
1163 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1164 * handle reception of block-acks; uCode updates the host driver via
1165 * REPLY_COMPRESSED_BA.
1166 *
1167 * uCode handles retrying Tx when an ACK is expected but not received.
1168 * This includes trying lower data rates than the one requested in the Tx
1169 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1170 *
1171 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1172 * This command must be executed after every RXON command, before Tx can occur.
1173 *****************************************************************************/
1174
1175/* REPLY_TX Tx flags field */
1176
1177/*
1178 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1179 * before this frame. if CTS-to-self required check
1180 * RXON_FLG_SELF_CTS_EN status.
1181 */
1182#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1183
1184/* 1: Expect ACK from receiving station
1185 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1186 * Set this for unicast frames, but not broadcast/multicast. */
1187#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1188
1189/* For agn devices:
1190 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1191 *    Tx command's initial_rate_index indicates first rate to try;
1192 *    uCode walks through table for additional Tx attempts.
1193 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1194 *    This rate will be used for all Tx attempts; it will not be scaled. */
1195#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1196
1197/* 1: Expect immediate block-ack.
1198 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1199#define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1200
1201/* Tx antenna selection field; reserved (0) for agn devices. */
1202#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1203
1204/* 1: Ignore Bluetooth priority for this frame.
1205 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1206#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1207
1208/* 1: uCode overrides sequence control field in MAC header.
1209 * 0: Driver provides sequence control field in MAC header.
1210 * Set this for management frames, non-QOS data frames, non-unicast frames,
1211 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1212#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1213
1214/* 1: This frame is non-last MPDU; more fragments are coming.
1215 * 0: Last fragment, or not using fragmentation. */
1216#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1217
1218/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1219 * 0: No TSF required in outgoing frame.
1220 * Set this for transmitting beacons and probe responses. */
1221#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1222
1223/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1224 *    alignment of frame's payload data field.
1225 * 0: No pad
1226 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1227 * field (but not both).  Driver must align frame data (i.e. data following
1228 * MAC header) to DWORD boundary. */
1229#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1230
1231/* accelerate aggregation support
1232 * 0 - no CCMP encryption; 1 - CCMP encryption */
1233#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1234
1235/* HCCA-AP - disable duration overwriting. */
1236#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1237
1238
1239/*
1240 * TX command security control
1241 */
1242#define TX_CMD_SEC_WEP  	0x01
1243#define TX_CMD_SEC_CCM  	0x02
1244#define TX_CMD_SEC_TKIP		0x03
1245#define TX_CMD_SEC_MSK		0x03
1246#define TX_CMD_SEC_SHIFT	6
1247#define TX_CMD_SEC_KEY128	0x08
1248
1249/*
1250 * security overhead sizes
1251 */
1252#define WEP_IV_LEN 4
1253#define WEP_ICV_LEN 4
1254#define CCMP_MIC_LEN 8
1255#define TKIP_ICV_LEN 4
1256
1257/*
1258 * REPLY_TX = 0x1c (command)
1259 */
1260
1261/*
1262 * 4965 uCode updates these Tx attempt count values in host DRAM.
1263 * Used for managing Tx retries when expecting block-acks.
1264 * Driver should set these fields to 0.
1265 */
1266struct iwl_dram_scratch {
1267	u8 try_cnt;		/* Tx attempts */
1268	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1269	__le16 reserved;
1270} __packed;
1271
1272struct iwl_tx_cmd {
1273	/*
1274	 * MPDU byte count:
1275	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1276	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1277	 * + Data payload
1278	 * + 8-byte MIC (not used for CCM/WEP)
1279	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1280	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1281	 * Range: 14-2342 bytes.
1282	 */
1283	__le16 len;
1284
1285	/*
1286	 * MPDU or MSDU byte count for next frame.
1287	 * Used for fragmentation and bursting, but not 11n aggregation.
1288	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1289	 */
1290	__le16 next_frame_len;
1291
1292	__le32 tx_flags;	/* TX_CMD_FLG_* */
1293
1294	/* uCode may modify this field of the Tx command (in host DRAM!).
1295	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1296	struct iwl_dram_scratch scratch;
1297
1298	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1299	__le32 rate_n_flags;	/* RATE_MCS_* */
1300
1301	/* Index of destination station in uCode's station table */
1302	u8 sta_id;
1303
1304	/* Type of security encryption:  CCM or TKIP */
1305	u8 sec_ctl;		/* TX_CMD_SEC_* */
1306
1307	/*
1308	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1309	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1310	 * data frames, this field may be used to selectively reduce initial
1311	 * rate (via non-0 value) for special frames (e.g. management), while
1312	 * still supporting rate scaling for all frames.
1313	 */
1314	u8 initial_rate_index;
1315	u8 reserved;
1316	u8 key[16];
1317	__le16 next_frame_flags;
1318	__le16 reserved2;
1319	union {
1320		__le32 life_time;
1321		__le32 attempt;
1322	} stop_time;
1323
1324	/* Host DRAM physical address pointer to "scratch" in this command.
1325	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1326	__le32 dram_lsb_ptr;
1327	u8 dram_msb_ptr;
1328
1329	u8 rts_retry_limit;	/*byte 50 */
1330	u8 data_retry_limit;	/*byte 51 */
1331	u8 tid_tspec;
1332	union {
1333		__le16 pm_frame_timeout;
1334		__le16 attempt_duration;
1335	} timeout;
1336
1337	/*
1338	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1339	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1340	 */
1341	__le16 driver_txop;
1342
1343	/*
1344	 * MAC header goes here, followed by 2 bytes padding if MAC header
1345	 * length is 26 or 30 bytes, followed by payload data
1346	 */
1347	u8 payload[0];
1348	struct ieee80211_hdr hdr[0];
1349} __packed;
1350
1351/*
1352 * TX command response is sent after *agn* transmission attempts.
1353 *
1354 * both postpone and abort status are expected behavior from uCode. there is
1355 * no special operation required from driver; except for RFKILL_FLUSH,
1356 * which required tx flush host command to flush all the tx frames in queues
1357 */
1358enum {
1359	TX_STATUS_SUCCESS = 0x01,
1360	TX_STATUS_DIRECT_DONE = 0x02,
1361	/* postpone TX */
1362	TX_STATUS_POSTPONE_DELAY = 0x40,
1363	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1364	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1365	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1366	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1367	/* abort TX */
1368	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1369	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1370	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1371	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1372	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1373	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1374	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1375	TX_STATUS_FAIL_DEST_PS = 0x88,
1376	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1377	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1378	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1379	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1380	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1381	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1382	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1383	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1384	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1385};
1386
1387#define	TX_PACKET_MODE_REGULAR		0x0000
1388#define	TX_PACKET_MODE_BURST_SEQ	0x0100
1389#define	TX_PACKET_MODE_BURST_FIRST	0x0200
1390
1391enum {
1392	TX_POWER_PA_NOT_ACTIVE = 0x0,
1393};
1394
1395enum {
1396	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1397	TX_STATUS_DELAY_MSK = 0x00000040,
1398	TX_STATUS_ABORT_MSK = 0x00000080,
1399	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1400	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1401	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1402	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1403	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1404};
1405
1406/* *******************************
1407 * TX aggregation status
1408 ******************************* */
1409
1410enum {
1411	AGG_TX_STATE_TRANSMITTED = 0x00,
1412	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1413	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1414	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1415	AGG_TX_STATE_ABORT_MSK = 0x08,
1416	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1417	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1418	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1419	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1420	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1421	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1422	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1423	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1424};
1425
1426#define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1427#define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1428
1429#define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1430				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1431				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1432
1433/* # tx attempts for first frame in aggregation */
1434#define AGG_TX_STATE_TRY_CNT_POS 12
1435#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1436
1437/* Command ID and sequence number of Tx command for this frame */
1438#define AGG_TX_STATE_SEQ_NUM_POS 16
1439#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1440
1441/*
1442 * REPLY_TX = 0x1c (response)
1443 *
1444 * This response may be in one of two slightly different formats, indicated
1445 * by the frame_count field:
1446 *
1447 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1448 *     a single frame.  Multiple attempts, at various bit rates, may have
1449 *     been made for this frame.
1450 *
1451 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1452 *     2 or more frames that used block-acknowledge.  All frames were
1453 *     transmitted at same rate.  Rate scaling may have been used if first
1454 *     frame in this new agg block failed in previous agg block(s).
1455 *
1456 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1457 *     block-ack has not been received by the time the agn device records
1458 *     this status.
1459 *     This status relates to reasons the tx might have been blocked or aborted
1460 *     within the sending station (this agn device), rather than whether it was
1461 *     received successfully by the destination station.
1462 */
1463struct agg_tx_status {
1464	__le16 status;
1465	__le16 sequence;
1466} __packed;
1467
1468/*
1469 * definitions for initial rate index field
1470 * bits [3:0] initial rate index
1471 * bits [6:4] rate table color, used for the initial rate
1472 * bit-7 invalid rate indication
1473 *   i.e. rate was not chosen from rate table
1474 *   or rate table color was changed during frame retries
1475 * refer tlc rate info
1476 */
1477
1478#define IWL50_TX_RES_INIT_RATE_INDEX_POS	0
1479#define IWL50_TX_RES_INIT_RATE_INDEX_MSK	0x0f
1480#define IWL50_TX_RES_RATE_TABLE_COLOR_POS	4
1481#define IWL50_TX_RES_RATE_TABLE_COLOR_MSK	0x70
1482#define IWL50_TX_RES_INV_RATE_INDEX_MSK	0x80
1483
1484/* refer to ra_tid */
1485#define IWLAGN_TX_RES_TID_POS	0
1486#define IWLAGN_TX_RES_TID_MSK	0x0f
1487#define IWLAGN_TX_RES_RA_POS	4
1488#define IWLAGN_TX_RES_RA_MSK	0xf0
1489
1490struct iwlagn_tx_resp {
1491	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1492	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1493	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1494	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1495
1496	/* For non-agg:  Rate at which frame was successful.
1497	 * For agg:  Rate at which all frames were transmitted. */
1498	__le32 rate_n_flags;	/* RATE_MCS_*  */
1499
1500	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1501	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1502	__le16 wireless_media_time;	/* uSecs */
1503
1504	u8 pa_status;		/* RF power amplifier measurement (not used) */
1505	u8 pa_integ_res_a[3];
1506	u8 pa_integ_res_b[3];
1507	u8 pa_integ_res_C[3];
1508
1509	__le32 tfd_info;
1510	__le16 seq_ctl;
1511	__le16 byte_cnt;
1512	u8 tlc_info;
1513	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1514	__le16 frame_ctrl;
1515	/*
1516	 * For non-agg:  frame status TX_STATUS_*
1517	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1518	 *           fields follow this one, up to frame_count.
1519	 *           Bit fields:
1520	 *           11- 0:  AGG_TX_STATE_* status code
1521	 *           15-12:  Retry count for 1st frame in aggregation (retries
1522	 *                   occur if tx failed for this frame when it was a
1523	 *                   member of a previous aggregation block).  If rate
1524	 *                   scaling is used, retry count indicates the rate
1525	 *                   table entry used for all frames in the new agg.
1526	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1527	 */
1528	struct agg_tx_status status;	/* TX status (in aggregation -
1529					 * status of 1st frame) */
1530} __packed;
1531/*
1532 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1533 *
1534 * Reports Block-Acknowledge from recipient station
1535 */
1536struct iwl_compressed_ba_resp {
1537	__le32 sta_addr_lo32;
1538	__le16 sta_addr_hi16;
1539	__le16 reserved;
1540
1541	/* Index of recipient (BA-sending) station in uCode's station table */
1542	u8 sta_id;
1543	u8 tid;
1544	__le16 seq_ctl;
1545	__le64 bitmap;
1546	__le16 scd_flow;
1547	__le16 scd_ssn;
1548	u8 txed;	/* number of frames sent */
1549	u8 txed_2_done; /* number of frames acked */
1550} __packed;
1551
1552/*
1553 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1554 *
1555 */
1556
1557/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1558#define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1559
1560/* # of EDCA prioritized tx fifos */
1561#define  LINK_QUAL_AC_NUM AC_NUM
1562
1563/* # entries in rate scale table to support Tx retries */
1564#define  LINK_QUAL_MAX_RETRY_NUM 16
1565
1566/* Tx antenna selection values */
1567#define  LINK_QUAL_ANT_A_MSK (1 << 0)
1568#define  LINK_QUAL_ANT_B_MSK (1 << 1)
1569#define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1570
1571
1572/**
1573 * struct iwl_link_qual_general_params
1574 *
1575 * Used in REPLY_TX_LINK_QUALITY_CMD
1576 */
1577struct iwl_link_qual_general_params {
1578	u8 flags;
1579
1580	/* No entries at or above this (driver chosen) index contain MIMO */
1581	u8 mimo_delimiter;
1582
1583	/* Best single antenna to use for single stream (legacy, SISO). */
1584	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1585
1586	/* Best antennas to use for MIMO (unused for 4965, assumes both). */
1587	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1588
1589	/*
1590	 * If driver needs to use different initial rates for different
1591	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1592	 * this table will set that up, by indicating the indexes in the
1593	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1594	 * Otherwise, driver should set all entries to 0.
1595	 *
1596	 * Entry usage:
1597	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1598	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1599	 */
1600	u8 start_rate_index[LINK_QUAL_AC_NUM];
1601} __packed;
1602
1603#define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1604#define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1605#define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1606
1607#define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1608#define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1609#define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1610
1611#define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1612#define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1613#define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1614
1615/**
1616 * struct iwl_link_qual_agg_params
1617 *
1618 * Used in REPLY_TX_LINK_QUALITY_CMD
1619 */
1620struct iwl_link_qual_agg_params {
1621
1622	/*
1623	 *Maximum number of uSec in aggregation.
1624	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1625	 */
1626	__le16 agg_time_limit;
1627
1628	/*
1629	 * Number of Tx retries allowed for a frame, before that frame will
1630	 * no longer be considered for the start of an aggregation sequence
1631	 * (scheduler will then try to tx it as single frame).
1632	 * Driver should set this to 3.
1633	 */
1634	u8 agg_dis_start_th;
1635
1636	/*
1637	 * Maximum number of frames in aggregation.
1638	 * 0 = no limit (default).  1 = no aggregation.
1639	 * Other values = max # frames in aggregation.
1640	 */
1641	u8 agg_frame_cnt_limit;
1642
1643	__le32 reserved;
1644} __packed;
1645
1646/*
1647 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1648 *
1649 * For agn devices
1650 *
1651 * Each station in the agn device's internal station table has its own table
1652 * of 16
1653 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1654 * an ACK is not received.  This command replaces the entire table for
1655 * one station.
1656 *
1657 * NOTE:  Station must already be in agn device's station table.
1658 *	  Use REPLY_ADD_STA.
1659 *
1660 * The rate scaling procedures described below work well.  Of course, other
1661 * procedures are possible, and may work better for particular environments.
1662 *
1663 *
1664 * FILLING THE RATE TABLE
1665 *
1666 * Given a particular initial rate and mode, as determined by the rate
1667 * scaling algorithm described below, the Linux driver uses the following
1668 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1669 * Link Quality command:
1670 *
1671 *
1672 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1673 *     a) Use this same initial rate for first 3 entries.
1674 *     b) Find next lower available rate using same mode (SISO or MIMO),
1675 *        use for next 3 entries.  If no lower rate available, switch to
1676 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1677 *     c) If using MIMO, set command's mimo_delimiter to number of entries
1678 *        using MIMO (3 or 6).
1679 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1680 *        no MIMO, no short guard interval), at the next lower bit rate
1681 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1682 *        legacy procedure for remaining table entries.
1683 *
1684 * 2)  If using legacy initial rate:
1685 *     a) Use the initial rate for only one entry.
1686 *     b) For each following entry, reduce the rate to next lower available
1687 *        rate, until reaching the lowest available rate.
1688 *     c) When reducing rate, also switch antenna selection.
1689 *     d) Once lowest available rate is reached, repeat this rate until
1690 *        rate table is filled (16 entries), switching antenna each entry.
1691 *
1692 *
1693 * ACCUMULATING HISTORY
1694 *
1695 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1696 * uses two sets of frame Tx success history:  One for the current/active
1697 * modulation mode, and one for a speculative/search mode that is being
1698 * attempted. If the speculative mode turns out to be more effective (i.e.
1699 * actual transfer rate is better), then the driver continues to use the
1700 * speculative mode as the new current active mode.
1701 *
1702 * Each history set contains, separately for each possible rate, data for a
1703 * sliding window of the 62 most recent tx attempts at that rate.  The data
1704 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1705 * and attempted frames, from which the driver can additionally calculate a
1706 * success ratio (success / attempted) and number of failures
1707 * (attempted - success), and control the size of the window (attempted).
1708 * The driver uses the bit map to remove successes from the success sum, as
1709 * the oldest tx attempts fall out of the window.
1710 *
1711 * When the agn device makes multiple tx attempts for a given frame, each
1712 * attempt might be at a different rate, and have different modulation
1713 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1714 * up in the rate scaling table in the Link Quality command.  The driver must
1715 * determine which rate table entry was used for each tx attempt, to determine
1716 * which rate-specific history to update, and record only those attempts that
1717 * match the modulation characteristics of the history set.
1718 *
1719 * When using block-ack (aggregation), all frames are transmitted at the same
1720 * rate, since there is no per-attempt acknowledgment from the destination
1721 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1722 * rate_n_flags field.  After receiving a block-ack, the driver can update
1723 * history for the entire block all at once.
1724 *
1725 *
1726 * FINDING BEST STARTING RATE:
1727 *
1728 * When working with a selected initial modulation mode (see below), the
1729 * driver attempts to find a best initial rate.  The initial rate is the
1730 * first entry in the Link Quality command's rate table.
1731 *
1732 * 1)  Calculate actual throughput (success ratio * expected throughput, see
1733 *     table below) for current initial rate.  Do this only if enough frames
1734 *     have been attempted to make the value meaningful:  at least 6 failed
1735 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1736 *     scaling yet.
1737 *
1738 * 2)  Find available rates adjacent to current initial rate.  Available means:
1739 *     a)  supported by hardware &&
1740 *     b)  supported by association &&
1741 *     c)  within any constraints selected by user
1742 *
1743 * 3)  Gather measured throughputs for adjacent rates.  These might not have
1744 *     enough history to calculate a throughput.  That's okay, we might try
1745 *     using one of them anyway!
1746 *
1747 * 4)  Try decreasing rate if, for current rate:
1748 *     a)  success ratio is < 15% ||
1749 *     b)  lower adjacent rate has better measured throughput ||
1750 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1751 *
1752 *     As a sanity check, if decrease was determined above, leave rate
1753 *     unchanged if:
1754 *     a)  lower rate unavailable
1755 *     b)  success ratio at current rate > 85% (very good)
1756 *     c)  current measured throughput is better than expected throughput
1757 *         of lower rate (under perfect 100% tx conditions, see table below)
1758 *
1759 * 5)  Try increasing rate if, for current rate:
1760 *     a)  success ratio is < 15% ||
1761 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1762 *     b)  higher adjacent rate has better measured throughput ||
1763 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1764 *
1765 *     As a sanity check, if increase was determined above, leave rate
1766 *     unchanged if:
1767 *     a)  success ratio at current rate < 70%.  This is not particularly
1768 *         good performance; higher rate is sure to have poorer success.
1769 *
1770 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1771 *     acknowledge, history and statistics may be calculated for the entire
1772 *     block (including prior history that fits within the history windows),
1773 *     before re-evaluation.
1774 *
1775 * FINDING BEST STARTING MODULATION MODE:
1776 *
1777 * After working with a modulation mode for a "while" (and doing rate scaling),
1778 * the driver searches for a new initial mode in an attempt to improve
1779 * throughput.  The "while" is measured by numbers of attempted frames:
1780 *
1781 * For legacy mode, search for new mode after:
1782 *   480 successful frames, or 160 failed frames
1783 * For high-throughput modes (SISO or MIMO), search for new mode after:
1784 *   4500 successful frames, or 400 failed frames
1785 *
1786 * Mode switch possibilities are (3 for each mode):
1787 *
1788 * For legacy:
1789 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1790 * For SISO:
1791 *   Change antenna, try MIMO, try shortened guard interval (SGI)
1792 * For MIMO:
1793 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1794 *
1795 * When trying a new mode, use the same bit rate as the old/current mode when
1796 * trying antenna switches and shortened guard interval.  When switching to
1797 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1798 * for which the expected throughput (under perfect conditions) is about the
1799 * same or slightly better than the actual measured throughput delivered by
1800 * the old/current mode.
1801 *
1802 * Actual throughput can be estimated by multiplying the expected throughput
1803 * by the success ratio (successful / attempted tx frames).  Frame size is
1804 * not considered in this calculation; it assumes that frame size will average
1805 * out to be fairly consistent over several samples.  The following are
1806 * metric values for expected throughput assuming 100% success ratio.
1807 * Only G band has support for CCK rates:
1808 *
1809 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1810 *
1811 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1812 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1813 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1814 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1815 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1816 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1817 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1818 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1819 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1820 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1821 *
1822 * After the new mode has been tried for a short while (minimum of 6 failed
1823 * frames or 8 successful frames), compare success ratio and actual throughput
1824 * estimate of the new mode with the old.  If either is better with the new
1825 * mode, continue to use the new mode.
1826 *
1827 * Continue comparing modes until all 3 possibilities have been tried.
1828 * If moving from legacy to HT, try all 3 possibilities from the new HT
1829 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1830 * for the longer "while" described above (e.g. 480 successful frames for
1831 * legacy), and then repeat the search process.
1832 *
1833 */
1834struct iwl_link_quality_cmd {
1835
1836	/* Index of destination/recipient station in uCode's station table */
1837	u8 sta_id;
1838	u8 reserved1;
1839	__le16 control;		/* not used */
1840	struct iwl_link_qual_general_params general_params;
1841	struct iwl_link_qual_agg_params agg_params;
1842
1843	/*
1844	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1845	 * specifies 1st Tx rate attempted, via index into this table.
1846	 * agn devices works its way through table when retrying Tx.
1847	 */
1848	struct {
1849		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1850	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1851	__le32 reserved2;
1852} __packed;
1853
1854/*
1855 * BT configuration enable flags:
1856 *   bit 0 - 1: BT channel announcement enabled
1857 *           0: disable
1858 *   bit 1 - 1: priority of BT device enabled
1859 *           0: disable
1860 *   bit 2 - 1: BT 2 wire support enabled
1861 *           0: disable
1862 */
1863#define BT_COEX_DISABLE (0x0)
1864#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1865#define BT_ENABLE_PRIORITY	   BIT(1)
1866#define BT_ENABLE_2_WIRE	   BIT(2)
1867
1868#define BT_COEX_DISABLE (0x0)
1869#define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1870
1871#define BT_LEAD_TIME_MIN (0x0)
1872#define BT_LEAD_TIME_DEF (0x1E)
1873#define BT_LEAD_TIME_MAX (0xFF)
1874
1875#define BT_MAX_KILL_MIN (0x1)
1876#define BT_MAX_KILL_DEF (0x5)
1877#define BT_MAX_KILL_MAX (0xFF)
1878
1879#define BT_DURATION_LIMIT_DEF	625
1880#define BT_DURATION_LIMIT_MAX	1250
1881#define BT_DURATION_LIMIT_MIN	625
1882
1883#define BT_ON_THRESHOLD_DEF	4
1884#define BT_ON_THRESHOLD_MAX	1000
1885#define BT_ON_THRESHOLD_MIN	1
1886
1887#define BT_FRAG_THRESHOLD_DEF	0
1888#define BT_FRAG_THRESHOLD_MAX	0
1889#define BT_FRAG_THRESHOLD_MIN	0
1890
1891#define BT_AGG_THRESHOLD_DEF	1200
1892#define BT_AGG_THRESHOLD_MAX	8000
1893#define BT_AGG_THRESHOLD_MIN	400
1894
1895/*
1896 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1897 *
1898 * agn devices support hardware handshake with Bluetooth device on
1899 * same platform.  Bluetooth device alerts wireless device when it will Tx;
1900 * wireless device can delay or kill its own Tx to accommodate.
1901 */
1902struct iwl_bt_cmd {
1903	u8 flags;
1904	u8 lead_time;
1905	u8 max_kill;
1906	u8 reserved;
1907	__le32 kill_ack_mask;
1908	__le32 kill_cts_mask;
1909} __packed;
1910
1911#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1912
1913#define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1914#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1915#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1916#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1917#define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1918#define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1919
1920#define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1921/* Disable Sync PSPoll on SCO/eSCO */
1922#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1923
1924#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1925#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1926
1927#define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1928#define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1929#define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1930
1931#define IWLAGN_BT_MAX_KILL_DEFAULT	5
1932
1933#define IWLAGN_BT3_T7_DEFAULT		1
1934
1935#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1936#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1937#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1938
1939#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1940
1941#define IWLAGN_BT3_T2_DEFAULT		0xc
1942
1943#define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1944#define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1945#define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1946#define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1947#define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1948#define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1949#define IWLAGN_BT_VALID_BT4_TIMES	cpu_to_le16(BIT(6))
1950#define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1951
1952#define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1953					IWLAGN_BT_VALID_BOOST | \
1954					IWLAGN_BT_VALID_MAX_KILL | \
1955					IWLAGN_BT_VALID_3W_TIMERS | \
1956					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1957					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1958					IWLAGN_BT_VALID_BT4_TIMES | \
1959					IWLAGN_BT_VALID_3W_LUT)
1960
1961struct iwl_basic_bt_cmd {
1962	u8 flags;
1963	u8 ledtime; /* unused */
1964	u8 max_kill;
1965	u8 bt3_timer_t7_value;
1966	__le32 kill_ack_mask;
1967	__le32 kill_cts_mask;
1968	u8 bt3_prio_sample_time;
1969	u8 bt3_timer_t2_value;
1970	__le16 bt4_reaction_time; /* unused */
1971	__le32 bt3_lookup_table[12];
1972	__le16 bt4_decision_time; /* unused */
1973	__le16 valid;
1974};
1975
1976struct iwl6000_bt_cmd {
1977	struct iwl_basic_bt_cmd basic;
1978	u8 prio_boost;
1979	/*
1980	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1981	 * if configure the following patterns
1982	 */
1983	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1984	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1985};
1986
1987struct iwl2000_bt_cmd {
1988	struct iwl_basic_bt_cmd basic;
1989	__le32 prio_boost;
1990	/*
1991	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1992	 * if configure the following patterns
1993	 */
1994	u8 reserved;
1995	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1996	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1997};
1998
1999#define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
2000
2001struct iwlagn_bt_sco_cmd {
2002	__le32 flags;
2003};
2004
2005/******************************************************************************
2006 * (6)
2007 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2008 *
2009 *****************************************************************************/
2010
2011/*
2012 * Spectrum Management
2013 */
2014#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
2015				 RXON_FILTER_CTL2HOST_MSK        | \
2016				 RXON_FILTER_ACCEPT_GRP_MSK      | \
2017				 RXON_FILTER_DIS_DECRYPT_MSK     | \
2018				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2019				 RXON_FILTER_ASSOC_MSK           | \
2020				 RXON_FILTER_BCON_AWARE_MSK)
2021
2022struct iwl_measure_channel {
2023	__le32 duration;	/* measurement duration in extended beacon
2024				 * format */
2025	u8 channel;		/* channel to measure */
2026	u8 type;		/* see enum iwl_measure_type */
2027	__le16 reserved;
2028} __packed;
2029
2030/*
2031 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2032 */
2033struct iwl_spectrum_cmd {
2034	__le16 len;		/* number of bytes starting from token */
2035	u8 token;		/* token id */
2036	u8 id;			/* measurement id -- 0 or 1 */
2037	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2038	u8 periodic;		/* 1 = periodic */
2039	__le16 path_loss_timeout;
2040	__le32 start_time;	/* start time in extended beacon format */
2041	__le32 reserved2;
2042	__le32 flags;		/* rxon flags */
2043	__le32 filter_flags;	/* rxon filter flags */
2044	__le16 channel_count;	/* minimum 1, maximum 10 */
2045	__le16 reserved3;
2046	struct iwl_measure_channel channels[10];
2047} __packed;
2048
2049/*
2050 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2051 */
2052struct iwl_spectrum_resp {
2053	u8 token;
2054	u8 id;			/* id of the prior command replaced, or 0xff */
2055	__le16 status;		/* 0 - command will be handled
2056				 * 1 - cannot handle (conflicts with another
2057				 *     measurement) */
2058} __packed;
2059
2060enum iwl_measurement_state {
2061	IWL_MEASUREMENT_START = 0,
2062	IWL_MEASUREMENT_STOP = 1,
2063};
2064
2065enum iwl_measurement_status {
2066	IWL_MEASUREMENT_OK = 0,
2067	IWL_MEASUREMENT_CONCURRENT = 1,
2068	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2069	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2070	/* 4-5 reserved */
2071	IWL_MEASUREMENT_STOPPED = 6,
2072	IWL_MEASUREMENT_TIMEOUT = 7,
2073	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2074};
2075
2076#define NUM_ELEMENTS_IN_HISTOGRAM 8
2077
2078struct iwl_measurement_histogram {
2079	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2080	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2081} __packed;
2082
2083/* clear channel availability counters */
2084struct iwl_measurement_cca_counters {
2085	__le32 ofdm;
2086	__le32 cck;
2087} __packed;
2088
2089enum iwl_measure_type {
2090	IWL_MEASURE_BASIC = (1 << 0),
2091	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2092	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2093	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2094	IWL_MEASURE_FRAME = (1 << 4),
2095	/* bits 5:6 are reserved */
2096	IWL_MEASURE_IDLE = (1 << 7),
2097};
2098
2099/*
2100 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2101 */
2102struct iwl_spectrum_notification {
2103	u8 id;			/* measurement id -- 0 or 1 */
2104	u8 token;
2105	u8 channel_index;	/* index in measurement channel list */
2106	u8 state;		/* 0 - start, 1 - stop */
2107	__le32 start_time;	/* lower 32-bits of TSF */
2108	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2109	u8 channel;
2110	u8 type;		/* see enum iwl_measurement_type */
2111	u8 reserved1;
2112	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2113	 * valid if applicable for measurement type requested. */
2114	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2115	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2116	__le32 cca_time;	/* channel load time in usecs */
2117	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2118				 * unidentified */
2119	u8 reserved2[3];
2120	struct iwl_measurement_histogram histogram;
2121	__le32 stop_time;	/* lower 32-bits of TSF */
2122	__le32 status;		/* see iwl_measurement_status */
2123} __packed;
2124
2125/******************************************************************************
2126 * (7)
2127 * Power Management Commands, Responses, Notifications:
2128 *
2129 *****************************************************************************/
2130
2131/**
2132 * struct iwl_powertable_cmd - Power Table Command
2133 * @flags: See below:
2134 *
2135 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2136 *
2137 * PM allow:
2138 *   bit 0 - '0' Driver not allow power management
2139 *           '1' Driver allow PM (use rest of parameters)
2140 *
2141 * uCode send sleep notifications:
2142 *   bit 1 - '0' Don't send sleep notification
2143 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2144 *
2145 * Sleep over DTIM
2146 *   bit 2 - '0' PM have to walk up every DTIM
2147 *           '1' PM could sleep over DTIM till listen Interval.
2148 *
2149 * PCI power managed
2150 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2151 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2152 *
2153 * Fast PD
2154 *   bit 4 - '1' Put radio to sleep when receiving frame for others
2155 *
2156 * Force sleep Modes
2157 *   bit 31/30- '00' use both mac/xtal sleeps
2158 *              '01' force Mac sleep
2159 *              '10' force xtal sleep
2160 *              '11' Illegal set
2161 *
2162 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2163 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2164 * for every DTIM.
2165 */
2166#define IWL_POWER_VEC_SIZE 5
2167
2168#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2169#define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2170#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2171#define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2172#define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2173#define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2174#define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2175#define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2176#define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2177#define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2178#define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2179
2180struct iwl_powertable_cmd {
2181	__le16 flags;
2182	u8 keep_alive_seconds;
2183	u8 debug_flags;
2184	__le32 rx_data_timeout;
2185	__le32 tx_data_timeout;
2186	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2187	__le32 keep_alive_beacons;
2188} __packed;
2189
2190/*
2191 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2192 * all devices identical.
2193 */
2194struct iwl_sleep_notification {
2195	u8 pm_sleep_mode;
2196	u8 pm_wakeup_src;
2197	__le16 reserved;
2198	__le32 sleep_time;
2199	__le32 tsf_low;
2200	__le32 bcon_timer;
2201} __packed;
2202
2203/* Sleep states.  all devices identical. */
2204enum {
2205	IWL_PM_NO_SLEEP = 0,
2206	IWL_PM_SLP_MAC = 1,
2207	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2208	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2209	IWL_PM_SLP_PHY = 4,
2210	IWL_PM_SLP_REPENT = 5,
2211	IWL_PM_WAKEUP_BY_TIMER = 6,
2212	IWL_PM_WAKEUP_BY_DRIVER = 7,
2213	IWL_PM_WAKEUP_BY_RFKILL = 8,
2214	/* 3 reserved */
2215	IWL_PM_NUM_OF_MODES = 12,
2216};
2217
2218/*
2219 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2220 */
2221#define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2222#define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2223#define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2224struct iwl_card_state_cmd {
2225	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2226} __packed;
2227
2228/*
2229 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2230 */
2231struct iwl_card_state_notif {
2232	__le32 flags;
2233} __packed;
2234
2235#define HW_CARD_DISABLED   0x01
2236#define SW_CARD_DISABLED   0x02
2237#define CT_CARD_DISABLED   0x04
2238#define RXON_CARD_DISABLED 0x10
2239
2240struct iwl_ct_kill_config {
2241	__le32   reserved;
2242	__le32   critical_temperature_M;
2243	__le32   critical_temperature_R;
2244}  __packed;
2245
2246/* 1000, and 6x00 */
2247struct iwl_ct_kill_throttling_config {
2248	__le32   critical_temperature_exit;
2249	__le32   reserved;
2250	__le32   critical_temperature_enter;
2251}  __packed;
2252
2253/******************************************************************************
2254 * (8)
2255 * Scan Commands, Responses, Notifications:
2256 *
2257 *****************************************************************************/
2258
2259#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2260#define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2261
2262/**
2263 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2264 *
2265 * One for each channel in the scan list.
2266 * Each channel can independently select:
2267 * 1)  SSID for directed active scans
2268 * 2)  Txpower setting (for rate specified within Tx command)
2269 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2270 *     quiet_plcp_th, good_CRC_th)
2271 *
2272 * To avoid uCode errors, make sure the following are true (see comments
2273 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2274 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2275 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2276 * 2)  quiet_time <= active_dwell
2277 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2278 *     passive_dwell < max_out_time
2279 *     active_dwell < max_out_time
2280 */
2281
2282struct iwl_scan_channel {
2283	/*
2284	 * type is defined as:
2285	 * 0:0 1 = active, 0 = passive
2286	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2287	 *     SSID IE is transmitted in probe request.
2288	 * 21:31 reserved
2289	 */
2290	__le32 type;
2291	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2292	u8 tx_gain;		/* gain for analog radio */
2293	u8 dsp_atten;		/* gain for DSP */
2294	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2295	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2296} __packed;
2297
2298/* set number of direct probes __le32 type */
2299#define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2300
2301/**
2302 * struct iwl_ssid_ie - directed scan network information element
2303 *
2304 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2305 * selected by "type" bit field in struct iwl_scan_channel;
2306 * each channel may select different ssids from among the 20 entries.
2307 * SSID IEs get transmitted in reverse order of entry.
2308 */
2309struct iwl_ssid_ie {
2310	u8 id;
2311	u8 len;
2312	u8 ssid[32];
2313} __packed;
2314
2315#define PROBE_OPTION_MAX		20
2316#define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2317#define IWL_GOOD_CRC_TH_DISABLED	0
2318#define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2319#define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2320#define IWL_MAX_SCAN_SIZE 1024
2321#define IWL_MAX_CMD_SIZE 4096
2322
2323/*
2324 * REPLY_SCAN_CMD = 0x80 (command)
2325 *
2326 * The hardware scan command is very powerful; the driver can set it up to
2327 * maintain (relatively) normal network traffic while doing a scan in the
2328 * background.  The max_out_time and suspend_time control the ratio of how
2329 * long the device stays on an associated network channel ("service channel")
2330 * vs. how long it's away from the service channel, i.e. tuned to other channels
2331 * for scanning.
2332 *
2333 * max_out_time is the max time off-channel (in usec), and suspend_time
2334 * is how long (in "extended beacon" format) that the scan is "suspended"
2335 * after returning to the service channel.  That is, suspend_time is the
2336 * time that we stay on the service channel, doing normal work, between
2337 * scan segments.  The driver may set these parameters differently to support
2338 * scanning when associated vs. not associated, and light vs. heavy traffic
2339 * loads when associated.
2340 *
2341 * After receiving this command, the device's scan engine does the following;
2342 *
2343 * 1)  Sends SCAN_START notification to driver
2344 * 2)  Checks to see if it has time to do scan for one channel
2345 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2346 *     to tell AP that we're going off-channel
2347 * 4)  Tunes to first channel in scan list, does active or passive scan
2348 * 5)  Sends SCAN_RESULT notification to driver
2349 * 6)  Checks to see if it has time to do scan on *next* channel in list
2350 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2351 *     before max_out_time expires
2352 * 8)  Returns to service channel
2353 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2354 * 10) Stays on service channel until suspend_time expires
2355 * 11) Repeats entire process 2-10 until list is complete
2356 * 12) Sends SCAN_COMPLETE notification
2357 *
2358 * For fast, efficient scans, the scan command also has support for staying on
2359 * a channel for just a short time, if doing active scanning and getting no
2360 * responses to the transmitted probe request.  This time is controlled by
2361 * quiet_time, and the number of received packets below which a channel is
2362 * considered "quiet" is controlled by quiet_plcp_threshold.
2363 *
2364 * For active scanning on channels that have regulatory restrictions against
2365 * blindly transmitting, the scan can listen before transmitting, to make sure
2366 * that there is already legitimate activity on the channel.  If enough
2367 * packets are cleanly received on the channel (controlled by good_CRC_th,
2368 * typical value 1), the scan engine starts transmitting probe requests.
2369 *
2370 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2371 *
2372 * To avoid uCode errors, see timing restrictions described under
2373 * struct iwl_scan_channel.
2374 */
2375
2376enum iwl_scan_flags {
2377	/* BIT(0) currently unused */
2378	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2379	/* bits 2-7 reserved */
2380};
2381
2382struct iwl_scan_cmd {
2383	__le16 len;
2384	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2385	u8 channel_count;	/* # channels in channel list */
2386	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2387				 * (only for active scan) */
2388	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2389	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2390	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2391	__le32 max_out_time;	/* max usec to be away from associated (service)
2392				 * channel */
2393	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2394				 * format") when returning to service chnl:
2395				 */
2396	__le32 flags;		/* RXON_FLG_* */
2397	__le32 filter_flags;	/* RXON_FILTER_* */
2398
2399	/* For active scans (set to all-0s for passive scans).
2400	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2401	struct iwl_tx_cmd tx_cmd;
2402
2403	/* For directed active scans (set to all-0s otherwise) */
2404	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2405
2406	/*
2407	 * Probe request frame, followed by channel list.
2408	 *
2409	 * Size of probe request frame is specified by byte count in tx_cmd.
2410	 * Channel list follows immediately after probe request frame.
2411	 * Number of channels in list is specified by channel_count.
2412	 * Each channel in list is of type:
2413	 *
2414	 * struct iwl_scan_channel channels[0];
2415	 *
2416	 * NOTE:  Only one band of channels can be scanned per pass.  You
2417	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2418	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2419	 * before requesting another scan.
2420	 */
2421	u8 data[0];
2422} __packed;
2423
2424/* Can abort will notify by complete notification with abort status. */
2425#define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2426/* complete notification statuses */
2427#define ABORT_STATUS            0x2
2428
2429/*
2430 * REPLY_SCAN_CMD = 0x80 (response)
2431 */
2432struct iwl_scanreq_notification {
2433	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2434} __packed;
2435
2436/*
2437 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2438 */
2439struct iwl_scanstart_notification {
2440	__le32 tsf_low;
2441	__le32 tsf_high;
2442	__le32 beacon_timer;
2443	u8 channel;
2444	u8 band;
2445	u8 reserved[2];
2446	__le32 status;
2447} __packed;
2448
2449#define  SCAN_OWNER_STATUS 0x1
2450#define  MEASURE_OWNER_STATUS 0x2
2451
2452#define IWL_PROBE_STATUS_OK		0
2453#define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2454/* error statuses combined with TX_FAILED */
2455#define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2456#define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2457
2458#define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2459/*
2460 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2461 */
2462struct iwl_scanresults_notification {
2463	u8 channel;
2464	u8 band;
2465	u8 probe_status;
2466	u8 num_probe_not_sent; /* not enough time to send */
2467	__le32 tsf_low;
2468	__le32 tsf_high;
2469	__le32 statistics[NUMBER_OF_STATISTICS];
2470} __packed;
2471
2472/*
2473 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2474 */
2475struct iwl_scancomplete_notification {
2476	u8 scanned_channels;
2477	u8 status;
2478	u8 bt_status;	/* BT On/Off status */
2479	u8 last_channel;
2480	__le32 tsf_low;
2481	__le32 tsf_high;
2482} __packed;
2483
2484
2485/******************************************************************************
2486 * (9)
2487 * IBSS/AP Commands and Notifications:
2488 *
2489 *****************************************************************************/
2490
2491enum iwl_ibss_manager {
2492	IWL_NOT_IBSS_MANAGER = 0,
2493	IWL_IBSS_MANAGER = 1,
2494};
2495
2496/*
2497 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2498 */
2499
2500struct iwlagn_beacon_notif {
2501	struct iwlagn_tx_resp beacon_notify_hdr;
2502	__le32 low_tsf;
2503	__le32 high_tsf;
2504	__le32 ibss_mgr_status;
2505} __packed;
2506
2507/*
2508 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2509 */
2510
2511struct iwl_tx_beacon_cmd {
2512	struct iwl_tx_cmd tx;
2513	__le16 tim_idx;
2514	u8 tim_size;
2515	u8 reserved1;
2516	struct ieee80211_hdr frame[0];	/* beacon frame */
2517} __packed;
2518
2519/******************************************************************************
2520 * (10)
2521 * Statistics Commands and Notifications:
2522 *
2523 *****************************************************************************/
2524
2525#define IWL_TEMP_CONVERT 260
2526
2527#define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2528#define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2529#define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2530
2531/* Used for passing to driver number of successes and failures per rate */
2532struct rate_histogram {
2533	union {
2534		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2535		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2536		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2537	} success;
2538	union {
2539		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2540		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2541		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2542	} failed;
2543} __packed;
2544
2545/* statistics command response */
2546
2547struct statistics_dbg {
2548	__le32 burst_check;
2549	__le32 burst_count;
2550	__le32 wait_for_silence_timeout_cnt;
2551	__le32 reserved[3];
2552} __packed;
2553
2554struct statistics_rx_phy {
2555	__le32 ina_cnt;
2556	__le32 fina_cnt;
2557	__le32 plcp_err;
2558	__le32 crc32_err;
2559	__le32 overrun_err;
2560	__le32 early_overrun_err;
2561	__le32 crc32_good;
2562	__le32 false_alarm_cnt;
2563	__le32 fina_sync_err_cnt;
2564	__le32 sfd_timeout;
2565	__le32 fina_timeout;
2566	__le32 unresponded_rts;
2567	__le32 rxe_frame_limit_overrun;
2568	__le32 sent_ack_cnt;
2569	__le32 sent_cts_cnt;
2570	__le32 sent_ba_rsp_cnt;
2571	__le32 dsp_self_kill;
2572	__le32 mh_format_err;
2573	__le32 re_acq_main_rssi_sum;
2574	__le32 reserved3;
2575} __packed;
2576
2577struct statistics_rx_ht_phy {
2578	__le32 plcp_err;
2579	__le32 overrun_err;
2580	__le32 early_overrun_err;
2581	__le32 crc32_good;
2582	__le32 crc32_err;
2583	__le32 mh_format_err;
2584	__le32 agg_crc32_good;
2585	__le32 agg_mpdu_cnt;
2586	__le32 agg_cnt;
2587	__le32 unsupport_mcs;
2588} __packed;
2589
2590#define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2591
2592struct statistics_rx_non_phy {
2593	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2594	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2595	__le32 non_bssid_frames;	/* number of frames with BSSID that
2596					 * doesn't belong to the STA BSSID */
2597	__le32 filtered_frames;	/* count frames that were dumped in the
2598				 * filtering process */
2599	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2600					 * our serving channel */
2601	__le32 channel_beacons;	/* beacons with our bss id and in our
2602				 * serving channel */
2603	__le32 num_missed_bcon;	/* number of missed beacons */
2604	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2605					 * ADC was in saturation */
2606	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2607					  * for INA */
2608	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2609	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2610	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2611	__le32 interference_data_flag;	/* flag for interference data
2612					 * availability. 1 when data is
2613					 * available. */
2614	__le32 channel_load;		/* counts RX Enable time in uSec */
2615	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2616					 * and CCK) counter */
2617	__le32 beacon_rssi_a;
2618	__le32 beacon_rssi_b;
2619	__le32 beacon_rssi_c;
2620	__le32 beacon_energy_a;
2621	__le32 beacon_energy_b;
2622	__le32 beacon_energy_c;
2623} __packed;
2624
2625struct statistics_rx_non_phy_bt {
2626	struct statistics_rx_non_phy common;
2627	/* additional stats for bt */
2628	__le32 num_bt_kills;
2629	__le32 reserved[2];
2630} __packed;
2631
2632struct statistics_rx {
2633	struct statistics_rx_phy ofdm;
2634	struct statistics_rx_phy cck;
2635	struct statistics_rx_non_phy general;
2636	struct statistics_rx_ht_phy ofdm_ht;
2637} __packed;
2638
2639struct statistics_rx_bt {
2640	struct statistics_rx_phy ofdm;
2641	struct statistics_rx_phy cck;
2642	struct statistics_rx_non_phy_bt general;
2643	struct statistics_rx_ht_phy ofdm_ht;
2644} __packed;
2645
2646/**
2647 * struct statistics_tx_power - current tx power
2648 *
2649 * @ant_a: current tx power on chain a in 1/2 dB step
2650 * @ant_b: current tx power on chain b in 1/2 dB step
2651 * @ant_c: current tx power on chain c in 1/2 dB step
2652 */
2653struct statistics_tx_power {
2654	u8 ant_a;
2655	u8 ant_b;
2656	u8 ant_c;
2657	u8 reserved;
2658} __packed;
2659
2660struct statistics_tx_non_phy_agg {
2661	__le32 ba_timeout;
2662	__le32 ba_reschedule_frames;
2663	__le32 scd_query_agg_frame_cnt;
2664	__le32 scd_query_no_agg;
2665	__le32 scd_query_agg;
2666	__le32 scd_query_mismatch;
2667	__le32 frame_not_ready;
2668	__le32 underrun;
2669	__le32 bt_prio_kill;
2670	__le32 rx_ba_rsp_cnt;
2671} __packed;
2672
2673struct statistics_tx {
2674	__le32 preamble_cnt;
2675	__le32 rx_detected_cnt;
2676	__le32 bt_prio_defer_cnt;
2677	__le32 bt_prio_kill_cnt;
2678	__le32 few_bytes_cnt;
2679	__le32 cts_timeout;
2680	__le32 ack_timeout;
2681	__le32 expected_ack_cnt;
2682	__le32 actual_ack_cnt;
2683	__le32 dump_msdu_cnt;
2684	__le32 burst_abort_next_frame_mismatch_cnt;
2685	__le32 burst_abort_missing_next_frame_cnt;
2686	__le32 cts_timeout_collision;
2687	__le32 ack_or_ba_timeout_collision;
2688	struct statistics_tx_non_phy_agg agg;
2689	/*
2690	 * "tx_power" are optional parameters provided by uCode,
2691	 * 6000 series is the only device provide the information,
2692	 * Those are reserved fields for all the other devices
2693	 */
2694	struct statistics_tx_power tx_power;
2695	__le32 reserved1;
2696} __packed;
2697
2698
2699struct statistics_div {
2700	__le32 tx_on_a;
2701	__le32 tx_on_b;
2702	__le32 exec_time;
2703	__le32 probe_time;
2704	__le32 reserved1;
2705	__le32 reserved2;
2706} __packed;
2707
2708struct statistics_general_common {
2709	__le32 temperature;   /* radio temperature */
2710	__le32 temperature_m; /* radio voltage */
2711	struct statistics_dbg dbg;
2712	__le32 sleep_time;
2713	__le32 slots_out;
2714	__le32 slots_idle;
2715	__le32 ttl_timestamp;
2716	struct statistics_div div;
2717	__le32 rx_enable_counter;
2718	/*
2719	 * num_of_sos_states:
2720	 *  count the number of times we have to re-tune
2721	 *  in order to get out of bad PHY status
2722	 */
2723	__le32 num_of_sos_states;
2724} __packed;
2725
2726struct statistics_bt_activity {
2727	/* Tx statistics */
2728	__le32 hi_priority_tx_req_cnt;
2729	__le32 hi_priority_tx_denied_cnt;
2730	__le32 lo_priority_tx_req_cnt;
2731	__le32 lo_priority_tx_denied_cnt;
2732	/* Rx statistics */
2733	__le32 hi_priority_rx_req_cnt;
2734	__le32 hi_priority_rx_denied_cnt;
2735	__le32 lo_priority_rx_req_cnt;
2736	__le32 lo_priority_rx_denied_cnt;
2737} __packed;
2738
2739struct statistics_general {
2740	struct statistics_general_common common;
2741	__le32 reserved2;
2742	__le32 reserved3;
2743} __packed;
2744
2745struct statistics_general_bt {
2746	struct statistics_general_common common;
2747	struct statistics_bt_activity activity;
2748	__le32 reserved2;
2749	__le32 reserved3;
2750} __packed;
2751
2752#define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2753#define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2754#define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2755
2756/*
2757 * REPLY_STATISTICS_CMD = 0x9c,
2758 * all devices identical.
2759 *
2760 * This command triggers an immediate response containing uCode statistics.
2761 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2762 *
2763 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2764 * internal copy of the statistics (counters) after issuing the response.
2765 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2766 *
2767 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2768 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2769 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2770 */
2771#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2772#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2773struct iwl_statistics_cmd {
2774	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2775} __packed;
2776
2777/*
2778 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2779 *
2780 * By default, uCode issues this notification after receiving a beacon
2781 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2782 * REPLY_STATISTICS_CMD 0x9c, above.
2783 *
2784 * Statistics counters continue to increment beacon after beacon, but are
2785 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2786 * 0x9c with CLEAR_STATS bit set (see above).
2787 *
2788 * uCode also issues this notification during scans.  uCode clears statistics
2789 * appropriately so that each notification contains statistics for only the
2790 * one channel that has just been scanned.
2791 */
2792#define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2793#define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2794
2795struct iwl_notif_statistics {
2796	__le32 flag;
2797	struct statistics_rx rx;
2798	struct statistics_tx tx;
2799	struct statistics_general general;
2800} __packed;
2801
2802struct iwl_bt_notif_statistics {
2803	__le32 flag;
2804	struct statistics_rx_bt rx;
2805	struct statistics_tx tx;
2806	struct statistics_general_bt general;
2807} __packed;
2808
2809/*
2810 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2811 *
2812 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2813 * in regardless of how many missed beacons, which mean when driver receive the
2814 * notification, inside the command, it can find all the beacons information
2815 * which include number of total missed beacons, number of consecutive missed
2816 * beacons, number of beacons received and number of beacons expected to
2817 * receive.
2818 *
2819 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2820 * in order to bring the radio/PHY back to working state; which has no relation
2821 * to when driver will perform sensitivity calibration.
2822 *
2823 * Driver should set it own missed_beacon_threshold to decide when to perform
2824 * sensitivity calibration based on number of consecutive missed beacons in
2825 * order to improve overall performance, especially in noisy environment.
2826 *
2827 */
2828
2829#define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2830#define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2831#define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2832
2833struct iwl_missed_beacon_notif {
2834	__le32 consecutive_missed_beacons;
2835	__le32 total_missed_becons;
2836	__le32 num_expected_beacons;
2837	__le32 num_recvd_beacons;
2838} __packed;
2839
2840
2841/******************************************************************************
2842 * (11)
2843 * Rx Calibration Commands:
2844 *
2845 * With the uCode used for open source drivers, most Tx calibration (except
2846 * for Tx Power) and most Rx calibration is done by uCode during the
2847 * "initialize" phase of uCode boot.  Driver must calibrate only:
2848 *
2849 * 1)  Tx power (depends on temperature), described elsewhere
2850 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2851 * 3)  Receiver sensitivity (to optimize signal detection)
2852 *
2853 *****************************************************************************/
2854
2855/**
2856 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2857 *
2858 * This command sets up the Rx signal detector for a sensitivity level that
2859 * is high enough to lock onto all signals within the associated network,
2860 * but low enough to ignore signals that are below a certain threshold, so as
2861 * not to have too many "false alarms".  False alarms are signals that the
2862 * Rx DSP tries to lock onto, but then discards after determining that they
2863 * are noise.
2864 *
2865 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2866 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2867 * time listening, not transmitting).  Driver must adjust sensitivity so that
2868 * the ratio of actual false alarms to actual Rx time falls within this range.
2869 *
2870 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2871 * received beacon.  These provide information to the driver to analyze the
2872 * sensitivity.  Don't analyze statistics that come in from scanning, or any
2873 * other non-associated-network source.  Pertinent statistics include:
2874 *
2875 * From "general" statistics (struct statistics_rx_non_phy):
2876 *
2877 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2878 *   Measure of energy of desired signal.  Used for establishing a level
2879 *   below which the device does not detect signals.
2880 *
2881 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2882 *   Measure of background noise in silent period after beacon.
2883 *
2884 * channel_load
2885 *   uSecs of actual Rx time during beacon period (varies according to
2886 *   how much time was spent transmitting).
2887 *
2888 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2889 *
2890 * false_alarm_cnt
2891 *   Signal locks abandoned early (before phy-level header).
2892 *
2893 * plcp_err
2894 *   Signal locks abandoned late (during phy-level header).
2895 *
2896 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2897 *        beacon to beacon, i.e. each value is an accumulation of all errors
2898 *        before and including the latest beacon.  Values will wrap around to 0
2899 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2900 *        previous beacon's values to determine # false alarms in the current
2901 *        beacon period.
2902 *
2903 * Total number of false alarms = false_alarms + plcp_errs
2904 *
2905 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2906 * (notice that the start points for OFDM are at or close to settings for
2907 * maximum sensitivity):
2908 *
2909 *                                             START  /  MIN  /  MAX
2910 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2911 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2912 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2913 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2914 *
2915 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2916 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2917 *   by *adding* 1 to all 4 of the table entries above, up to the max for
2918 *   each entry.  Conversely, if false alarm rate is too low (less than 5
2919 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2920 *   increase sensitivity.
2921 *
2922 * For CCK sensitivity, keep track of the following:
2923 *
2924 *   1).  20-beacon history of maximum background noise, indicated by
2925 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2926 *        3 receivers.  For any given beacon, the "silence reference" is
2927 *        the maximum of last 60 samples (20 beacons * 3 receivers).
2928 *
2929 *   2).  10-beacon history of strongest signal level, as indicated
2930 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2931 *        i.e. the strength of the signal through the best receiver at the
2932 *        moment.  These measurements are "upside down", with lower values
2933 *        for stronger signals, so max energy will be *minimum* value.
2934 *
2935 *        Then for any given beacon, the driver must determine the *weakest*
2936 *        of the strongest signals; this is the minimum level that needs to be
2937 *        successfully detected, when using the best receiver at the moment.
2938 *        "Max cck energy" is the maximum (higher value means lower energy!)
2939 *        of the last 10 minima.  Once this is determined, driver must add
2940 *        a little margin by adding "6" to it.
2941 *
2942 *   3).  Number of consecutive beacon periods with too few false alarms.
2943 *        Reset this to 0 at the first beacon period that falls within the
2944 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2945 *
2946 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2947 * (notice that the start points for CCK are at maximum sensitivity):
2948 *
2949 *                                             START  /  MIN  /  MAX
2950 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2951 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2952 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2953 *
2954 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2955 *   (greater than 50 for each 204.8 msecs listening), method for reducing
2956 *   sensitivity is:
2957 *
2958 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2959 *       up to max 400.
2960 *
2961 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2962 *       sensitivity has been reduced a significant amount; bring it up to
2963 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2964 *
2965 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2966 *       sensitivity has been reduced only a moderate or small amount;
2967 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2968 *       down to min 0.  Otherwise (if gain has been significantly reduced),
2969 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2970 *
2971 *       b)  Save a snapshot of the "silence reference".
2972 *
2973 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2974 *   (less than 5 for each 204.8 msecs listening), method for increasing
2975 *   sensitivity is used only if:
2976 *
2977 *   1a)  Previous beacon did not have too many false alarms
2978 *   1b)  AND difference between previous "silence reference" and current
2979 *        "silence reference" (prev - current) is 2 or more,
2980 *   OR 2)  100 or more consecutive beacon periods have had rate of
2981 *          less than 5 false alarms per 204.8 milliseconds rx time.
2982 *
2983 *   Method for increasing sensitivity:
2984 *
2985 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2986 *       down to min 125.
2987 *
2988 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2989 *       down to min 200.
2990 *
2991 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2992 *
2993 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2994 *   (between 5 and 50 for each 204.8 msecs listening):
2995 *
2996 *   1)  Save a snapshot of the silence reference.
2997 *
2998 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2999 *       give some extra margin to energy threshold by *subtracting* 8
3000 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
3001 *
3002 *   For all cases (too few, too many, good range), make sure that the CCK
3003 *   detection threshold (energy) is below the energy level for robust
3004 *   detection over the past 10 beacon periods, the "Max cck energy".
3005 *   Lower values mean higher energy; this means making sure that the value
3006 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3007 *
3008 */
3009
3010/*
3011 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3012 */
3013#define HD_TABLE_SIZE  (11)	/* number of entries */
3014#define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
3015#define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
3016#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
3017#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
3018#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
3019#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
3020#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
3021#define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
3022#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
3023#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
3024#define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
3025
3026/*
3027 * Additional table entries in enhance SENSITIVITY_CMD
3028 */
3029#define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
3030#define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
3031#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
3032#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
3033#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
3034#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
3035#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
3036#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
3037#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3038#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3039#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3040#define HD_RESERVED					(22)
3041
3042/* number of entries for enhanced tbl */
3043#define ENHANCE_HD_TABLE_SIZE  (23)
3044
3045/* number of additional entries for enhanced tbl */
3046#define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3047
3048#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3049#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3050#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3051#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3052#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3053#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3054#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3055#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3056#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3057#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3058#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3059
3060#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3061#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3062#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3063#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3064#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3065#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3066#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3067#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3068#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3069#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3070#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3071
3072
3073/* Control field in struct iwl_sensitivity_cmd */
3074#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3075#define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3076
3077/**
3078 * struct iwl_sensitivity_cmd
3079 * @control:  (1) updates working table, (0) updates default table
3080 * @table:  energy threshold values, use HD_* as index into table
3081 *
3082 * Always use "1" in "control" to update uCode's working table and DSP.
3083 */
3084struct iwl_sensitivity_cmd {
3085	__le16 control;			/* always use "1" */
3086	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3087} __packed;
3088
3089/*
3090 *
3091 */
3092struct iwl_enhance_sensitivity_cmd {
3093	__le16 control;			/* always use "1" */
3094	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3095} __packed;
3096
3097
3098/**
3099 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3100 *
3101 * This command sets the relative gains of agn device's 3 radio receiver chains.
3102 *
3103 * After the first association, driver should accumulate signal and noise
3104 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3105 * beacons from the associated network (don't collect statistics that come
3106 * in from scanning, or any other non-network source).
3107 *
3108 * DISCONNECTED ANTENNA:
3109 *
3110 * Driver should determine which antennas are actually connected, by comparing
3111 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3112 * following values over 20 beacons, one accumulator for each of the chains
3113 * a/b/c, from struct statistics_rx_non_phy:
3114 *
3115 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3116 *
3117 * Find the strongest signal from among a/b/c.  Compare the other two to the
3118 * strongest.  If any signal is more than 15 dB (times 20, unless you
3119 * divide the accumulated values by 20) below the strongest, the driver
3120 * considers that antenna to be disconnected, and should not try to use that
3121 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3122 * driver should declare the stronger one as connected, and attempt to use it
3123 * (A and B are the only 2 Tx chains!).
3124 *
3125 *
3126 * RX BALANCE:
3127 *
3128 * Driver should balance the 3 receivers (but just the ones that are connected
3129 * to antennas, see above) for gain, by comparing the average signal levels
3130 * detected during the silence after each beacon (background noise).
3131 * Accumulate (add) the following values over 20 beacons, one accumulator for
3132 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3133 *
3134 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3135 *
3136 * Find the weakest background noise level from among a/b/c.  This Rx chain
3137 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3138 * finding noise difference:
3139 *
3140 * (accum_noise[i] - accum_noise[reference]) / 30
3141 *
3142 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3143 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3144 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3145 * and set bit 2 to indicate "reduce gain".  The value for the reference
3146 * (weakest) chain should be "0".
3147 *
3148 * diff_gain_[abc] bit fields:
3149 *   2: (1) reduce gain, (0) increase gain
3150 * 1-0: amount of gain, units of 1.5 dB
3151 */
3152
3153/* Phy calibration command for series */
3154/* The default calibrate table size if not specified by firmware */
3155#define IWL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE	18
3156enum {
3157	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3158	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3159	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3160	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3161	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3162	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3163	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3164	IWL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE	= 19,
3165};
3166
3167#define IWL_MAX_PHY_CALIBRATE_TBL_SIZE		(253)
3168
3169/* This enum defines the bitmap of various calibrations to enable in both
3170 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3171 */
3172enum iwl_ucode_calib_cfg {
3173	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3174	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3175	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3176	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3177	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3178	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3179	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3180	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3181	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3182	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3183	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3184};
3185
3186#define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3187					IWL_CALIB_CFG_DC_IDX |		\
3188					IWL_CALIB_CFG_LO_IDX |		\
3189					IWL_CALIB_CFG_TX_IQ_IDX |	\
3190					IWL_CALIB_CFG_RX_IQ_IDX |	\
3191					IWL_CALIB_CFG_CRYSTAL_IDX)
3192
3193#define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3194					IWL_CALIB_CFG_DC_IDX |		\
3195					IWL_CALIB_CFG_LO_IDX |		\
3196					IWL_CALIB_CFG_TX_IQ_IDX |	\
3197					IWL_CALIB_CFG_RX_IQ_IDX |	\
3198					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3199					IWL_CALIB_CFG_PAPD_IDX |	\
3200					IWL_CALIB_CFG_TX_PWR_IDX |	\
3201					IWL_CALIB_CFG_CRYSTAL_IDX)
3202
3203#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3204
3205struct iwl_calib_cfg_elmnt_s {
3206	__le32 is_enable;
3207	__le32 start;
3208	__le32 send_res;
3209	__le32 apply_res;
3210	__le32 reserved;
3211} __packed;
3212
3213struct iwl_calib_cfg_status_s {
3214	struct iwl_calib_cfg_elmnt_s once;
3215	struct iwl_calib_cfg_elmnt_s perd;
3216	__le32 flags;
3217} __packed;
3218
3219struct iwl_calib_cfg_cmd {
3220	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3221	struct iwl_calib_cfg_status_s drv_calib_cfg;
3222	__le32 reserved1;
3223} __packed;
3224
3225struct iwl_calib_hdr {
3226	u8 op_code;
3227	u8 first_group;
3228	u8 groups_num;
3229	u8 data_valid;
3230} __packed;
3231
3232struct iwl_calib_cmd {
3233	struct iwl_calib_hdr hdr;
3234	u8 data[0];
3235} __packed;
3236
3237struct iwl_calib_xtal_freq_cmd {
3238	struct iwl_calib_hdr hdr;
3239	u8 cap_pin1;
3240	u8 cap_pin2;
3241	u8 pad[2];
3242} __packed;
3243
3244#define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3245struct iwl_calib_temperature_offset_cmd {
3246	struct iwl_calib_hdr hdr;
3247	__le16 radio_sensor_offset;
3248	__le16 reserved;
3249} __packed;
3250
3251struct iwl_calib_temperature_offset_v2_cmd {
3252	struct iwl_calib_hdr hdr;
3253	__le16 radio_sensor_offset_high;
3254	__le16 radio_sensor_offset_low;
3255	__le16 burntVoltageRef;
3256	__le16 reserved;
3257} __packed;
3258
3259/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3260struct iwl_calib_chain_noise_reset_cmd {
3261	struct iwl_calib_hdr hdr;
3262	u8 data[0];
3263};
3264
3265/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3266struct iwl_calib_chain_noise_gain_cmd {
3267	struct iwl_calib_hdr hdr;
3268	u8 delta_gain_1;
3269	u8 delta_gain_2;
3270	u8 pad[2];
3271} __packed;
3272
3273/******************************************************************************
3274 * (12)
3275 * Miscellaneous Commands:
3276 *
3277 *****************************************************************************/
3278
3279/*
3280 * LEDs Command & Response
3281 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3282 *
3283 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3284 * this command turns it on or off, or sets up a periodic blinking cycle.
3285 */
3286struct iwl_led_cmd {
3287	__le32 interval;	/* "interval" in uSec */
3288	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3289	u8 off;			/* # intervals off while blinking;
3290				 * "0", with >0 "on" value, turns LED on */
3291	u8 on;			/* # intervals on while blinking;
3292				 * "0", regardless of "off", turns LED off */
3293	u8 reserved;
3294} __packed;
3295
3296/*
3297 * station priority table entries
3298 * also used as potential "events" value for both
3299 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3300 */
3301
3302/*
3303 * COEX events entry flag masks
3304 * RP - Requested Priority
3305 * WP - Win Medium Priority: priority assigned when the contention has been won
3306 */
3307#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3308#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3309#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3310
3311#define COEX_CU_UNASSOC_IDLE_RP               4
3312#define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3313#define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3314#define COEX_CU_CALIBRATION_RP                4
3315#define COEX_CU_PERIODIC_CALIBRATION_RP       4
3316#define COEX_CU_CONNECTION_ESTAB_RP           4
3317#define COEX_CU_ASSOCIATED_IDLE_RP            4
3318#define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3319#define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3320#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3321#define COEX_CU_RF_ON_RP                      6
3322#define COEX_CU_RF_OFF_RP                     4
3323#define COEX_CU_STAND_ALONE_DEBUG_RP          6
3324#define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3325#define COEX_CU_RSRVD1_RP                     4
3326#define COEX_CU_RSRVD2_RP                     4
3327
3328#define COEX_CU_UNASSOC_IDLE_WP               3
3329#define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3330#define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3331#define COEX_CU_CALIBRATION_WP                3
3332#define COEX_CU_PERIODIC_CALIBRATION_WP       3
3333#define COEX_CU_CONNECTION_ESTAB_WP           3
3334#define COEX_CU_ASSOCIATED_IDLE_WP            3
3335#define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3336#define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3337#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3338#define COEX_CU_RF_ON_WP                      3
3339#define COEX_CU_RF_OFF_WP                     3
3340#define COEX_CU_STAND_ALONE_DEBUG_WP          6
3341#define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3342#define COEX_CU_RSRVD1_WP                     3
3343#define COEX_CU_RSRVD2_WP                     3
3344
3345#define COEX_UNASSOC_IDLE_FLAGS                     0
3346#define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3347	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3348	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3349#define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3350	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3351	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3352#define COEX_CALIBRATION_FLAGS			\
3353	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3354	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3355#define COEX_PERIODIC_CALIBRATION_FLAGS             0
3356/*
3357 * COEX_CONNECTION_ESTAB:
3358 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3359 */
3360#define COEX_CONNECTION_ESTAB_FLAGS		\
3361	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3362	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3363	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3364#define COEX_ASSOCIATED_IDLE_FLAGS                  0
3365#define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3366	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3367	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3368#define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3369	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3370	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3371#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3372#define COEX_RF_ON_FLAGS                            0
3373#define COEX_RF_OFF_FLAGS                           0
3374#define COEX_STAND_ALONE_DEBUG_FLAGS		\
3375	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3376	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3377#define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3378	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3379	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3380	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3381#define COEX_RSRVD1_FLAGS                           0
3382#define COEX_RSRVD2_FLAGS                           0
3383/*
3384 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3385 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3386 */
3387#define COEX_CU_RF_ON_FLAGS			\
3388	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3389	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3390	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3391
3392
3393enum {
3394	/* un-association part */
3395	COEX_UNASSOC_IDLE		= 0,
3396	COEX_UNASSOC_MANUAL_SCAN	= 1,
3397	COEX_UNASSOC_AUTO_SCAN		= 2,
3398	/* calibration */
3399	COEX_CALIBRATION		= 3,
3400	COEX_PERIODIC_CALIBRATION	= 4,
3401	/* connection */
3402	COEX_CONNECTION_ESTAB		= 5,
3403	/* association part */
3404	COEX_ASSOCIATED_IDLE		= 6,
3405	COEX_ASSOC_MANUAL_SCAN		= 7,
3406	COEX_ASSOC_AUTO_SCAN		= 8,
3407	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3408	/* RF ON/OFF */
3409	COEX_RF_ON			= 10,
3410	COEX_RF_OFF			= 11,
3411	COEX_STAND_ALONE_DEBUG		= 12,
3412	/* IPAN */
3413	COEX_IPAN_ASSOC_LEVEL		= 13,
3414	/* reserved */
3415	COEX_RSRVD1			= 14,
3416	COEX_RSRVD2			= 15,
3417	COEX_NUM_OF_EVENTS		= 16
3418};
3419
3420/*
3421 * Coexistence WIFI/WIMAX  Command
3422 * COEX_PRIORITY_TABLE_CMD = 0x5a
3423 *
3424 */
3425struct iwl_wimax_coex_event_entry {
3426	u8 request_prio;
3427	u8 win_medium_prio;
3428	u8 reserved;
3429	u8 flags;
3430} __packed;
3431
3432/* COEX flag masks */
3433
3434/* Station table is valid */
3435#define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3436/* UnMask wake up src at unassociated sleep */
3437#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3438/* UnMask wake up src at associated sleep */
3439#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3440/* Enable CoEx feature. */
3441#define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3442
3443struct iwl_wimax_coex_cmd {
3444	u8 flags;
3445	u8 reserved[3];
3446	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3447} __packed;
3448
3449/*
3450 * Coexistence MEDIUM NOTIFICATION
3451 * COEX_MEDIUM_NOTIFICATION = 0x5b
3452 *
3453 * notification from uCode to host to indicate medium changes
3454 *
3455 */
3456/*
3457 * status field
3458 * bit 0 - 2: medium status
3459 * bit 3: medium change indication
3460 * bit 4 - 31: reserved
3461 */
3462/* status option values, (0 - 2 bits) */
3463#define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3464#define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3465#define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3466#define COEX_MEDIUM_MSK		(0x7)
3467
3468/* send notification status (1 bit) */
3469#define COEX_MEDIUM_CHANGED	(0x8)
3470#define COEX_MEDIUM_CHANGED_MSK	(0x8)
3471#define COEX_MEDIUM_SHIFT	(3)
3472
3473struct iwl_coex_medium_notification {
3474	__le32 status;
3475	__le32 events;
3476} __packed;
3477
3478/*
3479 * Coexistence EVENT  Command
3480 * COEX_EVENT_CMD = 0x5c
3481 *
3482 * send from host to uCode for coex event request.
3483 */
3484/* flags options */
3485#define COEX_EVENT_REQUEST_MSK	(0x1)
3486
3487struct iwl_coex_event_cmd {
3488	u8 flags;
3489	u8 event;
3490	__le16 reserved;
3491} __packed;
3492
3493struct iwl_coex_event_resp {
3494	__le32 status;
3495} __packed;
3496
3497
3498/******************************************************************************
3499 * Bluetooth Coexistence commands
3500 *
3501 *****************************************************************************/
3502
3503/*
3504 * BT Status notification
3505 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3506 */
3507enum iwl_bt_coex_profile_traffic_load {
3508	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3509	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3510	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3511	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3512/*
3513 * There are no more even though below is a u8, the
3514 * indication from the BT device only has two bits.
3515 */
3516};
3517
3518#define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3519#define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3520
3521/* BT UART message - Share Part (BT -> WiFi) */
3522#define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3523#define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3524		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3525#define BT_UART_MSG_FRAME1SSN_POS		(3)
3526#define BT_UART_MSG_FRAME1SSN_MSK		\
3527		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3528#define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3529#define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3530		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3531#define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3532#define BT_UART_MSG_FRAME1RESERVED_MSK		\
3533		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3534
3535#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3536#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3537		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3538#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3539#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3540		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3541#define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3542#define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3543		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3544#define BT_UART_MSG_FRAME2INBAND_POS		(5)
3545#define BT_UART_MSG_FRAME2INBAND_MSK		\
3546		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3547#define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3548#define BT_UART_MSG_FRAME2RESERVED_MSK		\
3549		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3550
3551#define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3552#define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3553		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3554#define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3555#define BT_UART_MSG_FRAME3SNIFF_MSK		\
3556		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3557#define BT_UART_MSG_FRAME3A2DP_POS		(2)
3558#define BT_UART_MSG_FRAME3A2DP_MSK		\
3559		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3560#define BT_UART_MSG_FRAME3ACL_POS		(3)
3561#define BT_UART_MSG_FRAME3ACL_MSK		\
3562		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3563#define BT_UART_MSG_FRAME3MASTER_POS		(4)
3564#define BT_UART_MSG_FRAME3MASTER_MSK		\
3565		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3566#define BT_UART_MSG_FRAME3OBEX_POS		(5)
3567#define BT_UART_MSG_FRAME3OBEX_MSK		\
3568		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3569#define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3570#define BT_UART_MSG_FRAME3RESERVED_MSK		\
3571		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3572
3573#define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3574#define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3575		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3576#define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3577#define BT_UART_MSG_FRAME4RESERVED_MSK		\
3578		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3579
3580#define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3581#define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3582		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3583#define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3584#define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3585		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3586#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3587#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3588		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3589#define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3590#define BT_UART_MSG_FRAME5RESERVED_MSK		\
3591		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3592
3593#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3594#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3595		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3596#define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3597#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3598		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3599#define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3600#define BT_UART_MSG_FRAME6RESERVED_MSK		\
3601		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3602
3603#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3604#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3605		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3606#define BT_UART_MSG_FRAME7PAGE_POS		(3)
3607#define BT_UART_MSG_FRAME7PAGE_MSK		\
3608		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3609#define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3610#define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3611		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3612#define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3613#define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3614		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3615#define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3616#define BT_UART_MSG_FRAME7RESERVED_MSK		\
3617		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3618
3619/* BT Session Activity 2 UART message (BT -> WiFi) */
3620#define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3621#define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3622		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3623#define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3624#define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3625		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3626
3627#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3628#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3629		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3630#define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3631#define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3632		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3633
3634#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3635#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3636		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3637#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3638#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3639		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3640#define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3641#define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3642		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3643#define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3644#define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3645		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3646
3647#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3648#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3649		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3650#define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3651#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3652		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3653#define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3654#define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3655		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3656
3657#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3658#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3659		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3660#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3661#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3662		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3663#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3664#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3665		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3666#define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3667#define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3668		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3669
3670#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3671#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3672		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3673#define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3674#define BT_UART_MSG_2_FRAME6RFU_MSK		\
3675		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3676#define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3677#define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3678		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3679
3680#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3681#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3682		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3683#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3684#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3685		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3686#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3687#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3688		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3689#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3690#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3691		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3692#define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3693#define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3694		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3695
3696
3697struct iwl_bt_uart_msg {
3698	u8 header;
3699	u8 frame1;
3700	u8 frame2;
3701	u8 frame3;
3702	u8 frame4;
3703	u8 frame5;
3704	u8 frame6;
3705	u8 frame7;
3706} __attribute__((packed));
3707
3708struct iwl_bt_coex_profile_notif {
3709	struct iwl_bt_uart_msg last_bt_uart_msg;
3710	u8 bt_status; /* 0 - off, 1 - on */
3711	u8 bt_traffic_load; /* 0 .. 3? */
3712	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3713	u8 reserved;
3714} __attribute__((packed));
3715
3716#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3717#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3718#define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3719#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3720#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3721#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3722#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3723
3724/*
3725 * BT Coexistence Priority table
3726 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3727 */
3728enum bt_coex_prio_table_events {
3729	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3730	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3731	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3732	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3733	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3734	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3735	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3736	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3737	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3738	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3739	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3740	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3741	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3742	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3743	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3744	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3745	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3746	BT_COEX_PRIO_TBL_EVT_MAX,
3747};
3748
3749enum bt_coex_prio_table_priorities {
3750	BT_COEX_PRIO_TBL_DISABLED = 0,
3751	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3752	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3753	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3754	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3755	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3756	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3757	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3758	BT_COEX_PRIO_TBL_MAX,
3759};
3760
3761struct iwl_bt_coex_prio_table_cmd {
3762	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3763} __attribute__((packed));
3764
3765#define IWL_BT_COEX_ENV_CLOSE	0
3766#define IWL_BT_COEX_ENV_OPEN	1
3767/*
3768 * BT Protection Envelope
3769 * REPLY_BT_COEX_PROT_ENV = 0xcd
3770 */
3771struct iwl_bt_coex_prot_env_cmd {
3772	u8 action; /* 0 = closed, 1 = open */
3773	u8 type; /* 0 .. 15 */
3774	u8 reserved[2];
3775} __attribute__((packed));
3776
3777/*
3778 * REPLY_D3_CONFIG
3779 */
3780enum iwlagn_d3_wakeup_filters {
3781	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3782	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3783};
3784
3785struct iwlagn_d3_config_cmd {
3786	__le32 min_sleep_time;
3787	__le32 wakeup_flags;
3788} __packed;
3789
3790/*
3791 * REPLY_WOWLAN_PATTERNS
3792 */
3793#define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3794#define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3795
3796struct iwlagn_wowlan_pattern {
3797	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3798	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3799	u8 mask_size;
3800	u8 pattern_size;
3801	__le16 reserved;
3802} __packed;
3803
3804#define IWLAGN_WOWLAN_MAX_PATTERNS	20
3805
3806struct iwlagn_wowlan_patterns_cmd {
3807	__le32 n_patterns;
3808	struct iwlagn_wowlan_pattern patterns[];
3809} __packed;
3810
3811/*
3812 * REPLY_WOWLAN_WAKEUP_FILTER
3813 */
3814enum iwlagn_wowlan_wakeup_filters {
3815	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3816	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3817	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3818	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3819	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3820	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3821	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3822	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3823	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3824};
3825
3826struct iwlagn_wowlan_wakeup_filter_cmd {
3827	__le32 enabled;
3828	__le16 non_qos_seq;
3829	__le16 reserved;
3830	__le16 qos_seq[8];
3831};
3832
3833/*
3834 * REPLY_WOWLAN_TSC_RSC_PARAMS
3835 */
3836#define IWLAGN_NUM_RSC	16
3837
3838struct tkip_sc {
3839	__le16 iv16;
3840	__le16 pad;
3841	__le32 iv32;
3842} __packed;
3843
3844struct iwlagn_tkip_rsc_tsc {
3845	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3846	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3847	struct tkip_sc tsc;
3848} __packed;
3849
3850struct aes_sc {
3851	__le64 pn;
3852} __packed;
3853
3854struct iwlagn_aes_rsc_tsc {
3855	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3856	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3857	struct aes_sc tsc;
3858} __packed;
3859
3860union iwlagn_all_tsc_rsc {
3861	struct iwlagn_tkip_rsc_tsc tkip;
3862	struct iwlagn_aes_rsc_tsc aes;
3863};
3864
3865struct iwlagn_wowlan_rsc_tsc_params_cmd {
3866	union iwlagn_all_tsc_rsc all_tsc_rsc;
3867} __packed;
3868
3869/*
3870 * REPLY_WOWLAN_TKIP_PARAMS
3871 */
3872#define IWLAGN_MIC_KEY_SIZE	8
3873#define IWLAGN_P1K_SIZE		5
3874struct iwlagn_mic_keys {
3875	u8 tx[IWLAGN_MIC_KEY_SIZE];
3876	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3877	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3878} __packed;
3879
3880struct iwlagn_p1k_cache {
3881	__le16 p1k[IWLAGN_P1K_SIZE];
3882} __packed;
3883
3884#define IWLAGN_NUM_RX_P1K_CACHE	2
3885
3886struct iwlagn_wowlan_tkip_params_cmd {
3887	struct iwlagn_mic_keys mic_keys;
3888	struct iwlagn_p1k_cache tx;
3889	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3890	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3891} __packed;
3892
3893/*
3894 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3895 */
3896
3897#define IWLAGN_KCK_MAX_SIZE	32
3898#define IWLAGN_KEK_MAX_SIZE	32
3899
3900struct iwlagn_wowlan_kek_kck_material_cmd {
3901	u8	kck[IWLAGN_KCK_MAX_SIZE];
3902	u8	kek[IWLAGN_KEK_MAX_SIZE];
3903	__le16	kck_len;
3904	__le16	kek_len;
3905	__le64	replay_ctr;
3906} __packed;
3907
3908/******************************************************************************
3909 * (13)
3910 * Union of all expected notifications/responses:
3911 *
3912 *****************************************************************************/
3913#define FH_RSCSR_FRAME_SIZE_MSK	(0x00003FFF)	/* bits 0-13 */
3914
3915struct iwl_rx_packet {
3916	/*
3917	 * The first 4 bytes of the RX frame header contain both the RX frame
3918	 * size and some flags.
3919	 * Bit fields:
3920	 * 31:    flag flush RB request
3921	 * 30:    flag ignore TC (terminal counter) request
3922	 * 29:    flag fast IRQ request
3923	 * 28-14: Reserved
3924	 * 13-00: RX frame size
3925	 */
3926	__le32 len_n_flags;
3927	struct iwl_cmd_header hdr;
3928	union {
3929		struct iwl_alive_resp alive_frame;
3930		struct iwl_spectrum_notification spectrum_notif;
3931		struct iwl_csa_notification csa_notif;
3932		struct iwl_error_resp err_resp;
3933		struct iwl_card_state_notif card_state_notif;
3934		struct iwl_add_sta_resp add_sta;
3935		struct iwl_rem_sta_resp rem_sta;
3936		struct iwl_sleep_notification sleep_notif;
3937		struct iwl_spectrum_resp spectrum;
3938		struct iwl_notif_statistics stats;
3939		struct iwl_bt_notif_statistics stats_bt;
3940		struct iwl_compressed_ba_resp compressed_ba;
3941		struct iwl_missed_beacon_notif missed_beacon;
3942		struct iwl_coex_medium_notification coex_medium_notif;
3943		struct iwl_coex_event_resp coex_event;
3944		struct iwl_bt_coex_profile_notif bt_coex_profile_notif;
3945		__le32 status;
3946		u8 raw[0];
3947	} u;
3948} __packed;
3949
3950int iwl_agn_check_rxon_cmd(struct iwl_priv *priv);
3951
3952/*
3953 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3954 */
3955
3956/*
3957 * Minimum slot time in TU
3958 */
3959#define IWL_MIN_SLOT_TIME	20
3960
3961/**
3962 * struct iwl_wipan_slot
3963 * @width: Time in TU
3964 * @type:
3965 *   0 - BSS
3966 *   1 - PAN
3967 */
3968struct iwl_wipan_slot {
3969	__le16 width;
3970	u8 type;
3971	u8 reserved;
3972} __packed;
3973
3974#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3975#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3976#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3977#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3978#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3979
3980/**
3981 * struct iwl_wipan_params_cmd
3982 * @flags:
3983 *   bit0: reserved
3984 *   bit1: CP leave channel with CTS
3985 *   bit2: CP leave channel qith Quiet
3986 *   bit3: slotted mode
3987 *     1 - work in slotted mode
3988 *     0 - work in non slotted mode
3989 *   bit4: filter beacon notification
3990 *   bit5: full tx slotted mode. if this flag is set,
3991 *         uCode will perform leaving channel methods in context switch
3992 *         also when working in same channel mode
3993 * @num_slots: 1 - 10
3994 */
3995struct iwl_wipan_params_cmd {
3996	__le16 flags;
3997	u8 reserved;
3998	u8 num_slots;
3999	struct iwl_wipan_slot slots[10];
4000} __packed;
4001
4002/*
4003 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
4004 *
4005 * TODO: Figure out what this is used for,
4006 *	 it can only switch between 2.4 GHz
4007 *	 channels!!
4008 */
4009
4010struct iwl_wipan_p2p_channel_switch_cmd {
4011	__le16 channel;
4012	__le16 reserved;
4013};
4014
4015/*
4016 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
4017 *
4018 * This is used by the device to notify us of the
4019 * NoA schedule it determined so we can forward it
4020 * to userspace for inclusion in probe responses.
4021 *
4022 * In beacons, the NoA schedule is simply appended
4023 * to the frame we give the device.
4024 */
4025
4026struct iwl_wipan_noa_descriptor {
4027	u8 count;
4028	__le32 duration;
4029	__le32 interval;
4030	__le32 starttime;
4031} __packed;
4032
4033struct iwl_wipan_noa_attribute {
4034	u8 id;
4035	__le16 length;
4036	u8 index;
4037	u8 ct_window;
4038	struct iwl_wipan_noa_descriptor descr0, descr1;
4039	u8 reserved;
4040} __packed;
4041
4042struct iwl_wipan_noa_notification {
4043	u32 noa_active;
4044	struct iwl_wipan_noa_attribute noa_attribute;
4045} __packed;
4046
4047#endif				/* __iwl_commands_h__ */
4048