1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT.  See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/wait.h>
37#include <linux/pci.h>
38#include <linux/pci_hotplug.h>
39#include <linux/kthread.h>
40#include "cpqphp.h"
41
42static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43			u8 behind_bridge, struct resource_lists *resources);
44static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45			u8 behind_bridge, struct resource_lists *resources);
46static void interrupt_event_handler(struct controller *ctrl);
47
48
49static struct task_struct *cpqhp_event_thread;
50static unsigned long pushbutton_pending;	/* = 0 */
51
52/* delay is in jiffies to wait for */
53static void long_delay(int delay)
54{
55	/*
56	 * XXX(hch): if someone is bored please convert all callers
57	 * to call msleep_interruptible directly.  They really want
58	 * to specify timeouts in natural units and spend a lot of
59	 * effort converting them to jiffies..
60	 */
61	msleep_interruptible(jiffies_to_msecs(delay));
62}
63
64
65/* FIXME: The following line needs to be somewhere else... */
66#define WRONG_BUS_FREQUENCY 0x07
67static u8 handle_switch_change(u8 change, struct controller * ctrl)
68{
69	int hp_slot;
70	u8 rc = 0;
71	u16 temp_word;
72	struct pci_func *func;
73	struct event_info *taskInfo;
74
75	if (!change)
76		return 0;
77
78	/* Switch Change */
79	dbg("cpqsbd:  Switch interrupt received.\n");
80
81	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82		if (change & (0x1L << hp_slot)) {
83			/*
84			 * this one changed.
85			 */
86			func = cpqhp_slot_find(ctrl->bus,
87				(hp_slot + ctrl->slot_device_offset), 0);
88
89			/* this is the structure that tells the worker thread
90			 * what to do
91			 */
92			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93			ctrl->next_event = (ctrl->next_event + 1) % 10;
94			taskInfo->hp_slot = hp_slot;
95
96			rc++;
97
98			temp_word = ctrl->ctrl_int_comp >> 16;
99			func->presence_save = (temp_word >> hp_slot) & 0x01;
100			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
102			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103				/*
104				 * Switch opened
105				 */
106
107				func->switch_save = 0;
108
109				taskInfo->event_type = INT_SWITCH_OPEN;
110			} else {
111				/*
112				 * Switch closed
113				 */
114
115				func->switch_save = 0x10;
116
117				taskInfo->event_type = INT_SWITCH_CLOSE;
118			}
119		}
120	}
121
122	return rc;
123}
124
125/**
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
129 */
130static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131{
132	struct slot *slot = ctrl->slot;
133
134	while (slot && (slot->device != device))
135		slot = slot->next;
136
137	return slot;
138}
139
140
141static u8 handle_presence_change(u16 change, struct controller * ctrl)
142{
143	int hp_slot;
144	u8 rc = 0;
145	u8 temp_byte;
146	u16 temp_word;
147	struct pci_func *func;
148	struct event_info *taskInfo;
149	struct slot *p_slot;
150
151	if (!change)
152		return 0;
153
154	/*
155	 * Presence Change
156	 */
157	dbg("cpqsbd:  Presence/Notify input change.\n");
158	dbg("         Changed bits are 0x%4.4x\n", change );
159
160	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161		if (change & (0x0101 << hp_slot)) {
162			/*
163			 * this one changed.
164			 */
165			func = cpqhp_slot_find(ctrl->bus,
166				(hp_slot + ctrl->slot_device_offset), 0);
167
168			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169			ctrl->next_event = (ctrl->next_event + 1) % 10;
170			taskInfo->hp_slot = hp_slot;
171
172			rc++;
173
174			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175			if (!p_slot)
176				return 0;
177
178			/* If the switch closed, must be a button
179			 * If not in button mode, nevermind
180			 */
181			if (func->switch_save && (ctrl->push_button == 1)) {
182				temp_word = ctrl->ctrl_int_comp >> 16;
183				temp_byte = (temp_word >> hp_slot) & 0x01;
184				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
186				if (temp_byte != func->presence_save) {
187					/*
188					 * button Pressed (doesn't do anything)
189					 */
190					dbg("hp_slot %d button pressed\n", hp_slot);
191					taskInfo->event_type = INT_BUTTON_PRESS;
192				} else {
193					/*
194					 * button Released - TAKE ACTION!!!!
195					 */
196					dbg("hp_slot %d button released\n", hp_slot);
197					taskInfo->event_type = INT_BUTTON_RELEASE;
198
199					/* Cancel if we are still blinking */
200					if ((p_slot->state == BLINKINGON_STATE)
201					    || (p_slot->state == BLINKINGOFF_STATE)) {
202						taskInfo->event_type = INT_BUTTON_CANCEL;
203						dbg("hp_slot %d button cancel\n", hp_slot);
204					} else if ((p_slot->state == POWERON_STATE)
205						   || (p_slot->state == POWEROFF_STATE)) {
206						/* info(msg_button_ignore, p_slot->number); */
207						taskInfo->event_type = INT_BUTTON_IGNORE;
208						dbg("hp_slot %d button ignore\n", hp_slot);
209					}
210				}
211			} else {
212				/* Switch is open, assume a presence change
213				 * Save the presence state
214				 */
215				temp_word = ctrl->ctrl_int_comp >> 16;
216				func->presence_save = (temp_word >> hp_slot) & 0x01;
217				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
218
219				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221					/* Present */
222					taskInfo->event_type = INT_PRESENCE_ON;
223				} else {
224					/* Not Present */
225					taskInfo->event_type = INT_PRESENCE_OFF;
226				}
227			}
228		}
229	}
230
231	return rc;
232}
233
234
235static u8 handle_power_fault(u8 change, struct controller * ctrl)
236{
237	int hp_slot;
238	u8 rc = 0;
239	struct pci_func *func;
240	struct event_info *taskInfo;
241
242	if (!change)
243		return 0;
244
245	/*
246	 * power fault
247	 */
248
249	info("power fault interrupt\n");
250
251	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252		if (change & (0x01 << hp_slot)) {
253			/*
254			 * this one changed.
255			 */
256			func = cpqhp_slot_find(ctrl->bus,
257				(hp_slot + ctrl->slot_device_offset), 0);
258
259			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260			ctrl->next_event = (ctrl->next_event + 1) % 10;
261			taskInfo->hp_slot = hp_slot;
262
263			rc++;
264
265			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
266				/*
267				 * power fault Cleared
268				 */
269				func->status = 0x00;
270
271				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272			} else {
273				/*
274				 * power fault
275				 */
276				taskInfo->event_type = INT_POWER_FAULT;
277
278				if (ctrl->rev < 4) {
279					amber_LED_on (ctrl, hp_slot);
280					green_LED_off (ctrl, hp_slot);
281					set_SOGO (ctrl);
282
283					/* this is a fatal condition, we want
284					 * to crash the machine to protect from
285					 * data corruption. simulated_NMI
286					 * shouldn't ever return */
287					/* FIXME
288					simulated_NMI(hp_slot, ctrl); */
289
290					/* The following code causes a software
291					 * crash just in case simulated_NMI did
292					 * return */
293					/*FIXME
294					panic(msg_power_fault); */
295				} else {
296					/* set power fault status for this board */
297					func->status = 0xFF;
298					info("power fault bit %x set\n", hp_slot);
299				}
300			}
301		}
302	}
303
304	return rc;
305}
306
307
308/**
309 * sort_by_size - sort nodes on the list by their length, smallest first.
310 * @head: list to sort
311 */
312static int sort_by_size(struct pci_resource **head)
313{
314	struct pci_resource *current_res;
315	struct pci_resource *next_res;
316	int out_of_order = 1;
317
318	if (!(*head))
319		return 1;
320
321	if (!((*head)->next))
322		return 0;
323
324	while (out_of_order) {
325		out_of_order = 0;
326
327		/* Special case for swapping list head */
328		if (((*head)->next) &&
329		    ((*head)->length > (*head)->next->length)) {
330			out_of_order++;
331			current_res = *head;
332			*head = (*head)->next;
333			current_res->next = (*head)->next;
334			(*head)->next = current_res;
335		}
336
337		current_res = *head;
338
339		while (current_res->next && current_res->next->next) {
340			if (current_res->next->length > current_res->next->next->length) {
341				out_of_order++;
342				next_res = current_res->next;
343				current_res->next = current_res->next->next;
344				current_res = current_res->next;
345				next_res->next = current_res->next;
346				current_res->next = next_res;
347			} else
348				current_res = current_res->next;
349		}
350	}  /* End of out_of_order loop */
351
352	return 0;
353}
354
355
356/**
357 * sort_by_max_size - sort nodes on the list by their length, largest first.
358 * @head: list to sort
359 */
360static int sort_by_max_size(struct pci_resource **head)
361{
362	struct pci_resource *current_res;
363	struct pci_resource *next_res;
364	int out_of_order = 1;
365
366	if (!(*head))
367		return 1;
368
369	if (!((*head)->next))
370		return 0;
371
372	while (out_of_order) {
373		out_of_order = 0;
374
375		/* Special case for swapping list head */
376		if (((*head)->next) &&
377		    ((*head)->length < (*head)->next->length)) {
378			out_of_order++;
379			current_res = *head;
380			*head = (*head)->next;
381			current_res->next = (*head)->next;
382			(*head)->next = current_res;
383		}
384
385		current_res = *head;
386
387		while (current_res->next && current_res->next->next) {
388			if (current_res->next->length < current_res->next->next->length) {
389				out_of_order++;
390				next_res = current_res->next;
391				current_res->next = current_res->next->next;
392				current_res = current_res->next;
393				next_res->next = current_res->next;
394				current_res->next = next_res;
395			} else
396				current_res = current_res->next;
397		}
398	}  /* End of out_of_order loop */
399
400	return 0;
401}
402
403
404/**
405 * do_pre_bridge_resource_split - find node of resources that are unused
406 * @head: new list head
407 * @orig_head: original list head
408 * @alignment: max node size (?)
409 */
410static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411				struct pci_resource **orig_head, u32 alignment)
412{
413	struct pci_resource *prevnode = NULL;
414	struct pci_resource *node;
415	struct pci_resource *split_node;
416	u32 rc;
417	u32 temp_dword;
418	dbg("do_pre_bridge_resource_split\n");
419
420	if (!(*head) || !(*orig_head))
421		return NULL;
422
423	rc = cpqhp_resource_sort_and_combine(head);
424
425	if (rc)
426		return NULL;
427
428	if ((*head)->base != (*orig_head)->base)
429		return NULL;
430
431	if ((*head)->length == (*orig_head)->length)
432		return NULL;
433
434
435	/* If we got here, there the bridge requires some of the resource, but
436	 * we may be able to split some off of the front
437	 */
438
439	node = *head;
440
441	if (node->length & (alignment -1)) {
442		/* this one isn't an aligned length, so we'll make a new entry
443		 * and split it up.
444		 */
445		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
446
447		if (!split_node)
448			return NULL;
449
450		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
451
452		split_node->base = node->base;
453		split_node->length = temp_dword;
454
455		node->length -= temp_dword;
456		node->base += split_node->length;
457
458		/* Put it in the list */
459		*head = split_node;
460		split_node->next = node;
461	}
462
463	if (node->length < alignment)
464		return NULL;
465
466	/* Now unlink it */
467	if (*head == node) {
468		*head = node->next;
469	} else {
470		prevnode = *head;
471		while (prevnode->next != node)
472			prevnode = prevnode->next;
473
474		prevnode->next = node->next;
475	}
476	node->next = NULL;
477
478	return node;
479}
480
481
482/**
483 * do_bridge_resource_split - find one node of resources that aren't in use
484 * @head: list head
485 * @alignment: max node size (?)
486 */
487static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
488{
489	struct pci_resource *prevnode = NULL;
490	struct pci_resource *node;
491	u32 rc;
492	u32 temp_dword;
493
494	rc = cpqhp_resource_sort_and_combine(head);
495
496	if (rc)
497		return NULL;
498
499	node = *head;
500
501	while (node->next) {
502		prevnode = node;
503		node = node->next;
504		kfree(prevnode);
505	}
506
507	if (node->length < alignment)
508		goto error;
509
510	if (node->base & (alignment - 1)) {
511		/* Short circuit if adjusted size is too small */
512		temp_dword = (node->base | (alignment-1)) + 1;
513		if ((node->length - (temp_dword - node->base)) < alignment)
514			goto error;
515
516		node->length -= (temp_dword - node->base);
517		node->base = temp_dword;
518	}
519
520	if (node->length & (alignment - 1))
521		/* There's stuff in use after this node */
522		goto error;
523
524	return node;
525error:
526	kfree(node);
527	return NULL;
528}
529
530
531/**
532 * get_io_resource - find first node of given size not in ISA aliasing window.
533 * @head: list to search
534 * @size: size of node to find, must be a power of two.
535 *
536 * Description: This function sorts the resource list by size and then returns
537 * returns the first node of "size" length that is not in the ISA aliasing
538 * window.  If it finds a node larger than "size" it will split it up.
539 */
540static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
541{
542	struct pci_resource *prevnode;
543	struct pci_resource *node;
544	struct pci_resource *split_node;
545	u32 temp_dword;
546
547	if (!(*head))
548		return NULL;
549
550	if (cpqhp_resource_sort_and_combine(head))
551		return NULL;
552
553	if (sort_by_size(head))
554		return NULL;
555
556	for (node = *head; node; node = node->next) {
557		if (node->length < size)
558			continue;
559
560		if (node->base & (size - 1)) {
561			/* this one isn't base aligned properly
562			 * so we'll make a new entry and split it up
563			 */
564			temp_dword = (node->base | (size-1)) + 1;
565
566			/* Short circuit if adjusted size is too small */
567			if ((node->length - (temp_dword - node->base)) < size)
568				continue;
569
570			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
571
572			if (!split_node)
573				return NULL;
574
575			split_node->base = node->base;
576			split_node->length = temp_dword - node->base;
577			node->base = temp_dword;
578			node->length -= split_node->length;
579
580			/* Put it in the list */
581			split_node->next = node->next;
582			node->next = split_node;
583		} /* End of non-aligned base */
584
585		/* Don't need to check if too small since we already did */
586		if (node->length > size) {
587			/* this one is longer than we need
588			 * so we'll make a new entry and split it up
589			 */
590			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
591
592			if (!split_node)
593				return NULL;
594
595			split_node->base = node->base + size;
596			split_node->length = node->length - size;
597			node->length = size;
598
599			/* Put it in the list */
600			split_node->next = node->next;
601			node->next = split_node;
602		}  /* End of too big on top end */
603
604		/* For IO make sure it's not in the ISA aliasing space */
605		if (node->base & 0x300L)
606			continue;
607
608		/* If we got here, then it is the right size
609		 * Now take it out of the list and break
610		 */
611		if (*head == node) {
612			*head = node->next;
613		} else {
614			prevnode = *head;
615			while (prevnode->next != node)
616				prevnode = prevnode->next;
617
618			prevnode->next = node->next;
619		}
620		node->next = NULL;
621		break;
622	}
623
624	return node;
625}
626
627
628/**
629 * get_max_resource - get largest node which has at least the given size.
630 * @head: the list to search the node in
631 * @size: the minimum size of the node to find
632 *
633 * Description: Gets the largest node that is at least "size" big from the
634 * list pointed to by head.  It aligns the node on top and bottom
635 * to "size" alignment before returning it.
636 */
637static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
638{
639	struct pci_resource *max;
640	struct pci_resource *temp;
641	struct pci_resource *split_node;
642	u32 temp_dword;
643
644	if (cpqhp_resource_sort_and_combine(head))
645		return NULL;
646
647	if (sort_by_max_size(head))
648		return NULL;
649
650	for (max = *head; max; max = max->next) {
651		/* If not big enough we could probably just bail,
652		 * instead we'll continue to the next.
653		 */
654		if (max->length < size)
655			continue;
656
657		if (max->base & (size - 1)) {
658			/* this one isn't base aligned properly
659			 * so we'll make a new entry and split it up
660			 */
661			temp_dword = (max->base | (size-1)) + 1;
662
663			/* Short circuit if adjusted size is too small */
664			if ((max->length - (temp_dword - max->base)) < size)
665				continue;
666
667			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
668
669			if (!split_node)
670				return NULL;
671
672			split_node->base = max->base;
673			split_node->length = temp_dword - max->base;
674			max->base = temp_dword;
675			max->length -= split_node->length;
676
677			split_node->next = max->next;
678			max->next = split_node;
679		}
680
681		if ((max->base + max->length) & (size - 1)) {
682			/* this one isn't end aligned properly at the top
683			 * so we'll make a new entry and split it up
684			 */
685			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
686
687			if (!split_node)
688				return NULL;
689			temp_dword = ((max->base + max->length) & ~(size - 1));
690			split_node->base = temp_dword;
691			split_node->length = max->length + max->base
692					     - split_node->base;
693			max->length -= split_node->length;
694
695			split_node->next = max->next;
696			max->next = split_node;
697		}
698
699		/* Make sure it didn't shrink too much when we aligned it */
700		if (max->length < size)
701			continue;
702
703		/* Now take it out of the list */
704		temp = *head;
705		if (temp == max) {
706			*head = max->next;
707		} else {
708			while (temp && temp->next != max) {
709				temp = temp->next;
710			}
711
712			temp->next = max->next;
713		}
714
715		max->next = NULL;
716		break;
717	}
718
719	return max;
720}
721
722
723/**
724 * get_resource - find resource of given size and split up larger ones.
725 * @head: the list to search for resources
726 * @size: the size limit to use
727 *
728 * Description: This function sorts the resource list by size and then
729 * returns the first node of "size" length.  If it finds a node
730 * larger than "size" it will split it up.
731 *
732 * size must be a power of two.
733 */
734static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
735{
736	struct pci_resource *prevnode;
737	struct pci_resource *node;
738	struct pci_resource *split_node;
739	u32 temp_dword;
740
741	if (cpqhp_resource_sort_and_combine(head))
742		return NULL;
743
744	if (sort_by_size(head))
745		return NULL;
746
747	for (node = *head; node; node = node->next) {
748		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749		    __func__, size, node, node->base, node->length);
750		if (node->length < size)
751			continue;
752
753		if (node->base & (size - 1)) {
754			dbg("%s: not aligned\n", __func__);
755			/* this one isn't base aligned properly
756			 * so we'll make a new entry and split it up
757			 */
758			temp_dword = (node->base | (size-1)) + 1;
759
760			/* Short circuit if adjusted size is too small */
761			if ((node->length - (temp_dword - node->base)) < size)
762				continue;
763
764			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
765
766			if (!split_node)
767				return NULL;
768
769			split_node->base = node->base;
770			split_node->length = temp_dword - node->base;
771			node->base = temp_dword;
772			node->length -= split_node->length;
773
774			split_node->next = node->next;
775			node->next = split_node;
776		} /* End of non-aligned base */
777
778		/* Don't need to check if too small since we already did */
779		if (node->length > size) {
780			dbg("%s: too big\n", __func__);
781			/* this one is longer than we need
782			 * so we'll make a new entry and split it up
783			 */
784			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
785
786			if (!split_node)
787				return NULL;
788
789			split_node->base = node->base + size;
790			split_node->length = node->length - size;
791			node->length = size;
792
793			/* Put it in the list */
794			split_node->next = node->next;
795			node->next = split_node;
796		}  /* End of too big on top end */
797
798		dbg("%s: got one!!!\n", __func__);
799		/* If we got here, then it is the right size
800		 * Now take it out of the list */
801		if (*head == node) {
802			*head = node->next;
803		} else {
804			prevnode = *head;
805			while (prevnode->next != node)
806				prevnode = prevnode->next;
807
808			prevnode->next = node->next;
809		}
810		node->next = NULL;
811		break;
812	}
813	return node;
814}
815
816
817/**
818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819 * @head: the list to sort and clean up
820 *
821 * Description: Sorts all of the nodes in the list in ascending order by
822 * their base addresses.  Also does garbage collection by
823 * combining adjacent nodes.
824 *
825 * Returns %0 if success.
826 */
827int cpqhp_resource_sort_and_combine(struct pci_resource **head)
828{
829	struct pci_resource *node1;
830	struct pci_resource *node2;
831	int out_of_order = 1;
832
833	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
834
835	if (!(*head))
836		return 1;
837
838	dbg("*head->next = %p\n",(*head)->next);
839
840	if (!(*head)->next)
841		return 0;	/* only one item on the list, already sorted! */
842
843	dbg("*head->base = 0x%x\n",(*head)->base);
844	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
845	while (out_of_order) {
846		out_of_order = 0;
847
848		/* Special case for swapping list head */
849		if (((*head)->next) &&
850		    ((*head)->base > (*head)->next->base)) {
851			node1 = *head;
852			(*head) = (*head)->next;
853			node1->next = (*head)->next;
854			(*head)->next = node1;
855			out_of_order++;
856		}
857
858		node1 = (*head);
859
860		while (node1->next && node1->next->next) {
861			if (node1->next->base > node1->next->next->base) {
862				out_of_order++;
863				node2 = node1->next;
864				node1->next = node1->next->next;
865				node1 = node1->next;
866				node2->next = node1->next;
867				node1->next = node2;
868			} else
869				node1 = node1->next;
870		}
871	}  /* End of out_of_order loop */
872
873	node1 = *head;
874
875	while (node1 && node1->next) {
876		if ((node1->base + node1->length) == node1->next->base) {
877			/* Combine */
878			dbg("8..\n");
879			node1->length += node1->next->length;
880			node2 = node1->next;
881			node1->next = node1->next->next;
882			kfree(node2);
883		} else
884			node1 = node1->next;
885	}
886
887	return 0;
888}
889
890
891irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
892{
893	struct controller *ctrl = data;
894	u8 schedule_flag = 0;
895	u8 reset;
896	u16 misc;
897	u32 Diff;
898	u32 temp_dword;
899
900
901	misc = readw(ctrl->hpc_reg + MISC);
902	/*
903	 * Check to see if it was our interrupt
904	 */
905	if (!(misc & 0x000C)) {
906		return IRQ_NONE;
907	}
908
909	if (misc & 0x0004) {
910		/*
911		 * Serial Output interrupt Pending
912		 */
913
914		/* Clear the interrupt */
915		misc |= 0x0004;
916		writew(misc, ctrl->hpc_reg + MISC);
917
918		/* Read to clear posted writes */
919		misc = readw(ctrl->hpc_reg + MISC);
920
921		dbg ("%s - waking up\n", __func__);
922		wake_up_interruptible(&ctrl->queue);
923	}
924
925	if (misc & 0x0008) {
926		/* General-interrupt-input interrupt Pending */
927		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
928
929		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
930
931		/* Clear the interrupt */
932		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
933
934		/* Read it back to clear any posted writes */
935		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
936
937		if (!Diff)
938			/* Clear all interrupts */
939			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
940
941		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
942		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
943		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
944	}
945
946	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
947	if (reset & 0x40) {
948		/* Bus reset has completed */
949		reset &= 0xCF;
950		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
951		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
952		wake_up_interruptible(&ctrl->queue);
953	}
954
955	if (schedule_flag) {
956		wake_up_process(cpqhp_event_thread);
957		dbg("Waking even thread");
958	}
959	return IRQ_HANDLED;
960}
961
962
963/**
964 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
965 * @busnumber: bus where new node is to be located
966 *
967 * Returns pointer to the new node or %NULL if unsuccessful.
968 */
969struct pci_func *cpqhp_slot_create(u8 busnumber)
970{
971	struct pci_func *new_slot;
972	struct pci_func *next;
973
974	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
975	if (new_slot == NULL)
976		return new_slot;
977
978	new_slot->next = NULL;
979	new_slot->configured = 1;
980
981	if (cpqhp_slot_list[busnumber] == NULL) {
982		cpqhp_slot_list[busnumber] = new_slot;
983	} else {
984		next = cpqhp_slot_list[busnumber];
985		while (next->next != NULL)
986			next = next->next;
987		next->next = new_slot;
988	}
989	return new_slot;
990}
991
992
993/**
994 * slot_remove - Removes a node from the linked list of slots.
995 * @old_slot: slot to remove
996 *
997 * Returns %0 if successful, !0 otherwise.
998 */
999static int slot_remove(struct pci_func * old_slot)
1000{
1001	struct pci_func *next;
1002
1003	if (old_slot == NULL)
1004		return 1;
1005
1006	next = cpqhp_slot_list[old_slot->bus];
1007	if (next == NULL)
1008		return 1;
1009
1010	if (next == old_slot) {
1011		cpqhp_slot_list[old_slot->bus] = old_slot->next;
1012		cpqhp_destroy_board_resources(old_slot);
1013		kfree(old_slot);
1014		return 0;
1015	}
1016
1017	while ((next->next != old_slot) && (next->next != NULL))
1018		next = next->next;
1019
1020	if (next->next == old_slot) {
1021		next->next = old_slot->next;
1022		cpqhp_destroy_board_resources(old_slot);
1023		kfree(old_slot);
1024		return 0;
1025	} else
1026		return 2;
1027}
1028
1029
1030/**
1031 * bridge_slot_remove - Removes a node from the linked list of slots.
1032 * @bridge: bridge to remove
1033 *
1034 * Returns %0 if successful, !0 otherwise.
1035 */
1036static int bridge_slot_remove(struct pci_func *bridge)
1037{
1038	u8 subordinateBus, secondaryBus;
1039	u8 tempBus;
1040	struct pci_func *next;
1041
1042	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1043	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1044
1045	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1046		next = cpqhp_slot_list[tempBus];
1047
1048		while (!slot_remove(next))
1049			next = cpqhp_slot_list[tempBus];
1050	}
1051
1052	next = cpqhp_slot_list[bridge->bus];
1053
1054	if (next == NULL)
1055		return 1;
1056
1057	if (next == bridge) {
1058		cpqhp_slot_list[bridge->bus] = bridge->next;
1059		goto out;
1060	}
1061
1062	while ((next->next != bridge) && (next->next != NULL))
1063		next = next->next;
1064
1065	if (next->next != bridge)
1066		return 2;
1067	next->next = bridge->next;
1068out:
1069	kfree(bridge);
1070	return 0;
1071}
1072
1073
1074/**
1075 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076 * @bus: bus to find
1077 * @device: device to find
1078 * @index: is %0 for first function found, %1 for the second...
1079 *
1080 * Returns pointer to the node if successful, %NULL otherwise.
1081 */
1082struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1083{
1084	int found = -1;
1085	struct pci_func *func;
1086
1087	func = cpqhp_slot_list[bus];
1088
1089	if ((func == NULL) || ((func->device == device) && (index == 0)))
1090		return func;
1091
1092	if (func->device == device)
1093		found++;
1094
1095	while (func->next != NULL) {
1096		func = func->next;
1097
1098		if (func->device == device)
1099			found++;
1100
1101		if (found == index)
1102			return func;
1103	}
1104
1105	return NULL;
1106}
1107
1108
1109/* DJZ: I don't think is_bridge will work as is.
1110 * FIXME */
1111static int is_bridge(struct pci_func * func)
1112{
1113	/* Check the header type */
1114	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1115		return 1;
1116	else
1117		return 0;
1118}
1119
1120
1121/**
1122 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1123 * @ctrl: controller to change frequency/mode for.
1124 * @adapter_speed: the speed of the adapter we want to match.
1125 * @hp_slot: the slot number where the adapter is installed.
1126 *
1127 * Returns %0 if we successfully change frequency and/or mode to match the
1128 * adapter speed.
1129 */
1130static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1131{
1132	struct slot *slot;
1133	struct pci_bus *bus = ctrl->pci_bus;
1134	u8 reg;
1135	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1136	u16 reg16;
1137	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1138
1139	if (bus->cur_bus_speed == adapter_speed)
1140		return 0;
1141
1142	/* We don't allow freq/mode changes if we find another adapter running
1143	 * in another slot on this controller
1144	 */
1145	for(slot = ctrl->slot; slot; slot = slot->next) {
1146		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1147			continue;
1148		if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1149			continue;
1150		if (slot->hotplug_slot->info->adapter_status == 0)
1151			continue;
1152		/* If another adapter is running on the same segment but at a
1153		 * lower speed/mode, we allow the new adapter to function at
1154		 * this rate if supported
1155		 */
1156		if (bus->cur_bus_speed < adapter_speed)
1157			return 0;
1158
1159		return 1;
1160	}
1161
1162	/* If the controller doesn't support freq/mode changes and the
1163	 * controller is running at a higher mode, we bail
1164	 */
1165	if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1166		return 1;
1167
1168	/* But we allow the adapter to run at a lower rate if possible */
1169	if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1170		return 0;
1171
1172	/* We try to set the max speed supported by both the adapter and
1173	 * controller
1174	 */
1175	if (bus->max_bus_speed < adapter_speed) {
1176		if (bus->cur_bus_speed == bus->max_bus_speed)
1177			return 0;
1178		adapter_speed = bus->max_bus_speed;
1179	}
1180
1181	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1182	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1183
1184	set_SOGO(ctrl);
1185	wait_for_ctrl_irq(ctrl);
1186
1187	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1188		reg = 0xF5;
1189	else
1190		reg = 0xF4;
1191	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1192
1193	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1194	reg16 &= ~0x000F;
1195	switch(adapter_speed) {
1196		case(PCI_SPEED_133MHz_PCIX):
1197			reg = 0x75;
1198			reg16 |= 0xB;
1199			break;
1200		case(PCI_SPEED_100MHz_PCIX):
1201			reg = 0x74;
1202			reg16 |= 0xA;
1203			break;
1204		case(PCI_SPEED_66MHz_PCIX):
1205			reg = 0x73;
1206			reg16 |= 0x9;
1207			break;
1208		case(PCI_SPEED_66MHz):
1209			reg = 0x73;
1210			reg16 |= 0x1;
1211			break;
1212		default: /* 33MHz PCI 2.2 */
1213			reg = 0x71;
1214			break;
1215
1216	}
1217	reg16 |= 0xB << 12;
1218	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1219
1220	mdelay(5);
1221
1222	/* Reenable interrupts */
1223	writel(0, ctrl->hpc_reg + INT_MASK);
1224
1225	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1226
1227	/* Restart state machine */
1228	reg = ~0xF;
1229	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1230	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1231
1232	/* Only if mode change...*/
1233	if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1234		((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1235			set_SOGO(ctrl);
1236
1237	wait_for_ctrl_irq(ctrl);
1238	mdelay(1100);
1239
1240	/* Restore LED/Slot state */
1241	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1242	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1243
1244	set_SOGO(ctrl);
1245	wait_for_ctrl_irq(ctrl);
1246
1247	bus->cur_bus_speed = adapter_speed;
1248	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1249
1250	info("Successfully changed frequency/mode for adapter in slot %d\n",
1251			slot->number);
1252	return 0;
1253}
1254
1255/* the following routines constitute the bulk of the
1256 * hotplug controller logic
1257 */
1258
1259
1260/**
1261 * board_replaced - Called after a board has been replaced in the system.
1262 * @func: PCI device/function information
1263 * @ctrl: hotplug controller
1264 *
1265 * This is only used if we don't have resources for hot add.
1266 * Turns power on for the board.
1267 * Checks to see if board is the same.
1268 * If board is same, reconfigures it.
1269 * If board isn't same, turns it back off.
1270 */
1271static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1272{
1273	struct pci_bus *bus = ctrl->pci_bus;
1274	u8 hp_slot;
1275	u8 temp_byte;
1276	u8 adapter_speed;
1277	u32 rc = 0;
1278
1279	hp_slot = func->device - ctrl->slot_device_offset;
1280
1281	/*
1282	 * The switch is open.
1283	 */
1284	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1285		rc = INTERLOCK_OPEN;
1286	/*
1287	 * The board is already on
1288	 */
1289	else if (is_slot_enabled (ctrl, hp_slot))
1290		rc = CARD_FUNCTIONING;
1291	else {
1292		mutex_lock(&ctrl->crit_sect);
1293
1294		/* turn on board without attaching to the bus */
1295		enable_slot_power (ctrl, hp_slot);
1296
1297		set_SOGO(ctrl);
1298
1299		/* Wait for SOBS to be unset */
1300		wait_for_ctrl_irq (ctrl);
1301
1302		/* Change bits in slot power register to force another shift out
1303		 * NOTE: this is to work around the timer bug */
1304		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1305		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1306		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1307
1308		set_SOGO(ctrl);
1309
1310		/* Wait for SOBS to be unset */
1311		wait_for_ctrl_irq (ctrl);
1312
1313		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1314		if (bus->cur_bus_speed != adapter_speed)
1315			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1316				rc = WRONG_BUS_FREQUENCY;
1317
1318		/* turn off board without attaching to the bus */
1319		disable_slot_power (ctrl, hp_slot);
1320
1321		set_SOGO(ctrl);
1322
1323		/* Wait for SOBS to be unset */
1324		wait_for_ctrl_irq (ctrl);
1325
1326		mutex_unlock(&ctrl->crit_sect);
1327
1328		if (rc)
1329			return rc;
1330
1331		mutex_lock(&ctrl->crit_sect);
1332
1333		slot_enable (ctrl, hp_slot);
1334		green_LED_blink (ctrl, hp_slot);
1335
1336		amber_LED_off (ctrl, hp_slot);
1337
1338		set_SOGO(ctrl);
1339
1340		/* Wait for SOBS to be unset */
1341		wait_for_ctrl_irq (ctrl);
1342
1343		mutex_unlock(&ctrl->crit_sect);
1344
1345		/* Wait for ~1 second because of hot plug spec */
1346		long_delay(1*HZ);
1347
1348		/* Check for a power fault */
1349		if (func->status == 0xFF) {
1350			/* power fault occurred, but it was benign */
1351			rc = POWER_FAILURE;
1352			func->status = 0;
1353		} else
1354			rc = cpqhp_valid_replace(ctrl, func);
1355
1356		if (!rc) {
1357			/* It must be the same board */
1358
1359			rc = cpqhp_configure_board(ctrl, func);
1360
1361			/* If configuration fails, turn it off
1362			 * Get slot won't work for devices behind
1363			 * bridges, but in this case it will always be
1364			 * called for the "base" bus/dev/func of an
1365			 * adapter.
1366			 */
1367
1368			mutex_lock(&ctrl->crit_sect);
1369
1370			amber_LED_on (ctrl, hp_slot);
1371			green_LED_off (ctrl, hp_slot);
1372			slot_disable (ctrl, hp_slot);
1373
1374			set_SOGO(ctrl);
1375
1376			/* Wait for SOBS to be unset */
1377			wait_for_ctrl_irq (ctrl);
1378
1379			mutex_unlock(&ctrl->crit_sect);
1380
1381			if (rc)
1382				return rc;
1383			else
1384				return 1;
1385
1386		} else {
1387			/* Something is wrong
1388
1389			 * Get slot won't work for devices behind bridges, but
1390			 * in this case it will always be called for the "base"
1391			 * bus/dev/func of an adapter.
1392			 */
1393
1394			mutex_lock(&ctrl->crit_sect);
1395
1396			amber_LED_on (ctrl, hp_slot);
1397			green_LED_off (ctrl, hp_slot);
1398			slot_disable (ctrl, hp_slot);
1399
1400			set_SOGO(ctrl);
1401
1402			/* Wait for SOBS to be unset */
1403			wait_for_ctrl_irq (ctrl);
1404
1405			mutex_unlock(&ctrl->crit_sect);
1406		}
1407
1408	}
1409	return rc;
1410
1411}
1412
1413
1414/**
1415 * board_added - Called after a board has been added to the system.
1416 * @func: PCI device/function info
1417 * @ctrl: hotplug controller
1418 *
1419 * Turns power on for the board.
1420 * Configures board.
1421 */
1422static u32 board_added(struct pci_func *func, struct controller *ctrl)
1423{
1424	u8 hp_slot;
1425	u8 temp_byte;
1426	u8 adapter_speed;
1427	int index;
1428	u32 temp_register = 0xFFFFFFFF;
1429	u32 rc = 0;
1430	struct pci_func *new_slot = NULL;
1431	struct pci_bus *bus = ctrl->pci_bus;
1432	struct slot *p_slot;
1433	struct resource_lists res_lists;
1434
1435	hp_slot = func->device - ctrl->slot_device_offset;
1436	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1437	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1438
1439	mutex_lock(&ctrl->crit_sect);
1440
1441	/* turn on board without attaching to the bus */
1442	enable_slot_power(ctrl, hp_slot);
1443
1444	set_SOGO(ctrl);
1445
1446	/* Wait for SOBS to be unset */
1447	wait_for_ctrl_irq (ctrl);
1448
1449	/* Change bits in slot power register to force another shift out
1450	 * NOTE: this is to work around the timer bug
1451	 */
1452	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1453	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1454	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1455
1456	set_SOGO(ctrl);
1457
1458	/* Wait for SOBS to be unset */
1459	wait_for_ctrl_irq (ctrl);
1460
1461	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1462	if (bus->cur_bus_speed != adapter_speed)
1463		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1464			rc = WRONG_BUS_FREQUENCY;
1465
1466	/* turn off board without attaching to the bus */
1467	disable_slot_power (ctrl, hp_slot);
1468
1469	set_SOGO(ctrl);
1470
1471	/* Wait for SOBS to be unset */
1472	wait_for_ctrl_irq(ctrl);
1473
1474	mutex_unlock(&ctrl->crit_sect);
1475
1476	if (rc)
1477		return rc;
1478
1479	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1480
1481	/* turn on board and blink green LED */
1482
1483	dbg("%s: before down\n", __func__);
1484	mutex_lock(&ctrl->crit_sect);
1485	dbg("%s: after down\n", __func__);
1486
1487	dbg("%s: before slot_enable\n", __func__);
1488	slot_enable (ctrl, hp_slot);
1489
1490	dbg("%s: before green_LED_blink\n", __func__);
1491	green_LED_blink (ctrl, hp_slot);
1492
1493	dbg("%s: before amber_LED_blink\n", __func__);
1494	amber_LED_off (ctrl, hp_slot);
1495
1496	dbg("%s: before set_SOGO\n", __func__);
1497	set_SOGO(ctrl);
1498
1499	/* Wait for SOBS to be unset */
1500	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1501	wait_for_ctrl_irq (ctrl);
1502	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1503
1504	dbg("%s: before up\n", __func__);
1505	mutex_unlock(&ctrl->crit_sect);
1506	dbg("%s: after up\n", __func__);
1507
1508	/* Wait for ~1 second because of hot plug spec */
1509	dbg("%s: before long_delay\n", __func__);
1510	long_delay(1*HZ);
1511	dbg("%s: after long_delay\n", __func__);
1512
1513	dbg("%s: func status = %x\n", __func__, func->status);
1514	/* Check for a power fault */
1515	if (func->status == 0xFF) {
1516		/* power fault occurred, but it was benign */
1517		temp_register = 0xFFFFFFFF;
1518		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1519		rc = POWER_FAILURE;
1520		func->status = 0;
1521	} else {
1522		/* Get vendor/device ID u32 */
1523		ctrl->pci_bus->number = func->bus;
1524		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1525		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1526		dbg("%s: temp_register is %x\n", __func__, temp_register);
1527
1528		if (rc != 0) {
1529			/* Something's wrong here */
1530			temp_register = 0xFFFFFFFF;
1531			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1532		}
1533		/* Preset return code.  It will be changed later if things go okay. */
1534		rc = NO_ADAPTER_PRESENT;
1535	}
1536
1537	/* All F's is an empty slot or an invalid board */
1538	if (temp_register != 0xFFFFFFFF) {
1539		res_lists.io_head = ctrl->io_head;
1540		res_lists.mem_head = ctrl->mem_head;
1541		res_lists.p_mem_head = ctrl->p_mem_head;
1542		res_lists.bus_head = ctrl->bus_head;
1543		res_lists.irqs = NULL;
1544
1545		rc = configure_new_device(ctrl, func, 0, &res_lists);
1546
1547		dbg("%s: back from configure_new_device\n", __func__);
1548		ctrl->io_head = res_lists.io_head;
1549		ctrl->mem_head = res_lists.mem_head;
1550		ctrl->p_mem_head = res_lists.p_mem_head;
1551		ctrl->bus_head = res_lists.bus_head;
1552
1553		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1554		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1555		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1556		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1557
1558		if (rc) {
1559			mutex_lock(&ctrl->crit_sect);
1560
1561			amber_LED_on (ctrl, hp_slot);
1562			green_LED_off (ctrl, hp_slot);
1563			slot_disable (ctrl, hp_slot);
1564
1565			set_SOGO(ctrl);
1566
1567			/* Wait for SOBS to be unset */
1568			wait_for_ctrl_irq (ctrl);
1569
1570			mutex_unlock(&ctrl->crit_sect);
1571			return rc;
1572		} else {
1573			cpqhp_save_slot_config(ctrl, func);
1574		}
1575
1576
1577		func->status = 0;
1578		func->switch_save = 0x10;
1579		func->is_a_board = 0x01;
1580
1581		/* next, we will instantiate the linux pci_dev structures (with
1582		 * appropriate driver notification, if already present) */
1583		dbg("%s: configure linux pci_dev structure\n", __func__);
1584		index = 0;
1585		do {
1586			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1587			if (new_slot && !new_slot->pci_dev)
1588				cpqhp_configure_device(ctrl, new_slot);
1589		} while (new_slot);
1590
1591		mutex_lock(&ctrl->crit_sect);
1592
1593		green_LED_on (ctrl, hp_slot);
1594
1595		set_SOGO(ctrl);
1596
1597		/* Wait for SOBS to be unset */
1598		wait_for_ctrl_irq (ctrl);
1599
1600		mutex_unlock(&ctrl->crit_sect);
1601	} else {
1602		mutex_lock(&ctrl->crit_sect);
1603
1604		amber_LED_on (ctrl, hp_slot);
1605		green_LED_off (ctrl, hp_slot);
1606		slot_disable (ctrl, hp_slot);
1607
1608		set_SOGO(ctrl);
1609
1610		/* Wait for SOBS to be unset */
1611		wait_for_ctrl_irq (ctrl);
1612
1613		mutex_unlock(&ctrl->crit_sect);
1614
1615		return rc;
1616	}
1617	return 0;
1618}
1619
1620
1621/**
1622 * remove_board - Turns off slot and LEDs
1623 * @func: PCI device/function info
1624 * @replace_flag: whether replacing or adding a new device
1625 * @ctrl: target controller
1626 */
1627static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1628{
1629	int index;
1630	u8 skip = 0;
1631	u8 device;
1632	u8 hp_slot;
1633	u8 temp_byte;
1634	u32 rc;
1635	struct resource_lists res_lists;
1636	struct pci_func *temp_func;
1637
1638	if (cpqhp_unconfigure_device(func))
1639		return 1;
1640
1641	device = func->device;
1642
1643	hp_slot = func->device - ctrl->slot_device_offset;
1644	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1645
1646	/* When we get here, it is safe to change base address registers.
1647	 * We will attempt to save the base address register lengths */
1648	if (replace_flag || !ctrl->add_support)
1649		rc = cpqhp_save_base_addr_length(ctrl, func);
1650	else if (!func->bus_head && !func->mem_head &&
1651		 !func->p_mem_head && !func->io_head) {
1652		/* Here we check to see if we've saved any of the board's
1653		 * resources already.  If so, we'll skip the attempt to
1654		 * determine what's being used. */
1655		index = 0;
1656		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1657		while (temp_func) {
1658			if (temp_func->bus_head || temp_func->mem_head
1659			    || temp_func->p_mem_head || temp_func->io_head) {
1660				skip = 1;
1661				break;
1662			}
1663			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1664		}
1665
1666		if (!skip)
1667			rc = cpqhp_save_used_resources(ctrl, func);
1668	}
1669	/* Change status to shutdown */
1670	if (func->is_a_board)
1671		func->status = 0x01;
1672	func->configured = 0;
1673
1674	mutex_lock(&ctrl->crit_sect);
1675
1676	green_LED_off (ctrl, hp_slot);
1677	slot_disable (ctrl, hp_slot);
1678
1679	set_SOGO(ctrl);
1680
1681	/* turn off SERR for slot */
1682	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1683	temp_byte &= ~(0x01 << hp_slot);
1684	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1685
1686	/* Wait for SOBS to be unset */
1687	wait_for_ctrl_irq (ctrl);
1688
1689	mutex_unlock(&ctrl->crit_sect);
1690
1691	if (!replace_flag && ctrl->add_support) {
1692		while (func) {
1693			res_lists.io_head = ctrl->io_head;
1694			res_lists.mem_head = ctrl->mem_head;
1695			res_lists.p_mem_head = ctrl->p_mem_head;
1696			res_lists.bus_head = ctrl->bus_head;
1697
1698			cpqhp_return_board_resources(func, &res_lists);
1699
1700			ctrl->io_head = res_lists.io_head;
1701			ctrl->mem_head = res_lists.mem_head;
1702			ctrl->p_mem_head = res_lists.p_mem_head;
1703			ctrl->bus_head = res_lists.bus_head;
1704
1705			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1706			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1707			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1708			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1709
1710			if (is_bridge(func)) {
1711				bridge_slot_remove(func);
1712			} else
1713				slot_remove(func);
1714
1715			func = cpqhp_slot_find(ctrl->bus, device, 0);
1716		}
1717
1718		/* Setup slot structure with entry for empty slot */
1719		func = cpqhp_slot_create(ctrl->bus);
1720
1721		if (func == NULL)
1722			return 1;
1723
1724		func->bus = ctrl->bus;
1725		func->device = device;
1726		func->function = 0;
1727		func->configured = 0;
1728		func->switch_save = 0x10;
1729		func->is_a_board = 0;
1730		func->p_task_event = NULL;
1731	}
1732
1733	return 0;
1734}
1735
1736static void pushbutton_helper_thread(unsigned long data)
1737{
1738	pushbutton_pending = data;
1739	wake_up_process(cpqhp_event_thread);
1740}
1741
1742
1743/* this is the main worker thread */
1744static int event_thread(void* data)
1745{
1746	struct controller *ctrl;
1747
1748	while (1) {
1749		dbg("!!!!event_thread sleeping\n");
1750		set_current_state(TASK_INTERRUPTIBLE);
1751		schedule();
1752
1753		if (kthread_should_stop())
1754			break;
1755		/* Do stuff here */
1756		if (pushbutton_pending)
1757			cpqhp_pushbutton_thread(pushbutton_pending);
1758		else
1759			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1760				interrupt_event_handler(ctrl);
1761	}
1762	dbg("event_thread signals exit\n");
1763	return 0;
1764}
1765
1766int cpqhp_event_start_thread(void)
1767{
1768	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1769	if (IS_ERR(cpqhp_event_thread)) {
1770		err ("Can't start up our event thread\n");
1771		return PTR_ERR(cpqhp_event_thread);
1772	}
1773
1774	return 0;
1775}
1776
1777
1778void cpqhp_event_stop_thread(void)
1779{
1780	kthread_stop(cpqhp_event_thread);
1781}
1782
1783
1784static int update_slot_info(struct controller *ctrl, struct slot *slot)
1785{
1786	struct hotplug_slot_info *info;
1787	int result;
1788
1789	info = kmalloc(sizeof(*info), GFP_KERNEL);
1790	if (!info)
1791		return -ENOMEM;
1792
1793	info->power_status = get_slot_enabled(ctrl, slot);
1794	info->attention_status = cpq_get_attention_status(ctrl, slot);
1795	info->latch_status = cpq_get_latch_status(ctrl, slot);
1796	info->adapter_status = get_presence_status(ctrl, slot);
1797	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1798	kfree (info);
1799	return result;
1800}
1801
1802static void interrupt_event_handler(struct controller *ctrl)
1803{
1804	int loop = 0;
1805	int change = 1;
1806	struct pci_func *func;
1807	u8 hp_slot;
1808	struct slot *p_slot;
1809
1810	while (change) {
1811		change = 0;
1812
1813		for (loop = 0; loop < 10; loop++) {
1814			/* dbg("loop %d\n", loop); */
1815			if (ctrl->event_queue[loop].event_type != 0) {
1816				hp_slot = ctrl->event_queue[loop].hp_slot;
1817
1818				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1819				if (!func)
1820					return;
1821
1822				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1823				if (!p_slot)
1824					return;
1825
1826				dbg("hp_slot %d, func %p, p_slot %p\n",
1827				    hp_slot, func, p_slot);
1828
1829				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1830					dbg("button pressed\n");
1831				} else if (ctrl->event_queue[loop].event_type ==
1832					   INT_BUTTON_CANCEL) {
1833					dbg("button cancel\n");
1834					del_timer(&p_slot->task_event);
1835
1836					mutex_lock(&ctrl->crit_sect);
1837
1838					if (p_slot->state == BLINKINGOFF_STATE) {
1839						/* slot is on */
1840						dbg("turn on green LED\n");
1841						green_LED_on (ctrl, hp_slot);
1842					} else if (p_slot->state == BLINKINGON_STATE) {
1843						/* slot is off */
1844						dbg("turn off green LED\n");
1845						green_LED_off (ctrl, hp_slot);
1846					}
1847
1848					info(msg_button_cancel, p_slot->number);
1849
1850					p_slot->state = STATIC_STATE;
1851
1852					amber_LED_off (ctrl, hp_slot);
1853
1854					set_SOGO(ctrl);
1855
1856					/* Wait for SOBS to be unset */
1857					wait_for_ctrl_irq (ctrl);
1858
1859					mutex_unlock(&ctrl->crit_sect);
1860				}
1861				/*** button Released (No action on press...) */
1862				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1863					dbg("button release\n");
1864
1865					if (is_slot_enabled (ctrl, hp_slot)) {
1866						dbg("slot is on\n");
1867						p_slot->state = BLINKINGOFF_STATE;
1868						info(msg_button_off, p_slot->number);
1869					} else {
1870						dbg("slot is off\n");
1871						p_slot->state = BLINKINGON_STATE;
1872						info(msg_button_on, p_slot->number);
1873					}
1874					mutex_lock(&ctrl->crit_sect);
1875
1876					dbg("blink green LED and turn off amber\n");
1877
1878					amber_LED_off (ctrl, hp_slot);
1879					green_LED_blink (ctrl, hp_slot);
1880
1881					set_SOGO(ctrl);
1882
1883					/* Wait for SOBS to be unset */
1884					wait_for_ctrl_irq (ctrl);
1885
1886					mutex_unlock(&ctrl->crit_sect);
1887					init_timer(&p_slot->task_event);
1888					p_slot->hp_slot = hp_slot;
1889					p_slot->ctrl = ctrl;
1890/*					p_slot->physical_slot = physical_slot; */
1891					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1892					p_slot->task_event.function = pushbutton_helper_thread;
1893					p_slot->task_event.data = (u32) p_slot;
1894
1895					dbg("add_timer p_slot = %p\n", p_slot);
1896					add_timer(&p_slot->task_event);
1897				}
1898				/***********POWER FAULT */
1899				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1900					dbg("power fault\n");
1901				} else {
1902					/* refresh notification */
1903					if (p_slot)
1904						update_slot_info(ctrl, p_slot);
1905				}
1906
1907				ctrl->event_queue[loop].event_type = 0;
1908
1909				change = 1;
1910			}
1911		}		/* End of FOR loop */
1912	}
1913
1914	return;
1915}
1916
1917
1918/**
1919 * cpqhp_pushbutton_thread - handle pushbutton events
1920 * @slot: target slot (struct)
1921 *
1922 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1923 * Handles all pending events and exits.
1924 */
1925void cpqhp_pushbutton_thread(unsigned long slot)
1926{
1927	u8 hp_slot;
1928	u8 device;
1929	struct pci_func *func;
1930	struct slot *p_slot = (struct slot *) slot;
1931	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1932
1933	pushbutton_pending = 0;
1934	hp_slot = p_slot->hp_slot;
1935
1936	device = p_slot->device;
1937
1938	if (is_slot_enabled(ctrl, hp_slot)) {
1939		p_slot->state = POWEROFF_STATE;
1940		/* power Down board */
1941		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1942		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1943		if (!func) {
1944			dbg("Error! func NULL in %s\n", __func__);
1945			return ;
1946		}
1947
1948		if (cpqhp_process_SS(ctrl, func) != 0) {
1949			amber_LED_on(ctrl, hp_slot);
1950			green_LED_on(ctrl, hp_slot);
1951
1952			set_SOGO(ctrl);
1953
1954			/* Wait for SOBS to be unset */
1955			wait_for_ctrl_irq(ctrl);
1956		}
1957
1958		p_slot->state = STATIC_STATE;
1959	} else {
1960		p_slot->state = POWERON_STATE;
1961		/* slot is off */
1962
1963		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1964		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1965		if (!func) {
1966			dbg("Error! func NULL in %s\n", __func__);
1967			return ;
1968		}
1969
1970		if (ctrl != NULL) {
1971			if (cpqhp_process_SI(ctrl, func) != 0) {
1972				amber_LED_on(ctrl, hp_slot);
1973				green_LED_off(ctrl, hp_slot);
1974
1975				set_SOGO(ctrl);
1976
1977				/* Wait for SOBS to be unset */
1978				wait_for_ctrl_irq (ctrl);
1979			}
1980		}
1981
1982		p_slot->state = STATIC_STATE;
1983	}
1984
1985	return;
1986}
1987
1988
1989int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1990{
1991	u8 device, hp_slot;
1992	u16 temp_word;
1993	u32 tempdword;
1994	int rc;
1995	struct slot* p_slot;
1996	int physical_slot = 0;
1997
1998	tempdword = 0;
1999
2000	device = func->device;
2001	hp_slot = device - ctrl->slot_device_offset;
2002	p_slot = cpqhp_find_slot(ctrl, device);
2003	if (p_slot)
2004		physical_slot = p_slot->number;
2005
2006	/* Check to see if the interlock is closed */
2007	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2008
2009	if (tempdword & (0x01 << hp_slot)) {
2010		return 1;
2011	}
2012
2013	if (func->is_a_board) {
2014		rc = board_replaced(func, ctrl);
2015	} else {
2016		/* add board */
2017		slot_remove(func);
2018
2019		func = cpqhp_slot_create(ctrl->bus);
2020		if (func == NULL)
2021			return 1;
2022
2023		func->bus = ctrl->bus;
2024		func->device = device;
2025		func->function = 0;
2026		func->configured = 0;
2027		func->is_a_board = 1;
2028
2029		/* We have to save the presence info for these slots */
2030		temp_word = ctrl->ctrl_int_comp >> 16;
2031		func->presence_save = (temp_word >> hp_slot) & 0x01;
2032		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2033
2034		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2035			func->switch_save = 0;
2036		} else {
2037			func->switch_save = 0x10;
2038		}
2039
2040		rc = board_added(func, ctrl);
2041		if (rc) {
2042			if (is_bridge(func)) {
2043				bridge_slot_remove(func);
2044			} else
2045				slot_remove(func);
2046
2047			/* Setup slot structure with entry for empty slot */
2048			func = cpqhp_slot_create(ctrl->bus);
2049
2050			if (func == NULL)
2051				return 1;
2052
2053			func->bus = ctrl->bus;
2054			func->device = device;
2055			func->function = 0;
2056			func->configured = 0;
2057			func->is_a_board = 0;
2058
2059			/* We have to save the presence info for these slots */
2060			temp_word = ctrl->ctrl_int_comp >> 16;
2061			func->presence_save = (temp_word >> hp_slot) & 0x01;
2062			func->presence_save |=
2063			(temp_word >> (hp_slot + 7)) & 0x02;
2064
2065			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2066				func->switch_save = 0;
2067			} else {
2068				func->switch_save = 0x10;
2069			}
2070		}
2071	}
2072
2073	if (rc) {
2074		dbg("%s: rc = %d\n", __func__, rc);
2075	}
2076
2077	if (p_slot)
2078		update_slot_info(ctrl, p_slot);
2079
2080	return rc;
2081}
2082
2083
2084int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2085{
2086	u8 device, class_code, header_type, BCR;
2087	u8 index = 0;
2088	u8 replace_flag;
2089	u32 rc = 0;
2090	unsigned int devfn;
2091	struct slot* p_slot;
2092	struct pci_bus *pci_bus = ctrl->pci_bus;
2093	int physical_slot=0;
2094
2095	device = func->device;
2096	func = cpqhp_slot_find(ctrl->bus, device, index++);
2097	p_slot = cpqhp_find_slot(ctrl, device);
2098	if (p_slot) {
2099		physical_slot = p_slot->number;
2100	}
2101
2102	/* Make sure there are no video controllers here */
2103	while (func && !rc) {
2104		pci_bus->number = func->bus;
2105		devfn = PCI_DEVFN(func->device, func->function);
2106
2107		/* Check the Class Code */
2108		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2109		if (rc)
2110			return rc;
2111
2112		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2113			/* Display/Video adapter (not supported) */
2114			rc = REMOVE_NOT_SUPPORTED;
2115		} else {
2116			/* See if it's a bridge */
2117			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2118			if (rc)
2119				return rc;
2120
2121			/* If it's a bridge, check the VGA Enable bit */
2122			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2123				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2124				if (rc)
2125					return rc;
2126
2127				/* If the VGA Enable bit is set, remove isn't
2128				 * supported */
2129				if (BCR & PCI_BRIDGE_CTL_VGA)
2130					rc = REMOVE_NOT_SUPPORTED;
2131			}
2132		}
2133
2134		func = cpqhp_slot_find(ctrl->bus, device, index++);
2135	}
2136
2137	func = cpqhp_slot_find(ctrl->bus, device, 0);
2138	if ((func != NULL) && !rc) {
2139		/* FIXME: Replace flag should be passed into process_SS */
2140		replace_flag = !(ctrl->add_support);
2141		rc = remove_board(func, replace_flag, ctrl);
2142	} else if (!rc) {
2143		rc = 1;
2144	}
2145
2146	if (p_slot)
2147		update_slot_info(ctrl, p_slot);
2148
2149	return rc;
2150}
2151
2152/**
2153 * switch_leds - switch the leds, go from one site to the other.
2154 * @ctrl: controller to use
2155 * @num_of_slots: number of slots to use
2156 * @work_LED: LED control value
2157 * @direction: 1 to start from the left side, 0 to start right.
2158 */
2159static void switch_leds(struct controller *ctrl, const int num_of_slots,
2160			u32 *work_LED, const int direction)
2161{
2162	int loop;
2163
2164	for (loop = 0; loop < num_of_slots; loop++) {
2165		if (direction)
2166			*work_LED = *work_LED >> 1;
2167		else
2168			*work_LED = *work_LED << 1;
2169		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2170
2171		set_SOGO(ctrl);
2172
2173		/* Wait for SOGO interrupt */
2174		wait_for_ctrl_irq(ctrl);
2175
2176		/* Get ready for next iteration */
2177		long_delay((2*HZ)/10);
2178	}
2179}
2180
2181/**
2182 * cpqhp_hardware_test - runs hardware tests
2183 * @ctrl: target controller
2184 * @test_num: the number written to the "test" file in sysfs.
2185 *
2186 * For hot plug ctrl folks to play with.
2187 */
2188int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2189{
2190	u32 save_LED;
2191	u32 work_LED;
2192	int loop;
2193	int num_of_slots;
2194
2195	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2196
2197	switch (test_num) {
2198	case 1:
2199		/* Do stuff here! */
2200
2201		/* Do that funky LED thing */
2202		/* so we can restore them later */
2203		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2204		work_LED = 0x01010101;
2205		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2206		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2207		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209
2210		work_LED = 0x01010000;
2211		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2212		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2213		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2214		work_LED = 0x00000101;
2215		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2217		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2218
2219		work_LED = 0x01010000;
2220		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2221		for (loop = 0; loop < num_of_slots; loop++) {
2222			set_SOGO(ctrl);
2223
2224			/* Wait for SOGO interrupt */
2225			wait_for_ctrl_irq (ctrl);
2226
2227			/* Get ready for next iteration */
2228			long_delay((3*HZ)/10);
2229			work_LED = work_LED >> 16;
2230			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231
2232			set_SOGO(ctrl);
2233
2234			/* Wait for SOGO interrupt */
2235			wait_for_ctrl_irq (ctrl);
2236
2237			/* Get ready for next iteration */
2238			long_delay((3*HZ)/10);
2239			work_LED = work_LED << 16;
2240			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241			work_LED = work_LED << 1;
2242			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2243		}
2244
2245		/* put it back the way it was */
2246		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2247
2248		set_SOGO(ctrl);
2249
2250		/* Wait for SOBS to be unset */
2251		wait_for_ctrl_irq (ctrl);
2252		break;
2253	case 2:
2254		/* Do other stuff here! */
2255		break;
2256	case 3:
2257		/* and more... */
2258		break;
2259	}
2260	return 0;
2261}
2262
2263
2264/**
2265 * configure_new_device - Configures the PCI header information of one board.
2266 * @ctrl: pointer to controller structure
2267 * @func: pointer to function structure
2268 * @behind_bridge: 1 if this is a recursive call, 0 if not
2269 * @resources: pointer to set of resource lists
2270 *
2271 * Returns 0 if success.
2272 */
2273static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2274				 u8 behind_bridge, struct resource_lists * resources)
2275{
2276	u8 temp_byte, function, max_functions, stop_it;
2277	int rc;
2278	u32 ID;
2279	struct pci_func *new_slot;
2280	int index;
2281
2282	new_slot = func;
2283
2284	dbg("%s\n", __func__);
2285	/* Check for Multi-function device */
2286	ctrl->pci_bus->number = func->bus;
2287	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2288	if (rc) {
2289		dbg("%s: rc = %d\n", __func__, rc);
2290		return rc;
2291	}
2292
2293	if (temp_byte & 0x80)	/* Multi-function device */
2294		max_functions = 8;
2295	else
2296		max_functions = 1;
2297
2298	function = 0;
2299
2300	do {
2301		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2302
2303		if (rc) {
2304			dbg("configure_new_function failed %d\n",rc);
2305			index = 0;
2306
2307			while (new_slot) {
2308				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2309
2310				if (new_slot)
2311					cpqhp_return_board_resources(new_slot, resources);
2312			}
2313
2314			return rc;
2315		}
2316
2317		function++;
2318
2319		stop_it = 0;
2320
2321		/* The following loop skips to the next present function
2322		 * and creates a board structure */
2323
2324		while ((function < max_functions) && (!stop_it)) {
2325			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2326
2327			if (ID == 0xFFFFFFFF) {
2328				function++;
2329			} else {
2330				/* Setup slot structure. */
2331				new_slot = cpqhp_slot_create(func->bus);
2332
2333				if (new_slot == NULL)
2334					return 1;
2335
2336				new_slot->bus = func->bus;
2337				new_slot->device = func->device;
2338				new_slot->function = function;
2339				new_slot->is_a_board = 1;
2340				new_slot->status = 0;
2341
2342				stop_it++;
2343			}
2344		}
2345
2346	} while (function < max_functions);
2347	dbg("returning from configure_new_device\n");
2348
2349	return 0;
2350}
2351
2352
2353/*
2354 * Configuration logic that involves the hotplug data structures and
2355 * their bookkeeping
2356 */
2357
2358
2359/**
2360 * configure_new_function - Configures the PCI header information of one device
2361 * @ctrl: pointer to controller structure
2362 * @func: pointer to function structure
2363 * @behind_bridge: 1 if this is a recursive call, 0 if not
2364 * @resources: pointer to set of resource lists
2365 *
2366 * Calls itself recursively for bridged devices.
2367 * Returns 0 if success.
2368 */
2369static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2370				   u8 behind_bridge,
2371				   struct resource_lists *resources)
2372{
2373	int cloop;
2374	u8 IRQ = 0;
2375	u8 temp_byte;
2376	u8 device;
2377	u8 class_code;
2378	u16 command;
2379	u16 temp_word;
2380	u32 temp_dword;
2381	u32 rc;
2382	u32 temp_register;
2383	u32 base;
2384	u32 ID;
2385	unsigned int devfn;
2386	struct pci_resource *mem_node;
2387	struct pci_resource *p_mem_node;
2388	struct pci_resource *io_node;
2389	struct pci_resource *bus_node;
2390	struct pci_resource *hold_mem_node;
2391	struct pci_resource *hold_p_mem_node;
2392	struct pci_resource *hold_IO_node;
2393	struct pci_resource *hold_bus_node;
2394	struct irq_mapping irqs;
2395	struct pci_func *new_slot;
2396	struct pci_bus *pci_bus;
2397	struct resource_lists temp_resources;
2398
2399	pci_bus = ctrl->pci_bus;
2400	pci_bus->number = func->bus;
2401	devfn = PCI_DEVFN(func->device, func->function);
2402
2403	/* Check for Bridge */
2404	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2405	if (rc)
2406		return rc;
2407
2408	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2409		/* set Primary bus */
2410		dbg("set Primary bus = %d\n", func->bus);
2411		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2412		if (rc)
2413			return rc;
2414
2415		/* find range of busses to use */
2416		dbg("find ranges of buses to use\n");
2417		bus_node = get_max_resource(&(resources->bus_head), 1);
2418
2419		/* If we don't have any busses to allocate, we can't continue */
2420		if (!bus_node)
2421			return -ENOMEM;
2422
2423		/* set Secondary bus */
2424		temp_byte = bus_node->base;
2425		dbg("set Secondary bus = %d\n", bus_node->base);
2426		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2427		if (rc)
2428			return rc;
2429
2430		/* set subordinate bus */
2431		temp_byte = bus_node->base + bus_node->length - 1;
2432		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2433		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2434		if (rc)
2435			return rc;
2436
2437		/* set subordinate Latency Timer and base Latency Timer */
2438		temp_byte = 0x40;
2439		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2440		if (rc)
2441			return rc;
2442		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2443		if (rc)
2444			return rc;
2445
2446		/* set Cache Line size */
2447		temp_byte = 0x08;
2448		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2449		if (rc)
2450			return rc;
2451
2452		/* Setup the IO, memory, and prefetchable windows */
2453		io_node = get_max_resource(&(resources->io_head), 0x1000);
2454		if (!io_node)
2455			return -ENOMEM;
2456		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2457		if (!mem_node)
2458			return -ENOMEM;
2459		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2460		if (!p_mem_node)
2461			return -ENOMEM;
2462		dbg("Setup the IO, memory, and prefetchable windows\n");
2463		dbg("io_node\n");
2464		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2465					io_node->length, io_node->next);
2466		dbg("mem_node\n");
2467		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2468					mem_node->length, mem_node->next);
2469		dbg("p_mem_node\n");
2470		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2471					p_mem_node->length, p_mem_node->next);
2472
2473		/* set up the IRQ info */
2474		if (!resources->irqs) {
2475			irqs.barber_pole = 0;
2476			irqs.interrupt[0] = 0;
2477			irqs.interrupt[1] = 0;
2478			irqs.interrupt[2] = 0;
2479			irqs.interrupt[3] = 0;
2480			irqs.valid_INT = 0;
2481		} else {
2482			irqs.barber_pole = resources->irqs->barber_pole;
2483			irqs.interrupt[0] = resources->irqs->interrupt[0];
2484			irqs.interrupt[1] = resources->irqs->interrupt[1];
2485			irqs.interrupt[2] = resources->irqs->interrupt[2];
2486			irqs.interrupt[3] = resources->irqs->interrupt[3];
2487			irqs.valid_INT = resources->irqs->valid_INT;
2488		}
2489
2490		/* set up resource lists that are now aligned on top and bottom
2491		 * for anything behind the bridge. */
2492		temp_resources.bus_head = bus_node;
2493		temp_resources.io_head = io_node;
2494		temp_resources.mem_head = mem_node;
2495		temp_resources.p_mem_head = p_mem_node;
2496		temp_resources.irqs = &irqs;
2497
2498		/* Make copies of the nodes we are going to pass down so that
2499		 * if there is a problem,we can just use these to free resources
2500		 */
2501		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2502		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2503		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2504		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2505
2506		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2507			kfree(hold_bus_node);
2508			kfree(hold_IO_node);
2509			kfree(hold_mem_node);
2510			kfree(hold_p_mem_node);
2511
2512			return 1;
2513		}
2514
2515		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2516
2517		bus_node->base += 1;
2518		bus_node->length -= 1;
2519		bus_node->next = NULL;
2520
2521		/* If we have IO resources copy them and fill in the bridge's
2522		 * IO range registers */
2523		if (io_node) {
2524			memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2525			io_node->next = NULL;
2526
2527			/* set IO base and Limit registers */
2528			temp_byte = io_node->base >> 8;
2529			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2530
2531			temp_byte = (io_node->base + io_node->length - 1) >> 8;
2532			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2533		} else {
2534			kfree(hold_IO_node);
2535			hold_IO_node = NULL;
2536		}
2537
2538		/* If we have memory resources copy them and fill in the
2539		 * bridge's memory range registers.  Otherwise, fill in the
2540		 * range registers with values that disable them. */
2541		if (mem_node) {
2542			memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2543			mem_node->next = NULL;
2544
2545			/* set Mem base and Limit registers */
2546			temp_word = mem_node->base >> 16;
2547			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2548
2549			temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2550			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2551		} else {
2552			temp_word = 0xFFFF;
2553			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2554
2555			temp_word = 0x0000;
2556			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2557
2558			kfree(hold_mem_node);
2559			hold_mem_node = NULL;
2560		}
2561
2562		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2563		p_mem_node->next = NULL;
2564
2565		/* set Pre Mem base and Limit registers */
2566		temp_word = p_mem_node->base >> 16;
2567		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2568
2569		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2570		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2571
2572		/* Adjust this to compensate for extra adjustment in first loop
2573		 */
2574		irqs.barber_pole--;
2575
2576		rc = 0;
2577
2578		/* Here we actually find the devices and configure them */
2579		for (device = 0; (device <= 0x1F) && !rc; device++) {
2580			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2581
2582			ID = 0xFFFFFFFF;
2583			pci_bus->number = hold_bus_node->base;
2584			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2585			pci_bus->number = func->bus;
2586
2587			if (ID != 0xFFFFFFFF) {	  /*  device present */
2588				/* Setup slot structure. */
2589				new_slot = cpqhp_slot_create(hold_bus_node->base);
2590
2591				if (new_slot == NULL) {
2592					rc = -ENOMEM;
2593					continue;
2594				}
2595
2596				new_slot->bus = hold_bus_node->base;
2597				new_slot->device = device;
2598				new_slot->function = 0;
2599				new_slot->is_a_board = 1;
2600				new_slot->status = 0;
2601
2602				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2603				dbg("configure_new_device rc=0x%x\n",rc);
2604			}	/* End of IF (device in slot?) */
2605		}		/* End of FOR loop */
2606
2607		if (rc)
2608			goto free_and_out;
2609		/* save the interrupt routing information */
2610		if (resources->irqs) {
2611			resources->irqs->interrupt[0] = irqs.interrupt[0];
2612			resources->irqs->interrupt[1] = irqs.interrupt[1];
2613			resources->irqs->interrupt[2] = irqs.interrupt[2];
2614			resources->irqs->interrupt[3] = irqs.interrupt[3];
2615			resources->irqs->valid_INT = irqs.valid_INT;
2616		} else if (!behind_bridge) {
2617			/* We need to hook up the interrupts here */
2618			for (cloop = 0; cloop < 4; cloop++) {
2619				if (irqs.valid_INT & (0x01 << cloop)) {
2620					rc = cpqhp_set_irq(func->bus, func->device,
2621							   cloop + 1, irqs.interrupt[cloop]);
2622					if (rc)
2623						goto free_and_out;
2624				}
2625			}	/* end of for loop */
2626		}
2627		/* Return unused bus resources
2628		 * First use the temporary node to store information for
2629		 * the board */
2630		if (hold_bus_node && bus_node && temp_resources.bus_head) {
2631			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2632
2633			hold_bus_node->next = func->bus_head;
2634			func->bus_head = hold_bus_node;
2635
2636			temp_byte = temp_resources.bus_head->base - 1;
2637
2638			/* set subordinate bus */
2639			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2640
2641			if (temp_resources.bus_head->length == 0) {
2642				kfree(temp_resources.bus_head);
2643				temp_resources.bus_head = NULL;
2644			} else {
2645				return_resource(&(resources->bus_head), temp_resources.bus_head);
2646			}
2647		}
2648
2649		/* If we have IO space available and there is some left,
2650		 * return the unused portion */
2651		if (hold_IO_node && temp_resources.io_head) {
2652			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2653							       &hold_IO_node, 0x1000);
2654
2655			/* Check if we were able to split something off */
2656			if (io_node) {
2657				hold_IO_node->base = io_node->base + io_node->length;
2658
2659				temp_byte = (hold_IO_node->base) >> 8;
2660				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2661
2662				return_resource(&(resources->io_head), io_node);
2663			}
2664
2665			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2666
2667			/* Check if we were able to split something off */
2668			if (io_node) {
2669				/* First use the temporary node to store
2670				 * information for the board */
2671				hold_IO_node->length = io_node->base - hold_IO_node->base;
2672
2673				/* If we used any, add it to the board's list */
2674				if (hold_IO_node->length) {
2675					hold_IO_node->next = func->io_head;
2676					func->io_head = hold_IO_node;
2677
2678					temp_byte = (io_node->base - 1) >> 8;
2679					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2680
2681					return_resource(&(resources->io_head), io_node);
2682				} else {
2683					/* it doesn't need any IO */
2684					temp_word = 0x0000;
2685					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2686
2687					return_resource(&(resources->io_head), io_node);
2688					kfree(hold_IO_node);
2689				}
2690			} else {
2691				/* it used most of the range */
2692				hold_IO_node->next = func->io_head;
2693				func->io_head = hold_IO_node;
2694			}
2695		} else if (hold_IO_node) {
2696			/* it used the whole range */
2697			hold_IO_node->next = func->io_head;
2698			func->io_head = hold_IO_node;
2699		}
2700		/* If we have memory space available and there is some left,
2701		 * return the unused portion */
2702		if (hold_mem_node && temp_resources.mem_head) {
2703			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2704								&hold_mem_node, 0x100000);
2705
2706			/* Check if we were able to split something off */
2707			if (mem_node) {
2708				hold_mem_node->base = mem_node->base + mem_node->length;
2709
2710				temp_word = (hold_mem_node->base) >> 16;
2711				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2712
2713				return_resource(&(resources->mem_head), mem_node);
2714			}
2715
2716			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2717
2718			/* Check if we were able to split something off */
2719			if (mem_node) {
2720				/* First use the temporary node to store
2721				 * information for the board */
2722				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2723
2724				if (hold_mem_node->length) {
2725					hold_mem_node->next = func->mem_head;
2726					func->mem_head = hold_mem_node;
2727
2728					/* configure end address */
2729					temp_word = (mem_node->base - 1) >> 16;
2730					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2731
2732					/* Return unused resources to the pool */
2733					return_resource(&(resources->mem_head), mem_node);
2734				} else {
2735					/* it doesn't need any Mem */
2736					temp_word = 0x0000;
2737					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2738
2739					return_resource(&(resources->mem_head), mem_node);
2740					kfree(hold_mem_node);
2741				}
2742			} else {
2743				/* it used most of the range */
2744				hold_mem_node->next = func->mem_head;
2745				func->mem_head = hold_mem_node;
2746			}
2747		} else if (hold_mem_node) {
2748			/* it used the whole range */
2749			hold_mem_node->next = func->mem_head;
2750			func->mem_head = hold_mem_node;
2751		}
2752		/* If we have prefetchable memory space available and there
2753		 * is some left at the end, return the unused portion */
2754		if (hold_p_mem_node && temp_resources.p_mem_head) {
2755			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2756								  &hold_p_mem_node, 0x100000);
2757
2758			/* Check if we were able to split something off */
2759			if (p_mem_node) {
2760				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2761
2762				temp_word = (hold_p_mem_node->base) >> 16;
2763				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2764
2765				return_resource(&(resources->p_mem_head), p_mem_node);
2766			}
2767
2768			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2769
2770			/* Check if we were able to split something off */
2771			if (p_mem_node) {
2772				/* First use the temporary node to store
2773				 * information for the board */
2774				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2775
2776				/* If we used any, add it to the board's list */
2777				if (hold_p_mem_node->length) {
2778					hold_p_mem_node->next = func->p_mem_head;
2779					func->p_mem_head = hold_p_mem_node;
2780
2781					temp_word = (p_mem_node->base - 1) >> 16;
2782					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2783
2784					return_resource(&(resources->p_mem_head), p_mem_node);
2785				} else {
2786					/* it doesn't need any PMem */
2787					temp_word = 0x0000;
2788					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2789
2790					return_resource(&(resources->p_mem_head), p_mem_node);
2791					kfree(hold_p_mem_node);
2792				}
2793			} else {
2794				/* it used the most of the range */
2795				hold_p_mem_node->next = func->p_mem_head;
2796				func->p_mem_head = hold_p_mem_node;
2797			}
2798		} else if (hold_p_mem_node) {
2799			/* it used the whole range */
2800			hold_p_mem_node->next = func->p_mem_head;
2801			func->p_mem_head = hold_p_mem_node;
2802		}
2803		/* We should be configuring an IRQ and the bridge's base address
2804		 * registers if it needs them.  Although we have never seen such
2805		 * a device */
2806
2807		/* enable card */
2808		command = 0x0157;	/* = PCI_COMMAND_IO |
2809					 *   PCI_COMMAND_MEMORY |
2810					 *   PCI_COMMAND_MASTER |
2811					 *   PCI_COMMAND_INVALIDATE |
2812					 *   PCI_COMMAND_PARITY |
2813					 *   PCI_COMMAND_SERR */
2814		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2815
2816		/* set Bridge Control Register */
2817		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2818					 *   PCI_BRIDGE_CTL_SERR |
2819					 *   PCI_BRIDGE_CTL_NO_ISA */
2820		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2821	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2822		/* Standard device */
2823		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2824
2825		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2826			/* Display (video) adapter (not supported) */
2827			return DEVICE_TYPE_NOT_SUPPORTED;
2828		}
2829		/* Figure out IO and memory needs */
2830		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2831			temp_register = 0xFFFFFFFF;
2832
2833			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2834			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2835
2836			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2837			dbg("CND: base = 0x%x\n", temp_register);
2838
2839			if (temp_register) {	  /* If this register is implemented */
2840				if ((temp_register & 0x03L) == 0x01) {
2841					/* Map IO */
2842
2843					/* set base = amount of IO space */
2844					base = temp_register & 0xFFFFFFFC;
2845					base = ~base + 1;
2846
2847					dbg("CND:      length = 0x%x\n", base);
2848					io_node = get_io_resource(&(resources->io_head), base);
2849					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2850					    io_node->base, io_node->length, io_node->next);
2851					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2852
2853					/* allocate the resource to the board */
2854					if (io_node) {
2855						base = io_node->base;
2856
2857						io_node->next = func->io_head;
2858						func->io_head = io_node;
2859					} else
2860						return -ENOMEM;
2861				} else if ((temp_register & 0x0BL) == 0x08) {
2862					/* Map prefetchable memory */
2863					base = temp_register & 0xFFFFFFF0;
2864					base = ~base + 1;
2865
2866					dbg("CND:      length = 0x%x\n", base);
2867					p_mem_node = get_resource(&(resources->p_mem_head), base);
2868
2869					/* allocate the resource to the board */
2870					if (p_mem_node) {
2871						base = p_mem_node->base;
2872
2873						p_mem_node->next = func->p_mem_head;
2874						func->p_mem_head = p_mem_node;
2875					} else
2876						return -ENOMEM;
2877				} else if ((temp_register & 0x0BL) == 0x00) {
2878					/* Map memory */
2879					base = temp_register & 0xFFFFFFF0;
2880					base = ~base + 1;
2881
2882					dbg("CND:      length = 0x%x\n", base);
2883					mem_node = get_resource(&(resources->mem_head), base);
2884
2885					/* allocate the resource to the board */
2886					if (mem_node) {
2887						base = mem_node->base;
2888
2889						mem_node->next = func->mem_head;
2890						func->mem_head = mem_node;
2891					} else
2892						return -ENOMEM;
2893				} else if ((temp_register & 0x0BL) == 0x04) {
2894					/* Map memory */
2895					base = temp_register & 0xFFFFFFF0;
2896					base = ~base + 1;
2897
2898					dbg("CND:      length = 0x%x\n", base);
2899					mem_node = get_resource(&(resources->mem_head), base);
2900
2901					/* allocate the resource to the board */
2902					if (mem_node) {
2903						base = mem_node->base;
2904
2905						mem_node->next = func->mem_head;
2906						func->mem_head = mem_node;
2907					} else
2908						return -ENOMEM;
2909				} else if ((temp_register & 0x0BL) == 0x06) {
2910					/* Those bits are reserved, we can't handle this */
2911					return 1;
2912				} else {
2913					/* Requesting space below 1M */
2914					return NOT_ENOUGH_RESOURCES;
2915				}
2916
2917				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2918
2919				/* Check for 64-bit base */
2920				if ((temp_register & 0x07L) == 0x04) {
2921					cloop += 4;
2922
2923					/* Upper 32 bits of address always zero
2924					 * on today's systems */
2925					/* FIXME this is probably not true on
2926					 * Alpha and ia64??? */
2927					base = 0;
2928					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2929				}
2930			}
2931		}		/* End of base register loop */
2932		if (cpqhp_legacy_mode) {
2933			/* Figure out which interrupt pin this function uses */
2934			rc = pci_bus_read_config_byte (pci_bus, devfn,
2935				PCI_INTERRUPT_PIN, &temp_byte);
2936
2937			/* If this function needs an interrupt and we are behind
2938			 * a bridge and the pin is tied to something that's
2939			 * alread mapped, set this one the same */
2940			if (temp_byte && resources->irqs &&
2941			    (resources->irqs->valid_INT &
2942			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2943				/* We have to share with something already set up */
2944				IRQ = resources->irqs->interrupt[(temp_byte +
2945					resources->irqs->barber_pole - 1) & 0x03];
2946			} else {
2947				/* Program IRQ based on card type */
2948				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2949
2950				if (class_code == PCI_BASE_CLASS_STORAGE)
2951					IRQ = cpqhp_disk_irq;
2952				else
2953					IRQ = cpqhp_nic_irq;
2954			}
2955
2956			/* IRQ Line */
2957			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2958		}
2959
2960		if (!behind_bridge) {
2961			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2962			if (rc)
2963				return 1;
2964		} else {
2965			/* TBD - this code may also belong in the other clause
2966			 * of this If statement */
2967			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2968			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2969		}
2970
2971		/* Latency Timer */
2972		temp_byte = 0x40;
2973		rc = pci_bus_write_config_byte(pci_bus, devfn,
2974					PCI_LATENCY_TIMER, temp_byte);
2975
2976		/* Cache Line size */
2977		temp_byte = 0x08;
2978		rc = pci_bus_write_config_byte(pci_bus, devfn,
2979					PCI_CACHE_LINE_SIZE, temp_byte);
2980
2981		/* disable ROM base Address */
2982		temp_dword = 0x00L;
2983		rc = pci_bus_write_config_word(pci_bus, devfn,
2984					PCI_ROM_ADDRESS, temp_dword);
2985
2986		/* enable card */
2987		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2988					 *   PCI_COMMAND_MEMORY |
2989					 *   PCI_COMMAND_MASTER |
2990					 *   PCI_COMMAND_INVALIDATE |
2991					 *   PCI_COMMAND_PARITY |
2992					 *   PCI_COMMAND_SERR */
2993		rc = pci_bus_write_config_word (pci_bus, devfn,
2994					PCI_COMMAND, temp_word);
2995	} else {		/* End of Not-A-Bridge else */
2996		/* It's some strange type of PCI adapter (Cardbus?) */
2997		return DEVICE_TYPE_NOT_SUPPORTED;
2998	}
2999
3000	func->configured = 1;
3001
3002	return 0;
3003free_and_out:
3004	cpqhp_destroy_resource_list (&temp_resources);
3005
3006	return_resource(&(resources-> bus_head), hold_bus_node);
3007	return_resource(&(resources-> io_head), hold_IO_node);
3008	return_resource(&(resources-> mem_head), hold_mem_node);
3009	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3010	return rc;
3011}
3012