scsi_lib.c revision 7c72ce81870ded9365f4bc5caa98ef1591dd18dd
15a23b0762c9095e137ce9a559cc7c37b2f8fd083Igor M. Liplianin/*
25a23b0762c9095e137ce9a559cc7c37b2f8fd083Igor M. Liplianin *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3e5514f104d875b3d28cbcd5d4f2b96ab2fca1e29Andy Walls *
4e5514f104d875b3d28cbcd5d4f2b96ab2fca1e29Andy Walls *  SCSI queueing library.
5e5514f104d875b3d28cbcd5d4f2b96ab2fca1e29Andy Walls *      Initial versions: Eric Youngdale (eric@andante.org).
6d19770e5178a4bc49641711246360c25781d20a4Steven Toth *                        Based upon conversations with large numbers
7d19770e5178a4bc49641711246360c25781d20a4Steven Toth *                        of people at Linux Expo.
8d19770e5178a4bc49641711246360c25781d20a4Steven Toth */
9d19770e5178a4bc49641711246360c25781d20a4Steven Toth
107c91f0624a9a2b8b9b122cf94fef34bc7f7347a6Mauro Carvalho Chehab#include <linux/bio.h>
11d19770e5178a4bc49641711246360c25781d20a4Steven Toth#include <linux/blkdev.h>
12d19770e5178a4bc49641711246360c25781d20a4Steven Toth#include <linux/completion.h>
13d19770e5178a4bc49641711246360c25781d20a4Steven Toth#include <linux/kernel.h>
14d19770e5178a4bc49641711246360c25781d20a4Steven Toth#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19
20#include <scsi/scsi.h>
21#include <scsi/scsi_dbg.h>
22#include <scsi/scsi_device.h>
23#include <scsi/scsi_driver.h>
24#include <scsi/scsi_eh.h>
25#include <scsi/scsi_host.h>
26#include <scsi/scsi_request.h>
27
28#include "scsi_priv.h"
29#include "scsi_logging.h"
30
31
32#define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33#define SG_MEMPOOL_SIZE		32
34
35struct scsi_host_sg_pool {
36	size_t		size;
37	char		*name;
38	kmem_cache_t	*slab;
39	mempool_t	*pool;
40};
41
42#if (SCSI_MAX_PHYS_SEGMENTS < 32)
43#error SCSI_MAX_PHYS_SEGMENTS is too small
44#endif
45
46#define SP(x) { x, "sgpool-" #x }
47static struct scsi_host_sg_pool scsi_sg_pools[] = {
48	SP(8),
49	SP(16),
50	SP(32),
51#if (SCSI_MAX_PHYS_SEGMENTS > 32)
52	SP(64),
53#if (SCSI_MAX_PHYS_SEGMENTS > 64)
54	SP(128),
55#if (SCSI_MAX_PHYS_SEGMENTS > 128)
56	SP(256),
57#if (SCSI_MAX_PHYS_SEGMENTS > 256)
58#error SCSI_MAX_PHYS_SEGMENTS is too large
59#endif
60#endif
61#endif
62#endif
63};
64#undef SP
65
66
67/*
68 * Function:    scsi_insert_special_req()
69 *
70 * Purpose:     Insert pre-formed request into request queue.
71 *
72 * Arguments:   sreq	- request that is ready to be queued.
73 *              at_head	- boolean.  True if we should insert at head
74 *                        of queue, false if we should insert at tail.
75 *
76 * Lock status: Assumed that lock is not held upon entry.
77 *
78 * Returns:     Nothing
79 *
80 * Notes:       This function is called from character device and from
81 *              ioctl types of functions where the caller knows exactly
82 *              what SCSI command needs to be issued.   The idea is that
83 *              we merely inject the command into the queue (at the head
84 *              for now), and then call the queue request function to actually
85 *              process it.
86 */
87int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88{
89	/*
90	 * Because users of this function are apt to reuse requests with no
91	 * modification, we have to sanitise the request flags here
92	 */
93	sreq->sr_request->flags &= ~REQ_DONTPREP;
94	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95		       	   at_head, sreq);
96	return 0;
97}
98
99static void scsi_run_queue(struct request_queue *q);
100
101/*
102 * Function:	scsi_unprep_request()
103 *
104 * Purpose:	Remove all preparation done for a request, including its
105 *		associated scsi_cmnd, so that it can be requeued.
106 *
107 * Arguments:	req	- request to unprepare
108 *
109 * Lock status:	Assumed that no locks are held upon entry.
110 *
111 * Returns:	Nothing.
112 */
113static void scsi_unprep_request(struct request *req)
114{
115	struct scsi_cmnd *cmd = req->special;
116
117	req->flags &= ~REQ_DONTPREP;
118	req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
119
120	scsi_put_command(cmd);
121}
122
123/*
124 * Function:    scsi_queue_insert()
125 *
126 * Purpose:     Insert a command in the midlevel queue.
127 *
128 * Arguments:   cmd    - command that we are adding to queue.
129 *              reason - why we are inserting command to queue.
130 *
131 * Lock status: Assumed that lock is not held upon entry.
132 *
133 * Returns:     Nothing.
134 *
135 * Notes:       We do this for one of two cases.  Either the host is busy
136 *              and it cannot accept any more commands for the time being,
137 *              or the device returned QUEUE_FULL and can accept no more
138 *              commands.
139 * Notes:       This could be called either from an interrupt context or a
140 *              normal process context.
141 */
142int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
143{
144	struct Scsi_Host *host = cmd->device->host;
145	struct scsi_device *device = cmd->device;
146	struct request_queue *q = device->request_queue;
147	unsigned long flags;
148
149	SCSI_LOG_MLQUEUE(1,
150		 printk("Inserting command %p into mlqueue\n", cmd));
151
152	/*
153	 * Set the appropriate busy bit for the device/host.
154	 *
155	 * If the host/device isn't busy, assume that something actually
156	 * completed, and that we should be able to queue a command now.
157	 *
158	 * Note that the prior mid-layer assumption that any host could
159	 * always queue at least one command is now broken.  The mid-layer
160	 * will implement a user specifiable stall (see
161	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
162	 * if a command is requeued with no other commands outstanding
163	 * either for the device or for the host.
164	 */
165	if (reason == SCSI_MLQUEUE_HOST_BUSY)
166		host->host_blocked = host->max_host_blocked;
167	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
168		device->device_blocked = device->max_device_blocked;
169
170	/*
171	 * Decrement the counters, since these commands are no longer
172	 * active on the host/device.
173	 */
174	scsi_device_unbusy(device);
175
176	/*
177	 * Requeue this command.  It will go before all other commands
178	 * that are already in the queue.
179	 *
180	 * NOTE: there is magic here about the way the queue is plugged if
181	 * we have no outstanding commands.
182	 *
183	 * Although we *don't* plug the queue, we call the request
184	 * function.  The SCSI request function detects the blocked condition
185	 * and plugs the queue appropriately.
186         */
187	spin_lock_irqsave(q->queue_lock, flags);
188	blk_requeue_request(q, cmd->request);
189	spin_unlock_irqrestore(q->queue_lock, flags);
190
191	scsi_run_queue(q);
192
193	return 0;
194}
195
196/*
197 * Function:    scsi_do_req
198 *
199 * Purpose:     Queue a SCSI request
200 *
201 * Arguments:   sreq	  - command descriptor.
202 *              cmnd      - actual SCSI command to be performed.
203 *              buffer    - data buffer.
204 *              bufflen   - size of data buffer.
205 *              done      - completion function to be run.
206 *              timeout   - how long to let it run before timeout.
207 *              retries   - number of retries we allow.
208 *
209 * Lock status: No locks held upon entry.
210 *
211 * Returns:     Nothing.
212 *
213 * Notes:	This function is only used for queueing requests for things
214 *		like ioctls and character device requests - this is because
215 *		we essentially just inject a request into the queue for the
216 *		device.
217 *
218 *		In order to support the scsi_device_quiesce function, we
219 *		now inject requests on the *head* of the device queue
220 *		rather than the tail.
221 */
222void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
223		 void *buffer, unsigned bufflen,
224		 void (*done)(struct scsi_cmnd *),
225		 int timeout, int retries)
226{
227	/*
228	 * If the upper level driver is reusing these things, then
229	 * we should release the low-level block now.  Another one will
230	 * be allocated later when this request is getting queued.
231	 */
232	__scsi_release_request(sreq);
233
234	/*
235	 * Our own function scsi_done (which marks the host as not busy,
236	 * disables the timeout counter, etc) will be called by us or by the
237	 * scsi_hosts[host].queuecommand() function needs to also call
238	 * the completion function for the high level driver.
239	 */
240	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
241	sreq->sr_bufflen = bufflen;
242	sreq->sr_buffer = buffer;
243	sreq->sr_allowed = retries;
244	sreq->sr_done = done;
245	sreq->sr_timeout_per_command = timeout;
246
247	if (sreq->sr_cmd_len == 0)
248		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
249
250	/*
251	 * head injection *required* here otherwise quiesce won't work
252	 */
253	scsi_insert_special_req(sreq, 1);
254}
255EXPORT_SYMBOL(scsi_do_req);
256
257/* This is the end routine we get to if a command was never attached
258 * to the request.  Simply complete the request without changing
259 * rq_status; this will cause a DRIVER_ERROR. */
260static void scsi_wait_req_end_io(struct request *req)
261{
262	BUG_ON(!req->waiting);
263
264	complete(req->waiting);
265}
266
267void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
268		   unsigned bufflen, int timeout, int retries)
269{
270	DECLARE_COMPLETION(wait);
271	int write = (sreq->sr_data_direction == DMA_TO_DEVICE);
272	struct request *req;
273
274	req = blk_get_request(sreq->sr_device->request_queue, write,
275			      __GFP_WAIT);
276	if (bufflen && blk_rq_map_kern(sreq->sr_device->request_queue, req,
277				       buffer, bufflen, __GFP_WAIT)) {
278		sreq->sr_result = DRIVER_ERROR << 24;
279		blk_put_request(req);
280		return;
281	}
282
283	req->flags |= REQ_NOMERGE;
284	req->waiting = &wait;
285	req->end_io = scsi_wait_req_end_io;
286	req->cmd_len = COMMAND_SIZE(((u8 *)cmnd)[0]);
287	req->sense = sreq->sr_sense_buffer;
288	req->sense_len = 0;
289	memcpy(req->cmd, cmnd, req->cmd_len);
290	req->timeout = timeout;
291	req->flags |= REQ_BLOCK_PC;
292	req->rq_disk = NULL;
293	blk_insert_request(sreq->sr_device->request_queue, req,
294			   sreq->sr_data_direction == DMA_TO_DEVICE, NULL);
295	wait_for_completion(&wait);
296	sreq->sr_request->waiting = NULL;
297	sreq->sr_result = req->errors;
298	if (req->errors)
299		sreq->sr_result |= (DRIVER_ERROR << 24);
300
301	blk_put_request(req);
302}
303
304EXPORT_SYMBOL(scsi_wait_req);
305
306/**
307 * scsi_execute - insert request and wait for the result
308 * @sdev:	scsi device
309 * @cmd:	scsi command
310 * @data_direction: data direction
311 * @buffer:	data buffer
312 * @bufflen:	len of buffer
313 * @sense:	optional sense buffer
314 * @timeout:	request timeout in seconds
315 * @retries:	number of times to retry request
316 * @flags:	or into request flags;
317 *
318 * returns the req->errors value which is the the scsi_cmnd result
319 * field.
320 **/
321int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
322		 int data_direction, void *buffer, unsigned bufflen,
323		 unsigned char *sense, int timeout, int retries, int flags)
324{
325	struct request *req;
326	int write = (data_direction == DMA_TO_DEVICE);
327	int ret = DRIVER_ERROR << 24;
328
329	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
330
331	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
332					buffer, bufflen, __GFP_WAIT))
333		goto out;
334
335	req->cmd_len = COMMAND_SIZE(cmd[0]);
336	memcpy(req->cmd, cmd, req->cmd_len);
337	req->sense = sense;
338	req->sense_len = 0;
339	req->timeout = timeout;
340	req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
341
342	/*
343	 * head injection *required* here otherwise quiesce won't work
344	 */
345	blk_execute_rq(req->q, NULL, req, 1);
346
347	ret = req->errors;
348 out:
349	blk_put_request(req);
350
351	return ret;
352}
353EXPORT_SYMBOL(scsi_execute);
354
355
356int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
357		     int data_direction, void *buffer, unsigned bufflen,
358		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
359{
360	char *sense = NULL;
361	int result;
362
363	if (sshdr) {
364		sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
365		if (!sense)
366			return DRIVER_ERROR << 24;
367		memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
368	}
369	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
370				  sense, timeout, retries, 0);
371	if (sshdr)
372		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
373
374	kfree(sense);
375	return result;
376}
377EXPORT_SYMBOL(scsi_execute_req);
378
379/*
380 * Function:    scsi_init_cmd_errh()
381 *
382 * Purpose:     Initialize cmd fields related to error handling.
383 *
384 * Arguments:   cmd	- command that is ready to be queued.
385 *
386 * Returns:     Nothing
387 *
388 * Notes:       This function has the job of initializing a number of
389 *              fields related to error handling.   Typically this will
390 *              be called once for each command, as required.
391 */
392static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
393{
394	cmd->serial_number = 0;
395
396	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
397
398	if (cmd->cmd_len == 0)
399		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
400
401	/*
402	 * We need saved copies of a number of fields - this is because
403	 * error handling may need to overwrite these with different values
404	 * to run different commands, and once error handling is complete,
405	 * we will need to restore these values prior to running the actual
406	 * command.
407	 */
408	cmd->old_use_sg = cmd->use_sg;
409	cmd->old_cmd_len = cmd->cmd_len;
410	cmd->sc_old_data_direction = cmd->sc_data_direction;
411	cmd->old_underflow = cmd->underflow;
412	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
413	cmd->buffer = cmd->request_buffer;
414	cmd->bufflen = cmd->request_bufflen;
415
416	return 1;
417}
418
419/*
420 * Function:   scsi_setup_cmd_retry()
421 *
422 * Purpose:    Restore the command state for a retry
423 *
424 * Arguments:  cmd	- command to be restored
425 *
426 * Returns:    Nothing
427 *
428 * Notes:      Immediately prior to retrying a command, we need
429 *             to restore certain fields that we saved above.
430 */
431void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
432{
433	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
434	cmd->request_buffer = cmd->buffer;
435	cmd->request_bufflen = cmd->bufflen;
436	cmd->use_sg = cmd->old_use_sg;
437	cmd->cmd_len = cmd->old_cmd_len;
438	cmd->sc_data_direction = cmd->sc_old_data_direction;
439	cmd->underflow = cmd->old_underflow;
440}
441
442void scsi_device_unbusy(struct scsi_device *sdev)
443{
444	struct Scsi_Host *shost = sdev->host;
445	unsigned long flags;
446
447	spin_lock_irqsave(shost->host_lock, flags);
448	shost->host_busy--;
449	if (unlikely(scsi_host_in_recovery(shost) &&
450		     shost->host_failed))
451		scsi_eh_wakeup(shost);
452	spin_unlock(shost->host_lock);
453	spin_lock(sdev->request_queue->queue_lock);
454	sdev->device_busy--;
455	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
456}
457
458/*
459 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
460 * and call blk_run_queue for all the scsi_devices on the target -
461 * including current_sdev first.
462 *
463 * Called with *no* scsi locks held.
464 */
465static void scsi_single_lun_run(struct scsi_device *current_sdev)
466{
467	struct Scsi_Host *shost = current_sdev->host;
468	struct scsi_device *sdev, *tmp;
469	struct scsi_target *starget = scsi_target(current_sdev);
470	unsigned long flags;
471
472	spin_lock_irqsave(shost->host_lock, flags);
473	starget->starget_sdev_user = NULL;
474	spin_unlock_irqrestore(shost->host_lock, flags);
475
476	/*
477	 * Call blk_run_queue for all LUNs on the target, starting with
478	 * current_sdev. We race with others (to set starget_sdev_user),
479	 * but in most cases, we will be first. Ideally, each LU on the
480	 * target would get some limited time or requests on the target.
481	 */
482	blk_run_queue(current_sdev->request_queue);
483
484	spin_lock_irqsave(shost->host_lock, flags);
485	if (starget->starget_sdev_user)
486		goto out;
487	list_for_each_entry_safe(sdev, tmp, &starget->devices,
488			same_target_siblings) {
489		if (sdev == current_sdev)
490			continue;
491		if (scsi_device_get(sdev))
492			continue;
493
494		spin_unlock_irqrestore(shost->host_lock, flags);
495		blk_run_queue(sdev->request_queue);
496		spin_lock_irqsave(shost->host_lock, flags);
497
498		scsi_device_put(sdev);
499	}
500 out:
501	spin_unlock_irqrestore(shost->host_lock, flags);
502}
503
504/*
505 * Function:	scsi_run_queue()
506 *
507 * Purpose:	Select a proper request queue to serve next
508 *
509 * Arguments:	q	- last request's queue
510 *
511 * Returns:     Nothing
512 *
513 * Notes:	The previous command was completely finished, start
514 *		a new one if possible.
515 */
516static void scsi_run_queue(struct request_queue *q)
517{
518	struct scsi_device *sdev = q->queuedata;
519	struct Scsi_Host *shost = sdev->host;
520	unsigned long flags;
521
522	if (sdev->single_lun)
523		scsi_single_lun_run(sdev);
524
525	spin_lock_irqsave(shost->host_lock, flags);
526	while (!list_empty(&shost->starved_list) &&
527	       !shost->host_blocked && !shost->host_self_blocked &&
528		!((shost->can_queue > 0) &&
529		  (shost->host_busy >= shost->can_queue))) {
530		/*
531		 * As long as shost is accepting commands and we have
532		 * starved queues, call blk_run_queue. scsi_request_fn
533		 * drops the queue_lock and can add us back to the
534		 * starved_list.
535		 *
536		 * host_lock protects the starved_list and starved_entry.
537		 * scsi_request_fn must get the host_lock before checking
538		 * or modifying starved_list or starved_entry.
539		 */
540		sdev = list_entry(shost->starved_list.next,
541					  struct scsi_device, starved_entry);
542		list_del_init(&sdev->starved_entry);
543		spin_unlock_irqrestore(shost->host_lock, flags);
544
545		blk_run_queue(sdev->request_queue);
546
547		spin_lock_irqsave(shost->host_lock, flags);
548		if (unlikely(!list_empty(&sdev->starved_entry)))
549			/*
550			 * sdev lost a race, and was put back on the
551			 * starved list. This is unlikely but without this
552			 * in theory we could loop forever.
553			 */
554			break;
555	}
556	spin_unlock_irqrestore(shost->host_lock, flags);
557
558	blk_run_queue(q);
559}
560
561/*
562 * Function:	scsi_requeue_command()
563 *
564 * Purpose:	Handle post-processing of completed commands.
565 *
566 * Arguments:	q	- queue to operate on
567 *		cmd	- command that may need to be requeued.
568 *
569 * Returns:	Nothing
570 *
571 * Notes:	After command completion, there may be blocks left
572 *		over which weren't finished by the previous command
573 *		this can be for a number of reasons - the main one is
574 *		I/O errors in the middle of the request, in which case
575 *		we need to request the blocks that come after the bad
576 *		sector.
577 * Notes:	Upon return, cmd is a stale pointer.
578 */
579static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
580{
581	struct request *req = cmd->request;
582	unsigned long flags;
583
584	scsi_unprep_request(req);
585	spin_lock_irqsave(q->queue_lock, flags);
586	blk_requeue_request(q, req);
587	spin_unlock_irqrestore(q->queue_lock, flags);
588
589	scsi_run_queue(q);
590}
591
592void scsi_next_command(struct scsi_cmnd *cmd)
593{
594	struct request_queue *q = cmd->device->request_queue;
595
596	scsi_put_command(cmd);
597	scsi_run_queue(q);
598}
599
600void scsi_run_host_queues(struct Scsi_Host *shost)
601{
602	struct scsi_device *sdev;
603
604	shost_for_each_device(sdev, shost)
605		scsi_run_queue(sdev->request_queue);
606}
607
608/*
609 * Function:    scsi_end_request()
610 *
611 * Purpose:     Post-processing of completed commands (usually invoked at end
612 *		of upper level post-processing and scsi_io_completion).
613 *
614 * Arguments:   cmd	 - command that is complete.
615 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
616 *              bytes    - number of bytes of completed I/O
617 *		requeue  - indicates whether we should requeue leftovers.
618 *
619 * Lock status: Assumed that lock is not held upon entry.
620 *
621 * Returns:     cmd if requeue required, NULL otherwise.
622 *
623 * Notes:       This is called for block device requests in order to
624 *              mark some number of sectors as complete.
625 *
626 *		We are guaranteeing that the request queue will be goosed
627 *		at some point during this call.
628 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
629 */
630static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
631					  int bytes, int requeue)
632{
633	request_queue_t *q = cmd->device->request_queue;
634	struct request *req = cmd->request;
635	unsigned long flags;
636
637	/*
638	 * If there are blocks left over at the end, set up the command
639	 * to queue the remainder of them.
640	 */
641	if (end_that_request_chunk(req, uptodate, bytes)) {
642		int leftover = (req->hard_nr_sectors << 9);
643
644		if (blk_pc_request(req))
645			leftover = req->data_len;
646
647		/* kill remainder if no retrys */
648		if (!uptodate && blk_noretry_request(req))
649			end_that_request_chunk(req, 0, leftover);
650		else {
651			if (requeue) {
652				/*
653				 * Bleah.  Leftovers again.  Stick the
654				 * leftovers in the front of the
655				 * queue, and goose the queue again.
656				 */
657				scsi_requeue_command(q, cmd);
658				cmd = NULL;
659			}
660			return cmd;
661		}
662	}
663
664	add_disk_randomness(req->rq_disk);
665
666	spin_lock_irqsave(q->queue_lock, flags);
667	if (blk_rq_tagged(req))
668		blk_queue_end_tag(q, req);
669	end_that_request_last(req);
670	spin_unlock_irqrestore(q->queue_lock, flags);
671
672	/*
673	 * This will goose the queue request function at the end, so we don't
674	 * need to worry about launching another command.
675	 */
676	scsi_next_command(cmd);
677	return NULL;
678}
679
680static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
681{
682	struct scsi_host_sg_pool *sgp;
683	struct scatterlist *sgl;
684
685	BUG_ON(!cmd->use_sg);
686
687	switch (cmd->use_sg) {
688	case 1 ... 8:
689		cmd->sglist_len = 0;
690		break;
691	case 9 ... 16:
692		cmd->sglist_len = 1;
693		break;
694	case 17 ... 32:
695		cmd->sglist_len = 2;
696		break;
697#if (SCSI_MAX_PHYS_SEGMENTS > 32)
698	case 33 ... 64:
699		cmd->sglist_len = 3;
700		break;
701#if (SCSI_MAX_PHYS_SEGMENTS > 64)
702	case 65 ... 128:
703		cmd->sglist_len = 4;
704		break;
705#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
706	case 129 ... 256:
707		cmd->sglist_len = 5;
708		break;
709#endif
710#endif
711#endif
712	default:
713		return NULL;
714	}
715
716	sgp = scsi_sg_pools + cmd->sglist_len;
717	sgl = mempool_alloc(sgp->pool, gfp_mask);
718	return sgl;
719}
720
721static void scsi_free_sgtable(struct scatterlist *sgl, int index)
722{
723	struct scsi_host_sg_pool *sgp;
724
725	BUG_ON(index >= SG_MEMPOOL_NR);
726
727	sgp = scsi_sg_pools + index;
728	mempool_free(sgl, sgp->pool);
729}
730
731/*
732 * Function:    scsi_release_buffers()
733 *
734 * Purpose:     Completion processing for block device I/O requests.
735 *
736 * Arguments:   cmd	- command that we are bailing.
737 *
738 * Lock status: Assumed that no lock is held upon entry.
739 *
740 * Returns:     Nothing
741 *
742 * Notes:       In the event that an upper level driver rejects a
743 *		command, we must release resources allocated during
744 *		the __init_io() function.  Primarily this would involve
745 *		the scatter-gather table, and potentially any bounce
746 *		buffers.
747 */
748static void scsi_release_buffers(struct scsi_cmnd *cmd)
749{
750	struct request *req = cmd->request;
751
752	/*
753	 * Free up any indirection buffers we allocated for DMA purposes.
754	 */
755	if (cmd->use_sg)
756		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
757	else if (cmd->request_buffer != req->buffer)
758		kfree(cmd->request_buffer);
759
760	/*
761	 * Zero these out.  They now point to freed memory, and it is
762	 * dangerous to hang onto the pointers.
763	 */
764	cmd->buffer  = NULL;
765	cmd->bufflen = 0;
766	cmd->request_buffer = NULL;
767	cmd->request_bufflen = 0;
768}
769
770/*
771 * Function:    scsi_io_completion()
772 *
773 * Purpose:     Completion processing for block device I/O requests.
774 *
775 * Arguments:   cmd   - command that is finished.
776 *
777 * Lock status: Assumed that no lock is held upon entry.
778 *
779 * Returns:     Nothing
780 *
781 * Notes:       This function is matched in terms of capabilities to
782 *              the function that created the scatter-gather list.
783 *              In other words, if there are no bounce buffers
784 *              (the normal case for most drivers), we don't need
785 *              the logic to deal with cleaning up afterwards.
786 *
787 *		We must do one of several things here:
788 *
789 *		a) Call scsi_end_request.  This will finish off the
790 *		   specified number of sectors.  If we are done, the
791 *		   command block will be released, and the queue
792 *		   function will be goosed.  If we are not done, then
793 *		   scsi_end_request will directly goose the queue.
794 *
795 *		b) We can just use scsi_requeue_command() here.  This would
796 *		   be used if we just wanted to retry, for example.
797 */
798void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
799			unsigned int block_bytes)
800{
801	int result = cmd->result;
802	int this_count = cmd->bufflen;
803	request_queue_t *q = cmd->device->request_queue;
804	struct request *req = cmd->request;
805	int clear_errors = 1;
806	struct scsi_sense_hdr sshdr;
807	int sense_valid = 0;
808	int sense_deferred = 0;
809
810	if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
811		return;
812
813	/*
814	 * Free up any indirection buffers we allocated for DMA purposes.
815	 * For the case of a READ, we need to copy the data out of the
816	 * bounce buffer and into the real buffer.
817	 */
818	if (cmd->use_sg)
819		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
820	else if (cmd->buffer != req->buffer) {
821		if (rq_data_dir(req) == READ) {
822			unsigned long flags;
823			char *to = bio_kmap_irq(req->bio, &flags);
824			memcpy(to, cmd->buffer, cmd->bufflen);
825			bio_kunmap_irq(to, &flags);
826		}
827		kfree(cmd->buffer);
828	}
829
830	if (result) {
831		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
832		if (sense_valid)
833			sense_deferred = scsi_sense_is_deferred(&sshdr);
834	}
835	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
836		req->errors = result;
837		if (result) {
838			clear_errors = 0;
839			if (sense_valid && req->sense) {
840				/*
841				 * SG_IO wants current and deferred errors
842				 */
843				int len = 8 + cmd->sense_buffer[7];
844
845				if (len > SCSI_SENSE_BUFFERSIZE)
846					len = SCSI_SENSE_BUFFERSIZE;
847				memcpy(req->sense, cmd->sense_buffer,  len);
848				req->sense_len = len;
849			}
850		} else
851			req->data_len = cmd->resid;
852	}
853
854	/*
855	 * Zero these out.  They now point to freed memory, and it is
856	 * dangerous to hang onto the pointers.
857	 */
858	cmd->buffer  = NULL;
859	cmd->bufflen = 0;
860	cmd->request_buffer = NULL;
861	cmd->request_bufflen = 0;
862
863	/*
864	 * Next deal with any sectors which we were able to correctly
865	 * handle.
866	 */
867	if (good_bytes >= 0) {
868		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
869					      req->nr_sectors, good_bytes));
870		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
871
872		if (clear_errors)
873			req->errors = 0;
874		/*
875		 * If multiple sectors are requested in one buffer, then
876		 * they will have been finished off by the first command.
877		 * If not, then we have a multi-buffer command.
878		 *
879		 * If block_bytes != 0, it means we had a medium error
880		 * of some sort, and that we want to mark some number of
881		 * sectors as not uptodate.  Thus we want to inhibit
882		 * requeueing right here - we will requeue down below
883		 * when we handle the bad sectors.
884		 */
885
886		/*
887		 * If the command completed without error, then either
888		 * finish off the rest of the command, or start a new one.
889		 */
890		if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
891			return;
892	}
893	/*
894	 * Now, if we were good little boys and girls, Santa left us a request
895	 * sense buffer.  We can extract information from this, so we
896	 * can choose a block to remap, etc.
897	 */
898	if (sense_valid && !sense_deferred) {
899		switch (sshdr.sense_key) {
900		case UNIT_ATTENTION:
901			if (cmd->device->removable) {
902				/* detected disc change.  set a bit
903				 * and quietly refuse further access.
904				 */
905				cmd->device->changed = 1;
906				scsi_end_request(cmd, 0,
907						this_count, 1);
908				return;
909			} else {
910				/*
911				* Must have been a power glitch, or a
912				* bus reset.  Could not have been a
913				* media change, so we just retry the
914				* request and see what happens.
915				*/
916				scsi_requeue_command(q, cmd);
917				return;
918			}
919			break;
920		case ILLEGAL_REQUEST:
921			/*
922		 	* If we had an ILLEGAL REQUEST returned, then we may
923		 	* have performed an unsupported command.  The only
924		 	* thing this should be would be a ten byte read where
925			* only a six byte read was supported.  Also, on a
926			* system where READ CAPACITY failed, we may have read
927			* past the end of the disk.
928		 	*/
929			if (cmd->device->use_10_for_rw &&
930			    (cmd->cmnd[0] == READ_10 ||
931			     cmd->cmnd[0] == WRITE_10)) {
932				cmd->device->use_10_for_rw = 0;
933				/*
934				 * This will cause a retry with a 6-byte
935				 * command.
936				 */
937				scsi_requeue_command(q, cmd);
938				result = 0;
939			} else {
940				scsi_end_request(cmd, 0, this_count, 1);
941				return;
942			}
943			break;
944		case NOT_READY:
945			/*
946			 * If the device is in the process of becoming ready,
947			 * retry.
948			 */
949			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
950				scsi_requeue_command(q, cmd);
951				return;
952			}
953			if (!(req->flags & REQ_QUIET))
954				dev_printk(KERN_INFO,
955					   &cmd->device->sdev_gendev,
956					   "Device not ready.\n");
957			scsi_end_request(cmd, 0, this_count, 1);
958			return;
959		case VOLUME_OVERFLOW:
960			if (!(req->flags & REQ_QUIET)) {
961				dev_printk(KERN_INFO,
962					   &cmd->device->sdev_gendev,
963					   "Volume overflow, CDB: ");
964				__scsi_print_command(cmd->data_cmnd);
965				scsi_print_sense("", cmd);
966			}
967			scsi_end_request(cmd, 0, block_bytes, 1);
968			return;
969		default:
970			break;
971		}
972	}			/* driver byte != 0 */
973	if (host_byte(result) == DID_RESET) {
974		/*
975		 * Third party bus reset or reset for error
976		 * recovery reasons.  Just retry the request
977		 * and see what happens.
978		 */
979		scsi_requeue_command(q, cmd);
980		return;
981	}
982	if (result) {
983		if (!(req->flags & REQ_QUIET)) {
984			dev_printk(KERN_INFO, &cmd->device->sdev_gendev,
985				   "SCSI error: return code = 0x%x\n", result);
986
987			if (driver_byte(result) & DRIVER_SENSE)
988				scsi_print_sense("", cmd);
989		}
990		/*
991		 * Mark a single buffer as not uptodate.  Queue the remainder.
992		 * We sometimes get this cruft in the event that a medium error
993		 * isn't properly reported.
994		 */
995		block_bytes = req->hard_cur_sectors << 9;
996		if (!block_bytes)
997			block_bytes = req->data_len;
998		scsi_end_request(cmd, 0, block_bytes, 1);
999	}
1000}
1001EXPORT_SYMBOL(scsi_io_completion);
1002
1003/*
1004 * Function:    scsi_init_io()
1005 *
1006 * Purpose:     SCSI I/O initialize function.
1007 *
1008 * Arguments:   cmd   - Command descriptor we wish to initialize
1009 *
1010 * Returns:     0 on success
1011 *		BLKPREP_DEFER if the failure is retryable
1012 *		BLKPREP_KILL if the failure is fatal
1013 */
1014static int scsi_init_io(struct scsi_cmnd *cmd)
1015{
1016	struct request     *req = cmd->request;
1017	struct scatterlist *sgpnt;
1018	int		   count;
1019
1020	/*
1021	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1022	 */
1023	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1024		cmd->request_bufflen = req->data_len;
1025		cmd->request_buffer = req->data;
1026		req->buffer = req->data;
1027		cmd->use_sg = 0;
1028		return 0;
1029	}
1030
1031	/*
1032	 * we used to not use scatter-gather for single segment request,
1033	 * but now we do (it makes highmem I/O easier to support without
1034	 * kmapping pages)
1035	 */
1036	cmd->use_sg = req->nr_phys_segments;
1037
1038	/*
1039	 * if sg table allocation fails, requeue request later.
1040	 */
1041	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1042	if (unlikely(!sgpnt)) {
1043		scsi_unprep_request(req);
1044		return BLKPREP_DEFER;
1045	}
1046
1047	cmd->request_buffer = (char *) sgpnt;
1048	cmd->request_bufflen = req->nr_sectors << 9;
1049	if (blk_pc_request(req))
1050		cmd->request_bufflen = req->data_len;
1051	req->buffer = NULL;
1052
1053	/*
1054	 * Next, walk the list, and fill in the addresses and sizes of
1055	 * each segment.
1056	 */
1057	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1058
1059	/*
1060	 * mapped well, send it off
1061	 */
1062	if (likely(count <= cmd->use_sg)) {
1063		cmd->use_sg = count;
1064		return 0;
1065	}
1066
1067	printk(KERN_ERR "Incorrect number of segments after building list\n");
1068	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1069	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1070			req->current_nr_sectors);
1071
1072	/* release the command and kill it */
1073	scsi_release_buffers(cmd);
1074	scsi_put_command(cmd);
1075	return BLKPREP_KILL;
1076}
1077
1078static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
1079{
1080	struct scsi_device *sdev = q->queuedata;
1081	struct scsi_driver *drv;
1082
1083	if (sdev->sdev_state == SDEV_RUNNING) {
1084		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1085
1086		if (drv->prepare_flush)
1087			return drv->prepare_flush(q, rq);
1088	}
1089
1090	return 0;
1091}
1092
1093static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1094{
1095	struct scsi_device *sdev = q->queuedata;
1096	struct request *flush_rq = rq->end_io_data;
1097	struct scsi_driver *drv;
1098
1099	if (flush_rq->errors) {
1100		printk("scsi: barrier error, disabling flush support\n");
1101		blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1102	}
1103
1104	if (sdev->sdev_state == SDEV_RUNNING) {
1105		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1106		drv->end_flush(q, rq);
1107	}
1108}
1109
1110static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1111			       sector_t *error_sector)
1112{
1113	struct scsi_device *sdev = q->queuedata;
1114	struct scsi_driver *drv;
1115
1116	if (sdev->sdev_state != SDEV_RUNNING)
1117		return -ENXIO;
1118
1119	drv = *(struct scsi_driver **) disk->private_data;
1120	if (drv->issue_flush)
1121		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1122
1123	return -EOPNOTSUPP;
1124}
1125
1126static void scsi_generic_done(struct scsi_cmnd *cmd)
1127{
1128	BUG_ON(!blk_pc_request(cmd->request));
1129	scsi_io_completion(cmd, cmd->result == 0 ? cmd->bufflen : 0, 0);
1130}
1131
1132static int scsi_prep_fn(struct request_queue *q, struct request *req)
1133{
1134	struct scsi_device *sdev = q->queuedata;
1135	struct scsi_cmnd *cmd;
1136	int specials_only = 0;
1137
1138	/*
1139	 * Just check to see if the device is online.  If it isn't, we
1140	 * refuse to process any commands.  The device must be brought
1141	 * online before trying any recovery commands
1142	 */
1143	if (unlikely(!scsi_device_online(sdev))) {
1144		printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1145		       sdev->host->host_no, sdev->id, sdev->lun);
1146		goto kill;
1147	}
1148	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1149		/* OK, we're not in a running state don't prep
1150		 * user commands */
1151		if (sdev->sdev_state == SDEV_DEL) {
1152			/* Device is fully deleted, no commands
1153			 * at all allowed down */
1154			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1155			       sdev->host->host_no, sdev->id, sdev->lun);
1156			goto kill;
1157		}
1158		/* OK, we only allow special commands (i.e. not
1159		 * user initiated ones */
1160		specials_only = sdev->sdev_state;
1161	}
1162
1163	/*
1164	 * Find the actual device driver associated with this command.
1165	 * The SPECIAL requests are things like character device or
1166	 * ioctls, which did not originate from ll_rw_blk.  Note that
1167	 * the special field is also used to indicate the cmd for
1168	 * the remainder of a partially fulfilled request that can
1169	 * come up when there is a medium error.  We have to treat
1170	 * these two cases differently.  We differentiate by looking
1171	 * at request->cmd, as this tells us the real story.
1172	 */
1173	if (req->flags & REQ_SPECIAL && req->special) {
1174		struct scsi_request *sreq = req->special;
1175
1176		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1177			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1178			if (unlikely(!cmd))
1179				goto defer;
1180			scsi_init_cmd_from_req(cmd, sreq);
1181		} else
1182			cmd = req->special;
1183	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1184
1185		if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1186			if(specials_only == SDEV_QUIESCE ||
1187					specials_only == SDEV_BLOCK)
1188				goto defer;
1189
1190			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1191			       sdev->host->host_no, sdev->id, sdev->lun);
1192			goto kill;
1193		}
1194
1195
1196		/*
1197		 * Now try and find a command block that we can use.
1198		 */
1199		if (!req->special) {
1200			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1201			if (unlikely(!cmd))
1202				goto defer;
1203		} else
1204			cmd = req->special;
1205
1206		/* pull a tag out of the request if we have one */
1207		cmd->tag = req->tag;
1208	} else {
1209		blk_dump_rq_flags(req, "SCSI bad req");
1210		goto kill;
1211	}
1212
1213	/* note the overloading of req->special.  When the tag
1214	 * is active it always means cmd.  If the tag goes
1215	 * back for re-queueing, it may be reset */
1216	req->special = cmd;
1217	cmd->request = req;
1218
1219	/*
1220	 * FIXME: drop the lock here because the functions below
1221	 * expect to be called without the queue lock held.  Also,
1222	 * previously, we dequeued the request before dropping the
1223	 * lock.  We hope REQ_STARTED prevents anything untoward from
1224	 * happening now.
1225	 */
1226	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1227		struct scsi_driver *drv;
1228		int ret;
1229
1230		/*
1231		 * This will do a couple of things:
1232		 *  1) Fill in the actual SCSI command.
1233		 *  2) Fill in any other upper-level specific fields
1234		 * (timeout).
1235		 *
1236		 * If this returns 0, it means that the request failed
1237		 * (reading past end of disk, reading offline device,
1238		 * etc).   This won't actually talk to the device, but
1239		 * some kinds of consistency checking may cause the
1240		 * request to be rejected immediately.
1241		 */
1242
1243		/*
1244		 * This sets up the scatter-gather table (allocating if
1245		 * required).
1246		 */
1247		ret = scsi_init_io(cmd);
1248		switch(ret) {
1249			/* For BLKPREP_KILL/DEFER the cmd was released */
1250		case BLKPREP_KILL:
1251			goto kill;
1252		case BLKPREP_DEFER:
1253			goto defer;
1254		}
1255
1256		/*
1257		 * Initialize the actual SCSI command for this request.
1258		 */
1259		if (req->rq_disk) {
1260			drv = *(struct scsi_driver **)req->rq_disk->private_data;
1261			if (unlikely(!drv->init_command(cmd))) {
1262				scsi_release_buffers(cmd);
1263				scsi_put_command(cmd);
1264				goto kill;
1265			}
1266		} else {
1267			memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1268			cmd->cmd_len = req->cmd_len;
1269			if (rq_data_dir(req) == WRITE)
1270				cmd->sc_data_direction = DMA_TO_DEVICE;
1271			else if (req->data_len)
1272				cmd->sc_data_direction = DMA_FROM_DEVICE;
1273			else
1274				cmd->sc_data_direction = DMA_NONE;
1275
1276			cmd->transfersize = req->data_len;
1277			cmd->allowed = 3;
1278			cmd->timeout_per_command = req->timeout;
1279			cmd->done = scsi_generic_done;
1280		}
1281	}
1282
1283	/*
1284	 * The request is now prepped, no need to come back here
1285	 */
1286	req->flags |= REQ_DONTPREP;
1287	return BLKPREP_OK;
1288
1289 defer:
1290	/* If we defer, the elv_next_request() returns NULL, but the
1291	 * queue must be restarted, so we plug here if no returning
1292	 * command will automatically do that. */
1293	if (sdev->device_busy == 0)
1294		blk_plug_device(q);
1295	return BLKPREP_DEFER;
1296 kill:
1297	req->errors = DID_NO_CONNECT << 16;
1298	return BLKPREP_KILL;
1299}
1300
1301/*
1302 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1303 * return 0.
1304 *
1305 * Called with the queue_lock held.
1306 */
1307static inline int scsi_dev_queue_ready(struct request_queue *q,
1308				  struct scsi_device *sdev)
1309{
1310	if (sdev->device_busy >= sdev->queue_depth)
1311		return 0;
1312	if (sdev->device_busy == 0 && sdev->device_blocked) {
1313		/*
1314		 * unblock after device_blocked iterates to zero
1315		 */
1316		if (--sdev->device_blocked == 0) {
1317			SCSI_LOG_MLQUEUE(3,
1318				printk("scsi%d (%d:%d) unblocking device at"
1319				       " zero depth\n", sdev->host->host_no,
1320				       sdev->id, sdev->lun));
1321		} else {
1322			blk_plug_device(q);
1323			return 0;
1324		}
1325	}
1326	if (sdev->device_blocked)
1327		return 0;
1328
1329	return 1;
1330}
1331
1332/*
1333 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1334 * return 0. We must end up running the queue again whenever 0 is
1335 * returned, else IO can hang.
1336 *
1337 * Called with host_lock held.
1338 */
1339static inline int scsi_host_queue_ready(struct request_queue *q,
1340				   struct Scsi_Host *shost,
1341				   struct scsi_device *sdev)
1342{
1343	if (scsi_host_in_recovery(shost))
1344		return 0;
1345	if (shost->host_busy == 0 && shost->host_blocked) {
1346		/*
1347		 * unblock after host_blocked iterates to zero
1348		 */
1349		if (--shost->host_blocked == 0) {
1350			SCSI_LOG_MLQUEUE(3,
1351				printk("scsi%d unblocking host at zero depth\n",
1352					shost->host_no));
1353		} else {
1354			blk_plug_device(q);
1355			return 0;
1356		}
1357	}
1358	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1359	    shost->host_blocked || shost->host_self_blocked) {
1360		if (list_empty(&sdev->starved_entry))
1361			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1362		return 0;
1363	}
1364
1365	/* We're OK to process the command, so we can't be starved */
1366	if (!list_empty(&sdev->starved_entry))
1367		list_del_init(&sdev->starved_entry);
1368
1369	return 1;
1370}
1371
1372/*
1373 * Kill a request for a dead device
1374 */
1375static void scsi_kill_request(struct request *req, request_queue_t *q)
1376{
1377	struct scsi_cmnd *cmd = req->special;
1378
1379	blkdev_dequeue_request(req);
1380
1381	if (unlikely(cmd == NULL)) {
1382		printk(KERN_CRIT "impossible request in %s.\n",
1383				 __FUNCTION__);
1384		BUG();
1385	}
1386
1387	scsi_init_cmd_errh(cmd);
1388	cmd->result = DID_NO_CONNECT << 16;
1389	atomic_inc(&cmd->device->iorequest_cnt);
1390	__scsi_done(cmd);
1391}
1392
1393/*
1394 * Function:    scsi_request_fn()
1395 *
1396 * Purpose:     Main strategy routine for SCSI.
1397 *
1398 * Arguments:   q       - Pointer to actual queue.
1399 *
1400 * Returns:     Nothing
1401 *
1402 * Lock status: IO request lock assumed to be held when called.
1403 */
1404static void scsi_request_fn(struct request_queue *q)
1405{
1406	struct scsi_device *sdev = q->queuedata;
1407	struct Scsi_Host *shost;
1408	struct scsi_cmnd *cmd;
1409	struct request *req;
1410
1411	if (!sdev) {
1412		printk("scsi: killing requests for dead queue\n");
1413		while ((req = elv_next_request(q)) != NULL)
1414			scsi_kill_request(req, q);
1415		return;
1416	}
1417
1418	if(!get_device(&sdev->sdev_gendev))
1419		/* We must be tearing the block queue down already */
1420		return;
1421
1422	/*
1423	 * To start with, we keep looping until the queue is empty, or until
1424	 * the host is no longer able to accept any more requests.
1425	 */
1426	shost = sdev->host;
1427	while (!blk_queue_plugged(q)) {
1428		int rtn;
1429		/*
1430		 * get next queueable request.  We do this early to make sure
1431		 * that the request is fully prepared even if we cannot
1432		 * accept it.
1433		 */
1434		req = elv_next_request(q);
1435		if (!req || !scsi_dev_queue_ready(q, sdev))
1436			break;
1437
1438		if (unlikely(!scsi_device_online(sdev))) {
1439			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1440			       sdev->host->host_no, sdev->id, sdev->lun);
1441			scsi_kill_request(req, q);
1442			continue;
1443		}
1444
1445
1446		/*
1447		 * Remove the request from the request list.
1448		 */
1449		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1450			blkdev_dequeue_request(req);
1451		sdev->device_busy++;
1452
1453		spin_unlock(q->queue_lock);
1454		cmd = req->special;
1455		if (unlikely(cmd == NULL)) {
1456			printk(KERN_CRIT "impossible request in %s.\n"
1457					 "please mail a stack trace to "
1458					 "linux-scsi@vger.kernel.org",
1459					 __FUNCTION__);
1460			BUG();
1461		}
1462		spin_lock(shost->host_lock);
1463
1464		if (!scsi_host_queue_ready(q, shost, sdev))
1465			goto not_ready;
1466		if (sdev->single_lun) {
1467			if (scsi_target(sdev)->starget_sdev_user &&
1468			    scsi_target(sdev)->starget_sdev_user != sdev)
1469				goto not_ready;
1470			scsi_target(sdev)->starget_sdev_user = sdev;
1471		}
1472		shost->host_busy++;
1473
1474		/*
1475		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1476		 *		take the lock again.
1477		 */
1478		spin_unlock_irq(shost->host_lock);
1479
1480		/*
1481		 * Finally, initialize any error handling parameters, and set up
1482		 * the timers for timeouts.
1483		 */
1484		scsi_init_cmd_errh(cmd);
1485
1486		/*
1487		 * Dispatch the command to the low-level driver.
1488		 */
1489		rtn = scsi_dispatch_cmd(cmd);
1490		spin_lock_irq(q->queue_lock);
1491		if(rtn) {
1492			/* we're refusing the command; because of
1493			 * the way locks get dropped, we need to
1494			 * check here if plugging is required */
1495			if(sdev->device_busy == 0)
1496				blk_plug_device(q);
1497
1498			break;
1499		}
1500	}
1501
1502	goto out;
1503
1504 not_ready:
1505	spin_unlock_irq(shost->host_lock);
1506
1507	/*
1508	 * lock q, handle tag, requeue req, and decrement device_busy. We
1509	 * must return with queue_lock held.
1510	 *
1511	 * Decrementing device_busy without checking it is OK, as all such
1512	 * cases (host limits or settings) should run the queue at some
1513	 * later time.
1514	 */
1515	spin_lock_irq(q->queue_lock);
1516	blk_requeue_request(q, req);
1517	sdev->device_busy--;
1518	if(sdev->device_busy == 0)
1519		blk_plug_device(q);
1520 out:
1521	/* must be careful here...if we trigger the ->remove() function
1522	 * we cannot be holding the q lock */
1523	spin_unlock_irq(q->queue_lock);
1524	put_device(&sdev->sdev_gendev);
1525	spin_lock_irq(q->queue_lock);
1526}
1527
1528u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1529{
1530	struct device *host_dev;
1531	u64 bounce_limit = 0xffffffff;
1532
1533	if (shost->unchecked_isa_dma)
1534		return BLK_BOUNCE_ISA;
1535	/*
1536	 * Platforms with virtual-DMA translation
1537	 * hardware have no practical limit.
1538	 */
1539	if (!PCI_DMA_BUS_IS_PHYS)
1540		return BLK_BOUNCE_ANY;
1541
1542	host_dev = scsi_get_device(shost);
1543	if (host_dev && host_dev->dma_mask)
1544		bounce_limit = *host_dev->dma_mask;
1545
1546	return bounce_limit;
1547}
1548EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1549
1550struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1551{
1552	struct Scsi_Host *shost = sdev->host;
1553	struct request_queue *q;
1554
1555	q = blk_init_queue(scsi_request_fn, NULL);
1556	if (!q)
1557		return NULL;
1558
1559	blk_queue_prep_rq(q, scsi_prep_fn);
1560
1561	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1562	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1563	blk_queue_max_sectors(q, shost->max_sectors);
1564	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1565	blk_queue_segment_boundary(q, shost->dma_boundary);
1566	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1567
1568	/*
1569	 * ordered tags are superior to flush ordering
1570	 */
1571	if (shost->ordered_tag)
1572		blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1573	else if (shost->ordered_flush) {
1574		blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1575		q->prepare_flush_fn = scsi_prepare_flush_fn;
1576		q->end_flush_fn = scsi_end_flush_fn;
1577	}
1578
1579	if (!shost->use_clustering)
1580		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1581	return q;
1582}
1583
1584void scsi_free_queue(struct request_queue *q)
1585{
1586	blk_cleanup_queue(q);
1587}
1588
1589/*
1590 * Function:    scsi_block_requests()
1591 *
1592 * Purpose:     Utility function used by low-level drivers to prevent further
1593 *		commands from being queued to the device.
1594 *
1595 * Arguments:   shost       - Host in question
1596 *
1597 * Returns:     Nothing
1598 *
1599 * Lock status: No locks are assumed held.
1600 *
1601 * Notes:       There is no timer nor any other means by which the requests
1602 *		get unblocked other than the low-level driver calling
1603 *		scsi_unblock_requests().
1604 */
1605void scsi_block_requests(struct Scsi_Host *shost)
1606{
1607	shost->host_self_blocked = 1;
1608}
1609EXPORT_SYMBOL(scsi_block_requests);
1610
1611/*
1612 * Function:    scsi_unblock_requests()
1613 *
1614 * Purpose:     Utility function used by low-level drivers to allow further
1615 *		commands from being queued to the device.
1616 *
1617 * Arguments:   shost       - Host in question
1618 *
1619 * Returns:     Nothing
1620 *
1621 * Lock status: No locks are assumed held.
1622 *
1623 * Notes:       There is no timer nor any other means by which the requests
1624 *		get unblocked other than the low-level driver calling
1625 *		scsi_unblock_requests().
1626 *
1627 *		This is done as an API function so that changes to the
1628 *		internals of the scsi mid-layer won't require wholesale
1629 *		changes to drivers that use this feature.
1630 */
1631void scsi_unblock_requests(struct Scsi_Host *shost)
1632{
1633	shost->host_self_blocked = 0;
1634	scsi_run_host_queues(shost);
1635}
1636EXPORT_SYMBOL(scsi_unblock_requests);
1637
1638int __init scsi_init_queue(void)
1639{
1640	int i;
1641
1642	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1643		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1644		int size = sgp->size * sizeof(struct scatterlist);
1645
1646		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1647				SLAB_HWCACHE_ALIGN, NULL, NULL);
1648		if (!sgp->slab) {
1649			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1650					sgp->name);
1651		}
1652
1653		sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1654				mempool_alloc_slab, mempool_free_slab,
1655				sgp->slab);
1656		if (!sgp->pool) {
1657			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1658					sgp->name);
1659		}
1660	}
1661
1662	return 0;
1663}
1664
1665void scsi_exit_queue(void)
1666{
1667	int i;
1668
1669	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1670		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1671		mempool_destroy(sgp->pool);
1672		kmem_cache_destroy(sgp->slab);
1673	}
1674}
1675/**
1676 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1677 *		six bytes if necessary.
1678 *	@sdev:	SCSI device to be queried
1679 *	@dbd:	set if mode sense will allow block descriptors to be returned
1680 *	@modepage: mode page being requested
1681 *	@buffer: request buffer (may not be smaller than eight bytes)
1682 *	@len:	length of request buffer.
1683 *	@timeout: command timeout
1684 *	@retries: number of retries before failing
1685 *	@data: returns a structure abstracting the mode header data
1686 *	@sense: place to put sense data (or NULL if no sense to be collected).
1687 *		must be SCSI_SENSE_BUFFERSIZE big.
1688 *
1689 *	Returns zero if unsuccessful, or the header offset (either 4
1690 *	or 8 depending on whether a six or ten byte command was
1691 *	issued) if successful.
1692 **/
1693int
1694scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1695		  unsigned char *buffer, int len, int timeout, int retries,
1696		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1697	unsigned char cmd[12];
1698	int use_10_for_ms;
1699	int header_length;
1700	int result;
1701	struct scsi_sense_hdr my_sshdr;
1702
1703	memset(data, 0, sizeof(*data));
1704	memset(&cmd[0], 0, 12);
1705	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1706	cmd[2] = modepage;
1707
1708	/* caller might not be interested in sense, but we need it */
1709	if (!sshdr)
1710		sshdr = &my_sshdr;
1711
1712 retry:
1713	use_10_for_ms = sdev->use_10_for_ms;
1714
1715	if (use_10_for_ms) {
1716		if (len < 8)
1717			len = 8;
1718
1719		cmd[0] = MODE_SENSE_10;
1720		cmd[8] = len;
1721		header_length = 8;
1722	} else {
1723		if (len < 4)
1724			len = 4;
1725
1726		cmd[0] = MODE_SENSE;
1727		cmd[4] = len;
1728		header_length = 4;
1729	}
1730
1731	memset(buffer, 0, len);
1732
1733	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1734				  sshdr, timeout, retries);
1735
1736	/* This code looks awful: what it's doing is making sure an
1737	 * ILLEGAL REQUEST sense return identifies the actual command
1738	 * byte as the problem.  MODE_SENSE commands can return
1739	 * ILLEGAL REQUEST if the code page isn't supported */
1740
1741	if (use_10_for_ms && !scsi_status_is_good(result) &&
1742	    (driver_byte(result) & DRIVER_SENSE)) {
1743		if (scsi_sense_valid(sshdr)) {
1744			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1745			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1746				/*
1747				 * Invalid command operation code
1748				 */
1749				sdev->use_10_for_ms = 0;
1750				goto retry;
1751			}
1752		}
1753	}
1754
1755	if(scsi_status_is_good(result)) {
1756		data->header_length = header_length;
1757		if(use_10_for_ms) {
1758			data->length = buffer[0]*256 + buffer[1] + 2;
1759			data->medium_type = buffer[2];
1760			data->device_specific = buffer[3];
1761			data->longlba = buffer[4] & 0x01;
1762			data->block_descriptor_length = buffer[6]*256
1763				+ buffer[7];
1764		} else {
1765			data->length = buffer[0] + 1;
1766			data->medium_type = buffer[1];
1767			data->device_specific = buffer[2];
1768			data->block_descriptor_length = buffer[3];
1769		}
1770	}
1771
1772	return result;
1773}
1774EXPORT_SYMBOL(scsi_mode_sense);
1775
1776int
1777scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1778{
1779	char cmd[] = {
1780		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1781	};
1782	struct scsi_sense_hdr sshdr;
1783	int result;
1784
1785	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1786				  timeout, retries);
1787
1788	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1789
1790		if ((scsi_sense_valid(&sshdr)) &&
1791		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1792		     (sshdr.sense_key == NOT_READY))) {
1793			sdev->changed = 1;
1794			result = 0;
1795		}
1796	}
1797	return result;
1798}
1799EXPORT_SYMBOL(scsi_test_unit_ready);
1800
1801/**
1802 *	scsi_device_set_state - Take the given device through the device
1803 *		state model.
1804 *	@sdev:	scsi device to change the state of.
1805 *	@state:	state to change to.
1806 *
1807 *	Returns zero if unsuccessful or an error if the requested
1808 *	transition is illegal.
1809 **/
1810int
1811scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1812{
1813	enum scsi_device_state oldstate = sdev->sdev_state;
1814
1815	if (state == oldstate)
1816		return 0;
1817
1818	switch (state) {
1819	case SDEV_CREATED:
1820		/* There are no legal states that come back to
1821		 * created.  This is the manually initialised start
1822		 * state */
1823		goto illegal;
1824
1825	case SDEV_RUNNING:
1826		switch (oldstate) {
1827		case SDEV_CREATED:
1828		case SDEV_OFFLINE:
1829		case SDEV_QUIESCE:
1830		case SDEV_BLOCK:
1831			break;
1832		default:
1833			goto illegal;
1834		}
1835		break;
1836
1837	case SDEV_QUIESCE:
1838		switch (oldstate) {
1839		case SDEV_RUNNING:
1840		case SDEV_OFFLINE:
1841			break;
1842		default:
1843			goto illegal;
1844		}
1845		break;
1846
1847	case SDEV_OFFLINE:
1848		switch (oldstate) {
1849		case SDEV_CREATED:
1850		case SDEV_RUNNING:
1851		case SDEV_QUIESCE:
1852		case SDEV_BLOCK:
1853			break;
1854		default:
1855			goto illegal;
1856		}
1857		break;
1858
1859	case SDEV_BLOCK:
1860		switch (oldstate) {
1861		case SDEV_CREATED:
1862		case SDEV_RUNNING:
1863			break;
1864		default:
1865			goto illegal;
1866		}
1867		break;
1868
1869	case SDEV_CANCEL:
1870		switch (oldstate) {
1871		case SDEV_CREATED:
1872		case SDEV_RUNNING:
1873		case SDEV_OFFLINE:
1874		case SDEV_BLOCK:
1875			break;
1876		default:
1877			goto illegal;
1878		}
1879		break;
1880
1881	case SDEV_DEL:
1882		switch (oldstate) {
1883		case SDEV_CANCEL:
1884			break;
1885		default:
1886			goto illegal;
1887		}
1888		break;
1889
1890	}
1891	sdev->sdev_state = state;
1892	return 0;
1893
1894 illegal:
1895	SCSI_LOG_ERROR_RECOVERY(1,
1896				dev_printk(KERN_ERR, &sdev->sdev_gendev,
1897					   "Illegal state transition %s->%s\n",
1898					   scsi_device_state_name(oldstate),
1899					   scsi_device_state_name(state))
1900				);
1901	return -EINVAL;
1902}
1903EXPORT_SYMBOL(scsi_device_set_state);
1904
1905/**
1906 *	scsi_device_quiesce - Block user issued commands.
1907 *	@sdev:	scsi device to quiesce.
1908 *
1909 *	This works by trying to transition to the SDEV_QUIESCE state
1910 *	(which must be a legal transition).  When the device is in this
1911 *	state, only special requests will be accepted, all others will
1912 *	be deferred.  Since special requests may also be requeued requests,
1913 *	a successful return doesn't guarantee the device will be
1914 *	totally quiescent.
1915 *
1916 *	Must be called with user context, may sleep.
1917 *
1918 *	Returns zero if unsuccessful or an error if not.
1919 **/
1920int
1921scsi_device_quiesce(struct scsi_device *sdev)
1922{
1923	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1924	if (err)
1925		return err;
1926
1927	scsi_run_queue(sdev->request_queue);
1928	while (sdev->device_busy) {
1929		msleep_interruptible(200);
1930		scsi_run_queue(sdev->request_queue);
1931	}
1932	return 0;
1933}
1934EXPORT_SYMBOL(scsi_device_quiesce);
1935
1936/**
1937 *	scsi_device_resume - Restart user issued commands to a quiesced device.
1938 *	@sdev:	scsi device to resume.
1939 *
1940 *	Moves the device from quiesced back to running and restarts the
1941 *	queues.
1942 *
1943 *	Must be called with user context, may sleep.
1944 **/
1945void
1946scsi_device_resume(struct scsi_device *sdev)
1947{
1948	if(scsi_device_set_state(sdev, SDEV_RUNNING))
1949		return;
1950	scsi_run_queue(sdev->request_queue);
1951}
1952EXPORT_SYMBOL(scsi_device_resume);
1953
1954static void
1955device_quiesce_fn(struct scsi_device *sdev, void *data)
1956{
1957	scsi_device_quiesce(sdev);
1958}
1959
1960void
1961scsi_target_quiesce(struct scsi_target *starget)
1962{
1963	starget_for_each_device(starget, NULL, device_quiesce_fn);
1964}
1965EXPORT_SYMBOL(scsi_target_quiesce);
1966
1967static void
1968device_resume_fn(struct scsi_device *sdev, void *data)
1969{
1970	scsi_device_resume(sdev);
1971}
1972
1973void
1974scsi_target_resume(struct scsi_target *starget)
1975{
1976	starget_for_each_device(starget, NULL, device_resume_fn);
1977}
1978EXPORT_SYMBOL(scsi_target_resume);
1979
1980/**
1981 * scsi_internal_device_block - internal function to put a device
1982 *				temporarily into the SDEV_BLOCK state
1983 * @sdev:	device to block
1984 *
1985 * Block request made by scsi lld's to temporarily stop all
1986 * scsi commands on the specified device.  Called from interrupt
1987 * or normal process context.
1988 *
1989 * Returns zero if successful or error if not
1990 *
1991 * Notes:
1992 *	This routine transitions the device to the SDEV_BLOCK state
1993 *	(which must be a legal transition).  When the device is in this
1994 *	state, all commands are deferred until the scsi lld reenables
1995 *	the device with scsi_device_unblock or device_block_tmo fires.
1996 *	This routine assumes the host_lock is held on entry.
1997 **/
1998int
1999scsi_internal_device_block(struct scsi_device *sdev)
2000{
2001	request_queue_t *q = sdev->request_queue;
2002	unsigned long flags;
2003	int err = 0;
2004
2005	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2006	if (err)
2007		return err;
2008
2009	/*
2010	 * The device has transitioned to SDEV_BLOCK.  Stop the
2011	 * block layer from calling the midlayer with this device's
2012	 * request queue.
2013	 */
2014	spin_lock_irqsave(q->queue_lock, flags);
2015	blk_stop_queue(q);
2016	spin_unlock_irqrestore(q->queue_lock, flags);
2017
2018	return 0;
2019}
2020EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2021
2022/**
2023 * scsi_internal_device_unblock - resume a device after a block request
2024 * @sdev:	device to resume
2025 *
2026 * Called by scsi lld's or the midlayer to restart the device queue
2027 * for the previously suspended scsi device.  Called from interrupt or
2028 * normal process context.
2029 *
2030 * Returns zero if successful or error if not.
2031 *
2032 * Notes:
2033 *	This routine transitions the device to the SDEV_RUNNING state
2034 *	(which must be a legal transition) allowing the midlayer to
2035 *	goose the queue for this device.  This routine assumes the
2036 *	host_lock is held upon entry.
2037 **/
2038int
2039scsi_internal_device_unblock(struct scsi_device *sdev)
2040{
2041	request_queue_t *q = sdev->request_queue;
2042	int err;
2043	unsigned long flags;
2044
2045	/*
2046	 * Try to transition the scsi device to SDEV_RUNNING
2047	 * and goose the device queue if successful.
2048	 */
2049	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2050	if (err)
2051		return err;
2052
2053	spin_lock_irqsave(q->queue_lock, flags);
2054	blk_start_queue(q);
2055	spin_unlock_irqrestore(q->queue_lock, flags);
2056
2057	return 0;
2058}
2059EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2060
2061static void
2062device_block(struct scsi_device *sdev, void *data)
2063{
2064	scsi_internal_device_block(sdev);
2065}
2066
2067static int
2068target_block(struct device *dev, void *data)
2069{
2070	if (scsi_is_target_device(dev))
2071		starget_for_each_device(to_scsi_target(dev), NULL,
2072					device_block);
2073	return 0;
2074}
2075
2076void
2077scsi_target_block(struct device *dev)
2078{
2079	if (scsi_is_target_device(dev))
2080		starget_for_each_device(to_scsi_target(dev), NULL,
2081					device_block);
2082	else
2083		device_for_each_child(dev, NULL, target_block);
2084}
2085EXPORT_SYMBOL_GPL(scsi_target_block);
2086
2087static void
2088device_unblock(struct scsi_device *sdev, void *data)
2089{
2090	scsi_internal_device_unblock(sdev);
2091}
2092
2093static int
2094target_unblock(struct device *dev, void *data)
2095{
2096	if (scsi_is_target_device(dev))
2097		starget_for_each_device(to_scsi_target(dev), NULL,
2098					device_unblock);
2099	return 0;
2100}
2101
2102void
2103scsi_target_unblock(struct device *dev)
2104{
2105	if (scsi_is_target_device(dev))
2106		starget_for_each_device(to_scsi_target(dev), NULL,
2107					device_unblock);
2108	else
2109		device_for_each_child(dev, NULL, target_unblock);
2110}
2111EXPORT_SYMBOL_GPL(scsi_target_unblock);
2112