adutux.c revision 86266452f80545285c14e20a8024f79c4fb88a86
1/*
2 * adutux - driver for ADU devices from Ontrak Control Systems
3 * This is an experimental driver. Use at your own risk.
4 * This driver is not supported by Ontrak Control Systems.
5 *
6 * Copyright (c) 2003 John Homppi (SCO, leave this notice here)
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * derived from the Lego USB Tower driver 0.56:
14 * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net>
15 *               2001 Juergen Stuber <stuber@loria.fr>
16 * that was derived from USB Skeleton driver - 0.5
17 * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
18 *
19 */
20
21#include <linux/kernel.h>
22#include <linux/errno.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/module.h>
26#include <linux/usb.h>
27#include <linux/mutex.h>
28#include <linux/smp_lock.h>
29#include <asm/uaccess.h>
30
31#ifdef CONFIG_USB_DEBUG
32static int debug = 5;
33#else
34static int debug = 1;
35#endif
36
37/* Use our own dbg macro */
38#undef dbg
39#define dbg(lvl, format, arg...) 					\
40do { 									\
41	if (debug >= lvl)						\
42		printk(KERN_DEBUG __FILE__ " : " format " \n", ## arg);	\
43} while (0)
44
45
46/* Version Information */
47#define DRIVER_VERSION "v0.0.13"
48#define DRIVER_AUTHOR "John Homppi"
49#define DRIVER_DESC "adutux (see www.ontrak.net)"
50
51/* Module parameters */
52module_param(debug, int, S_IRUGO | S_IWUSR);
53MODULE_PARM_DESC(debug, "Debug enabled or not");
54
55/* Define these values to match your device */
56#define ADU_VENDOR_ID 0x0a07
57#define ADU_PRODUCT_ID 0x0064
58
59/* table of devices that work with this driver */
60static const struct usb_device_id device_table[] = {
61	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) },		/* ADU100 */
62	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, 	/* ADU120 */
63	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, 	/* ADU130 */
64	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) },	/* ADU200 */
65	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) },	/* ADU208 */
66	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) },	/* ADU218 */
67	{ }/* Terminating entry */
68};
69
70MODULE_DEVICE_TABLE(usb, device_table);
71
72#ifdef CONFIG_USB_DYNAMIC_MINORS
73#define ADU_MINOR_BASE	0
74#else
75#define ADU_MINOR_BASE	67
76#endif
77
78/* we can have up to this number of device plugged in at once */
79#define MAX_DEVICES	16
80
81#define COMMAND_TIMEOUT	(2*HZ)	/* 60 second timeout for a command */
82
83/*
84 * The locking scheme is a vanilla 3-lock:
85 *   adu_device.buflock: A spinlock, covers what IRQs touch.
86 *   adutux_mutex:       A Static lock to cover open_count. It would also cover
87 *                       any globals, but we don't have them in 2.6.
88 *   adu_device.mtx:     A mutex to hold across sleepers like copy_from_user.
89 *                       It covers all of adu_device, except the open_count
90 *                       and what .buflock covers.
91 */
92
93/* Structure to hold all of our device specific stuff */
94struct adu_device {
95	struct mutex		mtx;
96	struct usb_device*	udev; /* save off the usb device pointer */
97	struct usb_interface*	interface;
98	unsigned int		minor; /* the starting minor number for this device */
99	char			serial_number[8];
100
101	int			open_count; /* number of times this port has been opened */
102
103	char*			read_buffer_primary;
104	int			read_buffer_length;
105	char*			read_buffer_secondary;
106	int			secondary_head;
107	int			secondary_tail;
108	spinlock_t		buflock;
109
110	wait_queue_head_t	read_wait;
111	wait_queue_head_t	write_wait;
112
113	char*			interrupt_in_buffer;
114	struct usb_endpoint_descriptor* interrupt_in_endpoint;
115	struct urb*		interrupt_in_urb;
116	int			read_urb_finished;
117
118	char*			interrupt_out_buffer;
119	struct usb_endpoint_descriptor* interrupt_out_endpoint;
120	struct urb*		interrupt_out_urb;
121	int			out_urb_finished;
122};
123
124static DEFINE_MUTEX(adutux_mutex);
125
126static struct usb_driver adu_driver;
127
128static void adu_debug_data(int level, const char *function, int size,
129			   const unsigned char *data)
130{
131	int i;
132
133	if (debug < level)
134		return;
135
136	printk(KERN_DEBUG __FILE__": %s - length = %d, data = ",
137	       function, size);
138	for (i = 0; i < size; ++i)
139		printk("%.2x ", data[i]);
140	printk("\n");
141}
142
143/**
144 * adu_abort_transfers
145 *      aborts transfers and frees associated data structures
146 */
147static void adu_abort_transfers(struct adu_device *dev)
148{
149	unsigned long flags;
150
151	dbg(2," %s : enter", __func__);
152
153	if (dev->udev == NULL) {
154		dbg(1," %s : udev is null", __func__);
155		goto exit;
156	}
157
158	/* shutdown transfer */
159
160	/* XXX Anchor these instead */
161	spin_lock_irqsave(&dev->buflock, flags);
162	if (!dev->read_urb_finished) {
163		spin_unlock_irqrestore(&dev->buflock, flags);
164		usb_kill_urb(dev->interrupt_in_urb);
165	} else
166		spin_unlock_irqrestore(&dev->buflock, flags);
167
168	spin_lock_irqsave(&dev->buflock, flags);
169	if (!dev->out_urb_finished) {
170		spin_unlock_irqrestore(&dev->buflock, flags);
171		usb_kill_urb(dev->interrupt_out_urb);
172	} else
173		spin_unlock_irqrestore(&dev->buflock, flags);
174
175exit:
176	dbg(2," %s : leave", __func__);
177}
178
179static void adu_delete(struct adu_device *dev)
180{
181	dbg(2, "%s enter", __func__);
182
183	/* free data structures */
184	usb_free_urb(dev->interrupt_in_urb);
185	usb_free_urb(dev->interrupt_out_urb);
186	kfree(dev->read_buffer_primary);
187	kfree(dev->read_buffer_secondary);
188	kfree(dev->interrupt_in_buffer);
189	kfree(dev->interrupt_out_buffer);
190	kfree(dev);
191
192	dbg(2, "%s : leave", __func__);
193}
194
195static void adu_interrupt_in_callback(struct urb *urb)
196{
197	struct adu_device *dev = urb->context;
198	int status = urb->status;
199
200	dbg(4," %s : enter, status %d", __func__, status);
201	adu_debug_data(5, __func__, urb->actual_length,
202		       urb->transfer_buffer);
203
204	spin_lock(&dev->buflock);
205
206	if (status != 0) {
207		if ((status != -ENOENT) && (status != -ECONNRESET) &&
208			(status != -ESHUTDOWN)) {
209			dbg(1," %s : nonzero status received: %d",
210			    __func__, status);
211		}
212		goto exit;
213	}
214
215	if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) {
216		if (dev->read_buffer_length <
217		    (4 * le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize)) -
218		     (urb->actual_length)) {
219			memcpy (dev->read_buffer_primary +
220				dev->read_buffer_length,
221				dev->interrupt_in_buffer, urb->actual_length);
222
223			dev->read_buffer_length += urb->actual_length;
224			dbg(2," %s reading  %d ", __func__,
225			    urb->actual_length);
226		} else {
227			dbg(1," %s : read_buffer overflow", __func__);
228		}
229	}
230
231exit:
232	dev->read_urb_finished = 1;
233	spin_unlock(&dev->buflock);
234	/* always wake up so we recover from errors */
235	wake_up_interruptible(&dev->read_wait);
236	adu_debug_data(5, __func__, urb->actual_length,
237		       urb->transfer_buffer);
238	dbg(4," %s : leave, status %d", __func__, status);
239}
240
241static void adu_interrupt_out_callback(struct urb *urb)
242{
243	struct adu_device *dev = urb->context;
244	int status = urb->status;
245
246	dbg(4," %s : enter, status %d", __func__, status);
247	adu_debug_data(5,__func__, urb->actual_length, urb->transfer_buffer);
248
249	if (status != 0) {
250		if ((status != -ENOENT) &&
251		    (status != -ECONNRESET)) {
252			dbg(1, " %s :nonzero status received: %d",
253			    __func__, status);
254		}
255		goto exit;
256	}
257
258	spin_lock(&dev->buflock);
259	dev->out_urb_finished = 1;
260	wake_up(&dev->write_wait);
261	spin_unlock(&dev->buflock);
262exit:
263
264	adu_debug_data(5, __func__, urb->actual_length,
265		       urb->transfer_buffer);
266	dbg(4," %s : leave, status %d", __func__, status);
267}
268
269static int adu_open(struct inode *inode, struct file *file)
270{
271	struct adu_device *dev = NULL;
272	struct usb_interface *interface;
273	int subminor;
274	int retval;
275
276	dbg(2,"%s : enter", __func__);
277
278	lock_kernel();
279	subminor = iminor(inode);
280
281	if ((retval = mutex_lock_interruptible(&adutux_mutex))) {
282		dbg(2, "%s : mutex lock failed", __func__);
283		goto exit_no_lock;
284	}
285
286	interface = usb_find_interface(&adu_driver, subminor);
287	if (!interface) {
288		printk(KERN_ERR "adutux: %s - error, can't find device for "
289		       "minor %d\n", __func__, subminor);
290		retval = -ENODEV;
291		goto exit_no_device;
292	}
293
294	dev = usb_get_intfdata(interface);
295	if (!dev || !dev->udev) {
296		retval = -ENODEV;
297		goto exit_no_device;
298	}
299
300	/* check that nobody else is using the device */
301	if (dev->open_count) {
302		retval = -EBUSY;
303		goto exit_no_device;
304	}
305
306	++dev->open_count;
307	dbg(2,"%s : open count %d", __func__, dev->open_count);
308
309	/* save device in the file's private structure */
310	file->private_data = dev;
311
312	/* initialize in direction */
313	dev->read_buffer_length = 0;
314
315	/* fixup first read by having urb waiting for it */
316	usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
317			 usb_rcvintpipe(dev->udev,
318					dev->interrupt_in_endpoint->bEndpointAddress),
319			 dev->interrupt_in_buffer,
320			 le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
321			 adu_interrupt_in_callback, dev,
322			 dev->interrupt_in_endpoint->bInterval);
323	dev->read_urb_finished = 0;
324	if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL))
325		dev->read_urb_finished = 1;
326	/* we ignore failure */
327	/* end of fixup for first read */
328
329	/* initialize out direction */
330	dev->out_urb_finished = 1;
331
332	retval = 0;
333
334exit_no_device:
335	mutex_unlock(&adutux_mutex);
336exit_no_lock:
337	unlock_kernel();
338	dbg(2,"%s : leave, return value %d ", __func__, retval);
339	return retval;
340}
341
342static void adu_release_internal(struct adu_device *dev)
343{
344	dbg(2," %s : enter", __func__);
345
346	/* decrement our usage count for the device */
347	--dev->open_count;
348	dbg(2," %s : open count %d", __func__, dev->open_count);
349	if (dev->open_count <= 0) {
350		adu_abort_transfers(dev);
351		dev->open_count = 0;
352	}
353
354	dbg(2," %s : leave", __func__);
355}
356
357static int adu_release(struct inode *inode, struct file *file)
358{
359	struct adu_device *dev;
360	int retval = 0;
361
362	dbg(2," %s : enter", __func__);
363
364	if (file == NULL) {
365 		dbg(1," %s : file is NULL", __func__);
366		retval = -ENODEV;
367		goto exit;
368	}
369
370	dev = file->private_data;
371	if (dev == NULL) {
372 		dbg(1," %s : object is NULL", __func__);
373		retval = -ENODEV;
374		goto exit;
375	}
376
377	mutex_lock(&adutux_mutex); /* not interruptible */
378
379	if (dev->open_count <= 0) {
380		dbg(1," %s : device not opened", __func__);
381		retval = -ENODEV;
382		goto unlock;
383	}
384
385	adu_release_internal(dev);
386	if (dev->udev == NULL) {
387		/* the device was unplugged before the file was released */
388		if (!dev->open_count)	/* ... and we're the last user */
389			adu_delete(dev);
390	}
391unlock:
392	mutex_unlock(&adutux_mutex);
393exit:
394	dbg(2," %s : leave, return value %d", __func__, retval);
395	return retval;
396}
397
398static ssize_t adu_read(struct file *file, __user char *buffer, size_t count,
399			loff_t *ppos)
400{
401	struct adu_device *dev;
402	size_t bytes_read = 0;
403	size_t bytes_to_read = count;
404	int i;
405	int retval = 0;
406	int timeout = 0;
407	int should_submit = 0;
408	unsigned long flags;
409	DECLARE_WAITQUEUE(wait, current);
410
411	dbg(2," %s : enter, count = %Zd, file=%p", __func__, count, file);
412
413	dev = file->private_data;
414	dbg(2," %s : dev=%p", __func__, dev);
415
416	if (mutex_lock_interruptible(&dev->mtx))
417		return -ERESTARTSYS;
418
419	/* verify that the device wasn't unplugged */
420	if (dev->udev == NULL) {
421		retval = -ENODEV;
422		printk(KERN_ERR "adutux: No device or device unplugged %d\n",
423		       retval);
424		goto exit;
425	}
426
427	/* verify that some data was requested */
428	if (count == 0) {
429		dbg(1," %s : read request of 0 bytes", __func__);
430		goto exit;
431	}
432
433	timeout = COMMAND_TIMEOUT;
434	dbg(2," %s : about to start looping", __func__);
435	while (bytes_to_read) {
436		int data_in_secondary = dev->secondary_tail - dev->secondary_head;
437		dbg(2," %s : while, data_in_secondary=%d, status=%d",
438		    __func__, data_in_secondary,
439		    dev->interrupt_in_urb->status);
440
441		if (data_in_secondary) {
442			/* drain secondary buffer */
443			int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary;
444			i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount);
445			if (i < 0) {
446				retval = -EFAULT;
447				goto exit;
448			}
449			dev->secondary_head += (amount - i);
450			bytes_read += (amount - i);
451			bytes_to_read -= (amount - i);
452			if (i) {
453				retval = bytes_read ? bytes_read : -EFAULT;
454				goto exit;
455			}
456		} else {
457			/* we check the primary buffer */
458			spin_lock_irqsave (&dev->buflock, flags);
459			if (dev->read_buffer_length) {
460				/* we secure access to the primary */
461				char *tmp;
462				dbg(2," %s : swap, read_buffer_length = %d",
463				    __func__, dev->read_buffer_length);
464				tmp = dev->read_buffer_secondary;
465				dev->read_buffer_secondary = dev->read_buffer_primary;
466				dev->read_buffer_primary = tmp;
467				dev->secondary_head = 0;
468				dev->secondary_tail = dev->read_buffer_length;
469				dev->read_buffer_length = 0;
470				spin_unlock_irqrestore(&dev->buflock, flags);
471				/* we have a free buffer so use it */
472				should_submit = 1;
473			} else {
474				/* even the primary was empty - we may need to do IO */
475				if (!dev->read_urb_finished) {
476					/* somebody is doing IO */
477					spin_unlock_irqrestore(&dev->buflock, flags);
478					dbg(2," %s : submitted already", __func__);
479				} else {
480					/* we must initiate input */
481					dbg(2," %s : initiate input", __func__);
482					dev->read_urb_finished = 0;
483					spin_unlock_irqrestore(&dev->buflock, flags);
484
485					usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
486							 usb_rcvintpipe(dev->udev,
487							 		dev->interrupt_in_endpoint->bEndpointAddress),
488							 dev->interrupt_in_buffer,
489							 le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
490							 adu_interrupt_in_callback,
491							 dev,
492							 dev->interrupt_in_endpoint->bInterval);
493					retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
494					if (retval) {
495						dev->read_urb_finished = 1;
496						if (retval == -ENOMEM) {
497							retval = bytes_read ? bytes_read : -ENOMEM;
498						}
499						dbg(2," %s : submit failed", __func__);
500						goto exit;
501					}
502				}
503
504				/* we wait for I/O to complete */
505				set_current_state(TASK_INTERRUPTIBLE);
506				add_wait_queue(&dev->read_wait, &wait);
507				spin_lock_irqsave(&dev->buflock, flags);
508				if (!dev->read_urb_finished) {
509					spin_unlock_irqrestore(&dev->buflock, flags);
510					timeout = schedule_timeout(COMMAND_TIMEOUT);
511				} else {
512					spin_unlock_irqrestore(&dev->buflock, flags);
513					set_current_state(TASK_RUNNING);
514				}
515				remove_wait_queue(&dev->read_wait, &wait);
516
517				if (timeout <= 0) {
518					dbg(2," %s : timeout", __func__);
519					retval = bytes_read ? bytes_read : -ETIMEDOUT;
520					goto exit;
521				}
522
523				if (signal_pending(current)) {
524					dbg(2," %s : signal pending", __func__);
525					retval = bytes_read ? bytes_read : -EINTR;
526					goto exit;
527				}
528			}
529		}
530	}
531
532	retval = bytes_read;
533	/* if the primary buffer is empty then use it */
534	spin_lock_irqsave(&dev->buflock, flags);
535	if (should_submit && dev->read_urb_finished) {
536		dev->read_urb_finished = 0;
537		spin_unlock_irqrestore(&dev->buflock, flags);
538		usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
539				 usb_rcvintpipe(dev->udev,
540				 		dev->interrupt_in_endpoint->bEndpointAddress),
541				dev->interrupt_in_buffer,
542				le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
543				adu_interrupt_in_callback,
544				dev,
545				dev->interrupt_in_endpoint->bInterval);
546		if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0)
547			dev->read_urb_finished = 1;
548		/* we ignore failure */
549	} else {
550		spin_unlock_irqrestore(&dev->buflock, flags);
551	}
552
553exit:
554	/* unlock the device */
555	mutex_unlock(&dev->mtx);
556
557	dbg(2," %s : leave, return value %d", __func__, retval);
558	return retval;
559}
560
561static ssize_t adu_write(struct file *file, const __user char *buffer,
562			 size_t count, loff_t *ppos)
563{
564	DECLARE_WAITQUEUE(waita, current);
565	struct adu_device *dev;
566	size_t bytes_written = 0;
567	size_t bytes_to_write;
568	size_t buffer_size;
569	unsigned long flags;
570	int retval;
571
572	dbg(2," %s : enter, count = %Zd", __func__, count);
573
574	dev = file->private_data;
575
576	retval = mutex_lock_interruptible(&dev->mtx);
577	if (retval)
578		goto exit_nolock;
579
580	/* verify that the device wasn't unplugged */
581	if (dev->udev == NULL) {
582		retval = -ENODEV;
583		printk(KERN_ERR "adutux: No device or device unplugged %d\n",
584		       retval);
585		goto exit;
586	}
587
588	/* verify that we actually have some data to write */
589	if (count == 0) {
590		dbg(1," %s : write request of 0 bytes", __func__);
591		goto exit;
592	}
593
594	while (count > 0) {
595		add_wait_queue(&dev->write_wait, &waita);
596		set_current_state(TASK_INTERRUPTIBLE);
597		spin_lock_irqsave(&dev->buflock, flags);
598		if (!dev->out_urb_finished) {
599			spin_unlock_irqrestore(&dev->buflock, flags);
600
601			mutex_unlock(&dev->mtx);
602			if (signal_pending(current)) {
603				dbg(1," %s : interrupted", __func__);
604				set_current_state(TASK_RUNNING);
605				retval = -EINTR;
606				goto exit_onqueue;
607			}
608			if (schedule_timeout(COMMAND_TIMEOUT) == 0) {
609				dbg(1, "%s - command timed out.", __func__);
610				retval = -ETIMEDOUT;
611				goto exit_onqueue;
612			}
613			remove_wait_queue(&dev->write_wait, &waita);
614			retval = mutex_lock_interruptible(&dev->mtx);
615			if (retval) {
616				retval = bytes_written ? bytes_written : retval;
617				goto exit_nolock;
618			}
619
620			dbg(4," %s : in progress, count = %Zd", __func__, count);
621		} else {
622			spin_unlock_irqrestore(&dev->buflock, flags);
623			set_current_state(TASK_RUNNING);
624			remove_wait_queue(&dev->write_wait, &waita);
625			dbg(4," %s : sending, count = %Zd", __func__, count);
626
627			/* write the data into interrupt_out_buffer from userspace */
628			buffer_size = le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize);
629			bytes_to_write = count > buffer_size ? buffer_size : count;
630			dbg(4," %s : buffer_size = %Zd, count = %Zd, bytes_to_write = %Zd",
631			    __func__, buffer_size, count, bytes_to_write);
632
633			if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) {
634				retval = -EFAULT;
635				goto exit;
636			}
637
638			/* send off the urb */
639			usb_fill_int_urb(
640				dev->interrupt_out_urb,
641				dev->udev,
642				usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress),
643				dev->interrupt_out_buffer,
644				bytes_to_write,
645				adu_interrupt_out_callback,
646				dev,
647				dev->interrupt_out_endpoint->bInterval);
648			dev->interrupt_out_urb->actual_length = bytes_to_write;
649			dev->out_urb_finished = 0;
650			retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL);
651			if (retval < 0) {
652				dev->out_urb_finished = 1;
653				dev_err(&dev->udev->dev, "Couldn't submit "
654					"interrupt_out_urb %d\n", retval);
655				goto exit;
656			}
657
658			buffer += bytes_to_write;
659			count -= bytes_to_write;
660
661			bytes_written += bytes_to_write;
662		}
663	}
664	mutex_unlock(&dev->mtx);
665	return bytes_written;
666
667exit:
668	mutex_unlock(&dev->mtx);
669exit_nolock:
670	dbg(2," %s : leave, return value %d", __func__, retval);
671	return retval;
672
673exit_onqueue:
674	remove_wait_queue(&dev->write_wait, &waita);
675	return retval;
676}
677
678/* file operations needed when we register this driver */
679static const struct file_operations adu_fops = {
680	.owner = THIS_MODULE,
681	.read  = adu_read,
682	.write = adu_write,
683	.open = adu_open,
684	.release = adu_release,
685};
686
687/*
688 * usb class driver info in order to get a minor number from the usb core,
689 * and to have the device registered with devfs and the driver core
690 */
691static struct usb_class_driver adu_class = {
692	.name = "usb/adutux%d",
693	.fops = &adu_fops,
694	.minor_base = ADU_MINOR_BASE,
695};
696
697/**
698 * adu_probe
699 *
700 * Called by the usb core when a new device is connected that it thinks
701 * this driver might be interested in.
702 */
703static int adu_probe(struct usb_interface *interface,
704		     const struct usb_device_id *id)
705{
706	struct usb_device *udev = interface_to_usbdev(interface);
707	struct adu_device *dev = NULL;
708	struct usb_host_interface *iface_desc;
709	struct usb_endpoint_descriptor *endpoint;
710	int retval = -ENODEV;
711	int in_end_size;
712	int out_end_size;
713	int i;
714
715	dbg(2," %s : enter", __func__);
716
717	if (udev == NULL) {
718		dev_err(&interface->dev, "udev is NULL.\n");
719		goto exit;
720	}
721
722	/* allocate memory for our device state and intialize it */
723	dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL);
724	if (dev == NULL) {
725		dev_err(&interface->dev, "Out of memory\n");
726		retval = -ENOMEM;
727		goto exit;
728	}
729
730	mutex_init(&dev->mtx);
731	spin_lock_init(&dev->buflock);
732	dev->udev = udev;
733	init_waitqueue_head(&dev->read_wait);
734	init_waitqueue_head(&dev->write_wait);
735
736	iface_desc = &interface->altsetting[0];
737
738	/* set up the endpoint information */
739	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
740		endpoint = &iface_desc->endpoint[i].desc;
741
742		if (usb_endpoint_is_int_in(endpoint))
743			dev->interrupt_in_endpoint = endpoint;
744
745		if (usb_endpoint_is_int_out(endpoint))
746			dev->interrupt_out_endpoint = endpoint;
747	}
748	if (dev->interrupt_in_endpoint == NULL) {
749		dev_err(&interface->dev, "interrupt in endpoint not found\n");
750		goto error;
751	}
752	if (dev->interrupt_out_endpoint == NULL) {
753		dev_err(&interface->dev, "interrupt out endpoint not found\n");
754		goto error;
755	}
756
757	in_end_size = le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize);
758	out_end_size = le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize);
759
760	dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL);
761	if (!dev->read_buffer_primary) {
762		dev_err(&interface->dev, "Couldn't allocate read_buffer_primary\n");
763		retval = -ENOMEM;
764		goto error;
765	}
766
767	/* debug code prime the buffer */
768	memset(dev->read_buffer_primary, 'a', in_end_size);
769	memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size);
770	memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size);
771	memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size);
772
773	dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL);
774	if (!dev->read_buffer_secondary) {
775		dev_err(&interface->dev, "Couldn't allocate read_buffer_secondary\n");
776		retval = -ENOMEM;
777		goto error;
778	}
779
780	/* debug code prime the buffer */
781	memset(dev->read_buffer_secondary, 'e', in_end_size);
782	memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size);
783	memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size);
784	memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size);
785
786	dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL);
787	if (!dev->interrupt_in_buffer) {
788		dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n");
789		goto error;
790	}
791
792	/* debug code prime the buffer */
793	memset(dev->interrupt_in_buffer, 'i', in_end_size);
794
795	dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
796	if (!dev->interrupt_in_urb) {
797		dev_err(&interface->dev, "Couldn't allocate interrupt_in_urb\n");
798		goto error;
799	}
800	dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL);
801	if (!dev->interrupt_out_buffer) {
802		dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n");
803		goto error;
804	}
805	dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
806	if (!dev->interrupt_out_urb) {
807		dev_err(&interface->dev, "Couldn't allocate interrupt_out_urb\n");
808		goto error;
809	}
810
811	if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number,
812			sizeof(dev->serial_number))) {
813		dev_err(&interface->dev, "Could not retrieve serial number\n");
814		goto error;
815	}
816	dbg(2," %s : serial_number=%s", __func__, dev->serial_number);
817
818	/* we can register the device now, as it is ready */
819	usb_set_intfdata(interface, dev);
820
821	retval = usb_register_dev(interface, &adu_class);
822
823	if (retval) {
824		/* something prevented us from registering this driver */
825		dev_err(&interface->dev, "Not able to get a minor for this device.\n");
826		usb_set_intfdata(interface, NULL);
827		goto error;
828	}
829
830	dev->minor = interface->minor;
831
832	/* let the user know what node this device is now attached to */
833	dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n",
834		 udev->descriptor.idProduct, dev->serial_number,
835		 (dev->minor - ADU_MINOR_BASE));
836exit:
837	dbg(2," %s : leave, return value %p (dev)", __func__, dev);
838
839	return retval;
840
841error:
842	adu_delete(dev);
843	return retval;
844}
845
846/**
847 * adu_disconnect
848 *
849 * Called by the usb core when the device is removed from the system.
850 */
851static void adu_disconnect(struct usb_interface *interface)
852{
853	struct adu_device *dev;
854	int minor;
855
856	dbg(2," %s : enter", __func__);
857
858	dev = usb_get_intfdata(interface);
859
860	mutex_lock(&dev->mtx);	/* not interruptible */
861	dev->udev = NULL;	/* poison */
862	minor = dev->minor;
863	usb_deregister_dev(interface, &adu_class);
864	mutex_unlock(&dev->mtx);
865
866	mutex_lock(&adutux_mutex);
867	usb_set_intfdata(interface, NULL);
868
869	/* if the device is not opened, then we clean up right now */
870	dbg(2," %s : open count %d", __func__, dev->open_count);
871	if (!dev->open_count)
872		adu_delete(dev);
873
874	mutex_unlock(&adutux_mutex);
875
876	dev_info(&interface->dev, "ADU device adutux%d now disconnected\n",
877		 (minor - ADU_MINOR_BASE));
878
879	dbg(2," %s : leave", __func__);
880}
881
882/* usb specific object needed to register this driver with the usb subsystem */
883static struct usb_driver adu_driver = {
884	.name = "adutux",
885	.probe = adu_probe,
886	.disconnect = adu_disconnect,
887	.id_table = device_table,
888};
889
890static int __init adu_init(void)
891{
892	int result;
893
894	dbg(2," %s : enter", __func__);
895
896	/* register this driver with the USB subsystem */
897	result = usb_register(&adu_driver);
898	if (result < 0) {
899		printk(KERN_ERR "usb_register failed for the "__FILE__
900		       " driver. Error number %d\n", result);
901		goto exit;
902	}
903
904	printk(KERN_INFO "adutux " DRIVER_DESC " " DRIVER_VERSION "\n");
905	printk(KERN_INFO "adutux is an experimental driver. "
906	       "Use at your own risk\n");
907
908exit:
909	dbg(2," %s : leave, return value %d", __func__, result);
910
911	return result;
912}
913
914static void __exit adu_exit(void)
915{
916	dbg(2," %s : enter", __func__);
917	/* deregister this driver with the USB subsystem */
918	usb_deregister(&adu_driver);
919	dbg(2," %s : leave", __func__);
920}
921
922module_init(adu_init);
923module_exit(adu_exit);
924
925MODULE_AUTHOR(DRIVER_AUTHOR);
926MODULE_DESCRIPTION(DRIVER_DESC);
927MODULE_LICENSE("GPL");
928