cppi_dma.c revision 704a14854aaf9758a1248ea36a7d1b8cc42a4b3e
1/*
2 * Copyright (C) 2005-2006 by Texas Instruments
3 *
4 * This file implements a DMA  interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7 */
8
9#include <linux/usb.h>
10
11#include "musb_core.h"
12#include "musb_debug.h"
13#include "cppi_dma.h"
14
15
16/* CPPI DMA status 7-mar-2006:
17 *
18 * - See musb_{host,gadget}.c for more info
19 *
20 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
21 *   which can easily saturate the CPU under non-mass-storage loads.
22 *
23 * NOTES 24-aug-2006 (2.6.18-rc4):
24 *
25 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
26 *   evidently after the 1 byte packet was received and acked, the queue
27 *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003,
28 *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
29 *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx
30 *   of its next (512 byte) packet.  IRQ issues?
31 *
32 * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will
33 * evidently also directly update the RX and TX CSRs ... so audit all
34 * host and peripheral side DMA code to avoid CSR access after DMA has
35 * been started.
36 */
37
38/* REVISIT now we can avoid preallocating these descriptors; or
39 * more simply, switch to a global freelist not per-channel ones.
40 * Note: at full speed, 64 descriptors == 4K bulk data.
41 */
42#define NUM_TXCHAN_BD       64
43#define NUM_RXCHAN_BD       64
44
45static inline void cpu_drain_writebuffer(void)
46{
47	wmb();
48#ifdef	CONFIG_CPU_ARM926T
49	/* REVISIT this "should not be needed",
50	 * but lack of it sure seemed to hurt ...
51	 */
52	asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
53#endif
54}
55
56static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
57{
58	struct cppi_descriptor	*bd = c->freelist;
59
60	if (bd)
61		c->freelist = bd->next;
62	return bd;
63}
64
65static inline void
66cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
67{
68	if (!bd)
69		return;
70	bd->next = c->freelist;
71	c->freelist = bd;
72}
73
74/*
75 *  Start DMA controller
76 *
77 *  Initialize the DMA controller as necessary.
78 */
79
80/* zero out entire rx state RAM entry for the channel */
81static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
82{
83	musb_writel(&rx->rx_skipbytes, 0, 0);
84	musb_writel(&rx->rx_head, 0, 0);
85	musb_writel(&rx->rx_sop, 0, 0);
86	musb_writel(&rx->rx_current, 0, 0);
87	musb_writel(&rx->rx_buf_current, 0, 0);
88	musb_writel(&rx->rx_len_len, 0, 0);
89	musb_writel(&rx->rx_cnt_cnt, 0, 0);
90}
91
92/* zero out entire tx state RAM entry for the channel */
93static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
94{
95	musb_writel(&tx->tx_head, 0, 0);
96	musb_writel(&tx->tx_buf, 0, 0);
97	musb_writel(&tx->tx_current, 0, 0);
98	musb_writel(&tx->tx_buf_current, 0, 0);
99	musb_writel(&tx->tx_info, 0, 0);
100	musb_writel(&tx->tx_rem_len, 0, 0);
101	/* musb_writel(&tx->tx_dummy, 0, 0); */
102	musb_writel(&tx->tx_complete, 0, ptr);
103}
104
105static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
106{
107	int	j;
108
109	/* initialize channel fields */
110	c->head = NULL;
111	c->tail = NULL;
112	c->last_processed = NULL;
113	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
114	c->controller = cppi;
115	c->is_rndis = 0;
116	c->freelist = NULL;
117
118	/* build the BD Free list for the channel */
119	for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
120		struct cppi_descriptor	*bd;
121		dma_addr_t		dma;
122
123		bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
124		bd->dma = dma;
125		cppi_bd_free(c, bd);
126	}
127}
128
129static int cppi_channel_abort(struct dma_channel *);
130
131static void cppi_pool_free(struct cppi_channel *c)
132{
133	struct cppi		*cppi = c->controller;
134	struct cppi_descriptor	*bd;
135
136	(void) cppi_channel_abort(&c->channel);
137	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
138	c->controller = NULL;
139
140	/* free all its bds */
141	bd = c->last_processed;
142	do {
143		if (bd)
144			dma_pool_free(cppi->pool, bd, bd->dma);
145		bd = cppi_bd_alloc(c);
146	} while (bd);
147	c->last_processed = NULL;
148}
149
150static int __init cppi_controller_start(struct dma_controller *c)
151{
152	struct cppi	*controller;
153	void __iomem	*tibase;
154	int		i;
155
156	controller = container_of(c, struct cppi, controller);
157
158	/* do whatever is necessary to start controller */
159	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
160		controller->tx[i].transmit = true;
161		controller->tx[i].index = i;
162	}
163	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
164		controller->rx[i].transmit = false;
165		controller->rx[i].index = i;
166	}
167
168	/* setup BD list on a per channel basis */
169	for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
170		cppi_pool_init(controller, controller->tx + i);
171	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
172		cppi_pool_init(controller, controller->rx + i);
173
174	tibase =  controller->tibase;
175	INIT_LIST_HEAD(&controller->tx_complete);
176
177	/* initialise tx/rx channel head pointers to zero */
178	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
179		struct cppi_channel	*tx_ch = controller->tx + i;
180		struct cppi_tx_stateram __iomem *tx;
181
182		INIT_LIST_HEAD(&tx_ch->tx_complete);
183
184		tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
185		tx_ch->state_ram = tx;
186		cppi_reset_tx(tx, 0);
187	}
188	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
189		struct cppi_channel	*rx_ch = controller->rx + i;
190		struct cppi_rx_stateram __iomem *rx;
191
192		INIT_LIST_HEAD(&rx_ch->tx_complete);
193
194		rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
195		rx_ch->state_ram = rx;
196		cppi_reset_rx(rx);
197	}
198
199	/* enable individual cppi channels */
200	musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
201			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
202	musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
203			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
204
205	/* enable tx/rx CPPI control */
206	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
207	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
208
209	/* disable RNDIS mode, also host rx RNDIS autorequest */
210	musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
211	musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
212
213	return 0;
214}
215
216/*
217 *  Stop DMA controller
218 *
219 *  De-Init the DMA controller as necessary.
220 */
221
222static int cppi_controller_stop(struct dma_controller *c)
223{
224	struct cppi		*controller;
225	void __iomem		*tibase;
226	int			i;
227
228	controller = container_of(c, struct cppi, controller);
229
230	tibase = controller->tibase;
231	/* DISABLE INDIVIDUAL CHANNEL Interrupts */
232	musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
233			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
234	musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
235			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
236
237	DBG(1, "Tearing down RX and TX Channels\n");
238	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
239		/* FIXME restructure of txdma to use bds like rxdma */
240		controller->tx[i].last_processed = NULL;
241		cppi_pool_free(controller->tx + i);
242	}
243	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
244		cppi_pool_free(controller->rx + i);
245
246	/* in Tx Case proper teardown is supported. We resort to disabling
247	 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
248	 * complete TX CPPI cannot be disabled.
249	 */
250	/*disable tx/rx cppi */
251	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
252	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
253
254	return 0;
255}
256
257/* While dma channel is allocated, we only want the core irqs active
258 * for fault reports, otherwise we'd get irqs that we don't care about.
259 * Except for TX irqs, where dma done != fifo empty and reusable ...
260 *
261 * NOTE: docs don't say either way, but irq masking **enables** irqs.
262 *
263 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
264 */
265static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
266{
267	musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
268}
269
270static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
271{
272	musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
273}
274
275
276/*
277 * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to
278 * each transfer direction of a non-control endpoint, so allocating
279 * (and deallocating) is mostly a way to notice bad housekeeping on
280 * the software side.  We assume the irqs are always active.
281 */
282static struct dma_channel *
283cppi_channel_allocate(struct dma_controller *c,
284		struct musb_hw_ep *ep, u8 transmit)
285{
286	struct cppi		*controller;
287	u8			index;
288	struct cppi_channel	*cppi_ch;
289	void __iomem		*tibase;
290
291	controller = container_of(c, struct cppi, controller);
292	tibase = controller->tibase;
293
294	/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
295	index = ep->epnum - 1;
296
297	/* return the corresponding CPPI Channel Handle, and
298	 * probably disable the non-CPPI irq until we need it.
299	 */
300	if (transmit) {
301		if (index >= ARRAY_SIZE(controller->tx)) {
302			DBG(1, "no %cX%d CPPI channel\n", 'T', index);
303			return NULL;
304		}
305		cppi_ch = controller->tx + index;
306	} else {
307		if (index >= ARRAY_SIZE(controller->rx)) {
308			DBG(1, "no %cX%d CPPI channel\n", 'R', index);
309			return NULL;
310		}
311		cppi_ch = controller->rx + index;
312		core_rxirq_disable(tibase, ep->epnum);
313	}
314
315	/* REVISIT make this an error later once the same driver code works
316	 * with the other DMA engine too
317	 */
318	if (cppi_ch->hw_ep)
319		DBG(1, "re-allocating DMA%d %cX channel %p\n",
320				index, transmit ? 'T' : 'R', cppi_ch);
321	cppi_ch->hw_ep = ep;
322	cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
323
324	DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
325	return &cppi_ch->channel;
326}
327
328/* Release a CPPI Channel.  */
329static void cppi_channel_release(struct dma_channel *channel)
330{
331	struct cppi_channel	*c;
332	void __iomem		*tibase;
333
334	/* REVISIT:  for paranoia, check state and abort if needed... */
335
336	c = container_of(channel, struct cppi_channel, channel);
337	tibase = c->controller->tibase;
338	if (!c->hw_ep)
339		DBG(1, "releasing idle DMA channel %p\n", c);
340	else if (!c->transmit)
341		core_rxirq_enable(tibase, c->index + 1);
342
343	/* for now, leave its cppi IRQ enabled (we won't trigger it) */
344	c->hw_ep = NULL;
345	channel->status = MUSB_DMA_STATUS_UNKNOWN;
346}
347
348/* Context: controller irqlocked */
349static void
350cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
351{
352	void __iomem			*base = c->controller->mregs;
353	struct cppi_rx_stateram __iomem	*rx = c->state_ram;
354
355	musb_ep_select(base, c->index + 1);
356
357	DBG(level, "RX DMA%d%s: %d left, csr %04x, "
358			"%08x H%08x S%08x C%08x, "
359			"B%08x L%08x %08x .. %08x"
360			"\n",
361		c->index, tag,
362		musb_readl(c->controller->tibase,
363			DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
364		musb_readw(c->hw_ep->regs, MUSB_RXCSR),
365
366		musb_readl(&rx->rx_skipbytes, 0),
367		musb_readl(&rx->rx_head, 0),
368		musb_readl(&rx->rx_sop, 0),
369		musb_readl(&rx->rx_current, 0),
370
371		musb_readl(&rx->rx_buf_current, 0),
372		musb_readl(&rx->rx_len_len, 0),
373		musb_readl(&rx->rx_cnt_cnt, 0),
374		musb_readl(&rx->rx_complete, 0)
375		);
376}
377
378/* Context: controller irqlocked */
379static void
380cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
381{
382	void __iomem			*base = c->controller->mregs;
383	struct cppi_tx_stateram __iomem	*tx = c->state_ram;
384
385	musb_ep_select(base, c->index + 1);
386
387	DBG(level, "TX DMA%d%s: csr %04x, "
388			"H%08x S%08x C%08x %08x, "
389			"F%08x L%08x .. %08x"
390			"\n",
391		c->index, tag,
392		musb_readw(c->hw_ep->regs, MUSB_TXCSR),
393
394		musb_readl(&tx->tx_head, 0),
395		musb_readl(&tx->tx_buf, 0),
396		musb_readl(&tx->tx_current, 0),
397		musb_readl(&tx->tx_buf_current, 0),
398
399		musb_readl(&tx->tx_info, 0),
400		musb_readl(&tx->tx_rem_len, 0),
401		/* dummy/unused word 6 */
402		musb_readl(&tx->tx_complete, 0)
403		);
404}
405
406/* Context: controller irqlocked */
407static inline void
408cppi_rndis_update(struct cppi_channel *c, int is_rx,
409		void __iomem *tibase, int is_rndis)
410{
411	/* we may need to change the rndis flag for this cppi channel */
412	if (c->is_rndis != is_rndis) {
413		u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG);
414		u32	temp = 1 << (c->index);
415
416		if (is_rx)
417			temp <<= 16;
418		if (is_rndis)
419			value |= temp;
420		else
421			value &= ~temp;
422		musb_writel(tibase, DAVINCI_RNDIS_REG, value);
423		c->is_rndis = is_rndis;
424	}
425}
426
427#ifdef CONFIG_USB_MUSB_DEBUG
428static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
429{
430	pr_debug("RXBD/%s %08x: "
431			"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
432			tag, bd->dma,
433			bd->hw_next, bd->hw_bufp, bd->hw_off_len,
434			bd->hw_options);
435}
436#endif
437
438static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
439{
440#ifdef CONFIG_USB_MUSB_DEBUG
441	struct cppi_descriptor	*bd;
442
443	if (!_dbg_level(level))
444		return;
445	cppi_dump_rx(level, rx, tag);
446	if (rx->last_processed)
447		cppi_dump_rxbd("last", rx->last_processed);
448	for (bd = rx->head; bd; bd = bd->next)
449		cppi_dump_rxbd("active", bd);
450#endif
451}
452
453
454/* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
455 * so we won't ever use it (see "CPPI RX Woes" below).
456 */
457static inline int cppi_autoreq_update(struct cppi_channel *rx,
458		void __iomem *tibase, int onepacket, unsigned n_bds)
459{
460	u32	val;
461
462#ifdef	RNDIS_RX_IS_USABLE
463	u32	tmp;
464	/* assert(is_host_active(musb)) */
465
466	/* start from "AutoReq never" */
467	tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
468	val = tmp & ~((0x3) << (rx->index * 2));
469
470	/* HCD arranged reqpkt for packet #1.  we arrange int
471	 * for all but the last one, maybe in two segments.
472	 */
473	if (!onepacket) {
474#if 0
475		/* use two segments, autoreq "all" then the last "never" */
476		val |= ((0x3) << (rx->index * 2));
477		n_bds--;
478#else
479		/* one segment, autoreq "all-but-last" */
480		val |= ((0x1) << (rx->index * 2));
481#endif
482	}
483
484	if (val != tmp) {
485		int n = 100;
486
487		/* make sure that autoreq is updated before continuing */
488		musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
489		do {
490			tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
491			if (tmp == val)
492				break;
493			cpu_relax();
494		} while (n-- > 0);
495	}
496#endif
497
498	/* REQPKT is turned off after each segment */
499	if (n_bds && rx->channel.actual_len) {
500		void __iomem	*regs = rx->hw_ep->regs;
501
502		val = musb_readw(regs, MUSB_RXCSR);
503		if (!(val & MUSB_RXCSR_H_REQPKT)) {
504			val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
505			musb_writew(regs, MUSB_RXCSR, val);
506			/* flush writebufer */
507			val = musb_readw(regs, MUSB_RXCSR);
508		}
509	}
510	return n_bds;
511}
512
513
514/* Buffer enqueuing Logic:
515 *
516 *  - RX builds new queues each time, to help handle routine "early
517 *    termination" cases (faults, including errors and short reads)
518 *    more correctly.
519 *
520 *  - for now, TX reuses the same queue of BDs every time
521 *
522 * REVISIT long term, we want a normal dynamic model.
523 * ... the goal will be to append to the
524 * existing queue, processing completed "dma buffers" (segments) on the fly.
525 *
526 * Otherwise we force an IRQ latency between requests, which slows us a lot
527 * (especially in "transparent" dma).  Unfortunately that model seems to be
528 * inherent in the DMA model from the Mentor code, except in the rare case
529 * of transfers big enough (~128+ KB) that we could append "middle" segments
530 * in the TX paths.  (RX can't do this, see below.)
531 *
532 * That's true even in the CPPI- friendly iso case, where most urbs have
533 * several small segments provided in a group and where the "packet at a time"
534 * "transparent" DMA model is always correct, even on the RX side.
535 */
536
537/*
538 * CPPI TX:
539 * ========
540 * TX is a lot more reasonable than RX; it doesn't need to run in
541 * irq-per-packet mode very often.  RNDIS mode seems to behave too
542 * (except how it handles the exactly-N-packets case).  Building a
543 * txdma queue with multiple requests (urb or usb_request) looks
544 * like it would work ... but fault handling would need much testing.
545 *
546 * The main issue with TX mode RNDIS relates to transfer lengths that
547 * are an exact multiple of the packet length.  It appears that there's
548 * a hiccup in that case (maybe the DMA completes before the ZLP gets
549 * written?) boiling down to not being able to rely on CPPI writing any
550 * terminating zero length packet before the next transfer is written.
551 * So that's punted to PIO; better yet, gadget drivers can avoid it.
552 *
553 * Plus, there's allegedly an undocumented constraint that rndis transfer
554 * length be a multiple of 64 bytes ... but the chip doesn't act that
555 * way, and we really don't _want_ that behavior anyway.
556 *
557 * On TX, "transparent" mode works ... although experiments have shown
558 * problems trying to use the SOP/EOP bits in different USB packets.
559 *
560 * REVISIT try to handle terminating zero length packets using CPPI
561 * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet
562 * links avoid that issue by forcing them to avoid zlps.)
563 */
564static void
565cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
566{
567	unsigned		maxpacket = tx->maxpacket;
568	dma_addr_t		addr = tx->buf_dma + tx->offset;
569	size_t			length = tx->buf_len - tx->offset;
570	struct cppi_descriptor	*bd;
571	unsigned		n_bds;
572	unsigned		i;
573	struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram;
574	int			rndis;
575
576	/* TX can use the CPPI "rndis" mode, where we can probably fit this
577	 * transfer in one BD and one IRQ.  The only time we would NOT want
578	 * to use it is when hardware constraints prevent it, or if we'd
579	 * trigger the "send a ZLP?" confusion.
580	 */
581	rndis = (maxpacket & 0x3f) == 0
582		&& length < 0xffff
583		&& (length % maxpacket) != 0;
584
585	if (rndis) {
586		maxpacket = length;
587		n_bds = 1;
588	} else {
589		n_bds = length / maxpacket;
590		if (!length || (length % maxpacket))
591			n_bds++;
592		n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
593		length = min(n_bds * maxpacket, length);
594	}
595
596	DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n",
597			tx->index,
598			maxpacket,
599			rndis ? "rndis" : "transparent",
600			n_bds,
601			addr, length);
602
603	cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
604
605	/* assuming here that channel_program is called during
606	 * transfer initiation ... current code maintains state
607	 * for one outstanding request only (no queues, not even
608	 * the implicit ones of an iso urb).
609	 */
610
611	bd = tx->freelist;
612	tx->head = bd;
613	tx->last_processed = NULL;
614
615	/* FIXME use BD pool like RX side does, and just queue
616	 * the minimum number for this request.
617	 */
618
619	/* Prepare queue of BDs first, then hand it to hardware.
620	 * All BDs except maybe the last should be of full packet
621	 * size; for RNDIS there _is_ only that last packet.
622	 */
623	for (i = 0; i < n_bds; ) {
624		if (++i < n_bds && bd->next)
625			bd->hw_next = bd->next->dma;
626		else
627			bd->hw_next = 0;
628
629		bd->hw_bufp = tx->buf_dma + tx->offset;
630
631		/* FIXME set EOP only on the last packet,
632		 * SOP only on the first ... avoid IRQs
633		 */
634		if ((tx->offset + maxpacket) <= tx->buf_len) {
635			tx->offset += maxpacket;
636			bd->hw_off_len = maxpacket;
637			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
638				| CPPI_OWN_SET | maxpacket;
639		} else {
640			/* only this one may be a partial USB Packet */
641			u32		partial_len;
642
643			partial_len = tx->buf_len - tx->offset;
644			tx->offset = tx->buf_len;
645			bd->hw_off_len = partial_len;
646
647			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
648				| CPPI_OWN_SET | partial_len;
649			if (partial_len == 0)
650				bd->hw_options |= CPPI_ZERO_SET;
651		}
652
653		DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
654				bd, bd->hw_next, bd->hw_bufp,
655				bd->hw_off_len, bd->hw_options);
656
657		/* update the last BD enqueued to the list */
658		tx->tail = bd;
659		bd = bd->next;
660	}
661
662	/* BDs live in DMA-coherent memory, but writes might be pending */
663	cpu_drain_writebuffer();
664
665	/* Write to the HeadPtr in state RAM to trigger */
666	musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
667
668	cppi_dump_tx(5, tx, "/S");
669}
670
671/*
672 * CPPI RX Woes:
673 * =============
674 * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte
675 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
676 * (Full speed transfers have similar scenarios.)
677 *
678 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
679 * and the next packet goes into a buffer that's queued later; while (b) fills
680 * the buffer with 1024 bytes.  How to do that with CPPI?
681 *
682 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
683 *   (b) loses **BADLY** because nothing (!) happens when that second packet
684 *   fills the buffer, much less when a third one arrives.  (Which makes this
685 *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination
686 *   is optional, and it's fine if peripherals -- not hosts! -- pad messages
687 *   out to end-of-buffer.  Standard PCI host controller DMA descriptors
688 *   implement that mode by default ... which is no accident.)
689 *
690 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
691 *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX
692 *   ignores SOP/EOP markings and processes both of those BDs; so both packets
693 *   are loaded into the buffer (with a 212 byte gap between them), and the next
694 *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
695 *   are intended as outputs for RX queues, not inputs...)
696 *
697 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
698 *   reliably make both cases work, with software handling both cases correctly
699 *   and at the significant penalty of needing an IRQ per packet.  (The lack of
700 *   I/O overlap can be slightly ameliorated by enabling double buffering.)
701 *
702 * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could
703 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
704 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
705 * with guaranteed driver level fault recovery and scrubbing out what's left
706 * of that garbaged datastream.
707 *
708 * But there seems to be no way to identify the cases where CPPI RNDIS mode
709 * is appropriate -- which do NOT include RNDIS host drivers, but do include
710 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
711 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
712 * that applies best on the peripheral side (and which could fail rudely).
713 *
714 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
715 * cases other than mass storage class.  Otherwise we're correct but slow,
716 * since CPPI penalizes our need for a "true RNDIS" default mode.
717 */
718
719
720/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
721 *
722 * IFF
723 *  (a)	peripheral mode ... since rndis peripherals could pad their
724 *	writes to hosts, causing i/o failure; or we'd have to cope with
725 *	a largely unknowable variety of host side protocol variants
726 *  (b)	and short reads are NOT errors ... since full reads would
727 *	cause those same i/o failures
728 *  (c)	and read length is
729 *	- less than 64KB (max per cppi descriptor)
730 *	- not a multiple of 4096 (g_zero default, full reads typical)
731 *	- N (>1) packets long, ditto (full reads not EXPECTED)
732 * THEN
733 *   try rx rndis mode
734 *
735 * Cost of heuristic failing:  RXDMA wedges at the end of transfers that
736 * fill out the whole buffer.  Buggy host side usb network drivers could
737 * trigger that, but "in the field" such bugs seem to be all but unknown.
738 *
739 * So this module parameter lets the heuristic be disabled.  When using
740 * gadgetfs, the heuristic will probably need to be disabled.
741 */
742static int cppi_rx_rndis = 1;
743
744module_param(cppi_rx_rndis, bool, 0);
745MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
746
747
748/**
749 * cppi_next_rx_segment - dma read for the next chunk of a buffer
750 * @musb: the controller
751 * @rx: dma channel
752 * @onepacket: true unless caller treats short reads as errors, and
753 *	performs fault recovery above usbcore.
754 * Context: controller irqlocked
755 *
756 * See above notes about why we can't use multi-BD RX queues except in
757 * rare cases (mass storage class), and can never use the hardware "rndis"
758 * mode (since it's not a "true" RNDIS mode) with complete safety..
759 *
760 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
761 * code to recover from corrupted datastreams after each short transfer.
762 */
763static void
764cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
765{
766	unsigned		maxpacket = rx->maxpacket;
767	dma_addr_t		addr = rx->buf_dma + rx->offset;
768	size_t			length = rx->buf_len - rx->offset;
769	struct cppi_descriptor	*bd, *tail;
770	unsigned		n_bds;
771	unsigned		i;
772	void __iomem		*tibase = musb->ctrl_base;
773	int			is_rndis = 0;
774	struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram;
775
776	if (onepacket) {
777		/* almost every USB driver, host or peripheral side */
778		n_bds = 1;
779
780		/* maybe apply the heuristic above */
781		if (cppi_rx_rndis
782				&& is_peripheral_active(musb)
783				&& length > maxpacket
784				&& (length & ~0xffff) == 0
785				&& (length & 0x0fff) != 0
786				&& (length & (maxpacket - 1)) == 0) {
787			maxpacket = length;
788			is_rndis = 1;
789		}
790	} else {
791		/* virtually nothing except mass storage class */
792		if (length > 0xffff) {
793			n_bds = 0xffff / maxpacket;
794			length = n_bds * maxpacket;
795		} else {
796			n_bds = length / maxpacket;
797			if (length % maxpacket)
798				n_bds++;
799		}
800		if (n_bds == 1)
801			onepacket = 1;
802		else
803			n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
804	}
805
806	/* In host mode, autorequest logic can generate some IN tokens; it's
807	 * tricky since we can't leave REQPKT set in RXCSR after the transfer
808	 * finishes. So:  multipacket transfers involve two or more segments.
809	 * And always at least two IRQs ... RNDIS mode is not an option.
810	 */
811	if (is_host_active(musb))
812		n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
813
814	cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
815
816	length = min(n_bds * maxpacket, length);
817
818	DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
819			"dma 0x%x len %u %u/%u\n",
820			rx->index, maxpacket,
821			onepacket
822				? (is_rndis ? "rndis" : "onepacket")
823				: "multipacket",
824			n_bds,
825			musb_readl(tibase,
826				DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
827					& 0xffff,
828			addr, length, rx->channel.actual_len, rx->buf_len);
829
830	/* only queue one segment at a time, since the hardware prevents
831	 * correct queue shutdown after unexpected short packets
832	 */
833	bd = cppi_bd_alloc(rx);
834	rx->head = bd;
835
836	/* Build BDs for all packets in this segment */
837	for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
838		u32	bd_len;
839
840		if (i) {
841			bd = cppi_bd_alloc(rx);
842			if (!bd)
843				break;
844			tail->next = bd;
845			tail->hw_next = bd->dma;
846		}
847		bd->hw_next = 0;
848
849		/* all but the last packet will be maxpacket size */
850		if (maxpacket < length)
851			bd_len = maxpacket;
852		else
853			bd_len = length;
854
855		bd->hw_bufp = addr;
856		addr += bd_len;
857		rx->offset += bd_len;
858
859		bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
860		bd->buflen = bd_len;
861
862		bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
863		length -= bd_len;
864	}
865
866	/* we always expect at least one reusable BD! */
867	if (!tail) {
868		WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
869		return;
870	} else if (i < n_bds)
871		WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
872
873	tail->next = NULL;
874	tail->hw_next = 0;
875
876	bd = rx->head;
877	rx->tail = tail;
878
879	/* short reads and other faults should terminate this entire
880	 * dma segment.  we want one "dma packet" per dma segment, not
881	 * one per USB packet, terminating the whole queue at once...
882	 * NOTE that current hardware seems to ignore SOP and EOP.
883	 */
884	bd->hw_options |= CPPI_SOP_SET;
885	tail->hw_options |= CPPI_EOP_SET;
886
887#ifdef CONFIG_USB_MUSB_DEBUG
888	if (_dbg_level(5)) {
889		struct cppi_descriptor	*d;
890
891		for (d = rx->head; d; d = d->next)
892			cppi_dump_rxbd("S", d);
893	}
894#endif
895
896	/* in case the preceding transfer left some state... */
897	tail = rx->last_processed;
898	if (tail) {
899		tail->next = bd;
900		tail->hw_next = bd->dma;
901	}
902
903	core_rxirq_enable(tibase, rx->index + 1);
904
905	/* BDs live in DMA-coherent memory, but writes might be pending */
906	cpu_drain_writebuffer();
907
908	/* REVISIT specs say to write this AFTER the BUFCNT register
909	 * below ... but that loses badly.
910	 */
911	musb_writel(&rx_ram->rx_head, 0, bd->dma);
912
913	/* bufferCount must be at least 3, and zeroes on completion
914	 * unless it underflows below zero, or stops at two, or keeps
915	 * growing ... grr.
916	 */
917	i = musb_readl(tibase,
918			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
919			& 0xffff;
920
921	if (!i)
922		musb_writel(tibase,
923			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
924			n_bds + 2);
925	else if (n_bds > (i - 3))
926		musb_writel(tibase,
927			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
928			n_bds - (i - 3));
929
930	i = musb_readl(tibase,
931			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
932			& 0xffff;
933	if (i < (2 + n_bds)) {
934		DBG(2, "bufcnt%d underrun - %d (for %d)\n",
935					rx->index, i, n_bds);
936		musb_writel(tibase,
937			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
938			n_bds + 2);
939	}
940
941	cppi_dump_rx(4, rx, "/S");
942}
943
944/**
945 * cppi_channel_program - program channel for data transfer
946 * @ch: the channel
947 * @maxpacket: max packet size
948 * @mode: For RX, 1 unless the usb protocol driver promised to treat
949 *	all short reads as errors and kick in high level fault recovery.
950 *	For TX, ignored because of RNDIS mode races/glitches.
951 * @dma_addr: dma address of buffer
952 * @len: length of buffer
953 * Context: controller irqlocked
954 */
955static int cppi_channel_program(struct dma_channel *ch,
956		u16 maxpacket, u8 mode,
957		dma_addr_t dma_addr, u32 len)
958{
959	struct cppi_channel	*cppi_ch;
960	struct cppi		*controller;
961	struct musb		*musb;
962
963	cppi_ch = container_of(ch, struct cppi_channel, channel);
964	controller = cppi_ch->controller;
965	musb = controller->musb;
966
967	switch (ch->status) {
968	case MUSB_DMA_STATUS_BUS_ABORT:
969	case MUSB_DMA_STATUS_CORE_ABORT:
970		/* fault irq handler should have handled cleanup */
971		WARNING("%cX DMA%d not cleaned up after abort!\n",
972				cppi_ch->transmit ? 'T' : 'R',
973				cppi_ch->index);
974		/* WARN_ON(1); */
975		break;
976	case MUSB_DMA_STATUS_BUSY:
977		WARNING("program active channel?  %cX DMA%d\n",
978				cppi_ch->transmit ? 'T' : 'R',
979				cppi_ch->index);
980		/* WARN_ON(1); */
981		break;
982	case MUSB_DMA_STATUS_UNKNOWN:
983		DBG(1, "%cX DMA%d not allocated!\n",
984				cppi_ch->transmit ? 'T' : 'R',
985				cppi_ch->index);
986		/* FALLTHROUGH */
987	case MUSB_DMA_STATUS_FREE:
988		break;
989	}
990
991	ch->status = MUSB_DMA_STATUS_BUSY;
992
993	/* set transfer parameters, then queue up its first segment */
994	cppi_ch->buf_dma = dma_addr;
995	cppi_ch->offset = 0;
996	cppi_ch->maxpacket = maxpacket;
997	cppi_ch->buf_len = len;
998
999	/* TX channel? or RX? */
1000	if (cppi_ch->transmit)
1001		cppi_next_tx_segment(musb, cppi_ch);
1002	else
1003		cppi_next_rx_segment(musb, cppi_ch, mode);
1004
1005	return true;
1006}
1007
1008static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1009{
1010	struct cppi_channel		*rx = &cppi->rx[ch];
1011	struct cppi_rx_stateram __iomem	*state = rx->state_ram;
1012	struct cppi_descriptor		*bd;
1013	struct cppi_descriptor		*last = rx->last_processed;
1014	bool				completed = false;
1015	bool				acked = false;
1016	int				i;
1017	dma_addr_t			safe2ack;
1018	void __iomem			*regs = rx->hw_ep->regs;
1019
1020	cppi_dump_rx(6, rx, "/K");
1021
1022	bd = last ? last->next : rx->head;
1023	if (!bd)
1024		return false;
1025
1026	/* run through all completed BDs */
1027	for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1028			(safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1029			i++, bd = bd->next) {
1030		u16	len;
1031
1032		/* catch latest BD writes from CPPI */
1033		rmb();
1034		if (!completed && (bd->hw_options & CPPI_OWN_SET))
1035			break;
1036
1037		DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
1038			"off.len %08x opt.len %08x (%d)\n",
1039			bd->dma, bd->hw_next, bd->hw_bufp,
1040			bd->hw_off_len, bd->hw_options,
1041			rx->channel.actual_len);
1042
1043		/* actual packet received length */
1044		if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1045			len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1046		else
1047			len = 0;
1048
1049		if (bd->hw_options & CPPI_EOQ_MASK)
1050			completed = true;
1051
1052		if (!completed && len < bd->buflen) {
1053			/* NOTE:  when we get a short packet, RXCSR_H_REQPKT
1054			 * must have been cleared, and no more DMA packets may
1055			 * active be in the queue... TI docs didn't say, but
1056			 * CPPI ignores those BDs even though OWN is still set.
1057			 */
1058			completed = true;
1059			DBG(3, "rx short %d/%d (%d)\n",
1060					len, bd->buflen,
1061					rx->channel.actual_len);
1062		}
1063
1064		/* If we got here, we expect to ack at least one BD; meanwhile
1065		 * CPPI may completing other BDs while we scan this list...
1066		 *
1067		 * RACE: we can notice OWN cleared before CPPI raises the
1068		 * matching irq by writing that BD as the completion pointer.
1069		 * In such cases, stop scanning and wait for the irq, avoiding
1070		 * lost acks and states where BD ownership is unclear.
1071		 */
1072		if (bd->dma == safe2ack) {
1073			musb_writel(&state->rx_complete, 0, safe2ack);
1074			safe2ack = musb_readl(&state->rx_complete, 0);
1075			acked = true;
1076			if (bd->dma == safe2ack)
1077				safe2ack = 0;
1078		}
1079
1080		rx->channel.actual_len += len;
1081
1082		cppi_bd_free(rx, last);
1083		last = bd;
1084
1085		/* stop scanning on end-of-segment */
1086		if (bd->hw_next == 0)
1087			completed = true;
1088	}
1089	rx->last_processed = last;
1090
1091	/* dma abort, lost ack, or ... */
1092	if (!acked && last) {
1093		int	csr;
1094
1095		if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1096			musb_writel(&state->rx_complete, 0, safe2ack);
1097		if (safe2ack == 0) {
1098			cppi_bd_free(rx, last);
1099			rx->last_processed = NULL;
1100
1101			/* if we land here on the host side, H_REQPKT will
1102			 * be clear and we need to restart the queue...
1103			 */
1104			WARN_ON(rx->head);
1105		}
1106		musb_ep_select(cppi->mregs, rx->index + 1);
1107		csr = musb_readw(regs, MUSB_RXCSR);
1108		if (csr & MUSB_RXCSR_DMAENAB) {
1109			DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n",
1110				rx->index,
1111				rx->head, rx->tail,
1112				rx->last_processed
1113					? rx->last_processed->dma
1114					: 0,
1115				completed ? ", completed" : "",
1116				csr);
1117			cppi_dump_rxq(4, "/what?", rx);
1118		}
1119	}
1120	if (!completed) {
1121		int	csr;
1122
1123		rx->head = bd;
1124
1125		/* REVISIT seems like "autoreq all but EOP" doesn't...
1126		 * setting it here "should" be racey, but seems to work
1127		 */
1128		csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1129		if (is_host_active(cppi->musb)
1130				&& bd
1131				&& !(csr & MUSB_RXCSR_H_REQPKT)) {
1132			csr |= MUSB_RXCSR_H_REQPKT;
1133			musb_writew(regs, MUSB_RXCSR,
1134					MUSB_RXCSR_H_WZC_BITS | csr);
1135			csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1136		}
1137	} else {
1138		rx->head = NULL;
1139		rx->tail = NULL;
1140	}
1141
1142	cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1143	return completed;
1144}
1145
1146void cppi_completion(struct musb *musb, u32 rx, u32 tx)
1147{
1148	void __iomem		*tibase;
1149	int			i, index;
1150	struct cppi		*cppi;
1151	struct musb_hw_ep	*hw_ep = NULL;
1152
1153	cppi = container_of(musb->dma_controller, struct cppi, controller);
1154
1155	tibase = musb->ctrl_base;
1156
1157	/* process TX channels */
1158	for (index = 0; tx; tx = tx >> 1, index++) {
1159		struct cppi_channel		*tx_ch;
1160		struct cppi_tx_stateram __iomem	*tx_ram;
1161		bool				completed = false;
1162		struct cppi_descriptor		*bd;
1163
1164		if (!(tx & 1))
1165			continue;
1166
1167		tx_ch = cppi->tx + index;
1168		tx_ram = tx_ch->state_ram;
1169
1170		/* FIXME  need a cppi_tx_scan() routine, which
1171		 * can also be called from abort code
1172		 */
1173
1174		cppi_dump_tx(5, tx_ch, "/E");
1175
1176		bd = tx_ch->head;
1177
1178		if (NULL == bd) {
1179			DBG(1, "null BD\n");
1180			continue;
1181		}
1182
1183		/* run through all completed BDs */
1184		for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1185				i++, bd = bd->next) {
1186			u16	len;
1187
1188			/* catch latest BD writes from CPPI */
1189			rmb();
1190			if (bd->hw_options & CPPI_OWN_SET)
1191				break;
1192
1193			DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n",
1194					bd, bd->hw_next, bd->hw_bufp,
1195					bd->hw_off_len, bd->hw_options);
1196
1197			len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1198			tx_ch->channel.actual_len += len;
1199
1200			tx_ch->last_processed = bd;
1201
1202			/* write completion register to acknowledge
1203			 * processing of completed BDs, and possibly
1204			 * release the IRQ; EOQ might not be set ...
1205			 *
1206			 * REVISIT use the same ack strategy as rx
1207			 *
1208			 * REVISIT have observed bit 18 set; huh??
1209			 */
1210			/* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1211				musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1212
1213			/* stop scanning on end-of-segment */
1214			if (bd->hw_next == 0)
1215				completed = true;
1216		}
1217
1218		/* on end of segment, maybe go to next one */
1219		if (completed) {
1220			/* cppi_dump_tx(4, tx_ch, "/complete"); */
1221
1222			/* transfer more, or report completion */
1223			if (tx_ch->offset >= tx_ch->buf_len) {
1224				tx_ch->head = NULL;
1225				tx_ch->tail = NULL;
1226				tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1227
1228				hw_ep = tx_ch->hw_ep;
1229
1230				/* Peripheral role never repurposes the
1231				 * endpoint, so immediate completion is
1232				 * safe.  Host role waits for the fifo
1233				 * to empty (TXPKTRDY irq) before going
1234				 * to the next queued bulk transfer.
1235				 */
1236				if (is_host_active(cppi->musb)) {
1237#if 0
1238					/* WORKAROUND because we may
1239					 * not always get TXKPTRDY ...
1240					 */
1241					int	csr;
1242
1243					csr = musb_readw(hw_ep->regs,
1244						MUSB_TXCSR);
1245					if (csr & MUSB_TXCSR_TXPKTRDY)
1246#endif
1247						completed = false;
1248				}
1249				if (completed)
1250					musb_dma_completion(musb, index + 1, 1);
1251
1252			} else {
1253				/* Bigger transfer than we could fit in
1254				 * that first batch of descriptors...
1255				 */
1256				cppi_next_tx_segment(musb, tx_ch);
1257			}
1258		} else
1259			tx_ch->head = bd;
1260	}
1261
1262	/* Start processing the RX block */
1263	for (index = 0; rx; rx = rx >> 1, index++) {
1264
1265		if (rx & 1) {
1266			struct cppi_channel		*rx_ch;
1267
1268			rx_ch = cppi->rx + index;
1269
1270			/* let incomplete dma segments finish */
1271			if (!cppi_rx_scan(cppi, index))
1272				continue;
1273
1274			/* start another dma segment if needed */
1275			if (rx_ch->channel.actual_len != rx_ch->buf_len
1276					&& rx_ch->channel.actual_len
1277						== rx_ch->offset) {
1278				cppi_next_rx_segment(musb, rx_ch, 1);
1279				continue;
1280			}
1281
1282			/* all segments completed! */
1283			rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1284
1285			hw_ep = rx_ch->hw_ep;
1286
1287			core_rxirq_disable(tibase, index + 1);
1288			musb_dma_completion(musb, index + 1, 0);
1289		}
1290	}
1291
1292	/* write to CPPI EOI register to re-enable interrupts */
1293	musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1294}
1295
1296/* Instantiate a software object representing a DMA controller. */
1297struct dma_controller *__init
1298dma_controller_create(struct musb *musb, void __iomem *mregs)
1299{
1300	struct cppi		*controller;
1301
1302	controller = kzalloc(sizeof *controller, GFP_KERNEL);
1303	if (!controller)
1304		return NULL;
1305
1306	controller->mregs = mregs;
1307	controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1308
1309	controller->musb = musb;
1310	controller->controller.start = cppi_controller_start;
1311	controller->controller.stop = cppi_controller_stop;
1312	controller->controller.channel_alloc = cppi_channel_allocate;
1313	controller->controller.channel_release = cppi_channel_release;
1314	controller->controller.channel_program = cppi_channel_program;
1315	controller->controller.channel_abort = cppi_channel_abort;
1316
1317	/* NOTE: allocating from on-chip SRAM would give the least
1318	 * contention for memory access, if that ever matters here.
1319	 */
1320
1321	/* setup BufferPool */
1322	controller->pool = dma_pool_create("cppi",
1323			controller->musb->controller,
1324			sizeof(struct cppi_descriptor),
1325			CPPI_DESCRIPTOR_ALIGN, 0);
1326	if (!controller->pool) {
1327		kfree(controller);
1328		return NULL;
1329	}
1330
1331	return &controller->controller;
1332}
1333
1334/*
1335 *  Destroy a previously-instantiated DMA controller.
1336 */
1337void dma_controller_destroy(struct dma_controller *c)
1338{
1339	struct cppi	*cppi;
1340
1341	cppi = container_of(c, struct cppi, controller);
1342
1343	/* assert:  caller stopped the controller first */
1344	dma_pool_destroy(cppi->pool);
1345
1346	kfree(cppi);
1347}
1348
1349/*
1350 * Context: controller irqlocked, endpoint selected
1351 */
1352static int cppi_channel_abort(struct dma_channel *channel)
1353{
1354	struct cppi_channel	*cppi_ch;
1355	struct cppi		*controller;
1356	void __iomem		*mbase;
1357	void __iomem		*tibase;
1358	void __iomem		*regs;
1359	u32			value;
1360	struct cppi_descriptor	*queue;
1361
1362	cppi_ch = container_of(channel, struct cppi_channel, channel);
1363
1364	controller = cppi_ch->controller;
1365
1366	switch (channel->status) {
1367	case MUSB_DMA_STATUS_BUS_ABORT:
1368	case MUSB_DMA_STATUS_CORE_ABORT:
1369		/* from RX or TX fault irq handler */
1370	case MUSB_DMA_STATUS_BUSY:
1371		/* the hardware needs shutting down */
1372		regs = cppi_ch->hw_ep->regs;
1373		break;
1374	case MUSB_DMA_STATUS_UNKNOWN:
1375	case MUSB_DMA_STATUS_FREE:
1376		return 0;
1377	default:
1378		return -EINVAL;
1379	}
1380
1381	if (!cppi_ch->transmit && cppi_ch->head)
1382		cppi_dump_rxq(3, "/abort", cppi_ch);
1383
1384	mbase = controller->mregs;
1385	tibase = controller->tibase;
1386
1387	queue = cppi_ch->head;
1388	cppi_ch->head = NULL;
1389	cppi_ch->tail = NULL;
1390
1391	/* REVISIT should rely on caller having done this,
1392	 * and caller should rely on us not changing it.
1393	 * peripheral code is safe ... check host too.
1394	 */
1395	musb_ep_select(mbase, cppi_ch->index + 1);
1396
1397	if (cppi_ch->transmit) {
1398		struct cppi_tx_stateram __iomem *tx_ram;
1399		int			enabled;
1400
1401		/* mask interrupts raised to signal teardown complete.  */
1402		enabled = musb_readl(tibase, DAVINCI_TXCPPI_INTENAB_REG)
1403				& (1 << cppi_ch->index);
1404		if (enabled)
1405			musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
1406					(1 << cppi_ch->index));
1407
1408		/* REVISIT put timeouts on these controller handshakes */
1409
1410		cppi_dump_tx(6, cppi_ch, " (teardown)");
1411
1412		/* teardown DMA engine then usb core */
1413		do {
1414			value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1415		} while (!(value & CPPI_TEAR_READY));
1416		musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1417
1418		tx_ram = cppi_ch->state_ram;
1419		do {
1420			value = musb_readl(&tx_ram->tx_complete, 0);
1421		} while (0xFFFFFFFC != value);
1422		musb_writel(&tx_ram->tx_complete, 0, 0xFFFFFFFC);
1423
1424		/* FIXME clean up the transfer state ... here?
1425		 * the completion routine should get called with
1426		 * an appropriate status code.
1427		 */
1428
1429		value = musb_readw(regs, MUSB_TXCSR);
1430		value &= ~MUSB_TXCSR_DMAENAB;
1431		value |= MUSB_TXCSR_FLUSHFIFO;
1432		musb_writew(regs, MUSB_TXCSR, value);
1433		musb_writew(regs, MUSB_TXCSR, value);
1434
1435		/* re-enable interrupt */
1436		if (enabled)
1437			musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
1438					(1 << cppi_ch->index));
1439
1440		/* While we scrub the TX state RAM, ensure that we clean
1441		 * up any interrupt that's currently asserted:
1442		 * 1. Write to completion Ptr value 0x1(bit 0 set)
1443		 *    (write back mode)
1444		 * 2. Write to completion Ptr value 0x0(bit 0 cleared)
1445		 *    (compare mode)
1446		 * Value written is compared(for bits 31:2) and when
1447		 * equal, interrupt is deasserted.
1448		 */
1449		cppi_reset_tx(tx_ram, 1);
1450		musb_writel(&tx_ram->tx_complete, 0, 0);
1451
1452		cppi_dump_tx(5, cppi_ch, " (done teardown)");
1453
1454		/* REVISIT tx side _should_ clean up the same way
1455		 * as the RX side ... this does no cleanup at all!
1456		 */
1457
1458	} else /* RX */ {
1459		u16			csr;
1460
1461		/* NOTE: docs don't guarantee any of this works ...  we
1462		 * expect that if the usb core stops telling the cppi core
1463		 * to pull more data from it, then it'll be safe to flush
1464		 * current RX DMA state iff any pending fifo transfer is done.
1465		 */
1466
1467		core_rxirq_disable(tibase, cppi_ch->index + 1);
1468
1469		/* for host, ensure ReqPkt is never set again */
1470		if (is_host_active(cppi_ch->controller->musb)) {
1471			value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1472			value &= ~((0x3) << (cppi_ch->index * 2));
1473			musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1474		}
1475
1476		csr = musb_readw(regs, MUSB_RXCSR);
1477
1478		/* for host, clear (just) ReqPkt at end of current packet(s) */
1479		if (is_host_active(cppi_ch->controller->musb)) {
1480			csr |= MUSB_RXCSR_H_WZC_BITS;
1481			csr &= ~MUSB_RXCSR_H_REQPKT;
1482		} else
1483			csr |= MUSB_RXCSR_P_WZC_BITS;
1484
1485		/* clear dma enable */
1486		csr &= ~(MUSB_RXCSR_DMAENAB);
1487		musb_writew(regs, MUSB_RXCSR, csr);
1488		csr = musb_readw(regs, MUSB_RXCSR);
1489
1490		/* Quiesce: wait for current dma to finish (if not cleanup).
1491		 * We can't use bit zero of stateram->rx_sop, since that
1492		 * refers to an entire "DMA packet" not just emptying the
1493		 * current fifo.  Most segments need multiple usb packets.
1494		 */
1495		if (channel->status == MUSB_DMA_STATUS_BUSY)
1496			udelay(50);
1497
1498		/* scan the current list, reporting any data that was
1499		 * transferred and acking any IRQ
1500		 */
1501		cppi_rx_scan(controller, cppi_ch->index);
1502
1503		/* clobber the existing state once it's idle
1504		 *
1505		 * NOTE:  arguably, we should also wait for all the other
1506		 * RX channels to quiesce (how??) and then temporarily
1507		 * disable RXCPPI_CTRL_REG ... but it seems that we can
1508		 * rely on the controller restarting from state ram, with
1509		 * only RXCPPI_BUFCNT state being bogus.  BUFCNT will
1510		 * correct itself after the next DMA transfer though.
1511		 *
1512		 * REVISIT does using rndis mode change that?
1513		 */
1514		cppi_reset_rx(cppi_ch->state_ram);
1515
1516		/* next DMA request _should_ load cppi head ptr */
1517
1518		/* ... we don't "free" that list, only mutate it in place.  */
1519		cppi_dump_rx(5, cppi_ch, " (done abort)");
1520
1521		/* clean up previously pending bds */
1522		cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1523		cppi_ch->last_processed = NULL;
1524
1525		while (queue) {
1526			struct cppi_descriptor	*tmp = queue->next;
1527
1528			cppi_bd_free(cppi_ch, queue);
1529			queue = tmp;
1530		}
1531	}
1532
1533	channel->status = MUSB_DMA_STATUS_FREE;
1534	cppi_ch->buf_dma = 0;
1535	cppi_ch->offset = 0;
1536	cppi_ch->buf_len = 0;
1537	cppi_ch->maxpacket = 0;
1538	return 0;
1539}
1540
1541/* TBD Queries:
1542 *
1543 * Power Management ... probably turn off cppi during suspend, restart;
1544 * check state ram?  Clocking is presumably shared with usb core.
1545 */
1546