bootmem.c revision 08677214e318297f228237be0042aac754f48f1d
1/*
2 *  bootmem - A boot-time physical memory allocator and configurator
3 *
4 *  Copyright (C) 1999 Ingo Molnar
5 *                1999 Kanoj Sarcar, SGI
6 *                2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11#include <linux/init.h>
12#include <linux/pfn.h>
13#include <linux/bootmem.h>
14#include <linux/module.h>
15#include <linux/kmemleak.h>
16#include <linux/range.h>
17
18#include <asm/bug.h>
19#include <asm/io.h>
20#include <asm/processor.h>
21
22#include "internal.h"
23
24unsigned long max_low_pfn;
25unsigned long min_low_pfn;
26unsigned long max_pfn;
27
28#ifdef CONFIG_CRASH_DUMP
29/*
30 * If we have booted due to a crash, max_pfn will be a very low value. We need
31 * to know the amount of memory that the previous kernel used.
32 */
33unsigned long saved_max_pfn;
34#endif
35
36#ifndef CONFIG_NO_BOOTMEM
37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41static int bootmem_debug;
42
43static int __init bootmem_debug_setup(char *buf)
44{
45	bootmem_debug = 1;
46	return 0;
47}
48early_param("bootmem_debug", bootmem_debug_setup);
49
50#define bdebug(fmt, args...) ({				\
51	if (unlikely(bootmem_debug))			\
52		printk(KERN_INFO			\
53			"bootmem::%s " fmt,		\
54			__func__, ## args);		\
55})
56
57static unsigned long __init bootmap_bytes(unsigned long pages)
58{
59	unsigned long bytes = (pages + 7) / 8;
60
61	return ALIGN(bytes, sizeof(long));
62}
63
64/**
65 * bootmem_bootmap_pages - calculate bitmap size in pages
66 * @pages: number of pages the bitmap has to represent
67 */
68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69{
70	unsigned long bytes = bootmap_bytes(pages);
71
72	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73}
74
75/*
76 * link bdata in order
77 */
78static void __init link_bootmem(bootmem_data_t *bdata)
79{
80	struct list_head *iter;
81
82	list_for_each(iter, &bdata_list) {
83		bootmem_data_t *ent;
84
85		ent = list_entry(iter, bootmem_data_t, list);
86		if (bdata->node_min_pfn < ent->node_min_pfn)
87			break;
88	}
89	list_add_tail(&bdata->list, iter);
90}
91
92/*
93 * Called once to set up the allocator itself.
94 */
95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96	unsigned long mapstart, unsigned long start, unsigned long end)
97{
98	unsigned long mapsize;
99
100	mminit_validate_memmodel_limits(&start, &end);
101	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102	bdata->node_min_pfn = start;
103	bdata->node_low_pfn = end;
104	link_bootmem(bdata);
105
106	/*
107	 * Initially all pages are reserved - setup_arch() has to
108	 * register free RAM areas explicitly.
109	 */
110	mapsize = bootmap_bytes(end - start);
111	memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114		bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116	return mapsize;
117}
118
119/**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129				unsigned long startpfn, unsigned long endpfn)
130{
131	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132}
133
134/**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142{
143	max_low_pfn = pages;
144	min_low_pfn = start;
145	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146}
147#endif
148/*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system.  Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157void __init free_bootmem_late(unsigned long addr, unsigned long size)
158{
159	unsigned long cursor, end;
160
161	kmemleak_free_part(__va(addr), size);
162
163	cursor = PFN_UP(addr);
164	end = PFN_DOWN(addr + size);
165
166	for (; cursor < end; cursor++) {
167		__free_pages_bootmem(pfn_to_page(cursor), 0);
168		totalram_pages++;
169	}
170}
171
172#ifdef CONFIG_NO_BOOTMEM
173static void __init __free_pages_memory(unsigned long start, unsigned long end)
174{
175	int i;
176	unsigned long start_aligned, end_aligned;
177	int order = ilog2(BITS_PER_LONG);
178
179	start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
180	end_aligned = end & ~(BITS_PER_LONG - 1);
181
182	if (end_aligned <= start_aligned) {
183#if 1
184		printk(KERN_DEBUG " %lx - %lx\n", start, end);
185#endif
186		for (i = start; i < end; i++)
187			__free_pages_bootmem(pfn_to_page(i), 0);
188
189		return;
190	}
191
192#if 1
193	printk(KERN_DEBUG " %lx %lx - %lx %lx\n",
194		 start, start_aligned, end_aligned, end);
195#endif
196	for (i = start; i < start_aligned; i++)
197		__free_pages_bootmem(pfn_to_page(i), 0);
198
199	for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
200		__free_pages_bootmem(pfn_to_page(i), order);
201
202	for (i = end_aligned; i < end; i++)
203		__free_pages_bootmem(pfn_to_page(i), 0);
204}
205
206unsigned long __init free_all_memory_core_early(int nodeid)
207{
208	int i;
209	u64 start, end;
210	unsigned long count = 0;
211	struct range *range = NULL;
212	int nr_range;
213
214	nr_range = get_free_all_memory_range(&range, nodeid);
215
216	for (i = 0; i < nr_range; i++) {
217		start = range[i].start;
218		end = range[i].end;
219		count += end - start;
220		__free_pages_memory(start, end);
221	}
222
223	return count;
224}
225#else
226static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
227{
228	int aligned;
229	struct page *page;
230	unsigned long start, end, pages, count = 0;
231
232	if (!bdata->node_bootmem_map)
233		return 0;
234
235	start = bdata->node_min_pfn;
236	end = bdata->node_low_pfn;
237
238	/*
239	 * If the start is aligned to the machines wordsize, we might
240	 * be able to free pages in bulks of that order.
241	 */
242	aligned = !(start & (BITS_PER_LONG - 1));
243
244	bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
245		bdata - bootmem_node_data, start, end, aligned);
246
247	while (start < end) {
248		unsigned long *map, idx, vec;
249
250		map = bdata->node_bootmem_map;
251		idx = start - bdata->node_min_pfn;
252		vec = ~map[idx / BITS_PER_LONG];
253
254		if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
255			int order = ilog2(BITS_PER_LONG);
256
257			__free_pages_bootmem(pfn_to_page(start), order);
258			count += BITS_PER_LONG;
259		} else {
260			unsigned long off = 0;
261
262			while (vec && off < BITS_PER_LONG) {
263				if (vec & 1) {
264					page = pfn_to_page(start + off);
265					__free_pages_bootmem(page, 0);
266					count++;
267				}
268				vec >>= 1;
269				off++;
270			}
271		}
272		start += BITS_PER_LONG;
273	}
274
275	page = virt_to_page(bdata->node_bootmem_map);
276	pages = bdata->node_low_pfn - bdata->node_min_pfn;
277	pages = bootmem_bootmap_pages(pages);
278	count += pages;
279	while (pages--)
280		__free_pages_bootmem(page++, 0);
281
282	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
283
284	return count;
285}
286#endif
287
288/**
289 * free_all_bootmem_node - release a node's free pages to the buddy allocator
290 * @pgdat: node to be released
291 *
292 * Returns the number of pages actually released.
293 */
294unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
295{
296	register_page_bootmem_info_node(pgdat);
297#ifdef CONFIG_NO_BOOTMEM
298	/* free_all_memory_core_early(MAX_NUMNODES) will be called later */
299	return 0;
300#else
301	return free_all_bootmem_core(pgdat->bdata);
302#endif
303}
304
305/**
306 * free_all_bootmem - release free pages to the buddy allocator
307 *
308 * Returns the number of pages actually released.
309 */
310unsigned long __init free_all_bootmem(void)
311{
312#ifdef CONFIG_NO_BOOTMEM
313	return free_all_memory_core_early(NODE_DATA(0)->node_id);
314#else
315	return free_all_bootmem_core(NODE_DATA(0)->bdata);
316#endif
317}
318
319#ifndef CONFIG_NO_BOOTMEM
320static void __init __free(bootmem_data_t *bdata,
321			unsigned long sidx, unsigned long eidx)
322{
323	unsigned long idx;
324
325	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
326		sidx + bdata->node_min_pfn,
327		eidx + bdata->node_min_pfn);
328
329	if (bdata->hint_idx > sidx)
330		bdata->hint_idx = sidx;
331
332	for (idx = sidx; idx < eidx; idx++)
333		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
334			BUG();
335}
336
337static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
338			unsigned long eidx, int flags)
339{
340	unsigned long idx;
341	int exclusive = flags & BOOTMEM_EXCLUSIVE;
342
343	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
344		bdata - bootmem_node_data,
345		sidx + bdata->node_min_pfn,
346		eidx + bdata->node_min_pfn,
347		flags);
348
349	for (idx = sidx; idx < eidx; idx++)
350		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
351			if (exclusive) {
352				__free(bdata, sidx, idx);
353				return -EBUSY;
354			}
355			bdebug("silent double reserve of PFN %lx\n",
356				idx + bdata->node_min_pfn);
357		}
358	return 0;
359}
360
361static int __init mark_bootmem_node(bootmem_data_t *bdata,
362				unsigned long start, unsigned long end,
363				int reserve, int flags)
364{
365	unsigned long sidx, eidx;
366
367	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
368		bdata - bootmem_node_data, start, end, reserve, flags);
369
370	BUG_ON(start < bdata->node_min_pfn);
371	BUG_ON(end > bdata->node_low_pfn);
372
373	sidx = start - bdata->node_min_pfn;
374	eidx = end - bdata->node_min_pfn;
375
376	if (reserve)
377		return __reserve(bdata, sidx, eidx, flags);
378	else
379		__free(bdata, sidx, eidx);
380	return 0;
381}
382
383static int __init mark_bootmem(unsigned long start, unsigned long end,
384				int reserve, int flags)
385{
386	unsigned long pos;
387	bootmem_data_t *bdata;
388
389	pos = start;
390	list_for_each_entry(bdata, &bdata_list, list) {
391		int err;
392		unsigned long max;
393
394		if (pos < bdata->node_min_pfn ||
395		    pos >= bdata->node_low_pfn) {
396			BUG_ON(pos != start);
397			continue;
398		}
399
400		max = min(bdata->node_low_pfn, end);
401
402		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
403		if (reserve && err) {
404			mark_bootmem(start, pos, 0, 0);
405			return err;
406		}
407
408		if (max == end)
409			return 0;
410		pos = bdata->node_low_pfn;
411	}
412	BUG();
413}
414#endif
415
416/**
417 * free_bootmem_node - mark a page range as usable
418 * @pgdat: node the range resides on
419 * @physaddr: starting address of the range
420 * @size: size of the range in bytes
421 *
422 * Partial pages will be considered reserved and left as they are.
423 *
424 * The range must reside completely on the specified node.
425 */
426void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
427			      unsigned long size)
428{
429#ifdef CONFIG_NO_BOOTMEM
430	free_early(physaddr, physaddr + size);
431#if 0
432	printk(KERN_DEBUG "free %lx %lx\n", physaddr, size);
433#endif
434#else
435	unsigned long start, end;
436
437	kmemleak_free_part(__va(physaddr), size);
438
439	start = PFN_UP(physaddr);
440	end = PFN_DOWN(physaddr + size);
441
442	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
443#endif
444}
445
446/**
447 * free_bootmem - mark a page range as usable
448 * @addr: starting address of the range
449 * @size: size of the range in bytes
450 *
451 * Partial pages will be considered reserved and left as they are.
452 *
453 * The range must be contiguous but may span node boundaries.
454 */
455void __init free_bootmem(unsigned long addr, unsigned long size)
456{
457#ifdef CONFIG_NO_BOOTMEM
458	free_early(addr, addr + size);
459#if 0
460	printk(KERN_DEBUG "free %lx %lx\n", addr, size);
461#endif
462#else
463	unsigned long start, end;
464
465	kmemleak_free_part(__va(addr), size);
466
467	start = PFN_UP(addr);
468	end = PFN_DOWN(addr + size);
469
470	mark_bootmem(start, end, 0, 0);
471#endif
472}
473
474/**
475 * reserve_bootmem_node - mark a page range as reserved
476 * @pgdat: node the range resides on
477 * @physaddr: starting address of the range
478 * @size: size of the range in bytes
479 * @flags: reservation flags (see linux/bootmem.h)
480 *
481 * Partial pages will be reserved.
482 *
483 * The range must reside completely on the specified node.
484 */
485int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
486				 unsigned long size, int flags)
487{
488#ifdef CONFIG_NO_BOOTMEM
489	panic("no bootmem");
490	return 0;
491#else
492	unsigned long start, end;
493
494	start = PFN_DOWN(physaddr);
495	end = PFN_UP(physaddr + size);
496
497	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
498#endif
499}
500
501/**
502 * reserve_bootmem - mark a page range as usable
503 * @addr: starting address of the range
504 * @size: size of the range in bytes
505 * @flags: reservation flags (see linux/bootmem.h)
506 *
507 * Partial pages will be reserved.
508 *
509 * The range must be contiguous but may span node boundaries.
510 */
511int __init reserve_bootmem(unsigned long addr, unsigned long size,
512			    int flags)
513{
514#ifdef CONFIG_NO_BOOTMEM
515	panic("no bootmem");
516	return 0;
517#else
518	unsigned long start, end;
519
520	start = PFN_DOWN(addr);
521	end = PFN_UP(addr + size);
522
523	return mark_bootmem(start, end, 1, flags);
524#endif
525}
526
527#ifndef CONFIG_NO_BOOTMEM
528static unsigned long __init align_idx(struct bootmem_data *bdata,
529				      unsigned long idx, unsigned long step)
530{
531	unsigned long base = bdata->node_min_pfn;
532
533	/*
534	 * Align the index with respect to the node start so that the
535	 * combination of both satisfies the requested alignment.
536	 */
537
538	return ALIGN(base + idx, step) - base;
539}
540
541static unsigned long __init align_off(struct bootmem_data *bdata,
542				      unsigned long off, unsigned long align)
543{
544	unsigned long base = PFN_PHYS(bdata->node_min_pfn);
545
546	/* Same as align_idx for byte offsets */
547
548	return ALIGN(base + off, align) - base;
549}
550
551static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
552					unsigned long size, unsigned long align,
553					unsigned long goal, unsigned long limit)
554{
555	unsigned long fallback = 0;
556	unsigned long min, max, start, sidx, midx, step;
557
558	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
559		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
560		align, goal, limit);
561
562	BUG_ON(!size);
563	BUG_ON(align & (align - 1));
564	BUG_ON(limit && goal + size > limit);
565
566	if (!bdata->node_bootmem_map)
567		return NULL;
568
569	min = bdata->node_min_pfn;
570	max = bdata->node_low_pfn;
571
572	goal >>= PAGE_SHIFT;
573	limit >>= PAGE_SHIFT;
574
575	if (limit && max > limit)
576		max = limit;
577	if (max <= min)
578		return NULL;
579
580	step = max(align >> PAGE_SHIFT, 1UL);
581
582	if (goal && min < goal && goal < max)
583		start = ALIGN(goal, step);
584	else
585		start = ALIGN(min, step);
586
587	sidx = start - bdata->node_min_pfn;
588	midx = max - bdata->node_min_pfn;
589
590	if (bdata->hint_idx > sidx) {
591		/*
592		 * Handle the valid case of sidx being zero and still
593		 * catch the fallback below.
594		 */
595		fallback = sidx + 1;
596		sidx = align_idx(bdata, bdata->hint_idx, step);
597	}
598
599	while (1) {
600		int merge;
601		void *region;
602		unsigned long eidx, i, start_off, end_off;
603find_block:
604		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
605		sidx = align_idx(bdata, sidx, step);
606		eidx = sidx + PFN_UP(size);
607
608		if (sidx >= midx || eidx > midx)
609			break;
610
611		for (i = sidx; i < eidx; i++)
612			if (test_bit(i, bdata->node_bootmem_map)) {
613				sidx = align_idx(bdata, i, step);
614				if (sidx == i)
615					sidx += step;
616				goto find_block;
617			}
618
619		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
620				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
621			start_off = align_off(bdata, bdata->last_end_off, align);
622		else
623			start_off = PFN_PHYS(sidx);
624
625		merge = PFN_DOWN(start_off) < sidx;
626		end_off = start_off + size;
627
628		bdata->last_end_off = end_off;
629		bdata->hint_idx = PFN_UP(end_off);
630
631		/*
632		 * Reserve the area now:
633		 */
634		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
635				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
636			BUG();
637
638		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
639				start_off);
640		memset(region, 0, size);
641		/*
642		 * The min_count is set to 0 so that bootmem allocated blocks
643		 * are never reported as leaks.
644		 */
645		kmemleak_alloc(region, size, 0, 0);
646		return region;
647	}
648
649	if (fallback) {
650		sidx = align_idx(bdata, fallback - 1, step);
651		fallback = 0;
652		goto find_block;
653	}
654
655	return NULL;
656}
657
658static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
659					unsigned long size, unsigned long align,
660					unsigned long goal, unsigned long limit)
661{
662	if (WARN_ON_ONCE(slab_is_available()))
663		return kzalloc(size, GFP_NOWAIT);
664
665#ifdef CONFIG_HAVE_ARCH_BOOTMEM
666	{
667		bootmem_data_t *p_bdata;
668
669		p_bdata = bootmem_arch_preferred_node(bdata, size, align,
670							goal, limit);
671		if (p_bdata)
672			return alloc_bootmem_core(p_bdata, size, align,
673							goal, limit);
674	}
675#endif
676	return NULL;
677}
678#endif
679
680static void * __init ___alloc_bootmem_nopanic(unsigned long size,
681					unsigned long align,
682					unsigned long goal,
683					unsigned long limit)
684{
685#ifdef CONFIG_NO_BOOTMEM
686	void *ptr;
687
688	if (WARN_ON_ONCE(slab_is_available()))
689		return kzalloc(size, GFP_NOWAIT);
690
691restart:
692
693	ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
694
695	if (ptr)
696		return ptr;
697
698	if (goal != 0) {
699		goal = 0;
700		goto restart;
701	}
702
703	return NULL;
704#else
705	bootmem_data_t *bdata;
706	void *region;
707
708restart:
709	region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
710	if (region)
711		return region;
712
713	list_for_each_entry(bdata, &bdata_list, list) {
714		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
715			continue;
716		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
717			break;
718
719		region = alloc_bootmem_core(bdata, size, align, goal, limit);
720		if (region)
721			return region;
722	}
723
724	if (goal) {
725		goal = 0;
726		goto restart;
727	}
728
729	return NULL;
730#endif
731}
732
733/**
734 * __alloc_bootmem_nopanic - allocate boot memory without panicking
735 * @size: size of the request in bytes
736 * @align: alignment of the region
737 * @goal: preferred starting address of the region
738 *
739 * The goal is dropped if it can not be satisfied and the allocation will
740 * fall back to memory below @goal.
741 *
742 * Allocation may happen on any node in the system.
743 *
744 * Returns NULL on failure.
745 */
746void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
747					unsigned long goal)
748{
749	unsigned long limit = 0;
750
751#ifdef CONFIG_NO_BOOTMEM
752	limit = -1UL;
753#endif
754
755	return ___alloc_bootmem_nopanic(size, align, goal, limit);
756}
757
758static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
759					unsigned long goal, unsigned long limit)
760{
761	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
762
763	if (mem)
764		return mem;
765	/*
766	 * Whoops, we cannot satisfy the allocation request.
767	 */
768	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
769	panic("Out of memory");
770	return NULL;
771}
772
773/**
774 * __alloc_bootmem - allocate boot memory
775 * @size: size of the request in bytes
776 * @align: alignment of the region
777 * @goal: preferred starting address of the region
778 *
779 * The goal is dropped if it can not be satisfied and the allocation will
780 * fall back to memory below @goal.
781 *
782 * Allocation may happen on any node in the system.
783 *
784 * The function panics if the request can not be satisfied.
785 */
786void * __init __alloc_bootmem(unsigned long size, unsigned long align,
787			      unsigned long goal)
788{
789	unsigned long limit = 0;
790
791#ifdef CONFIG_NO_BOOTMEM
792	limit = -1UL;
793#endif
794
795	return ___alloc_bootmem(size, align, goal, limit);
796}
797
798#ifndef CONFIG_NO_BOOTMEM
799static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
800				unsigned long size, unsigned long align,
801				unsigned long goal, unsigned long limit)
802{
803	void *ptr;
804
805	ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
806	if (ptr)
807		return ptr;
808
809	ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
810	if (ptr)
811		return ptr;
812
813	return ___alloc_bootmem(size, align, goal, limit);
814}
815#endif
816
817/**
818 * __alloc_bootmem_node - allocate boot memory from a specific node
819 * @pgdat: node to allocate from
820 * @size: size of the request in bytes
821 * @align: alignment of the region
822 * @goal: preferred starting address of the region
823 *
824 * The goal is dropped if it can not be satisfied and the allocation will
825 * fall back to memory below @goal.
826 *
827 * Allocation may fall back to any node in the system if the specified node
828 * can not hold the requested memory.
829 *
830 * The function panics if the request can not be satisfied.
831 */
832void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
833				   unsigned long align, unsigned long goal)
834{
835	if (WARN_ON_ONCE(slab_is_available()))
836		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
837
838#ifdef CONFIG_NO_BOOTMEM
839	return __alloc_memory_core_early(pgdat->node_id, size, align,
840					 goal, -1ULL);
841#else
842	return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
843#endif
844}
845
846void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
847				   unsigned long align, unsigned long goal)
848{
849#ifdef MAX_DMA32_PFN
850	unsigned long end_pfn;
851
852	if (WARN_ON_ONCE(slab_is_available()))
853		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
854
855	/* update goal according ...MAX_DMA32_PFN */
856	end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
857
858	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
859	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
860		void *ptr;
861		unsigned long new_goal;
862
863		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
864#ifdef CONFIG_NO_BOOTMEM
865		ptr =  __alloc_memory_core_early(pgdat->node_id, size, align,
866						 new_goal, -1ULL);
867#else
868		ptr = alloc_bootmem_core(pgdat->bdata, size, align,
869						 new_goal, 0);
870#endif
871		if (ptr)
872			return ptr;
873	}
874#endif
875
876	return __alloc_bootmem_node(pgdat, size, align, goal);
877
878}
879
880#ifdef CONFIG_SPARSEMEM
881/**
882 * alloc_bootmem_section - allocate boot memory from a specific section
883 * @size: size of the request in bytes
884 * @section_nr: sparse map section to allocate from
885 *
886 * Return NULL on failure.
887 */
888void * __init alloc_bootmem_section(unsigned long size,
889				    unsigned long section_nr)
890{
891#ifdef CONFIG_NO_BOOTMEM
892	unsigned long pfn, goal, limit;
893
894	pfn = section_nr_to_pfn(section_nr);
895	goal = pfn << PAGE_SHIFT;
896	limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
897
898	return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
899					 SMP_CACHE_BYTES, goal, limit);
900#else
901	bootmem_data_t *bdata;
902	unsigned long pfn, goal, limit;
903
904	pfn = section_nr_to_pfn(section_nr);
905	goal = pfn << PAGE_SHIFT;
906	limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
907	bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
908
909	return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
910#endif
911}
912#endif
913
914void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
915				   unsigned long align, unsigned long goal)
916{
917	void *ptr;
918
919	if (WARN_ON_ONCE(slab_is_available()))
920		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
921
922#ifdef CONFIG_NO_BOOTMEM
923	ptr =  __alloc_memory_core_early(pgdat->node_id, size, align,
924						 goal, -1ULL);
925#else
926	ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
927	if (ptr)
928		return ptr;
929
930	ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
931#endif
932	if (ptr)
933		return ptr;
934
935	return __alloc_bootmem_nopanic(size, align, goal);
936}
937
938#ifndef ARCH_LOW_ADDRESS_LIMIT
939#define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
940#endif
941
942/**
943 * __alloc_bootmem_low - allocate low boot memory
944 * @size: size of the request in bytes
945 * @align: alignment of the region
946 * @goal: preferred starting address of the region
947 *
948 * The goal is dropped if it can not be satisfied and the allocation will
949 * fall back to memory below @goal.
950 *
951 * Allocation may happen on any node in the system.
952 *
953 * The function panics if the request can not be satisfied.
954 */
955void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
956				  unsigned long goal)
957{
958	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
959}
960
961/**
962 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
963 * @pgdat: node to allocate from
964 * @size: size of the request in bytes
965 * @align: alignment of the region
966 * @goal: preferred starting address of the region
967 *
968 * The goal is dropped if it can not be satisfied and the allocation will
969 * fall back to memory below @goal.
970 *
971 * Allocation may fall back to any node in the system if the specified node
972 * can not hold the requested memory.
973 *
974 * The function panics if the request can not be satisfied.
975 */
976void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
977				       unsigned long align, unsigned long goal)
978{
979	if (WARN_ON_ONCE(slab_is_available()))
980		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
981
982#ifdef CONFIG_NO_BOOTMEM
983	return __alloc_memory_core_early(pgdat->node_id, size, align,
984				goal, ARCH_LOW_ADDRESS_LIMIT);
985#else
986	return ___alloc_bootmem_node(pgdat->bdata, size, align,
987				goal, ARCH_LOW_ADDRESS_LIMIT);
988#endif
989}
990